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Fecal microbiota transplantation involves the transfer of gut 
microbes, viruses and luminal content to modulate a recipi-
ent’s microbiome, for therapeutic purposes. While the effi-

cacy of FMT has been demonstrated for various diseases1–3, such 
as recurrent Clostridioides difficile infection (rCDI)4,5 or ulcerative 
colitis (UC6,7), it may also facilitate microbiome recovery following 
disturbance8 and can enhance microbiome-mediated responses to 
other therapies9,10. Nevertheless, despite demonstrable efficacy in a 
growing range of clinical applications, the mode of action of FMT 
remains poorly understood3 and neither clinical success nor adverse 
outcomes are currently predictable with accuracy.

Because FMT primarily targets the microbiome, the engraftment 
of ‘beneficial’ and/or displacement of ‘detrimental’ microbes are 
expected to cause clinical effects3, in conjunction with more specific 
processes of host–microbiome interplay, such as the modulation of 
immune responses11, restored short-chain fatty acid (SCFA) metab-
olism12 or reinstated phage pressure13,14. It has been argued that both 
microbiome engraftment and clinical success are mainly deter-
mined by donor factors, and that rationally selected ‘super-donors’ 
may improve therapeutic efficacy15,16. This donor-centric view has 

since been questioned, at least for some indications17, highlighting 
the importance of recipient18–20 or procedural21 factors instead.

Changes in microbial compositions following FMT have been 
studied with regard to phages22 or fungi23,24, yet the bulk of current 
knowledge is focused on bacteria and archaea where colonization 
by donor microbes and the persistence of indigenous recipient 
microbes emerge at the strain level of microbial populations25. 
Strain-level studies suggest that colonization levels following FMT 
vary across indications: whereas donor and recipient strains coexist 
long term in metabolic syndrome (MetS) patients25, donor takeover 
is the most common outcome in rCDI26–28, with intermediate out-
comes in UC29 or obesity30,31. However, the factors shaping these dif-
ferential strain-level outcomes remain poorly understood. In small 
pilot study cohorts, colonization success of donor strains leading to 
short-term persistence was associated with species phylogeny, broad 
microbial phenotypes and relative fecal abundances in rCDI26,27, but 
with more adaptive metabolic phenotypes in UC32.

Here we conducted a meta-analysis of novel and published 
metagenomes from fecal samples collected before and after FMT 
to compare the fate of donor and recipient strain populations across 
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multiple disease indications. We hypothesized that drivers of FMT 
response are best studied from an ecological perspective:33–35 FMTs 
can be thought of as untargeted perturbation experiments on the 
gut microbiome in natura, pitting donor communities against those 
of the recipient, with outcomes that emerge from underlying eco-
logical processes. We therefore quantified strain-level patterns of 
donor strain colonization, recipient strain resilience and turnover 
following FMT, both at the broad level of entire communities and 
specifically for individual species. We built cross-validated models 
to predict FMT outcome—defined here as colonization of donor 
strains and resilience of resident strains of the recipient—based on 
either ex ante variables (that is, knowable before the intervention) 
or post hoc readouts (measured after the intervention), further cat-
egorized by scope (procedural, donor related or recipient related) 
and resolution (host, community and strain level), yielding testable 
hypotheses. Linking informative variables and their predictive per-
formance to putative underlying ecological processes, we provide 
a comprehensive view of host- and microbiome-level determinants 
of strain dynamics following FMT with relevance to gut microbial 
ecology in the clinical context and beyond.

Results
A meta-analysis of strain dynamics after FMT, across diseases. 
We analyzed a total of 1,492 fecal metagenomes collected in 316 time 
series of FMTs conducted for rCDI infection (n = 62 FMTs26–28,32,36), 
infection with extended-spectrum beta-lactamase-producing bac-
teria (ESBL, n = 59 (refs. 37–39)), MetS (n = 50 (refs. 18,25,40)), UC 
(n = 42 (refs. 29,41–43)), anti-PD1 therapy resistance in patients with 
melanoma (n = 37 (refs. 9,10)), irritable bowel syndrome (IBS, n = 30 
(ref. 44)), Crohn’s disease (n = 18 (ref. 45)), chemotherapy-induced 
diarrhea in patients with renal carcinoma (n = 10 (ref. 46)), Tourette’s 
syndrome (n = 5 (ref. 47)) and in healthy volunteers (n = 3 (ref. 48)).  
Of these, 269 samples (from four independent cohorts) were 
metagenomically sequenced for this study (Supplementary Table 1).

Full sample triads (donor, recipient pre FMT as baseline and at 
least one post-FMT sample) were available for 228 of the 283 allo-
genic FMT cases in our study; the remaining 33 FMTs in the data-
set were autologous transfers, of the recipient’s own stool; 3 ± 3 
post-FMT samples were available per time series, with a final 
sampling time point on average 159.4 days after the intervention 
(Supplementary Tables 1–3 and Methods).

We profiled 1,089 microbial species, including 144 previously 
undescribed, via pangenomes (the total set of identified genes 
for a microbial species) constructed from 47,548 newly built 
metagenome-assembled genomes (MAGs) and 25,037 high-quality 
reference genomes (Fig. 1a and Methods). We compared the 
pre-FMT microbiome of recipients with their respective donors to 
identify single-nucleotide variants (determinant SNVs, as defined 
previously25) and differences in gene content, and used these 
(meta)genomic markers to evaluate the fate of donor and recipient 
strains in post-FMT samples (Fig. 1b,c). For each species we classi-
fied outcomes as: donor colonization (that is, the post-FMT strain 
population was dominated by donor strains); recipient persistence 
(dominated by recipient strains); coexistence of conspecific donor 
and recipient strains; influx of ‘novel’ strains not detected in base-
line samples (representing the expansion of low-abundance strains, 
or introduction of new strains post FMT); donor rejection (failure 
to engraft at detectable concentrations); and loss of all recipient 
strains (Fig. 1c,d, Methods and Supplementary Table 5).

Donor strain colonization is independent of clinical outcome. 
Summarized across all tracked species, the colonization and per-
sistence of donor and recipient strains, respectively, varied greatly 
among allogenic FMT patients (Fig. 2a,b). We observed neither 
complete recipient strain turnover (loss of all strains) nor complete 
donor rejection (failure to colonize) in any analyzed FMT instance, 

although persistence of recipient strains or colonization by donor 
strains was very low in some patients. Outcomes varied depend-
ing on the presence of the species before FMT: takeover by donor 
strains (accounting for 18.0 ± 16.0% species post FMT) and persis-
tence of recipient strains (11.3 ± 9.1%) occurred more frequently 
among species present in either donor or recipient, but not in both. 
In contrast, in cases where species were present in both donor and 
recipient before FMT, coexistence of donor and recipient strains 
(19.0 ± 11.8%) was the most frequent outcome compared with donor 
colonization (4.5 ± 4.0%) and recipient persistence (5.6 ± 5.2%). 
Among post-FMT strain populations, 41.5 ± 21.0% were attribut-
able to novel strains or entirely novel species not present in either 
donor or recipient pre FMT (or previously below detection limits). 
Such major turnover towards novel strains was probably associated 
with the intervention itself, because novel or previously undetected 
strains accounted for 50 ± 10.1% in autologous FMTs.

Takeover by donor and novel strains was characteristic of patients 
with rCDI or UC whereas MetS FMTs mostly resulted in conspe-
cific strain coexistence, with varied outcomes in the other tested 
indications. Clinical response was not associated with strain-level 
dynamics for any indication; in other words, patient remission was 
not significantly linked to donor strain colonization or recipient 
strain displacement—for individual species and across all tracked 
species (Supplementary Fig. 1). In particular, our data did not sup-
port earlier hypotheses that reinstatement of SCFA production is a 
hallmark of remission in UC and rCDI, because an increased car-
riage of gut metabolic modules (GMMs; Methods) for acetogenesis, 
propionigenesis and butyrogenesis following FMT did not correlate 
with clinical outcome.

Recipient, not donor, factors drive post-FMT strain dynamics. To 
identify factors associated with colonization outcome, we trained a 
series of predictive machine learning models using cross-validated 
LASSO-regularized linear regression (Methods). Among possible 
predictors we distinguished ex ante variables (that is, knowable 
before the FMT intervention; Fig. 3a) from post hoc variables (mea-
surable after FMT; Fig. 3b). Moreover, we categorized predictors 
based on variable scope (procedural, donor related and recipient 
related) and resolution (host, community and species level), totaling 
>400 variables as regularization inputs (Supplementary Table 6).  
We then built cross-validated models for individual predictor  
categories (for example, using procedural variables only), as well as 
combined models to assess the overall predictability of outcomes.

Using regularized combinations of ex ante variables, the frac-
tions of species exhibiting post-FMT coexistence of donor and 
recipient strains and post-FMT recipient strain persistence were 
predictable with moderate accuracy (LASSO R2 = 0.58 and 0.49, 
respectively), with lower variation explained for colonization by 
donor (R2 = 0.34) and pre-FMT recipient strain resilience (R2 = 0.35; 
Fig. 3a). Interestingly, the fraction of donor strains that successfully 
took over was not well predicted (R2 = 0.1309).

To identify the major determinants of strain outcomes, we com-
pared the accuracy of models that used restricted subsets of vari-
ables with those of full models (which chose from all variables). 
Models that were restricted to community diversity indices (includ-
ing species richness) or species abundances in the recipient before 
FMT achieved similar accuracies, reflecting the importance of these 
two factors in predicting the fate of donor and recipient strains after 
FMT. Moreover, across all models, variables capturing recipient fac-
tors or donor–recipient microbiome complementarity (for example,  
community dissimilarity) were more predictive than donor factors. 
The most important predictors of strain-level outcome included 
recipient species richness and abundances of selected species in 
the recipient before FMT, in particular Bacteroides uniformis, 
Bacteroides vulgatus and one Oscillibacter species, which were  
positively associated with overall recipient strain persistence and 
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coexistence). In contrast, models based on procedural, metabolic or 
donor species variables were less accurate (Fig. 3a, left). Notably, 
donor carriage of GMMs related to SCFA synthesis was not asso-
ciated with increased strain colonization, contrary to previous 
findings12. However, high carriage of butyrogenesis genes in the 
recipient before FMT was moderately associated with overall strain 
persistence—that is, recipient communities with higher butyrogen-
esis potential were generally more resilient, further highlighting the 
role of the recipient microbiome in post-FMT strain dynamics.

In the study population used here, rCDI state was associated 
with a higher fraction of successfully colonizing donor strains in 
the post-FMT microbiome. However, we note that while >90% of 
patients with rCDI in our dataset received antibiotics before inter-
vention, most patients for other indications did not (or underwent 
extended washout periods), hence rCDI and the effect of antibiot-
ics cannot be disentangled. Moreover, in full models choosing from 
all variables, higher species richness in the recipient and individual 

species abundances were more robust predictors for the persistence 
of recipient strains than rCDI state. This suggests that the high lev-
els of donor strain colonization observed in patients with rCDI may 
be due in part to a more precarious microbial community (possi-
bly instigated or exacerbated by antibiotic use), rather than being a 
disease-specific effect.

Models trained on post hoc variables were found to be highly 
accurate, in particular when describing donor colonization (Fig. 3b).  
As expected, the strength of community-wide compositional  
shifts in the recipient (Bray–Curtis dissimilarity and metabolic dis-
similarity pre to post FMT) were associated with lower persistence 
of recipient strains. Interestingly, no individual species’ abundance 
post FMT was strongly associated with colonization outcome. 
However, successful colonization of particular species (Fig. 3b, right) 
was highly predictive of overall colonization of donor strains, in  
particular B. uniformis, B. vulgatus, several Oscillospiraceae sp. and 
Lachnospiraceae sp., including Anaerostipes hadrus. These might be 
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Fig. 1 | Study design and workflow overview. a, We analyzed a dataset of 316 FMT time series across ten disease indications and 22 cohorts, totaling 
1,492 fecal metagenomes. Species pangenomes were built from reference genomes and newly generated MAGs and profiled across samples for 
taxonomic, functional and strain population composition, based on microbial SNVs and differential gene content. b, Each allogenic FMT was represented 
as a triad of donor pre-FMT (blue hues), recipient pre-FMT (yellow) and post-FMT (purple) samples; each sample’s strain population is indicated as an 
overlapping circle. c, FMT strain-level outcomes for each species were scored using patterns of determinant SNVs and gene content (Supplementary  
Table 5). d, Ternary diagram of the strain population space for conspecific recipient strain persistence, donor strain colonization, donor–recipient 
coexistence and influx of novel strains.
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considered indicator species, the successful engraftment of which is 
associated with an overall higher influx of donor strains.

Post-FMT strain outcomes are species specific and predict-
able. Whereas the above analyses describe summarized outcomes 
across all tracked species, we next investigated the strain popula-
tion dynamics within each species post FMT. For sufficient statisti-
cal power, we focused on the 307 species detected in >50 allogenic 
FMTs across our study dataset (Fig. 4 and Supplementary Figs. 1 
and 2). Recipient persistence, donor colonization, coexistence and 
influx of novel strains were observed for all species, with no notable 
phylogenetic signal. We did not observe any species with consis-
tent patterns of colonization (‘super-colonizers’) or persistence 
(‘super-persisters’) across all FMTs. However, we observed two 
broadly distinct types of post-FMT strain dynamics in conspecific 
FMT triads (that is, for species present in both donor and recipi-
ent before the intervention; Fig. 4a and Supplementary Fig. 2). Most 
species showed a strong propensity towards donor–recipient strain 
coexistence that was independent of initial strain abundances. 
Notably, these included prevalent commensals like Bacteroides 
sp., Blautia sp., Dorea sp., Ruminoccocus sp. and Faecalibacterium 
sp. In contrast, for Veillonella parvula, several Streptococcus spp., 
Eggerthella lenta, Akkermansia muciniphila and Prevotella copri, 
strain populations strongly tended towards dominance of either 
donor, recipient or novel strains, with infrequent coexistence, indi-
cating that these species may be inherently less prone to conspecific 
strain carriage within the same host.

Strain-level FMT outcomes varied within each major taxonomic 
group, with no relevant differences between clades (Fig. 4b,c). 
Strains of facultatively aerobic species colonized less successfully 
(analysis of variance (ANOVA), R2 = 0.02, P = 0.002), whereas car-
riage of butyrogenesis (R2 = 0.026, P = 2 × 10−4) or propionigenesis 
(R2 = 0.008, P = 0.05) pathway genes or a generally saccharolytic 
(R2 = 0.046, P = 1.1 × 10−6) or proteolytic (R2 = 0.047, P = 8.5 × 10−7) 
metabolic setup was associated with higher colonization success.

To disentangle the factors contributing to post-FMT strain out-
comes for each species, we built species-specific cross-validated 
logistic LASSO regression models using ex ante and post hoc sets 
of predictor variables, analogous to those discussed above (Fig. 4d).  
For each species we categorized strain-level outcomes, defin-
ing recipient resilience as events where recipient strains persisted 
(as dominant populations or coexisting with donor strains; yel-
low), donor colonization (donor strains successfully colonized as 
dominant or coexisting populations; light blue), donor takeover 
(donor strains become dominant; dark blue) and recipient turn-
over (dominance by donor strains and/or new or previously unde-
tectable strains; purple). When training models using all available  
ex ante variables, recipient resilience (LASSO area under the curve 
(AUC) = 0.62 ± 0.13), donor colonization (0.58 ± 0.10) and donor 
takeover (0.65 ± 0.14) were predictable with moderate accuracy, 
with some variation within and between taxonomic clades (Fig. 4d). 
In contrast, recipient strain turnover (AUC = 0.94 ± 0.05) was pre-
dictable with high accuracy across almost all species, indicating that 
the displacement of resident strain populations in the recipient (not 
only by donor strain takeover, but by any means) may in general be 
a more deterministic process.

Recipient microbiome drives species-specific strain dynamics.  
We built LASSO models that were restricted to different subcat-
egories of predictor variables and compared their performance 
with full models trained on the entire complements of ex ante or 
post hoc variables (Fig. 5a). Models trained exclusively on recipient 
pre-FMT species abundances, on abundance and strain population 
characteristics of the focal species and, to a lesser degree, on micro-
biome community diversity variables achieved highest accuracies, 
comparable to those of full models. Notably, predictive power of  
individual recipient species was due almost entirely to exclusion 
effects, meaning that the enrichment of certain species in the  
recipient was associated with less donor takeover or recipient  
strain turnover of others, while facilitation effects did not have a 
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contributing role. Models restricted to procedural factors (includ-
ing disease indication), pre-FMT metabolic state or donor species 
abundances achieved much lower accuracies than full models, indi-
cating that these variable groups were less predictive of strain-level 
outcomes. Overall, we observed similar trends for models trained 
on post hoc variables (Fig. 5a, right).

For most species, we found that strain turnover could be accurately 
predicted using only two community-level microbiome diversity 
measures—species richness in the pre-FMT recipient and donor–
recipient community dissimilarity, the main factors selected in mod-
els restricted to community diversity variables (Fig. 5b). Low richness 
and a strong compositional shift in the recipient micro biome relative 
to healthy donors are hallmarks of disease-associated microbiome 
states, and our data indicate that the strength of this diffuse imbalance, 
correlated to disease (such as rCDI or UC in our dataset) or other 
disturbances (for example, antibiotics pretreatment or bowel cleans-
ing), is directly linked with FMT outcome in most species. In con-
trast, donor richness or functional redundancy, previously proposed 
to be relevant49, were only subordinately predictive, if at all. Metabolic 
variables were likewise unreliable predictors. Community-wide 
butyrogenesis potential was negatively associated with turnover 
in the recipient (that is, strain populations were more resilient in  
recipients carrying high loads of butyrate production genes), but 
higher butyrogenesis levels in the donor did not correspondingly 
promote colonization. However, in full models for recipient strain 
turnover, these variables were superseded by indicator species in the 

recipient microbiome (see below) and focal species characteristics  
(in particular, recipient strain population diversity; Fig. 5b).

The strongest predictor of takeover by donor strains was a high 
donor/recipient abundance ratio of a species (as suggested previ-
ously for rCDI27), indicating that the amount of incoming viable 
donor microbes (also referred to as propagule pressure) may provide 
a neutral baseline estimate for donor strain colonization success, in 
particular for species not present in the recipient pre FMT (Fig. 5b,c). 
In general, while the donor/recipient ratio was most predictive, the 
underlying signal was driven by species abundance (or absence) 
in the recipient microbiota, much less so in the donor microbiota. 
Intra specific strain population properties—donor/recipient strain 
population dissimilarity and recipient (and, to a much lesser extent, 
donor) strain population diversity—were also highly predictive but 
effects were more nuanced: donor strain takeover was more likely in 
species with complementary strain populations between donor and 
recipient, while diverse recipient populations (not dominated by 
individual strains) were more resilient than uneven ones. Moreover, 
incoming species that were phylogenetically complementary to the 
recipient community (that is, adding novelty—for example, by fill-
ing an unoccupied niche) were more likely to colonize or turn over 
the resident population.

Resident ‘gatekeeper’ species inhibit donor strain engraftment. 
Given that FMTs involve the pitting of the recipient’s residual 
microbial community against incoming microbiota from the 
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donor, we specifically explored the impact of individual species on 
the engraftment of others by training models restricted to donor 
or recipient pre-FMT species abundances (Fig. 5a) and explora-
tion of individual species’ relevance as predictors in full models 
(Fig. 5b,c). We extracted networks of engraftment inhibition and 
facilitation, associating the abundance of putative effector species 
in the donor and recipient with donor takeover events in focal spe-
cies. The vast majority of interactions was inhibitive (Fig. 5a–c): for 
most species, higher abundance in both donor and recipient corre-
lated negatively with engraftment of other species. These exclusion 

effects were stronger for the resident community of the recipient 
(AUC = 0.63 ± 0.14) than the donor (AUC = 0.53 ± 0.06).

Colonization inhibition was phylogenetically concentrated—
that is, inhibitive interactions were more common between related 
species within the same clade than between clades (Fig. 5B). 
Bacteroidales in the recipient microbiota, in particular B. uniformis,  
B. vulgatus, Alistipes shahii and Parabacteroides distasonis, were 
among the strongest colonization inhibitors, but also included two 
of the most strongly inhibited species, Bacteroides xylanisolvens and  
Bacteroides ovatus. In other words, the enrichment of gatekeeper 
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species such as Bacteroidales in the recipient microbiota inhibited 
colonization for a broad panel of species, and vice versa, in line 
with previous findings that subgroups of Bacteroidales are gene-
rally highly persistent also in healthy individuals50. Lactococcus 
lactis, Streptococcus salivarius and Dialister invisus in the recipient 
were the foremost colonization facilitators. In contrast to coloni-
zation inhibition, facilitation typically affected phylogenetically 

distant species—for example, the facilitation of Paraprevotella 
clara and Erysipelatoclostridium ramosum colonization by recipient 
Pauljensenia sp. (an Actinobacterium) were among the strongest 
interactions observed across all species.

We observed few prominent predictive species in the donor 
microbiota, most notably B. vulgatus and Evtepia gabavorous. 
Facilitation and inhibition effects of donor species were generally 
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limited and overall less predictive of colonization success, indicat-
ing that the donor microbiota has limited impact on colonization 
outcome beyond intraspecific strain dynamics.

Adaptive and neutral processes shape the post-FMT microbi-
ome. The accurate prediction of strain-level outcomes after FMT 
is informative beyond mere descriptive associations when con-
strued through the lens of gut ecology: FMTs are community-level 
perturbation experiments, interpretable in a framework of inva-
sion ecology and community assembly to identify processes and 
mechanisms that shape the microbiome33–35. We therefore linked 
the various tested variables in our models to putative underlying 
mechanisms (Fig. 6), categorized along a gradient from neutral/ 
stochastic factors (for example, donor propagule pressure: the 
amount of incoming viable donor microbes) to adaptive/selec-
tive ones (for example, niche effects). We further distinguished 
recipient-specific, donor-specific and donor–recipient complemen-
tarity effects and organized variables by granularity, from host-level 

factors (for example, clinical or procedural) to the level of micro-
biome communities (overall composition and possible species 
interactions) and intraspecific (strain-level) effects.

Factors pertaining to the recipient or to donor–recipient com-
plementarity were far more relevant to FMT colonization outcome 
than donor readouts across all tested variables, and consistently 
across different species. In other words, as outlined above, the 
donor microbiome did not specifically influence colonization or 
turnover in its own right, but instead mattered only to the extent 
of its complementarity with the recipient microbiota. Donor/
recipient abundance ratios were highly determinant of FMT out-
come, interpretable as the balance between propagule pressure of 
incoming donor cells and native abundance of the residual recipi-
ent population, providing a baseline of how neutral mechanisms 
shape post-FMT communities. In this, exclusion effects by resident 
strains of the recipient were dominant—that is, depletion of the 
recipient’s microbiota is more relevant for successful colonization 
than a higher dosage of donor strains. In practice, this interplay may 

Bow
el 

pr
ep

ar
at

ion

Nas
op

ha
ry

ng
ea

l r
ou

te

Fre
sh

 st
oo

l

Spe
cie

s r
ich

ne
ss

Fun
cti

on
al 

re
du

nd
an

cy

Com
m

un
ity

 d
iss

im
ila

rit
y

But
yr

at
e 

pr
od

uc
tio

n

M
uc

in 
de

gr
ad

at
ion

M
et

ab
oli

c d
iss

im
ila

rit
y

Sam
e 

sp
ec

ies
 (n

eg
.)

Sam
e 

sp
ec

ies
 (n

eg
.)

Sam
e 

sp
ec

ies
 (p

os
.)

B. u
nif

or
m

is

La
ch

no
sp

ira
les

 U
M

GS16
70

La
cto

co
cc

us
 la

cti
s

Bac
te

ro
ide

s s
aly

er
sia

e

Esc
he

ric
hia

 co
li

V. a
typ

ica

Rum
ino

co
cc

us
 b

ro
m

ii

B. v
ulg

at
us

Par
ab

ac
te

ro
ide

s m
er

da
e

B. v
ulg

at
us

A. s
ha

hii

Fae
ca

lib
ac

te
riu

m
 sp

.

Phy
log

en
et

ic 
co

m
ple

m
en

t.

M
et

ab
oli

c c
om

ple
m

en
t.

Abu
nd

an
ce

 ra
tio

Stra
in 

po
pu

lat
ion

 d
ive

rs
ity

Stra
in 

po
pu

lat
ion

 d
iss

im
.

rC
DI

UCAnt
ibi

ot
ic 

tre
at

m
en

t

Donor
factors

Host level
(clinical and
procedural)

Resolution

Community
(taxonomic
diversity)

Metabolic setup
(community level)

Neg. species assoc.
(by abundance)

Focal species
(abd and strain diversity)

Pos. species assoc.
(by abundance)

Recipient
factors

Donor–rec.
complement.

Propagule
pressure

Native sp.
abundance

Community
state

Degree of
disturbance

Genetic
diversity

(Competitive)
exclusion

Limiting
similarity

Niche
effects

Facilitation

N
eu

tr
al

 o
r 

st
oc

ha
st

ic
A

da
pt

iv
e 

or
 s

el
ec

tiv
e

Fig. 6 | FMT strain-level outcomes are shaped by both neutral and adaptive processes. Each of the tested variables used to predict FMT outcome can be 
linked to putative underlying ecological processes, as suggested previously33. Factors are organized by scope (pertaining to the donor, recipient or donor–
recipient complementarity, top) and resolution (host, community, species and strain level; left to right). Underlying ecological processes can be roughly 
ranked along the gradient, from neutral/stochastic to adaptive/selective; each process is illustrated with a toy example on the right. Circle size corresponds 
to average variable importance, calculated across all tested species from LASSO coefficients and overall model performance (less predictive models 
penalize variable importance). Recipient factors and, in particular, donor–recipient complementarity measures across all resolutions, were generally far 
more relevant to species-level outcome than donor factors. neg, negative; pos., positive; abd, abundance.

NATuRe MeDiCiNe | VOL 28 | SEPTEMBER 2022 | 1902–1912 | www.nature.com/naturemedicine 1909

http://www.nature.com/naturemedicine


Articles Nature MediciNe

be modulated procedurally to some extent, for example, by the use 
of fresh versus frozen stool (impacting the viability of donor cells), 
FMT route (rectal or duodenal) or the purging of recipient commu-
nities via bowel preparations or antibiotic pretreatment, although 
these procedural variables were not in themselves robust predictors 
in our analysis, possibly because they were confounded with the 
individual studies included in the dataset.

Microbiome composition of recipients (but not their respective 
donors) was likewise relevant to FMT strain-level outcome: broad 
community depletion (low richness) and pronounced composi-
tional differences in regard to healthy donors may indicate gener-
ally disturbed and precarious microbiomes that are less resistant 
to takeover by donor strains. Conversely, the residual enrichment 
of gatekeeper species, such as B. uniformis or B. vulgatus, was also 
negatively associated with colonization by donor strains, possibly 
indicating competitive exclusion processes and interspecific prior-
ity effects. While by design, causality cannot be inferred from our 
data, these results tie in with existing ecological theories on micro-
biome stability and resilience—for example, on tipping elements and 
critical transitions51,52, community multistability leading to entero-
types53,54, priority55 or ‘Anna Karenina’ effects56. We found limited 
evidence for colonization facilitation across species boundaries, 
both in donor and recipient. Likewise, our data did not support a 
strong role for community-wide metabolic states: neither general 
metabolic setup nor specific metabolic modules such as SCFA pro-
duction in donor or recipient greatly impacted FMT outcomes.

The strongest effects toward donor strain colonization emerged 
at species and strain level. Incoming species were more likely to 
colonize if they were phylogenetically or metabolically complemen-
tary to the residual community, implying that they were able to take 
over unoccupied niches. Colonization success was associated with 
complementarity specifically to the local community. High conspe-
cific diversity in the donor and low diversity in the recipient were 
also linked with engraftment success: recipient populations domi-
nated by single strains were less resilient, and donor strains from 
more diverse panels were more likely to colonize, probably due to 
strain-level-limiting similarity effects. Indeed, conspecific donor 
strain populations colonized more successfully if they were dis-
similar to recipient strains, indicating strong inhibitive intraspecific 
priority effects.

However, we note once more that the colonization of individual 
species was predictable with only moderate accuracy, irrespective of 
the variable sets used—unlike residual strain population turnover, 
which was highly predictable. This implies that colonization success 
may be stochastic to a large extent.

Discussion
Fecal microbiota transplantations are clinical procedures that can 
also be thought of as complex in natura perturbation experiments, 
pitting gut microbial communities of the donor against those of 
the recipient. An FMT is considered to be clinically successful if 
it triggers patient remission or recovery, whereas success from an 
ecological perspective is the extent to which the donor’s microbi-
ota can colonize in the recipient. Given that FMT targets the gut 
microbiome, engraftment and clinical success are expected to cor-
relate, implying that successful microbiome modulation mediates 
clinical effects. However, this hypothesis had not previously been 
systematically tested and is indeed not supported by our data. In 
our meta-study of 316 FMTs, clinical success was associated neither 
with colonization by donor strains, displacement of recipient spe-
cies nor the reinstatement of specific functions (such as SCFA syn-
thesis) for any of the studied disease indications. To some extent, 
this is in line with previous observations that autologous FMTs57,58 
or even transfers of sterile-filtered fecal water59 can be efficacious. 
Our data do not rule out more subtle links, in particular given our 
limited sample size per indication and differences between FMT 

protocols across studies, but a clear role of donor microbiota coloni-
zation in shaping clinical responses did not emerge. We did observe 
overall higher levels of donor strain colonization in patients suffer-
ing from rCDI or UC, coinciding with higher clinical response rates 
in these diseases compared with others in our dataset. However, this 
was arguably due to overall more perturbed microbiome states asso-
ciated with these diseases (possibly instigated by antibiotic treat-
ment regimes) that outweighed disease-specific effects: we found 
no significant differences in strain-level outcomes between clinical 
responders and nonresponders to FMT.

Understanding microbiome-level FMT outcomes is both clini-
cally relevant (for example, for informed donor selection or to avoid 
possible adverse effects) and more generally informative of eco-
logical processes shaping the gut microbiome. All studied species 
exhibited all FMT outcomes, depending on context; we did not find 
strong evidence that any species was inherently more invasive or 
resilient than others. Rather, fine-scale intraspecific strain popula-
tion structure and diversity, as well as donor–recipient strain popu-
lation complementarity, determined resilience, coexistence and 
colonization, although we noted that while the majority of species 
tended towards conspecific donor–recipient strain coexistence, a 
smaller subset of species generally gravitated towards dominance by 
either recipient or donor strains or those undetectable at baseline. 
Interactions between species were less relevant, but clearly struc-
tured: several gatekeeper species in the recipient, in particular of the 
genus Bacteroides, inhibited colonization by other, phylogenetically 
unrelated species whereas colonization facilitation across species 
boundaries was scarce.

We found that the turnover of recipient strains was very accu-
rately predictable for almost all studied species, using a consistent 
and surprisingly small selection of ex ante microbiome variables. In 
contrast, our models achieved only moderate predictive accuracies 
when predicting takeover by donor strains, indicating that coloni-
zation is, to a large extent, stochastic or influenced by other factors 
outside the scope of our study, such as viral or eukaryotic micro-
biome members, recipient immune state, medication or reduced 
viability of anaerobic donor fecal cells following the intervention.

Recipient factors consistently outweighed donor factors in driv-
ing FMT strain-level outcomes. Thus, our data did not support the 
super-donor hypothesis15 which states that certain donor micro-
biome properties are crucial to colonization and, by proxy, clini-
cal success. Rather, we found that complementarity of donor and 
recipient microbiomes promoted donor colonization and recipient 
turnover. This phenomenon was observed across microbial resolu-
tions, from community-level effects to conspecific strain population 
dissimilarity. Indeed, strain-level diversity and complementarity 
were the strongest determinants of FMT outcome, with relevance 
to rational donor selection in clinical practice16,35. Beyond screening 
for donor health, matching of donors to recipients based on micro-
biome complementarity at community, species and, in particular, 
strain levels may increase colonization success, make clinical out-
comes more predictable and reduce adverse effects.

Our data suggest that the gut microbiome is shaped by both 
neutral and adaptive processes post FMT, reconciling previous 
reports27,32. We found that limits to gut microbiome resilience at 
community, species and strain level can be defined by a relatively 
small set of measurable variables that point to distinct underlying 
processes. The (complementary) interplay between propagule pres-
sure and residual species abundance provided a neutral baseline for 
colonization although, again, recipient effects outweighed donor 
effects. At the same time, our data also suggested niche effects, in 
particular at the level of complementary intraspecific strain popula-
tions, although no consistently adaptive traits emerged in the analy-
sis. Previous hypotheses pertaining to the importance of metabolic 
capabilities such as SCFA synthesis were not supported, although 
we note that the inference of SCFA biosynthesis pathways from 
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metagenomic data remains challenging and does not capture puta-
tively differential expression of SCFA synthesis genes.

By design, our study is predominantly descriptive and only 
probes potential mechanisms underlying our observations to the 
extent of interpreting them in an ecological context. Moreover, 
our study focuses on the bacterial and archaeal microbiota (not 
accounting for viruses and eukaryotes60) and is limited by the rela-
tively small available sample size for some disease indications in our 
dataset, by the technical, procedural and physiological heterogene-
ity between cohorts and by the inherent detection limits of metage-
nomic strain calls. Nevertheless, our core findings were robust in 
spite of these sources of variation and may thus inform the clinical 
use of FMT in several ways, in particular if microbiome modulation 
is a desired endpoint beyond alleviation or remission of symptoms. 
Patients may be stratified before the intervention based on surpris-
ingly crude, robust and easily obtainable microbiome readouts, such 
as community richness and high-level composition, or with regard 
to the presence of gatekeeper species associated with overall micro-
biome resilience. The relevance of donor selection, in contrast, 
appears mostly limited to the extent of the donor’s (strain-level) 
complementarity to the recipient. Tuning of procedural parameters 
(antibiotic pretreatment, stool preparation, dosage, FMT route, 
dietary intake of donors and so on) may mainly impact recipi-
ent microbiome resilience, and an overall more resilient response 
(excluding, of course, target pathogens to be displaced) is often 
desirable. Both inhibition and facilitation of colonization across 
species boundaries were surprisingly sparse and mild, with few 
exceptions, indicating that the targeted colonization or turnover of 
individual species may be achievable mostly independent of resid-
ual and cotransferred communities, minimizing collateral effects on 
the recipient’s microbiota.

Our results indicate that microbiome dynamics following FMT 
are impacted by defined parameters that are tunable in clinical 
practice, thus supporting the notion that predictable and efficacious 
microbiome modulation using personalized probiotic mixtures, 
rather than entire complex fecal samples, is possible and may profit 
from an ecological perspective. In particular, our findings sug-
gest that the targeted depletion of selected microbes in the recipi-
ent, with concurrent introduction of diverse strain populations of 
the same species rather than a single strain, presents a promising 
approach to enhancing colonization and turnover in the recipient, 
although links to clinical outcomes remain to be established. Thus, 
levering of both neutral and relevant adaptive ecological processes 
may pave the way towards targeted modulatory interventions on 
the gut microbiome, personalized to patients, with predictable 
microbiome-level outcomes.
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Methods
Data overview. The study dataset comprised 22 independent cohorts recruited 
in centers in the United States, the Netherlands and Australia, with a total of 
316 FMTs conducted in 311 patients suffering from rCDI (n = 62 FMTs26–28,32,36), 
infection with ESBL (n = 59 (refs. 37–39)), MetS (n = 50 (refs. 18,25,40)), UC (n = 42 
(refs. 29,41–43)), anti-PD1 therapy resistance in patients with melanoma (n = 37  
(refs. 9,10)), IBS (n = 30 (ref. 44)), Crohn’s disease (n = 18 (ref. 45)), chemotherapy- 
induced diarrhea in patients with renal carcinoma (n = 10 (ref. 46)), Tourette’s 
syndrome (n = 5 (ref. 47) and in healthy volunteers (n = 3 (ref. 48)). On average, 
4.11 recipient stool samples were available per FMT time series, including baseline 
samples taken before the intervention (pre-FMT). Overall, 7.9 Terabases (Tb) of 
sequencing data were analyzed across 1,492 fecal metagenomes, of which 269 (for 
76 time series) were generated as part of the present study (for cohorts UC_NL, 
ESBL_NL, MetS_NL_1 and div_AU).

Three cohorts (UC_NL, MetS_NL_1 and MetS_NL_Koopen) were randomized 
controlled trials during which a subset of patients received autologous FMTs 
(transplantation of the recipient’s own stool, n = 33 FMTs). All other FMTs 
(n = 283) were allogenic, using stool donors. For 228 FMT time series, a full 
complement of donor baseline, recipient baseline and at least one recipient 
post-FMT sample were available after filtering.

A full description of all cohorts is provided in Supplementary Table 1, detailed 
information per FMT time series in Supplementary Table 2 and per-sample 
information in Supplementary Table 3.

Sample collection, processing and metagenomic sequencing. Study design 
and fecal sample collection for cohorts MetS_NL_1 (refs. 18,25), UC_NL41,61 and 
ESBL_NL37 were described previously. rCDI_AU and UC_AU samples were 
obtained from a single-center, proof-of-concept, parallel and controlled study in 
collaboration with the Centre for Digestive Diseases (Sydney, Australia), which 
aimed to assess donor microbiota implantation in two patients with CDI and three 
with UC up to 28 days following a 2-day fecal microbiota transplantation infusion 
via transcolonoscopy and rectal enema. The study is registered with the Australian 
New Zealand Clinical Trials Registry under ACTRN12614000503628 (Universal 
Trial no, U1111-1156-5909). Written, informed participant consent and ethical 
approval were obtained via the Centre for Digestive Diseases Human Research 
Ethics Committee. Deidentified participant data relevant to the study are provided 
in Supplementary Tables 2 and 3.

For cohorts MetS_NL_1 and UC_NL, fecal DNA extraction was described 
in the original studies. DNA from ESBL_NL samples was extracted using 
the GNOME DNA Isolation Kit (MP Biomedicals) with the following minor 
modifications: cell lysis/denaturation was performed (30 min, 55 °C) before 
protease digestion was carried out overnight (55 °C), and RNAse digestion (50 μl, 
30 min, 55 °C) was performed after mechanical lysis. After final precipitation, DNA 
was resuspended in TE buffer and stored at −20 °C for further analysis.

Metagenomic sequencing libraries for MetS_NL_1, UC_NL, ESBL_NL 
and div_AU samples were prepared to a target insert size of 350–400 base pairs 
(bp) on a Biomek FXp Dual Hybrid with high-density layout adapters, orbital 
shaker, static peltier and shaking peltier (Beckman Coulter) and a robotic PCR 
cycler (Biometra), using SPRIworks HT kits (Beckman Coulter) according to the 
supplier’s recommendation, with the following modifications: 500 ng of DNA 
initially, adapter dilution 1:25, kit chemical dilution 1:1 in process. For samples 
with low-input DNA concentrations, libraries were instead prepared manually 
using NEBNext Ultra II DNA Library Prep kits with NEBNext Singleplex primers. 
Libraries were sequenced on an Illumina HiSeq 4000 platform with 2 × 150-bp 
paired-end reads.

Public datasets. Based on a literature search, 18 datasets on FMT cohorts that 
met the following criteria were included in the study: (1) public availability of 
metagenomic sequencing data in January 2022; (2) sufficient available description 
to unambiguously match donors and recipients per FMT time series; and (3) no 
restrictions on data reuse. They were included in this study as RCDI_US_Smillie 
(n = 22 FMT time series26), RCDI_US_Aggarwala (n = 14 (ref. 28)), RCDI_US_
Watson (n = 10 (ref. 32)), RCDI_US_Podlesny (n = 8 (ref. 27)), RCDI_US_Moss 
(n = 6 (ref. 36)), MetS_NL_Koopen (n = 24 (ref. 40)), UC_US_Damman (n = 6 
(ref.43)), UC_US_Nusbaum (n = 4 (ref. 42)), UC_US_Lee (n = 2 (ref. 29)), CD_US_
Vaughn (n = 18 (ref. 45)), ABXR_div_Leo (n = 26 (ref. 39)), ABXR_IS_BarYoseph 
(n = 14 (ref. 38)), IBS_NO_Goll (n = 30 (ref. 44)), MEL_US_Davar (n = 27 (ref. 10)), 
MEL_US_Baruch (n = 109), REN_IT_Ianiro (n = 10 (ref. 46)), TOU_CN_Zhao 
(n = 5 (ref. 47)) and CTR_RU_Goloshchapov (n = 3 (ref. 48)). Contextual data, 
including donor–recipient matchings and information about clinical response, 
were curated from the study publications and, in some cases, kindly amended by 
the studies’ original authors on request (Supplementary Tables 1–3).

Metagenomic data processing and taxonomic and functional profiling. 
Metagenomic reads were quality trimmed to remove base calls with a Phred 
score of <25. Reads were then discarded if they were <45 nucleotides or if they 
mapped to the human genome (GRCh38.p10) with at least 90% identity over 
45 nucleotides. This processing was performed using NGLess62. Taxonomic profiles 
per sample were obtained using mOTUs v.2 (ref. 63). For functional profiling, reads 

were mapped against the Global Microbial Gene Catalog v.1 gut subcatalogue 
(gmgc.embl.de64) with a minimum match length of 45 nucleotides with at least 
97% identity, and summarized based on antimicrobial resistance gene (ARG) 
annotations and Kyoto Encyclopedia of Genes and Genomes orthologs (KOs) 
via eggNOG annotations65. Based on the resulting KO profiles, GMMs66 were 
quantified in each sample using omixer-rpmR (v.0.3.2)67. Taxonomic and GMM 
profiles per sample, normalized by read depth, are available in Supplementary 
Tables 7 and 8.

MAGs. We demarcated MAGs from samples of studies MetS_NL_1, UC_NL, 
ABXR_NL, div_AU, RCDI_US_Smillie, RCDI_US_Moss, UC_US_Damman, UC_
US_Nusbaum, UC_US_Lee and CD_US_Vaughn using several complementary 
strategies to obtain both high resolution from sample-specific assemblies and deep 
coverage of lowly abundant species from coassemblies of multiple samples. Unless 
otherwise indicated, all tools in the following were run with default parameters.

To generate single-sample MAGs, fecal metagenomes were assembled 
individually using metaSPAdes v.3.12.0 (ref. 68), reads were mapped back to 
contigs using bwa-mem v.0.7.17 (ref. 69) and contigs were binned using metaBAT 
v.2.12.1 (ref. 70). Multisample MAGs were built for each cohort separately. Reads 
were first coassembled using megahit v.1.1.3 (ref. 71) and mapped back to contigs 
using bwa-mem v.0.7.17. Coassembled contigs were then binned using both 
CONCOCT v.0.5.0 (ref. 72) and metaBAT v.2.12.1. The resulting coassembled 
MAG sets were further refined using DAS TOOL73 and metaWRAP74. In total, 
47,548 MAGs were demarcated using these five approaches (single-sample MAGs, 
multisample coassembled CONCOCT, metaBAT2, DAS TOOL and metaWRAP 
MAGs). In addition, we included 25,037 high-quality reference genomes from the 
proGenomes database75,76 in downstream analyses.

Genome quality was estimated using CheckM77 and GUNC v.0.1 (ref. 78), and 
all genomes were taxonomically classified using GTDB-tk79. Open reading frames 
(ORFs) were predicted using prodigal80 and annotated via prokka workflow v.1.14.6 
(ref. 81). Orthologs to known gene families were detected using eggNOG-mapper 
v.1 (ref. 82). ARGs were annotated using a workflow combining information from 
databases CARD v.3.0.0 (via rgi v.4.2.4 (ref. 83) and ResFams v.1.2.2 (ref. 84), as 
described previously76. The ‘specI’ set of 40 near-universal single-copy marker 
genes were detected in each genome using fetchMG85.

The full set of generated MAGs and contextual data are available via Zenodo 
(DOI 10.5281/zenodo.5534163 (ref. 86)).

Genome clustering, species metapangenomes and phylogeny. Genomes were 
clustered into species-level groups using an ‘open-reference’ approach in multiple 
steps. Initial prefiltering using lenient quality criteria (CheckM-estimated 
completeness ≥70%, contamination ≤25%; additional criteria were applied 
downstream) removed 57.7% of MAGs. The remaining 20,093 MAGs were mapped 
to the clustered proGenomes v.1 (ref. 75) and mOTUs v.2 (ref. 63) taxonomic 
marker gene databases using MAPseq v.1.2.3 (ref. 87). A total of 17,720 MAGs were 
confidently assigned to a ref-mOTU (specI cluster) or meta-mOTU based on the 
following criteria: (1) detection of at least 20% of the screened taxonomic marker 
genes and (2) a majority of markers assigning to the same mOTU at a conservative 
MAPseq confidence threshold of ≥0.9.

In an independent approach, quality-filtered MAGs and reference genomes 
were also clustered by average nucleotide identity (ANI) using a modified and 
scalable reimplementation of the dRep workflow88. Using pairwise distances 
computed with mash v.2.1 (ref. 89), sequences were first preclustered to 90% 
mash-ANI using the single-linkage algorithm, asserting that all genome pairs 
sharing ≥90% mash-ANI were grouped together. Each mash precluster was then 
resolved to 95 and 99% average linkage ANI clusters using fastANI v.1.1 (ref. 90). 
For each cluster, a representative genome was picked as either the corresponding 
reference specI cluster representative in the proGenomes database or the MAG 
with the highest dRep score (calculated based on estimated completeness and 
contamination). Genome partitions based on 95% average linkage ANI clustering 
and specI marker gene mappings matched almost perfectly, at an adjusted 
Rand index of >0.99. We therefore defined a total of 1,089 species-level clusters 
(‘species’) from our dataset (Supplementary Table 4), primarily based on marker 
gene mappings to precomputed ref-mOTUs (or specI clusters, n = 295) and 
meta-mOTUs (n = 528), and as 95% average linkage ANI clusters for genomes that 
did not map to either of these databases (n = 233).

Species pangenomes were generated by clustering all genes within each 
species-level cluster at 95% amino acid identity, using Roary 3.12.0 (ref. 91). 
Spurious and putatively contaminant gene clusters (as introduced by misbinned 
contigs in MAGs) were removed by asserting that the underlying gene sequences 
originated (1) from a reference genome in the proGenomes database or (2) from 
at least two independent MAGs, assembled from distinct samples or studies. 
To account for incomplete genomes, ‘extended core genes’ were defined as gene 
clusters present in >80% of genomes in a species-level cluster. If too few gene 
clusters satisfied this criterion, as was the case for some pangenomes containing 
many incomplete MAGs, the 50 most prevalent gene clusters were used instead. 
Representative sequences for each gene cluster were picked as ORFs originating 
from specI representative genomes (that is, high-quality reference genomes), or 
otherwise as the longest ORF in the cluster.
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A phylogenetic tree of species-level cluster representatives was inferred based 
on the ‘mOTU’ set of ten near-universal marker genes63. Marker genes were aligned 
in amino acid sequence space across all species using Muscle v.3.8.31 (ref. 92), 
concatenated and then used to construct a species tree with FastTree2 (v.2.1.11)93 
with default parameters.

Inference of microbial strain populations. Metagenomic reads for each sample 
were mapped against gene cluster representative sequences for all species 
pangenomes using bwa-mem v.0.7.17 (ref. 69). Mapped reads were filtered for 
matches of ≥45 bp and ≥97% sequence identity, sorted and filtered against multiple 
mappings using samtools v.1.7 (ref. 94). Horizontal (‘breadth’) and vertical (‘depth’) 
coverage of each gene cluster in each sample were calculated using bedtools  
v.2.27.1 (ref. 95).

A species was considered present in a sample if at least three mOTU taxonomic 
marker genes were confidently detected either via the mOTU v.2 profiler (for specI 
clusters and meta-mOTUs) or based on pangenome-wide read mappings (for 
non-mOTU species-level clusters). Gene clusters within each pangenome were 
considered present in a sample if (1) the species was detectable (see above),  
(2) horizontal coverage exceeded 100 bp and 20% of the representative gene’s length 
and (3) average vertical coverage exceeded 0.5. Gene clusters were considered 
confidently absent if they did not attract any mappings in samples where the 
species’ set of extended core genes (see above) was covered at >1 median vertical 
coverage (that is, present with high confidence). Using these criteria, strain 
population-specific gene content profiles were computed for each species in  
each sample.

Raw microbial SNVs were called from uniquely mapping reads using metaSNV 
v.1.0.3 (ref. 96) with permissive parameters (-c 10 -t 2 -p 0.001 -d 1000000). 
Candidate SNVs were retained if they were supported by two or more reads each 
in two or more samples in which the focal gene cluster was confidently detected 
(see above), before differential downstream filtering. At multiallelic positions the 
frequency of each observed allele (A, C, G, T) was normalized by the total read 
depth for all alleles.

Based on these data, strain populations were represented based on both their 
specific gene content profile and SNV profile in each sample.

Each species’ local strain population diversity (SPD) and allele distances 
(AD) between strain populations across samples were estimated as follows. SPD 
was calculated based on the inverse Simpson index of allele frequencies p(ACGT) at 
each variant position i in the extended core genome (nvar), normalized by total 
horizontal coverage (number of covered positions) covhor:

SPD =

∑nvar
i=1

(

p2A + p2C + p2G + p2T
)

−1
− 1

covhor

Thus defined, SPD can be interpreted as the average effective number of 
nondominant alleles in a strain population. SPD ranges between 0 (only one 
dominant strain detected—that is, no multiallelic positions) and 3 (all four possible 
alleles present at equal proportions at each variant position). Normalization 
by total horizontal coverage, covhor of the extended core genome ensures that 
values are comparable between samples even if a species’ coverage in a sample is 
incomplete.

Intraspecific ADs between strain populations across samples were calculated 
as the average Euclidean distance between observed allele frequencies at variant 
positions in the species’ extended core genome, requiring at least 20 variant 
positions with shared coverage between samples. If a species was not observed in a 
sample, ADs to that sample were set to 1.

Quantification of strain-level outcomes. Colonization by donor strains, 
persistence of recipient strains and influx of novel strains (environmental or 
previously below detection limit) in the recipient microbiome following FMT 
were quantified for every species based on determinant microbial SNVs and gene 
content profiles using an approach extending previous work25,97. In total, 261 FMT 
time series (228 allogenic and 33 autologous transfers) for which a donor baseline 
(in allogenic FMTs; ‘D’), a recipient pre-FMT baseline (‘R’) and at least one 
recipient post-FMT (‘P’) sample were available were taken into account, and each 
FMT was represented as a D-R-P sample triad. If available, multiple time points 
post FMT were scored independently. By definition, because no donor samples 
were available for autologous FMTs, recipient pre-FMT samples were used instead. 
An overview of potential strain-level FMT outcomes is provided in Fig. 1c,d.

For each D-R-P sample triad, conspecific strain dynamics were calculated if a 
species was observed in all three samples (see above) with at least 100 informative 
(determinant) variant positions either covered with two or more reads or 
confidently absent (see below). Donor determinant alleles were defined as variants 
unique to the donor (D) relative to the recipient pre-FMT (R) sample, and vice 
versa. Post-FMT determinant alleles were defined as variants unique in P relative 
to both D and R. Given that intraspecific fecal strain populations are often 
heterogeneous—that is, consist of more than one strain per species—multiple 
observed alleles at the same variant position were taken into account. In addition, 
if a gene containing a putative variant position was absent from a sample although 
the species’ extended core genome was detected, the variant was considered 

‘confidently absent’ and treated as informative (and potentially determinant) as 
well, thereby taking into account differential gene content between strains.

The fractions of donor and recipient strains post FMT were quantified 
based on the detection of donor- and recipient-determinant variants across all 
informative positions in the P sample. The fraction of novel strains (environmental 
or previously below detection limit in donor and recipient) was quantified as 
the fraction of post-FMT determinant variants. Based on these three readouts 
(fraction of donor, recipient and novel strains) and cutoffs previously established 
by Li et al.25, FMT outcomes were scored categorically as ‘donor colonization’, 
‘recipient persistence’, ‘donor–recipient coexistence’ or ‘influx of novel (previously 
undetected) strains’ for every species (Supplementary Table 5).

In addition to conspecific strain dynamics (that is, where a species was present 
in D, R and P), we also quantified FMT outcomes that involved the acquisition 
or loss of entire strain populations. For example, if a species was present in the 
recipient at baseline but not post FMT, this was considered a ‘species loss’ event. 
See Fig. 1c and Supplementary Table 5 for a full overview of how different FMT 
outcome scenarios were scored.

To assert the accuracy of our approach, we simulated FMT time series by 
shuffling (1) the donor sample, (2) the recipient pre-FMT sample or (3) both. 
Randomizations were stratified by subject (accounting for the fact that some 
donors were used in multiple FMTs and that some recipients received repeated 
treatments) and geography. For each observed D-R-P sample triad, we simulated 
ten triads per each of the above setups.

Outcomes were further summarized across species by calculating a series of 
strain population-level metrics for each FMT, defined as follows.

Persistence index: average fraction of persistent recipient strains among all 
species observed post FMT (that is, fraction of post-FMT strain populations 
attributable to recipient baseline strains).

Colonization index: average fraction of donor strains among all species post FMT.

Modeling and prediction of FMT outcomes. We explored a large set of covariates 
as putative predictor variables for FMT outcomes, grouped into the following 
categories: (1) host clinical and procedural variables (for example, FMT indication, 
pre-FMT bowel preparation, FMT route and so on); (2) community-level 
taxonomic diversity (species richness, community composition and so on); 
(3) community-level metabolic profiles (abundance of specific pathways); (4) 
abundance profiles of individual species; (5) strain-level outcomes for other species 
in the system; and (6) focal species characteristics, including strain-level diversity; 
see Supplementary Table 6 for a full list of covariates and their definitions. We 
further classified covariates as either predictive ex ante variables (that is, knowable 
before the FMT is conducted) or post hoc variables (that is, pertaining to the 
post-FMT state, or the relation between pre- and post-FMT states).

We built two types of model to predict FMT strain-level outcomes based on 
these covariates: (1) FMT-wide models, using summary outcome metrics across 
all species in a time series (persistence index, colonization index; see above) 
as response variables; and (2) per-species models for 307 species observed in 
≥50 FMTs, using each species’ strain-level outcome in every scored time series  
as response variable. Unless otherwise indicated, the last available time point for 
each FMT time series was used. Models were built for each covariate category 
separately, as well as for combinations of all ex ante and all post hoc variables, 
respectively.

Given that the number of covariates greatly exceeded the number of available 
FMT time series, and that several covariates were correlated with each other 
(Supplementary Fig. 3), FMT outcomes were modeled using ten times fivefold 
cross-validated LASSO-regularized regression, as implemented in the R package 
glmnet (v.4.1.3)98. Regression coefficients were chosen at one standard error from 
the cross-validated minimum lambda value and averaged across validation folds.

Linear LASSO regression was used to model outcomes with continuous 
response variables, both for FMT-wide outcomes (persistence index and soon) 
and for the fraction of colonizing, persisting and coexisting strains per species 
across FMTs. For linear models, R2 of predictions on test sets was averaged across 
validation folds. Moreover, logistic LASSO regression was used to additionally 
model binarized FMT outcomes per species, defined as recipient strain resilience, 
recipient strain turnover and donor strain takeover, based on further summarizing 
outcome categories in Supplementary Table 5. For logistic models, accuracy was 
assessed as area under the receiver operating characteristic curve (AUROC) 
averaged across validation folds.

Statistical analyses. Association of clinical outcomes (excluding a subset of 
cohorts for which clinical success was not reported; Supplementary Table 3) with 
FMT strain-level outcomes was tested using Wilcoxon tests (responders versus 
nonresponders), and also by sequential ANOVA on linear regression models 
(accounting for additional variables), in each case followed by Benjamini–
Hochberg correction for multiple hypothesis tests. Differences in strain-level 
outcomes between species across taxonomic clades and inferred species 
phenotypes were tested using ANOVA on linear regression models.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
Raw metagenomic sequencing data have been uploaded to the European 
Nucleotide Archive under accession nos. PRJEB46777, PRJEB46778, PRJEB46779 
and PRJEB46780. The full list of included publicly available datasets, including 
accession numbers and associated PMIDs, is available in Supplementary Table 1. 
Contextual data are available in Supplementary Tables 2 and 3. MAGs (https://doi. 
org/10.5281/zenodo.5534163)86 and source data (https://doi.org/10.5281/zenodo. 
6611040)99 are available for download via Zenodo.

Code availability
Analysis code is available via github (https://github.com/grp-bork/fmt_metastudy).
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