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Precise regulation of transcription and translation is required 
to define patterns of protein synthesis in healthy cells. 
Nevertheless, attempts to understand disease have often 

focused on a single pathway of transcriptional or translational con-
trol, despite their simultaneous dysregulation. For instance, two 
major pathways that link the cellular environment to gene expres-
sion, the HIF and mTOR pathways, are both dysregulated in many 
cancers. The most common kidney cancer, clear cell renal carci-
noma, manifests upregulation of HIF owing to defective function 
of its E3 ubiquitin ligase, the von Hippel–Lindau tumor suppressor 
(VHL), and hyperactivation of mTOR1,2. In addition, microenviron-
mental tumor hypoxia increases the activity of HIF3 and also acts on 
translation via mTOR and other pathways4–8.

HIF mediates responses to hypoxia through a well-defined role 
in transcription, but recent studies also report a role for it in trans-
lation. In the presence of oxygen, two isoforms of HIFα (HIF1A 
and HIF2A) are ubiquitinated by VHL and degraded. This pre-
vents the formation of transcriptionally active heterodimers with 
HIF1B3. In addition, HIF2A is reported to regulate translation via 
non-canonical cap-dependent translation, mediated by eukaryotic 
translation initiation factor 4E family member 2 (EIF4E2)9. It was 
further reported that a large subset of genes, including HIF tran-
scription targets, are translationally upregulated by the HIF2A–
EIF4E2 axis, resulting in induction of protein in hypoxic cells, even 
when HIF-dependent transcription was ablated by HIF1B knock-
down10. Evaluation of this action of HIF is important given efforts to 
treat VHL-defective kidney cancer through HIF2A–HIF1B dimer-
ization inhibitors11,12, whose action to prevent transcription might 
be circumvented by effects of HIF2A on translation.

mTOR forms two different complexes, mTORC1 and mTORC2. 
mTORC1 controls translation via phosphorylation of EIF4E bind-
ing protein (EIF4EBP)13,14. When mTORC1 is inhibited, such as by 
nutrient deprivation, unphosphorylated EIF4EBP binds to EIF4E 
and this blocks the EIF4E-EIF4G1 interaction, which is necessary 

to form a canonical translation initiation complex14. In contrast, 
mTORC2 controls cell proliferation and migration by phosphory-
lating AKT serine/threonine kinase and other targets13.

Comprehensive characterization of the regulation of gene 
expression by the HIF–VHL and mTOR pathways is crucial to 
understanding the biology of VHL-defective kidney cancer, par-
ticularly as agents targeting both these pathways are being deployed 
therapeutically15,16. Although mTOR has been reported to be inhib-
ited by HIF under hypoxia8,17, its interactions with the HIF system 
are poorly understood.

In part, this reflects the lack of efficient methods to measure 
translational efficiency and to interface such methods with tran-
scriptional data. Most existing methods capable of pan-genomic 
analysis rely on one of two principles; assessment based on the posi-
tion of ribosomes on mRNAs by ribosomal foot-printing (ribosome 
profiling), or assessment of the number of ribosomes on mRNAs 
by polysome profiling18 (see also Supplementary Information). 
Such methods have provided valuable information on translational 
control. This has enabled the definition of mRNA features that 
regulate translational efficiency19,20 and has facilitated analyses of 
interventions on pathways that regulate translation14,21. However, 
scaling these methods to permit multiple comparisons remains a 
challenge. Moreover, reliance on internal normalization, as used 
in the majority of studies, allows changes in global translation to 
confound the measurements of transcript-specific translational 
efficiency22. Furthermore, ribosomal profiling cannot readily distin-
guish the translational efficiency of overlapping transcripts such as 
those generated by alternate TSSs. Resolution of specific transcripts 
by their TSS provides important insights into the mode of transla-
tional regulation19,23,24 and is particularly important when assessing 
translation in the setting of a large transcriptional change, as occurs 
in cancer25,26.

Here we describe a new method, high-resolution polysome 
profiling followed by sequencing of the 5′ ends of mRNAs (HP5), 
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that addresses these challenges, and demonstrate its use in defining 
the interplay between transcriptional and translational regulation 
by the HIF–VHL and mTOR signaling pathways in VHL-defective 
kidney cancer cells.

Results
Establishment of HP5 workflow. HP5 encompasses two key fea-
tures. First, through the use of external RNA standards, it robustly 
measures ribosome load of mRNAs. Second, by the exclusion of 
mRNA or cDNA purification steps before the first PCR amplifica-
tion and multiplexing of samples at an early stage of the protocol, 
the method enables the processing of a large number of samples. 
(Fig. 1a and Extended Data Fig. 1).

We first evaluated the basic performance of HP5 using 
RCC4 VHL cells, in which constitutive upregulation of HIF in 
VHL-defective RCC4 cells is restored to normal by stable transfec-
tion of VHL (Extended Data Fig. 2). We obtained an average of 3.3 
million reads per fraction, with ~80% of reads mapping to mRNA 
(Supplementary Data 1). Importantly, HP5 successfully generated 
each library from 100-fold less total RNA than a similar method 
(~30 ng compared with 3 µg)19. HP5 was highly reproducible: prin-
cipal component analysis of mRNA abundance data demonstrated 
tight clustering of each polysome fraction, across three clones of 
RCC4 VHL cells (Fig. 1b). Furthermore, the 5′ terminus of HP5 
reads precisely matched annotated TSSs in RefSeq or GENCODE  
at nucleotide resolution, confirming the accuracy of 5′ terminal 
mapping (Fig. 1c).

To further test the performance of HP5, we compared the poly-
some distribution of a set of TSS-defined mRNA isoforms analyzed 
by both HP5 and RT–qPCR. Very similar results were obtained, 
verifying that HP5 can accurately resolve the translation of these 
isoforms (Extended Data Fig. 3a). We then examined the overall 
relationships between translational efficiency and selected mRNA 
features, including those with known associations with translational 
control. Translational efficiency was calculated as the mean ribo-
some load for each of 12,459 mRNA isoforms resolved by their TSS 
from 7,815 genes. Using a generalized additive model, we found that 
the four most predictive features together explained around 36% of 
variance in mean ribosome load between mRNAs (Extended Data 
Fig. 3b). Notably, coding sequence (CDS) length showed the clear-
est association with mean ribosome load: values were greatest for 
mRNAs with a CDS length of around 1,000 nucleotides (nt) and 
declined progressively as the CDS became longer (Fig. 1d), prob-
ably owing to a lower likelihood of re-initiation of translation by 
mRNA circularization27. In agreement with previous studies28–30, 
analysis of HP5 data identified the negative effect on translation of 
upstream open reading frames (uORFs) and RNA structures near 
the cap, as well as the positive effect of the Kozak sequence (Fig. 1e 
and Extended Data Fig. 3c,d). Importantly, the association of mean 
ribosome load with mRNA features that affect translation extended 
to comparisons between mRNA isoforms arising from alternative 
TSS usage (Fig. 1f). Overall, HP5 reproduced and extended known 
associations between mRNA features and translation, verifying 
its performance in the measurement of translational efficiency at 
transcript resolution (see Supplementary Information for further  
validation of the method).

mTOR-dependent translational regulation greater than reported. 
We next applied HP5 to the analysis of mTOR pathways, which are 
frequently dysregulated along with hypoxia signaling pathways in 
VHL-defective kidney cancer. To analyze translational changes that 
arise directly from mTOR inhibition, RCC4 VHL cells were treated 
for a short period (2 hours) with Torin 1, an ATP-competitive 
inhibitor of mTORC1 and mTORC2 (ref. 31). mTOR inhibition 
globally suppressed translation, as shown by a marked reduction 
in polysome abundance (Fig. 2a). Measurements of changes in 

translational efficiency were initially analyzed at the level of the 
gene. This provided the first direct display of both a general reduc-
tion in translation by mTOR inhibition and of its heterogeneous 
effects on individual genes across the genome (Fig. 2b). To assess 
the performance of HP5 against other methods, we next compared 
the HP5 data on translational responses to mTOR inhibition with 
data in four previous studies that reported mTOR hypersensitive 
genes14,21,32,33. Although the mTOR hypersensitive genes identified 
by these studies did not always strongly overlap, HP5 revealed the 
translational downregulation of mTOR targets identified in each of 
the four previous studies (Extended Data Fig. 4a,b). By contrast, at 
least within these studies, ribosome profiling appeared less power-
ful in identifying the mTOR hypersensitive genes defined by poly-
some profiling (Extended Data Fig. 4b). Note that one caveat to 
this is that ribosomal load is not a direct measure of translational  
efficiency, as translation can be regulated not only by initiation but 
also elongation22.

mTOR has been reported to regulate a wide range of processes by 
different mechanisms13, while the identification of the direct trans-
lational targets has been more limited, for instance, involving pro-
teins that function in translation itself. Our data confirmed many of 
these known mTOR translational targets, as well as the previously 
described resistance of many transcription factors14. Importantly, 
our data also demonstrated directly that the translation of genes 
encoding proteins with many other functions, such as in different 
metabolic pathways, and in proteasomal degradation is hypersensi-
tive to mTOR inhibition (Fig. 2c).

The accurate resolution of the TSS provided by HP5 also offered 
an opportunity to improve the understanding of transcript-specific 
mRNA features associated with mTOR hypersensitivity or resis-
tance. mTOR has been shown to regulate mRNAs with a 5′ terminal 
oligopyrimidine (TOP) motif in a tract-length-dependent man-
ner34. Our analysis confirmed this (Fig. 2d). By contrast, although it 
has been reported that TOP motifs starting between +2 and +4 nt 
downstream of the cap mediate mTOR control14, the high-resolution 
analysis permitted by HP5 revealed that any such association with 
Torin 1 sensitivity was much weaker if the TOP motifs did not start 
immediately after the cap (Fig. 2d).

Although these data confirmed the importance of the TOP motif 
for translational regulation by mTOR, the proportion of mRNAs 
containing a TOP motif immediately after the cap was low (only 6% 
of mRNAs had a TOP motif of more than 2 nucleotides, Extended 
Data Fig. 5a) compared with the global extent of translational alter-
ation by mTOR inhibition, suggesting that additional mechanisms 
contribute to the mTOR sensitivity24. To explore this, we examined 
the interaction of Torin 1-induced changes in translation with uORF 
frequency and CDS length, the two most important mRNA features 
affecting translational efficiency under mTOR-active conditions 
(Extended Data Fig. 3b). We observed that uORF number retained 
only a very weak association with mean ribosome load under mTOR 
inhibition (Fig. 2e). With respect to CDS length, the increased 
translational efficiency of mRNAs with a CDS of close to 1 kb was 
not observed upon mTOR inhibition (Fig. 2f and Extended Data  
Fig. 5b). Rather, there was a progressive increase in mean ribosome 
load with increasing CDS length, as might be expected if CDS length 
was not affecting translational initiation. These differences suggest 
that mTOR pathways also impinge on the translational effects of 
these mRNA features. For instance, EIF4EBP activation by mTOR 
inhibition might prevent mRNAs from forming a loop through 
blocking EIF4E and EIF4G1 interactions. Note that an associa-
tion of mRNA length with mTOR sensitivity was also observed but 
was slightly weaker (Extended Data Fig. 5c). Interactions between 
the mTOR sensitivity of mRNAs and features such as the TOP 
motif or number of uORFs were also observed when comparing 
mRNA isoforms of the same gene (Extended Data Fig. 5d). Overall,  
the analyses revealed that the extent of translation regulation by 
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Fig. 1 | HP5 reliably measured translational efficiency of mRNAs resolved by their TSS. a, Schematic overview of Hp5. Top panel shows the experimental 
workflow; bottom panel shows an example of the mean ribosome load (MRL) calculation. Abs (254 nm), absorbance at 254 nm. b, principal component 
analysis of Hp5 data by polysome fraction, for three independent RCC4 VHL clones. c, position of identified 5′ termini relative to the closest annotated 
TSSs; data are the proportion of reads with the indicated 5′ terminus, relative to the total reads mapping to that gene locus. d, MRL as a function of CDS 
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(first 75 nt of mRNA); Kozak consensus, match score to the consensus sequence. box plots show the median (horizontal lines), first to third quartile range 
(boxes), and 1.5× interquartile range from the box boundaries (whiskers). *P < 0.05, **P < 0.005. P values were adjusted for multiple comparisons using 
Holm’s method. Details of the sample sizes and exact P values for d–f are summarized in the Supplementary Information.
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mTOR is greater than previously reported and refined the under-
standing of mRNA features that influence mTOR sensitivity.

Limited role of HIF2A in regulating translation. We next sought 
to examine translational regulation by HIF–VHL pathway by apply-
ing HP5 to VHL-defective RCC4 and 786-O cells re-expressing 
either wild-type VHL (RCC4 VHL and 786-O VHL) or empty vec-
tor alone. The two cell lines were chosen because RCC4 expresses 

both HIF1A and HIF2A, whereas 786-O expresses only HIF2A 
(Extended Data Fig. 2), enabling us to distinguish roles of HIF1A 
and HIF2A. Furthermore, previous studies reporting the role of 
the HIF2A–EIF4E2 pathway were performed in part using 786-O 
cells9,10. Figure 3a shows the changes in translational efficiency asso-
ciated with loss of VHL for RCC4 cells, or 786-O cells compared 
with the action of Torin 1 on RCC4 VHL cells. In both RCC4 and 
786-O cells, VHL-defective status was associated with a small global 
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downregulation of translation, with more genes showing reduced 
translational efficiency in VHL-defective RCC4 cells.

Particularly striking, in view of the reported role of HIF2A in 
translational upregulation9,10, was the absence of clear upregula-
tion in translational efficiency in VHL-defective RCC4 and 786-O 
cells, either generally or for those genes reported to be translation-
ally upregulated by HIF2A9,10 (Fig. 3a,b and Extended Data Fig. 6a), 
although we confirmed strong induction of HIF2A in both of these 
cell lines (Extended Data Fig. 2). It is possible that HIF2A upregu-
lates the translation of only a small number of mRNAs, for instance 
a subset of HIF-induced mRNAs. We therefore compared changes 
in mRNA abundance induced by VHL with changes in translational 
efficiency. However, we saw no correlation between regulation of 
transcript abundance and translation, as might have been antici-
pated if a set of HIF transcriptional targets were also regulated by 
translation (Spearman’s ρ = 0.02 and −0.003, P = ~0.1 and ~0.8 for 
changes in translational efficiency against changes in mRNA abun-
dance in RCC4 and 786-O cells, respectively; Fig. 3b and Extended 
Data Fig. 6b).

Because HIF2A’s ability to promote translation has been proposed 
to be mediated by EIF4E2 (ref. 9), we engineered EIF4E2-defective 
786-O and 786-O VHL cells by CRISPR–Cas9-mediated inactiva-
tion and examined the effects on translational efficiency. In both 

786-O and 786-O VHL cells, EIF4E2 inactivation weakly but glob-
ally downregulated the translational efficiency of genes (Fig. 3c). If 
co-operation of EIF4E2 and HIF2A had a major role in translation, 
it would be predicted that EIF4E2 inactivation would have a larger 
effect in the absence of VHL. However, we observed no evidence of 
this, for either global translation or reported HIF2A–EIF4E2-target 
genes9,10 (Fig. 3c, compare upper and lower panels, and Extended 
Data Fig. 6c). Finally, to exclude the possibility that HP5 analysis 
did not capture the effect of HIF2A–EIF4E2-dependent transla-
tional regulation, we used immunoblotting to examine changes 
in the abundance of proteins encoded by reported target genes of 
HIF2A–EIF4E2 (refs. 9,10), as a function of VHL or EIF4E2 status in 
786-O cells. This further confirmed that the effect of the HIF2A–
EIF4E2 pathway was considerably weaker than or undetectable 
compared with that of HIF2A–VHL-dependent transcriptional reg-
ulation (Extended Data Fig. 6d). Taken together, the data revealed 
little or no role for the HIF2A–EIF4E2 axis in regulation of transla-
tion under the analyzed conditions.

Although we did not observe systematic upregulation of transla-
tional efficiency, either of HIF transcriptional targets or other genes 
in VHL-defective cells, we did observe downregulation of transla-
tional efficiency, particularly in RCC4 cells. To examine whether 
this might reflect interaction of HIF and mTOR pathways, we first 
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compared the gene-specific effects on translation that are associ-
ated with VHL-defective status in RCC4 cells with those observed 
by inhibition of mTOR in RCC4 VHL cells. This revealed a mod-
erate, but highly significant, correlation between responses to the 
two interventions in RCC4 cells (Pearson’s r = 0.33, P < 1 × 10−10, 
Fig. 3d left panel). Furthermore, mRNAs with a longer TOP motif 
were more strongly repressed by VHL loss in RCC4 cells (Fig. 3e 
upper panel). Earlier work has suggested that induction of HIFα, 
particularly the HIF1A isoform, can suppress mTOR pathways8,35. 
Consistent with this, we observed that VHL loss in RCC4 cells was 
associated with a significant upregulation of mRNAs that encode 
negative regulators of mTOR (BNIP3 and DDIT4) or its target, the 
translational repressor EIF4EBP1 (Extended Data Fig. 6e). In con-
trast, in 786-O cells, which do not express HIF1A, we observed less 
downregulation of translation by VHL loss, less association of any 
gene-specific effects with mTOR targets (defined either by respon-
siveness to Torin 1, or the length of the TOP sequence) and weaker 
regulation by VHL of mRNAs that repress mTOR pathways (Fig. 3d  
right panel, Fig. 3e lower panel, and Extended Data Fig. 6e). 
Although VHL may have other effects on gene expression beyond 
regulation of HIF, the findings suggest that modest downregulation 
of translation occurs in RCC4 cells, most likely as a consequence of 
HIF1A-dependent actions on mTOR pathways.

HIF promotes alternate TSS usage to regulate translation. 
Although transcription may regulate translation by promoting alter-
native TSS usage and altering the regulatory features of the mRNA, 
the effects of HIF on this have not been studied systematically. To 
address this, we first compared 5′ end sequencing (5′ end-seq) reads 
from total (that is, unfractionated) mRNAs in RCC4 VHL versus 
RCC4 and identified 149 genes with a VHL-dependent change in 
TSS usage (false-discovery rate (FDR) < 0.1). For these genes, we 
defined a VHL-dependent alternative TSS (which showed the larg-
est change in mRNA abundance with VHL loss). Discordant regula-
tion of the alternative and other TSSs (that is, up versus down) was 
rare (9/149): following VHL loss, the alternative TSS was induced in 
85 genes and repressed in 64 genes (Supplementary Data 2). To test 
the generality of these findings and to consider the mechanism, we 
performed similar analyses of alternative TSS usage among these 
149 genes in sets of related conditions and compared the results 
(Extended Data Fig. 7). A strong correlation (Pearson’s r = 0.60, 
P < 1 × 10−10) was observed with alternative TSS usage in 786-O 
VHL versus 786-O cells. In contrast, there was no correlation with 
the alternative TSS usage in 786-O VHL versus 786-O cells in which 
HIF transcription had been ablated by CRISPR–Cas9-mediated 
inactivation of HIF1B (Pearson’s r = −0.01, P = ~0.9) indicating that 
the effects were dependent on HIF. In keeping with this, a strong 
correlation was observed between changes mediated by loss of 
VHL in RCC4 and those induced by hypoxia in RCC4 VHL cells 
(Pearson’s r = 0.85, P < 1 × 10−10).

We next sought to determine the effects of HIF-dependent 
altered TSS usage on mRNA translation by comparing the differ-
ent isoforms of the same genes. Among the 129 genes whose CDS 
could be predicted for different isoforms, 71 (55%) have differ-
ences in predicted CDS (Supplementary Data 2). Among 117 genes 
whose different mRNA isoforms were expressed at sufficient levels 
for calculation of mean ribosome load, 75 (64%) have differences 
in translational efficiency (FDR < 0.1, Extended Data Fig. 8 and 
Supplementary Data 2). We again found an inverse relationship 
between the translational efficiency of mRNA isoforms and the 
number of the uORFs (see Extended Data Fig. 9 for overall analysis 
and examples). We then examined which of two modes of regula-
tion contributes the most to VHL-dependent changes in translation 
of these genes: (1) the effect of VHL on translation is a direct conse-
quence of the altered TSS usage, or (2) the effect of VHL on transla-
tion is observed across all transcripts associated with these genes, 

irrespective of their TSS. To assess this, we recalculated changes in 
translational efficiency for each gene, omitting either the effect of 
(1) or (2) from the calculation and compared the results with the 
experimental measurement, as derived from both parameters. The 
correlation was much stronger using (1) than (2) (Pearson’s r = 0.83 
and r = 0.54, P < 1 × 10−10 and P < 1 × 10−5 respectively, Fig. 4a), 
indicating that the changes in translational efficiency of these genes 
were primary due to altered TSS usage.

Importantly, some of the largest effects on translation were 
associated with alternative TSS usage (y axis of Fig. 4a). Of 
these, Max-interacting protein 1 (MXI1), an antagonist of Myc 
proto-oncogene (MYC)36, showed the most striking increase in 
translational efficiency upon VHL loss (Fig. 4a,b). 5′ end-seq iden-
tified the three most abundant MXI1 mRNA isoforms, defined by 
alternative TSS usage (TSS1–TSS3, Fig. 4c), in RCC4 cells. TSS2 
and TSS3 isoforms were the dominant isoforms in HIF-repressed 
RCC4 VHL cells. However, the TSS1 transcript (which has been 
reported to be HIF1A dependent37 and bears a different CDS than 
the other isoforms) was strongly upregulated in VHL-defective 
RCC4 cells (Fig. 4d). Notably, TSS2 and TSS3 mRNA each contain 
an uORF that is excluded from TSS1 by alternative first exon usage 
(Fig. 4c). Consistent with the negative effects of uORFs on transla-
tion, the TSS1 mRNA isoform was much more efficiently translated 
than were the TSS2 and TSS3 isoforms (Fig. 4e). Thus, alternative 
TSS usage associated with VHL loss specifically upregulated the 
translationally more potent isoform, enhancing overall translation. 
Interestingly, the isoform that is orthologous to this transcript in 
mice has been reported to manifest stronger transcriptional repres-
sor activity38. Taken together, these findings indicate that alternative 
TSS usage makes major contributions to altered translational effi-
ciency among a subset of HIF-target genes.

Sensitivity to mTOR among classes of HIF target gene. Since 
concurrent dysregulation of HIF and mTOR pathways is frequently 
observed, we sought to determine how HIF-dependent transcrip-
tional regulation and mTOR-dependent translational regulation 
interact. Comparison of changes in translational efficiency with 
mTOR inhibition in RCC4 VHL cells with those in RCC4 cells 
showed a strong correlation, with the slope of the regression line 
being slightly less than 1 (Pearson’s r = 0.89, P < 1 × 10−10, slope = 
0.85; Fig. 5a), indicating that mTOR inhibition regulates translation 
similarly, regardless of HIF status. The effect of mTOR inhibition 
was slightly weaker in VHL-defective cells, probably reflecting a 
small negative effect of HIF1A on mTOR-target mRNAs, as out-
lined above. We also analyzed the effect of mTOR inhibition on 
the expression of genes involved in the HIF signaling pathway. 
This revealed that two oxygen-sensitive 2-oxoglutrarate-dependent 
dioxygenases, FIH1 and PHD3 (ref. 39), were more strongly down-
regulated than other HIF-pathway-related genes, indicating that 
mTOR has the potential to affect the cellular responses to hypoxia 
by several mechanisms (Extended Data Fig. 10a).

We then considered the relationship of HIF-dependent changes 
in transcription to mTOR-dependent changes in translation. 
Somewhat surprisingly, we observed no overall association between 
the two regulatory modes (Spearman’s ρ = 0.04, P < 1 × 10−3; Fig. 
5b). However, more detailed examination of the data revealed 
that distinct functional classes of mRNAs responded differently. 
Among transcripts that were induced in VHL-defective cells, 
those encoding glycolytic enzymes were hypersensitive to mTOR 
inhibition, whereas the translation of genes classified as involved 
in angiogenesis or vascular processes was much more resistant 
(P < 1 × 10−6, Mann–Whitney U test, Fig. 5c, Extended Data Fig. 
10b,c and Supplementary Data 3). To confirm this, we re-analyzed 
published data using ribosome profiling14,21 and observed a simi-
lar contrast (Extended Data Fig. 10d). Consistent with our overall 
findings that mRNAs with no uORF and/or a CDS around 1 kb in 
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length were hypersensitive to mTOR, a higher proportion of glyco-
lytic genes were found to bear these features than of genes associ-
ated with angiogenesis or vascular processes (Extended Data Fig. 
10e). Overall, these findings indicate that full upregulation of the 
glycolysis pathway requires both HIF and mTOR activity, as would 
be predicted to occur in VHL-defective kidney cancer with mTOR 
hyperactivation2.

Of the two mTOR complexes, it is widely accepted that 
mTORC1 regulates translation13. Interestingly, the protein level of 

HIF1A has been shown to be positively regulated by both mTORC1 
and mTORC2, whereas HIF2A is dependent on only mTORC2 
activity40. This raises the question of whether the HIF-induced, 
mTOR-resistant genes that function in angiogenesis or vascular 
processes might be principally regulated by HIF2A and hence 
transcriptionally, as well as translationally, resistant to mTORC1 
inhibition. To this end, we interrogated pan-genomic data on HIF 
binding41. In agreement with previous studies showing that genes 
encoding glycolytic enzymes are induced specifically by HIF1A42, 
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HIF-binding sites near this class of genes had a lower HIF2A/
HIF1A binding ratio than did other genes (P = ~0.003, Mann–
Whitney U test, Fig. 5d). This contrasted with a higher HIF2A/
HIF1A binding ratio for angiogenesis or vascular-process genes 
induced in VHL-defective RCC4 cells (P = ~0.009, Mann–Whitney 
U test, Fig. 5d). Consistent with this, mRNAs of HIF-target angio-
genesis or vascular-process genes were also upregulated to a greater 
extent than other HIF-target genes upon VHL loss in 786-O cells, 
which express only HIF2A (P = ~0.007, Mann–Whitney U test, 
Extended Data Fig. 10f). This suggests that they are primarily 

HIF2A targets, as well as resistant to effects of mTOR inhibition 
on translation, consistent with a role in correcting a hypoxic and 
nutrient-depleted environment.

Discussion
Using a new technology to measure the ribosome load of mRNAs 
resolved by their TSS, we have characterized the pan-genomic inter-
play of HIF- and mTOR-dependent transcriptional and transla-
tional regulation in VHL-defective kidney cancer cells. Importantly, 
the increased throughput of the technology and use of external 
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normalization enabled us to directly compare translational effects 
across the genome for a larger number of interventions than most 
studies to date.

Our analysis revealed that mTOR inhibition heterogeneously 
downregulates translation of a very wide variety of mRNAs and 
demonstrated the hypersensitivity of many genes encoding meta-
bolic enzymes. This suggests a greater role for translational altera-
tions in gene expression and metabolism in mTOR-dysregulated 
cancer than previously thought.

Our findings confirmed that the HIF pathway primarily regu-
lates transcription, but also revealed that HIF1A represses global 
translation moderately via mTOR and that HIF regulates the trans-
lation of a subset of genes bidirectionally through alternative TSS 
usage. HIF-dependent alternative TSS usage was often associated 
with altered translational efficiency and/or altered CDS. Apart from 
these transcripts, we were surprised to find little or no evidence for 
HIF-dependent upregulation of translation in VHL-defective cells, 
in contrast to previous reports of a major role for HIF2A in pro-
moting EIF4E2-dependent translation. The original studies dem-
onstrated this action of HIF2A in hypoxia and in VHL-defective 
cells (786-O)9,10, as were used in this study, but the effect size of 
HIF2A-dependent translational regulation was not compared with 
other interventions, such as mTOR inhibition. Although we cannot 
exclude small effects on some targets, our findings indicate that, at 
least under the conditions of our experiments, the role of HIF2A–
EIF4E2 in promoting translation is at best very limited, even for the 
genes reported to be regulated by this pathway9,10.

Previous studies have reported that HIF inhibits mTOR activ-
ity through the transcriptional induction of antagonists of mTOR 
signaling8,43, raising a question as to whether the use of mTOR 
inhibitors constitutes a rational approach to the treatment of 
VHL-defective cancer. Our comparative analysis of interventions 
revealed that the mTOR inhibition by HIF was very much weaker 
than that by pharmacological inhibition, offering a justification for 
this therapeutic approach.

To pursue this further, we compared transcriptional targets 
of HIF and translational targets of mTOR across the genome. 
Although little or no overall correlation was observed, these analy-
ses revealed marked differences in mTOR sensitivity among HIF 
transcriptional targets, according to the functional classification of 
the encoded proteins. HIF1A-targeted genes encoding glycolytic 
enzymes were hypersensitive to mTOR, whereas HIF2A-targeted 
genes encoding proteins involved in angiogenesis and vascular pro-
cess were resistant to mTOR inhibition. Clinically approved mTOR 
inhibitors primarily target mTORC1 (ref. 16), and are therefore 
unlikely to affect HIF2A abundance40. Our results suggest that they 
are unlikely to affect the expression of these classes of HIF2A-target 
gene. Recently, a new class of drug that prevents HIF2A from 
dimerizing with HIF1B and hence blocks HIF transcriptional 
activity has shown promise in the therapy of VHL-defective kidney 
cancer11,12,16. Given that we observed few, if any, effects of HIF2A 
on translation, our results suggest that the combined use of these 
HIF2A transcriptional inhibitors, together with mTOR inhibitors, 
should therefore be considered as a rational therapeutic strategy for 
this type of cancer.
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Methods
Overview of the cell line and experimental conditions. VHL-defective kidney 
cancer cell lines, RCC4 and 786-O, were from Cell Services at the Francis Crick 
Institute and were maintained in DMEM (high glucose, GlutaMAX Supplement, 
HEPES, Thermo Fisher Scientific, no. 32430100) with 1 mM sodium pyruvate 
(Thermo Fisher Scientific, 12539059) and 10% FBS at 37 ˚C in 5% CO2. Cells 
were confirmed to be of the correct identity by STR profiling and to be free from 
mycoplasma contamination.

Hypoxic incubation was performed using an InvivO2 workstation (Baker 
Ruskinn) in 1% O2 and 5% CO2 for 24 hours. To inhibit mTOR, cells were treated 
with 250 nM of Torin 1 (Cell Signaling Technology, no. 14379) for 2 hours.

An overview of the experimental interventions and analyses is provided in 
Supplementary Data 1. Biological replicates are individual experiments using 
different clones derived from the same cell line. All other replicates are defined as 
technical replicates.

Genetic modification of cells. Lentiviral transduction. Reintroduction of VHL 
or the empty vector control was performed using lentiviral transduction. The 
expression vector (pRRL-hPGK promoter-VHL-IRES-BSD) containing the coding 
sequence and the last 6 nucleotides of the 5′ UTR of VHL (RefSeq ID, NM_000551) 
and the empty control vector (pRRL-SFFV promoter-MCS-IRES-BSD) were 
constructed from pRRL-SFFV promoter-MCS-IRES-GFP (provided by K. R. 
Kranc, Queen Mary University of London). Lentiviruses were prepared from 
these plasmids, and RCC4 or 786-O cells were transduced with the viruses. Three 
or four clones each of VHL- or empty-vector-transduced RCC4 or 786-O cells 
were isolated using flow cytometry. These cells were maintained in DMEM (high 
glucose, GlutaMAX Supplement, HEPES) with 1 mM sodium pyruvate, 10% FBS 
and 5 µg/mL blasticidin (Thermo Fisher Scientific, A1113903) at 37 ˚C in 5% CO2. 
Empty-vector-transduced RCC4 or 786-O cells are referred as RCC4 or 786-O, and 
VHL-transduced RCC4 or 786-O cells are referred as RCC4 VHL or 786-O VHL.

CRISPR–Cas9-mediated HIF1B or EIF4E2 inactivation of 786-O cells. CRISPR–
Cas9-mediated inactivation of HIF1B or EIF4E2 was performed using the 
electroporation of gRNA–Cas9 ribonucleoprotein (RNP). CRISPR RNAs (crRNAs) 
with the following sequences were synthesized by Integrated DNA Technologies 
(Alt-R CRISPR–Cas9 crRNA):

HIF1B, rGrArCrArUrCrArGrArUrGrUrArCrCrArUrCrArC
EIF4E2 (g1), rGrUrUrUrGrArArArGrArUrGrArUrGrArCrArGrU
EIF4E2 (g2), rGrGrUrCrCrCrCrArGrGrArCrGrUrArCrCrArUrG.
The HIF1B and EIF4E2 (g2) gRNA sequences were designed by Integrated 

DNA Technologies (Hs.Cas9.ARNT.1.AD and Hs.Cas9.EIF4E2.1.AH, respectively), 
whereas the EIF4E2 (g1) gRNA sequence was designed using an online tool 
developed by F. Zhang’s lab (https://crispr.mit.edu).

To prepare the gRNA, 100 µM of crRNA and 100 µM of tracrRNA (Integrated 
DNA Technologies, no. 14899756) were annealed in duplex buffer (Integrated 
DNA Technologies, 11-01-03-01) by incubation at 95 ˚C for 5 minutes, then at 
room temperature for 30 minutes. Cas9–gRNA RNP was formed by mixing 10 µM 
of the annealed tracrRNA–crRNA and 16.5 µg of TrueCut Cas9 protein (Thermo 
Fisher Scientific, A36498) in PBS, followed by incubation at room temperature for 
30 minutes. The RNP was transfected into 786-O cells or 786-O VHL cells (pools of 
cells were used for HIF1B inactivation, whereas clone 1 of each sub-line was used 
for EIF4E2 inactivation). Transfections were performed using a 4D-Nucleofector 
System (Lonza) with a SF Cell Line 4D-Nucleofector X Kit L (Lonza, V4XC-
2024) and the EW-113 transfection program. The transfected cells were cultured 
in DMEM (high glucose, GlutaMAX Supplement, HEPES) with 1 mM sodium 
pyruvate and 10% FBS at 37 ˚C in 5% CO2 for at least 3 days, and single clones 
were isolated using flow cytometry. Inactivation of the target genes was confirmed 
by Sanger sequencing of the gRNA target region using TIDE analysis78 and by 
immunoblotting.

Immunoblotting. Protein extraction. Cells were grown on 6-cm dishes. Cells were 
washed with 3 mL of ice-cold PBS and lysed by adding 150 µL of urea SDS lysis 
buffer (10 mM Tris-HCl pH 7.5, 6.7 M urea, 5 mM DTT, 10% glycerol, 1% SDS, 1× 
HALT protease and phosphatase inhibitor (Thermo Fisher Scientific, 78447), and 
1/150 (v/v) of benzonase (Sigma-Aldrich, E1014-25KU)). The lysate was incubated 
at room temperature for 30 minutes before mixing with loading buffer (LI-COR 
Biosciences, 928-40004).

Immunoblotting. Proteins were separated by SDS–PAGE using a Mini-PROTEAN 
TGX Gel (4–15% or 8–16%, Bio-Rad Laboratories, nos. 4561086 and 4561106, 
respectively) and transferred to Immobilon-FL PVDF Membrane (Sigma-Aldrich, 
IPFL00010). Membranes were stained using a Revert 700 Total Protein Stain 
(LI-COR Biosciences, 926-11011). The data acquisition was performed using an 
Odyssey CLx system (LI-COR Biosciences), and the data were analyzed using Image 
Studio software (LI-COR Biosciences). The membrane was blocked by incubating 
in TBS (20 mM Tris-HCl pH 7.6 and 137 mM NaCl) with 5% fat-free milk for 
1 hour with shaking at room temperature. The membrane was incubated in Odyssey 
Blocking Buffer (PBS, LI-COR Biosciences, no. 927-40000) with 0.2% Tween-20 
and 1/1,000 (vol/vol) primary antibody (for anti-HIF2A antibody) or TBST  

(TBS with 0.1% Tween-20) with 5% fat-free milk and 1/1,000 (vol/vol) primary 
antibody (for other primary antibodies), with shaking overnight at 4 ˚C. The 
membrane was washed three times with TBST and incubated in Odyssey Blocking 
Buffer (PBS for anti-HIF2A antibody and TBS (LI-COR Biosciences, no. 927-50000) 
for other primary antibodies) with 0.2 % Tween-20, 0.01% SDS, and 1/15,000  
(vol/vol) secondary antibody, with shaking for 1 hour at room temperature.  
The membrane was washed three times with TBST and once with TBS.

Antibodies. The following antibodies were used for the western blotting 
analysis. Primary antibodies (used at 1/1,000 dilution): anti-VHL (Santa Cruz 
Biotechnology, sc-135657), anti-HIF1A (BD Biosciences, 610959), anti-HIF2A 
(Cell Signaling Technology, 7096), anti-HIF1B (Cell Signaling Technology, 5537), 
anti-EIF4E2 (Proteintech, 12227-1-AP), anti-NDRG1 (Cell Signaling Technology, 
9485), anti-SLC2A1 (Cell Signaling Technology, 12939), anti-EGFR (Santa Cruz 
Biotechnology, sc-373746), and anti-CA9 (Cell Signaling Technology, 5649). 
Secondary antibodies (used at 1/15,000 dilution): anti-mouse-IgG DyLight 
800 (Cell Signaling Technology, 5257) anti-mouse-IgG IRDye 680RD (LI-COR 
Biosciences, 925-68072), and anti-Rabbit-IgG IRDye 800CW (LI-COR Biosciences, 
926-32213).

Total RNA extraction. Cells were grown on 6-well plates or 6-cm dishes. Total 
RNA used for the analysis of unfractionated mRNAs was extracted from the cells 
using the RNeasy Plus Mini Kit (QIAGEN, 74136), according to the manufacturer’s 
instructions, except for technical replicate 2 of the samples from RCC4 cells (see 
Supplementary Data 1). For these samples, cells were lysed with 350 µL of Buffer 
RLT Plus (QIAGEN, 1053393), and total RNA was extracted from the lysate 
using an RNA clean and concentrator-25 kit (Zymo Research, R1018) with the 
following modification: 752.5 µL of preconditioned RNAbinding buffer (367.5 µL 
of RNA binding buffer (supplied with an RNA Clean & Concentrator-25 kit), 
367.5 µL of absolute ethanol, and 17.5 µL of 20% SDS) was added to the cell 
lysate. After mixing, the material was loaded onto the column of an RNA Clean 
& Concentrator-25 kit, and the manufacturer’s instructions were followed for the 
remaining steps.

HP5 protocol (polysome profiling). Sucrose gradient preparation. Sucrose 
gradients were prepared in polyallomer tubes (Beckman Coulter, 326819) by 
layering 2.25 mL 50% sucrose in 1× polysome gradient buffer (10 mM HEPES pH 
7.5, 110 mM potassium acetate, 20 mM magnesium acetate, 100 mM DTT, 40 U/
mL RNasin plus (Promega, N2615), 20 U/mL SuperaseIn RNase Inhibitor (Thermo 
Fisher Scientific, AM2694) and 100 µg/mL cycloheximide (Sigma-Aldrich, C4859-
1ML)) under 2.15 mL of 17% sucrose in 1× polysome gradient buffer. Each tube 
was sealed with parafilm, placed on its side, and kept in the horizontal position at  
4 ˚C overnight to form the gradient79.

Cell lysis and fractionation. Cells were grown on 15-cm dishes. To arrest 
mRNA translation, the cells (~80% confluency) were treated with 100 µg/mL 
cycloheximide for 3 minutes. The medium was removed, and the dish was placed 
on ice during the following steps. Cells were washed with 10 mL of ice-cold PBS 
with 100 µg/mL cycloheximide. Cells were then lysed by adding 800 µL of polysome 
lysis buffer (10 mM HEPES pH 7.5, 110 mM potassium acetate, 20 mM magnesium 
acetate, 100 mM potassium chloride, 10 mM magnesium chloride, 1% Triton 
X-100, 2 mM DTT, 40 U/mL RNase plus, 20 U/mL SuperaseIn RNase Inhibitor, 
1× HALT Protease inhibitor (Thermo Fisher Scientific, 78438), and 100 µg/mL 
cycloheximide).

The cytoplasmic lysate was homogenized by passage through a 25-G 
syringe needle 5 times. To remove debris, the lysate was centrifuged at 1,200g 
for 10 minutes at 4 ˚C, and the supernatant was collected. This material was 
centrifuged again at 1,500g for 10 minutes at 4 ˚C, and the supernatant was 
collected. The protein and RNA concentrations were measured using 660-nm 
Protein Assay Reagent (Thermo Fisher Scientific, 22660) with Ionic Detergent 
Compatibility Reagent (Thermo Fisher Scientific, 22663) and Qubit RNA BR Assay 
Kit (Thermo Fisher Scientific, Q10210), respectively.

Lysate was then normalized according to the protein concentration, and 
500 µL of the normalized lysate was overlaid on the sucrose gradient, as prepared 
above. The gradient was ultracentrifuged at 287,980g (average; 55,000 r.p.m.) for 
55 minutes at 4 ˚C, with max acceleration and slow deceleration using an Optima 
LE-80K Ultracentrifuge and SW55Ti rotor (Beckman Coulter). The sucrose 
gradient was fractionated according to the number of associated ribosomes (from 
1 to 8 ribosomes; material lower in the gradient was pooled with the 8 ribosome 
fraction), as determined by the profile of the absorbance at 254 nm using a Density 
Gradient Fractionation System (Brandel, Model BR-188). The fractionated samples 
were then snap-frozen on dry ice.

External control RNA addition and RNA extraction. Equal amounts of external 
control RNA were added to the polysome-fractionated samples after thawing 
the snap-frozen samples on ice. Commercially available external control RNA, 
including the ERCC RNA Spike-In Mix-1 kit (Thermo Fisher Scientific, 4456740) 
that we used, does not have a canonical mRNA cap. This can influence the 
template-switching reaction efficiency. Thus, the amount of external control RNA 
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added to the polysome-fractionated samples was determined by preliminary 
experiments, so as to result in a library containing around 0.1% of reads from the 
external control RNA.

RNA was extracted from 150 µL of the fractionated samples using an RNA 
Clean & Concentrator-5 kit (Zymo Research, R1016), using the same procedure to 
extract RNA from unfractionated cell lysate (described above), and was eluted into 
10 µL of water. For a subset of samples, as indicated in Supplementary Data 1, half 
of the input volume was used, and RNA was eluted into 8 µL of water. The integrity 
of the purified RNA was confirmed using a Bioanalyzer (Agilent); the median 
value of RNA integrity number (RIN) for the samples from RCC4 VHL cells was 
9.5, indicating that the RNA was largely intact.

5′ end-seq protocol. Primer sequences. The sequences of oligonucleotide primers 
used for 5′ end-seq are summarized in Supplementary Data 4. All the primers were 
synthesized and HPLC-purified by Integrated DNA Technologies.

The 5′ end-seq method involves the following steps.

Step 1: reverse transcription and template switching. cDNAs with adapter sequences 
at both the 5′ and 3′ ends were generated from full-length mRNAs using a 
combined reverse-transcription and template-switching reaction. The RT primers, 
containing an oligonucleotide (dT) sequence, were annealed to the poly A tail of 
mRNAs by incubating 4 µL reaction mix (1.9 µL extracted RNA, 1 µL 10 mM dNTP, 
0.1 µL 20 U/µL SUPERaseIn RNase-Inhibitor, and 1 µL 10 µM RT primer) at 72 
˚C for 3 minutes and holding it at 25 ˚C. Then, 1 µL of 10 µM template-switching 
oligonucleotide (TSO), and 5 µL of RT reaction mix (2 µL of 5× RT buffer (supplied 
with Maxima H Minus Reverse Transcriptase), 2 µM of 5 M betaine, 0.25 µL of 
water, 0.25 µL of SUPERaseIn RNase-Inhibitor, and 0.5 µL of 200 U/µL Maxima 
H Minus Reverse Transcriptase (Thermo Fisher Scientific, EP0753)) were added 
to the reaction. The TSO contained an adapter sequence (the constant region 
annealed by the PCR primers), an index sequence (to identify the sample source 
of the cDNA), unique molecular identifiers (UMI), and three riboguanosines 
at the 3′ end (to facilitate template-switching reaction80). To perform the 
reverse-transcription and template-switching reactions, the mixture was kept at 25 
˚C for 45 minutes, 42 ˚C for 25 minutes, 47 ˚C for 10 minutes, 50 ˚C for 10 minutes, 
and 85 °C for 5 minutes, and held at 4 ˚C.

Step 2: enzymatic degradation of primers and RNA. Preliminary experiments 
indicated that the degradation of unused primers using a single-stranded DNA 
specific 3′–5′ exonuclease, Exonuclease I, reduced primer dimer artifacts in 
the subsequent PCR amplification, whereas the degradation of RNA by RNase 
H improved the yield of cDNA library. Furthermore, it is important to degrade 
TSO because, if unused TSO contaminates the cDNA library after multiplexing, 
it confounds the library indexing. Because we suspected that the TSO is resistant 
to Exonuclease I owing to the riboguanosines at the 3′ end, the TSO contains 
three deoxyuridines (after the adapter sequence, index sequence, and UMI) 
so that the TSO can be degraded by the combination of an enzyme-cleaving 
DNA at a deoxyuridine and Exonuclease I. Importantly, this degrades all the 
TSO except the adapter, which forms a high-melting-temperature duplex with 
the cDNA, protecting the cDNA from Exonuclease I. All these reactions were 
performed in a single step by adding 2 µL enzyme mix (1 µL of Thermolabile 
USER II (New England Biolabs, M5508L), 0.5 µL of Exonuclease I (New England 
Biolabs, M0293S), and 0.5 µL of RNase H (New England Biolabs, M0297S)) to 
the sample, which was incubated at 4 ˚C for 1 second, 37 ˚C for 1 hour, 80 ˚C for 
20 minutes, and held at 4 ˚C.

Step 3: limited-cycle PCR amplification. Fifteen microliters of PCR reaction mix 
(1.25 µL of 10 µM of each PCR primer 1 forward/reverse, 12.5 µL of KAPA HiFi 
HotStart Uracil+ ReadyMix (Roche, KK2802), and 1.25 µL of water) was added to 
the RT reaction, and limited-cycle PCR amplification was performed by keeping 
the mixture at 98 ˚C for 3 minutes; 98 °C for 20 seconds, 67 °C for 15 seconds, and 
72 °C for 6 minutes (4 cycles); and 72 ˚C for 5 minutes; and the mixture was then 
held at 4 °C.

Step 4: multiplexing and optimized PCR cycle amplification. After adding 37.5 µL 
ProNex beads (Promega, NG2002) to each sample, up to 16 samples were 
multiplexed. The cDNA library was purified according to the manufacturer’s 
instructions, eluted into 42 µL 10 mM Tris-HCl, pH 7.4, then re-purified using 
ProNex beads (1.5:1 vol/vol ratio of beads to sample) and eluted into 45 µL of 
10 mM Tris-HCl, pH 7.4. The library was reamplified by preparing PCR reaction 
mix (20 µL of cDNA library, 25 µL of KAPA HiFi HotStart Uracil+ ReadyMix, 
and 2.5 µL of 10 µM each PCR primer 1 forward/reverse), and the mixture was 
kept at 98 ˚C for 3 minutes; 98 °C for 20 seconds, 67 °C for 15 seconds, and 72 °C 
for 6 minutes (4–6 cycles (see beelow)); and 72 ˚C for 5 minutes; and the mixture 
was then held at 4 °C. The number of PCR cycles for each amplification was 
determined by a pilot experiment using quantitative PCR (qPCR) to ensure that 
the amplification was at the early linear phase. The amplified cDNA library was 
purified using ProNex beads, as above, and eluted into 26 µL of 10 mM Tris-HCl, 
pH 7.4. The purified cDNA library was quantified using a Qubit dsDNA HS Assay 
Kit (Thermo Fisher Scientific, Q32851).

Step 5: tagmentation. Tagmentation with Tn5 transposase was performed on 90-ng 
aliquots of the cDNA library using an Illumina DNA Prep kit (Illumina, 20018704), 
according to the manufacturer’s instructions.

Step 6: PCR amplification of mRNA 5′-end library. The ‘tagmented’ library 
was attached to the beads of an Illumina DNA Prep kit. Limited-cycle PCR 
amplification was performed by adding 50 µL of the following reaction mix (2.5 µL 
of 10 µM each of the PCR primer 2 forward/reverse, 20 µL of Enhanced PCR 
Mix (supplied with an Illumina DNA Prep kit), and 27.5 µL of water) and using a 
program of 68 ˚C for 3 minutes; 98 ˚C for 3 minutes; 98 ˚C for 45 seconds, 62 ˚C for 
30 seconds, and 68 ˚C for 2 minutes (3 cycles); and 68 ˚C for 1 minute; and it was 
then held at 10 ˚C. The PCR primers used here anneal to the TSO and an adapter 
added by tagmentation, and thus specifically amplify DNA fragments containing 
5′ ends of mRNAs. The amplified mRNA 5′-end library was purified using ProNex 
beads, as above, and eluted into 25 µL of 10 mM Tris-HCl (pH 7.4).

The mRNA 5′-end library was reamplified by preparing a PCR reaction mix 
(10 µL of the mRNA 5′-end library, 25 µL KAPA HiFi HotStart ReadyMix, 2.5 µL 
of 10 µM each of PCR primer 3 forward/reverse (containing i5 and i7 index 
sequences), and 12.5 µL water), and the mixture was kept at 98 ˚C for 3 minutes; 
98 ˚C for 20 seconds, 62 ˚C for 15 seconds, and 72 ˚C for 30 seconds (5 cycles 
(cycle number determined by a pilot experiment to define the early linear phase, 
as described above)); and 72 ˚C for 5 minutes; and it was then held at 4 °C. The 
mRNA 5′-end library was again purified using ProNex beads (1.4:1 vol/vol ratio 
of beads to sample) according to the manufacturer’s instructions, and eluted 
into 20 µL of 10 mM Tris-HCl, pH 7.4. The purified mRNA 5′-end libraries were 
multiplexed again and then sequenced on HiSeq 4000 (Illumina) using paired-end 
(2×100 cycles) and dual-index mode.

RT–qPCR. RNAs extracted from polysome-fractionated samples were converted 
into cDNAs using the same protocol as the 5′ end-seq protocol described 
above, except that the anchored oligonucleotide dT primer (Integrated DNA 
Technologies, 51-01-15-08) was used, and the TSO was omitted from the 
reaction. The cDNA was purified using an RNA Clean and concentrator-5 
kit (Zymo Research, R1016) according to the manufacturer’s instructions. 
qPCR was performed using TaqMan Fast Advanced Master Mix (Thermo 
Fisher Scientific, 4444557) according to the manufacturer’s instructions with 
the mRNA isoform-specific primers and Taqman probes summarized in 
Supplementary Data 4. All the primers were synthesized by Integrated DNA 
Technologies. Quantification of mRNAs in each fraction was normalized to the 
quantification of ERCC-0002 RNA in the same fraction.

Overview of computational data analyses. Data analyses were performed using 
R (4.0.0)44 and the following packages (data.table (1.12.8)45, dplyr (1.0.0)46, stringr 
(1.4.0)47, magrittr (1.5)48, and ggplot2 (3.3.1)49) were used throughout.

The following reference data were used to annotate the data: human genome: 
hg38, obtained via BSgenome.Hsapiens.UCSC.hg38 (1.4.3)50; human transcripts: 
RefSeq51 (GRCh38.p13) and GENCODE52 (GENCODE version 34: gencode.
v34.annotation.gtf) (these two reference data were combined and redundant 
GENCODE entries that have a corresponding RefSeq annotation were removed).

Prior to the high-throughput DNA-sequencing data analysis, sequencing data 
from the technical replicates were concatenated. Data are presented as the mean 
value of the biological replicates.

TSS boundaries and their associated mRNA isoforms were identified by 5′ 
end-seq of total (unfractionated) mRNAs. The TSSs assigned to a particular gene 
were those mapping within 50 base pairs of that gene locus, as specified by RefSeq 
and GENCODE. The abundance of the mRNA isoform associated with each TSS 
is the number of reads starting from that TSS. The gene-level mRNA abundance is 
the sum of these isoforms for the relevant gene.

Statistics. The correlation of two variables was analyzed with the cor.test function 
of R to calculate statistics on the basis of Pearson’s product moment correlation 
coefficient or Spearman’s rank correlation coefficient. The difference between 
two distributions was tested using the two-sided Mann–Whitney U test (for 
two independent samples) or the two-sided Wilcoxon signed-rank test (for 
paired samples). To analyze the effect size of the Wilcoxon signed-rank test, the 
matched-pairs rank biserial correlation coefficient53 was calculated using the 
wilcoxonPairedRC function of the rcompanion package (2.3.26)54.

Kernel density estimation was performed using the geom_density function of 
the ggplot2 package with the parameter, bw = SJ.

Sequencing read alignment. Read pre-processing. The sequence at positions 
1–22 of read 1 is derived from the TSO and was processed before mapping. 
First, the UMI located at positions 10–16 was extracted using UMI-tools 
(1.0.1)55. Note that the UMI was not used in the analyses because we found that 
the diversity of UMI was not sufficient to uniquely mark non-duplicated reads. 
Next, the library was demultiplexed using an index sequence located at positions 
1–8, after which the constant regions of the TSO located at position 9 and 
positions 17–22 were removed using Cutadapt (2.10)56 with the parameters,  
-e 0.2–discard-untrimmed.
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Read alignment. The pre-processed reads were first mapped to cytoplasmic 
rRNAs (NR_023363.1 and NR_046235.1), mitochondrial ribosomal rRNAs 
(ENSG00000211459 and ENSG00000210082), and ERCC external control RNAs 
(https://www-s.nist.gov/srmors/certificates/documents/SRM2374_putative_
T7_products_NoPolyA_v1.fasta) using Bowtie2 software (2.4.1)57 with the 
following parameters: -N 1–un-conc-gz. The unmapped reads were then aligned 
to the human genome (hg38: sequence obtained via BSgenome.Hsapiens.UCSC.
hg3850) with the annotation described above using STAR software (2.7.4a) 
in two-pass mode58 with the following parameters: –outFilterType BySJout–
outFilterMultimapNmax 1.

Definition of TSS peaks and boundaries. To define TSS clusters, we considered 
two widely used peak callers, paraclu (9)59 and decomposition-based peak 
identification (dpi, beta3)60 software. Our preliminary analysis indicated that 
paraclu software was more accurate in determining total peak area, whereas dpi 
was more accurate in resolving peaks within multimodal clusters. To obtain the 
most accurate resolution and quantification of TSS clusters, we therefore combined 
the strength of these programs and included information from existing large-scale 
database using the following four-step procedure.

Step 1: definition of cluster areas. Using the standard workflow of paraclu software 
on pooled data from normoxic cells, RCC4, RCC4 VHL, 786-O, and 786-O VHL, 
cluster areas of 5′ termini were identified.

Step 2: definition of TSS clusters within cluster areas. The cluster areas defined above 
were further resolved by combining above data with FANTOM5 data and using 
dpi software, as was originally used for FANTOM5, to resolve bona fide subclusters 
within the data. Internal sub-cluster boundaries were defined as the midpoint 
between adjacent dpi-identified peaks.

Step 3: quality controls and filters. Artifactual clusters of 5′ termini, potentially 
generated by internal TSO priming, were filtered on the basis of a low (<15%) 
proportion of reads bearing non-genomic G between the TSO and mRNA, as the 
template-switching reaction commonly introduces such bases at the mRNA cap but 
not following internal priming4. Since mitochondrial mRNAs are not capped, these 
transcripts were filtered if they did not overlap an annotated site.

A further filter was applied to remove TSS subclusters of low-abundance 
mRNA isoforms whose biological significance is unclear; low abundance was 
defined as ≦10% of the most abundant mRNA isoform for the relevant gene in any 
of the analyses.

Step 4: final assignment of TSS boundaries. To provide the most accurate 
identification of the TSS peaks and their boundaries, the resolved and filtered 
peaks from step 3 were mapped back onto the input cluster areas as defined in step 
1, and boundaries were set at the midpoint between filtered peaks.

Assignment of transcripts to TSS. To identify mRNA features that might  
affect translational efficiency, we used base-specific information on 5′ termini 
and assembled paired-end reads starting from each TSS (StringTie software, 
2.1.2 (ref. 61)) to define the primary structure of the 5′ portion of the transcript. 
We then used homology with this assembly to assign a full-length transcript 
from RefSeq and GENCODE. The CDS of the assigned transcript was then  
used for the analysis. In small number of cases, where this TSS was downstream 
of the start codon, we took the most upstream in-frame AUG sequence to 
redefine the CDS. The most abundant primary structure from each TSS and 
its CDS were then used for calculation of the association of mRNA features 
with mean ribosome load (see below). Details of this process are given in the 
computational pipeline.

mRNA feature evaluation. Features within the mRNA (for example TOP motif, 
structure near cap) were evaluated at base-specific resolution using the following 
formula:
( RNA feature value

for anmRNATSS isoform

)

=

n
∑

i=1

mRNA abundancei × mRNA feature valuei
∑n

i=1 mRNA abundancei

where i is a base position within the TSS, n is the linear sequence extent of the 
TSS, mRNA feature valuei is the value of mRNA feature for the isoform transcribed 
from position i, and mRNA abundancei is the mRNA abundance of the isoform 
transcribed from position i. The values were rounded to the nearest integer; a 
rounded value of 0 being taken as the absence of the feature.

All non-overlapping uORFs, starting from an AUG, were identified using 
the ORFik package (1.8.1)62. Kozak consensus score was calculated by the 
kozakSequenceScore function of the ORFik package. Using the mode including 
G-quadruplex formation, the minimum free energy (MFE) of predicted RNA 
structures was estimated using RNALfold (ViennaRNA package, 2.3.3)63. The MFE 
of RNA structures near the cap was that of the first 75 nucleotides. The MFE of the 
region distal to the cap was that of entire 5′ UTR minus the first 75 nucleotides. 
The position of a TOP motif was defined as the position of the 5′ most pyrimidine 

base, and its length was defined as that of the uninterrupted pyrimidine tract from 
that base.

The effect of HIF-dependent alternate TSS usage on CDS was defined by 
alteration in the genomic position of the start codon (Extended Data Fig. 8 and 
Supplementary Data 2). Expressed isoforms of a gene were defined as those with 
an abundance greater than 10% of that of the most highly expressed isoform of the 
same gene in either RCC4 VHL or RCC4 cells.

Functional annotation of genes. Functions. Functional classes of genes were 
defined by KEGG orthology64, as indicated by the following KEGG IDs. 
Transcription factors: 03000, Transcription machinery: 03021, Messenger RNA 
biogenesis: 03019, Spliceosome: 03041, Cytoplasmic and mitochondrial ribosome: 
03011 (genes with the name starting with MRP and DAP3 were categorized as 
mitochondrial ribosomes), Translation factors: 03012, Chaperones and folding 
catalysts: 03110, Membrane trafficking: 04131, Ubiquitin system: 04121, and 
Proteasome: 03051; Glycolysis: hsa00010, Pentose phosphate pathway: hsa00030, 
TCA cycle: hsa00020, Fatty acid biosynthesis: hsa00061 and hsa00062, Fatty acid 
degradation: hsa00071, Oxphos: hsa00190, Nucleotide metabolism: hsa00230 and 
hsa00240, and Amino acid metabolism: hsa00250, hsa00330, hsa00220, hsa00270, 
hsa00260, hsa00340, hsa00310, hsa00360, hsa00400, hsa00380, hsa00350, 
hsa00290, and hsa00280.

Genes associated with angiogenesis or vascular process were defined by 
referencing to gene ontology (GO)65 database: GO:0003018, vascular process in 
circulatory system; GO:0001525, angiogenesis.

Analysis of existing literatures describing mTOR targets. In the analyses comparing 
HP5 data with previously published studies reporting the effects of mTOR 
inhibition14,21,32,33, we followed the definition of mTOR hypersensitive genes in the 
original reports; for Hsieh et al. and Larsson et al., the genes showing changes in 
translation with PP242 were used; for Morita et al., genes described in Fig. 1b of 
the paper33 were used. Since the data of Thoreen et al. were obtained using mouse 
cells, we mapped mouse genes to human genes using the gorth function of the 
gprofiler2 package (0.1.9)66. Since Hsieh et al. did not supply values for changes 
in translational efficiency for all genes, we took this data from Xiao et al.67, who 
calculated the relevant values using the data from the original report.

To define known activities of mTOR via any mode of regulation except 
translational regulation (as indicated in Fig. 2c, first row), we considered review 
articles by Saxton et al.13 and Morita et al.68. Known systematic translational 
downregulation by mTOR inhibition (as indicated in Fig. 2c, second row) was 
defined from previous genome-wide studies listed above14,21,32. A class of targets was 
defined as systematically regulated if ≥10% of genes in the class were identified as 
mTOR hypersensitive or resistant in any of these previous studies21,32 or highlighted 
in the original report.

Analyses of differential mRNA expression upon VHL loss. The identification 
of differentially expressed genes and the calculation of log2(fold change in mRNA 
abundance) upon VHL loss were performed using the DESeq2 package (1.28.0)69. 
Genes with an FDR < 0.1 and either log2(fold change) > log2(1.5) or < –log2(1.5) 
were defined as upregulated or downregulated, respectively.

HIF-target genes (as considered in Extended Data Fig. 10f) were defined as 
those upregulated upon VHL loss in RCC4 cells. For this analysis, genes with very 
low expression in both 786-O and 786-O VHL cells, as identified by the DESeq2 
package, were excluded from the analysis.

Analysis of alternative TSS usage upon VHL loss. Genes manifesting alternative 
TSS usage upon VHL loss were identified using the approach described by Love 
et al.70. Briefly, TSSs for mRNA isoforms with very low abundance were first 
filtered out using the dmFilter function of the DRIMSeq package (1.16.0)71 with 
the parameters min_samps_feature_expr = 2, min_feature_expr = 5, min_samps_
feature_prop = 2, min_feature_prop = 0.05, min_samps_gene_expr = 2, min_
gene_expr = 20. The usage of a specific TSS relative to all TSSs was then calculated 
by DRIMSeq with the parameter add_uniform = TRUE.

The significance of changes in TSS usage upon VHL loss for a particular gene 
was analysed by the DEXSeq package72. The FDR was calculated using the stageR 
package (1.10.0)73, with a target overall FDR < 0.1. For genes with significant 
changes in VHL-dependent TSS usage, a VHL-dependent alternative TSS was 
selected as that showing the largest fold change upon VHL loss (FDR < 0.1), and 
a base TSS was selected as that showing the highest expression in the presence of 
VHL. In these calculations, the DESeq2 and apeglm (1.10.0) package74 were used 
to incorporate data variance to provide a conservative estimate of fold change and 
standard error.

To provide the highest stringency definition, genes manifesting 
VHL-dependent alternative TSS usage were further filtered by the proportional 
change > 5%, the absolute fold change > 1.5, and the significance of the 
difference in fold change between the alternate TSS and the base TSS (assessed by 
non-overlapping 95% confidence intervals).

For the comparative analysis of the VHL-dependent alternate TSS usage in 
various conditions (Extended Data Fig. 7), genes with very low expression that did 
not meet a criterion of 20 read counts in more than 1 sample were excluded.
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Calculation of mean ribosome load. Mean ribosome load was calculated using 
the following formula:

∑8
i=1
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The mRNA abundance values for each polysome fraction were normalized by 
the read count of the external control using the estimateSizeFactors fraction of the 
DESeq2 package. Very-low-abundance mRNAs that did not meet a criterion of six 
read counts in more than six samples were excluded.

Statistical analysis of differences in polysome distribution. VHL-dependent 
alternative TSS mRNA isoforms. To define VHL-dependent alternative mRNA 
isoforms with a different translational efficiency with reference to all other 
isoforms from the same gene, the significance of changes in their polysome profile 
was determined by considering the ratio of mRNA abundances as a function of 
polysome fraction using the DEXSeq package (1.34.0)72. The false-discovery rate 
(FDR) was calculated using the stageR package73, with the target overall FDR < 0.1.

Differentially translated mRNA isoforms from the same gene. In analysis of two  
most differentially translated mRNA isoforms transcribed from the same gene (for 
Fig. 1f), each of these isoforms was censored for statistically significant differences 
from all other isoforms of the same gene using the same analysis as above.

Changes in response to mTOR inhibition. To identify genes that were hypersensitive 
or resistant to mTOR inhibition, genes manifesting a significant change in 
polysome distribution upon mTOR inhibition, compared to the population 
average, were first identified using the DESeq2 package72 with the internal library 
size normalization and the likelihood ratio test. The genes with a significant change 
(FDR < 0.1) were classified as hypersensitive or resistant to mTOR inhibition if the 
log2 fold change of the mean ribosome load was lower or higher than the median 
of all expressed genes.

Simulation of changes in translational efficiency with omitting a parameter. 
Log2(fold change) in mean ribosome load of a gene upon VHL loss can be 
expressed by the following formula:

log2
(
∑n

i=1 (MRLno VHL, i × %mRNA abundanceno VHL,i)
∑n

i=1 (MRLVHL,i × %mRNA abundanceVHL,i)

)

In this formula, i is mRNA isoform i (out of n mRNA isoforms), MRLno 

VHLorMRLVHL,i is the mean ribosome load of isoform i in RCC4 or RCC4 VHL 
cells, and % mRNA abundanceno VHLor% mRNA abundanceVHL,i is the percentage 
abundance of isoform i relative to that of all isoforms in RCC4 or RCC4 VHL cells.

To assess the contribution of alternative TSS usage to changes in mean 
ribosome load of a gene, we tested a simulation that omitted the VHL-dependent 
changes in translational efficiency within each mRNA isoform using the following 
formula:

log2
(
∑n

i=1 (MRLaverage,i × %mRNA abundanceno VHL,i)
∑n

i=1 (MRLaverage,i × %mRNA abundanceVHL,i)

)

In this formula, MRLaverage, i is the combined average of MRLno VHL, i and MRLVHL, 

i as defined above. When values for either of MRLno VHL, i and MRLVHL, i are missing, 
these values are excluded from the calculation of the average.

To assess the contribution of VHL-dependent changes in translational 
efficiency within each mRNA isoform to changes in mean ribosome load of a gene, 
we tested a simulation which omitted the VHL-dependent changes in TSS usage 
using the following formula:

log 2
(
∑n

i=1 (MRLno VHL,i × %mRNA abundanceaverage,i)
∑n

i=1 (MRLVHL,i × %mRNA abundanceaverage,i)

)

In this formula, % mRNA abundanceaverage, i is the combined average of % mRNA 
abundanceno VHL, i and % mRNA abundanceVHL, i defined above. When values for 
either of MRLno VHL, i and MRLVHL, i are missing, these genes were excluded from  
the analysis.

Generalized additive model to predict mean ribosome load. A generalized 
additive model was used to predict mean ribosome load of mRNAs from the 
preselected mRNA features. To test the model, a cross-validation approach was 
deployed to predict the MRL of the top 50% expressed genes on 4 randomly 
selected chromosomes, which were excluded from the training data used to 
derive the model. To provide an accurate estimate of the model’s performance, 
this process was repeated ten times, and the median value of the coefficient of 
determination (R2) was calculated.

For model construction, the gam function of the mgcv package (1.8-31)75 of R 
was used, deploying thin-plate regression splines with an additional shrinkage term 
(with the parameter, bs = ‘ts’) and restricted maximum likelihood for the selection 
of smoothness (with the parameter, method = ‘REML’). The analysis was restricted 
to mRNAs with a 5′ UTR length longer than 0 nt and a CDS length longer than 100 
nt; 5′ UTR and CDS length were log10-transformed, and the MFE values of RNA 
structures were normalized by the segment length (nt).

Principal component analysis. Library-size normalization and a variance-stabilizing 
transformation were applied to the mRNA abundance data using the vst function 
of the DESeq2 package69 with the parameter, blind = TRUE. Principal component 
analysis of the transformed data was performed for genes showing the most variance 
(top 25%) using the plotPCA function of the DESeq2 package.

GO or KEGG orthology enrichment analysis. GO or KEGG orthology 
enrichment analysis of the selected set of genes compared to all the expressed genes 
in the data was performed using the gost function of the gprofiler2 package66.

Analysis of HIF2A/HIF1A binding ratio near VHL-regulated genes. HIF1A and 
HIF2A ChIP–seq data from Smythies et al.41 were used to analyze HIF-binding 
sites across the genome. HIF1A- or HIF2A-binding sites were defined as the 
overlap of the peaks identified by ENCODE ChIP–seq pipeline (https://github.
com/ENCODE-DCC/chip-seq-pipeline2) and those by MACS2 software (2.2.7.1)76. 
For this purpose, the ChIP–seq reads were aligned to the human genome using 
Bowtie2 software, and the aligned reads were analyzed by ENCODE ChIP–seq 
pipeline to identify the peaks. The blacklist filtered and pooled replicate data 
generated by the pipeline were analyzed by MACS2 software with the following 
parameters (callpeak -q 0.1–call-summits). The position of the binding sites was 
defined as the position of the hypoxia response element (HRE, RCGTG sequence) 
closest to the peak summits identified by MACS2 software. If the binding site did 
not contain an HRE within 50 bp of the peak summit, it was filtered out. Data 
on HIF1A and HIF2A binding, as defined above, were merged, and the HIF2A/
HIF1A binding ratio was estimated using the DiffBind package (2.16.0)77 with the 
parameters minMembers = 2 and bFullLibrarySize = FALSE.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequence data generated during this study are available from ArrayExpress 
(HP5: E-MTAB-10689, 5′ end-Seq of total mRNAs: E-MTAB-10688). Additional 
unprocessed data are provided as Source data. The following reference data were 
used; human genome: hg38, obtained via BSgenome.Hsapiens.UCSC.hg38 (1.4.3); 
human transcripts: RefSeq57 (GRCh38.p13) and GENCODE58 (GENCODE 
version 34: gencode.v34.annotation.gtf). Processed data files are provided as 
Supplementary Data and Source Data. The list of samples that were analyzed  
for this study is provided as Supplementary Data. Source data are provided with 
this paper.

code availability
The computational pipeline used for the data analysis is available on GitHub 
(https://github.com/YoichiroSugimoto/20211102_HP5_HIF_mTOR) and Zenodo 
(https://doi.org/10.5281/zenodo.6583247).
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Extended Data Fig. 1 | Overview of 5′ end-Seq protocol. Schematic representation of the 5′ end-Seq protocol (see also Methods). 1. The reverse 
transcription is primed with an adapter containing an oligo (dT) sequence. The reverse transcriptase used for 5′ end-Seq adds additional non-templated 
cytidine residues beyond the cap, to the 3′ end of the cDNAs. This polycytidine sequence anneals to a polyriboguanosine sequence contained in the 
template switch oligo (TSO), and the reverse transcriptase switches the template from the mRNA to the TSO to add the complementary sequence of the 
TSO at the 3′ end of the cDNAs. An indexing sequence contained in the TSO to identify the sample source of the cDNAs is reverse transcribed in this 
process. 2. Unused primers and RNA are degraded using the combination of a single-stranded DNA specific exonuclease (exonuclease I), an enzyme 
cleaving DNA at deoxyuridine (Thermolabile USeR II enzyme), and RNase H. This step leaves the adapter sequence of the TSO (the constant region) 
annealing to the cDNA due to the high melting temperature of this duplex, which protects the cDNA from exonuclease I. 3. The full-length cDNA library 
is amplified using limited cycle pCR amplification. 4. The libraries from different samples are multiplexed and the multiplexed libraries are amplified using 
pCR and an optimized cycle number. 5. Amplified libraries are fragmented and adapter tagged using tagmentation. 6. mRNA 5′ end library suitable for 
high-throughput DNA sequencing is generated using pCR amplification with primers annealing to the TSO and the appropriate tagmentation adapter.
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Extended Data Fig. 2 | establishment of cell lines. Immunoblotting analysis of RCC4 or 786-O cells re-expressing either wild type VHL or empty vector 
alone (n = 3 or 4 experiments in independent clones of RCC-4 and 786-O cells). The successful reintroduction of VHL was confirmed by the expression 
of VHL protein and degradation of HIF1A and/or HIF2A protein. Similar protein loading across lanes was confirmed by total protein staining. Note that 
multiple species of VHL were observed consistent with previous studies. In part, they arise from an internal start codon in VHL that produces an 18 kDa 
isoform81, but the precise origin of additional species has not been established82.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | mRNA features predicting mean ribosome load. (a) proportion of mRNA isoforms in relation to the total mRNA across polysome 
fractions for selected genes, as measured by Hp5 (upper panel) or RT-qpCR (lower panel). The line indicates the mean value while the shaded area 
shows the standard deviation of assays using 3 independent clones for the Hp5 data, or 2 technical replicates for the RT-qpCR data, respectively. The 
examples have been selected to compare data on genes where Hp5 defined different mRNA isoforms (the schematics are shown below the line plots). 
In some cases, the resolution provided by RT-qpCR was less than Hp5, in which case integration of the Hp5 data was performed to permit quantitative 
comparisons between Hp5 and RT-qpCR. *Different upstream or downstream mRNA isoforms not resolved by RT-qPCR and are grouped. **Downstream mRNA 
isoform not separately resolved by RT-qPCR therefore resolved species comprise upstream and upstream + downstream mRNAs. (b) proportion of variance in mean 
ribosome load (MRL) between mRNAs that is explained by a single mRNA feature (expressed as R2) using a generalized additive model (mean ± s.e.m of 
10 iterations of cross validation). The significance of mRNA features in predicting MRL was determined by the Wald test. Length, log10 sequence length 
(nucleotides, nts); Structure (near cap, first 75 nts; distal to cap, rest of the 5′ UTR), inverse of minimum free energy per nucleotide of predicted RNA 
structures; Kozak consensus, match score to the consensus sequence. The analysis identified that CDS length, uORF number, stability of RNA structures 
near cap, and Kozak consensus score were the four most predictive features. (c) MRL as a function of the stability of RNA structures near cap. mRNAs 
were ranked by their RNA structural stability, and split into 5 groups according to the rank; the intervals of the stability are indicated on the x-axis. MRL 
for mRNAs with less stable structures was compared with the most stable group using the two-sided Mann-Whitney U test. (d) Similar to c, but MRL 
as a function of Kozak consensus score. The median value of MRL for all mRNAs is shown by a dashed line. MRL for mRNAs with the indicated Kozak 
consensus score was compared to that with the score of 0.642 to 0.712, using the two-sided Mann-Whitney U test. (a-d) Data are for RCC4 VHL cells. 
boxplots show the median (horizontal lines), first to third quartile range (boxes), and 1.5× interquartile range from the box boundaries (whiskers).  
(b-d) * p < 0.05, ** p < 0.005. P values were adjusted for multiple comparisons using Holm’s method. Details of the sample sizes and exact p values are 
summarized in Supplementary Information.
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Extended Data Fig. 4 | comparison of the HP5 data with the previous reports. (a) Venn diagram showing the numbers and overlap of mTOR 
hypersensitive genes identified by previous studies14,21,32,33. (b) boxplots showing changes in translation upon mTOR inhibition as measured by the 
indicated study (Hp5, left-hand panel; ribosome profiling, centre and right-hand panels) for the genes identified as mTOR hypersensitive in each of the 
previous studies14,21,32,33. In each panel, the left-hand boxplot shows the changes in mean ribosome load (MRL) or translational efficiency of all expressed 
genes in that study; horizontal line, median value. Responses of mTOR hypersensitive genes identified by the indicated study were compared against 
responses for all expressed genes using the two-sided Mann-Whitney U test. * p < 0.05, ** p < 0.005. p values were adjusted for multiple comparisons 
using Holm’s method. Details of the sample sizes and exact p values for (b) are summarized in Supplementary Information. boxplots show the median 
(horizontal lines), first to third quartile range (boxes), and 1.5× interquartile range from the box boundaries (whiskers).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | HP5 refined mRNA features influencing the mTOR sensitivity of mRNAs. (a) proportion of mRNAs as a function of the TOp motif 
length (n = 9,589). (b) boxplots showing changes in translational efficiency of mRNAs with Torin 1 (log2 fold change in mean ribosome load, MRL) as a 
function of CDS length. Responses of mRNAs with the indicated CDS length were compared against responses of all other mRNAs using the two-sided 
Mann-Whitney U test; classes more downregulated or less downregulated compared to all other mRNAs (that is hypersensitive or resistant to mTOR 
inhibition, p < 0.05) are colored red or blue respectively. (c) boxplots showing MRL as a function of transcript length, in the presence (purple) or absence 
(blue) of Torin 1. (d) boxplots illustrating associations between mRNA features (length of TOp motif, left panel; number of uORFs, right panel) and 
sensitivity to mTOR inhibition, for alternate TSS mRNA isoforms of same gene. The mRNA isoforms are classified as sensitive or resistant based on their 
sensitivity to mTOR inhibition (the isoform with a larger or smaller mean ribosome load, MRL, log2 fold change with Torin 1, respectively). When more 
than two isoforms were expressed from the same gene, the isoforms with the largest and smallest MRL log2 fold change were selected for the analysis. 
The comparison was performed by the groups binned by their difference in MRL fold change of the two isoforms (x-axis). Distributions of the length of 
TOp motifs or the number of uORFs were compared using the two-sided Wilcoxon signed rank test. (a-d) Data are for RCC4 VHL cells. boxplots show the 
median (horizontal lines), first to third quartile range (boxes), and 1.5× interquartile range from the box boundaries (whiskers). * p < 0.05, ** p < 0.005.  
(b and d) P values were adjusted for multiple comparisons using Holm’s method. Details of the sample sizes and exact p values for (b-d) are summarized 
in Supplementary Information.
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Extended Data Fig. 6 | effects of VHl on the efficiency of translation. (a) Scatter plots showing the data from Fig. 3b with the genes reported to be 
translationally regulated by HIF2A–eIF4e2 labeled9,10. (b) Scatter plots comparing changes in mRNA abundance of genes upon VHL loss with the mean 
ribosome load (MRL) in RCC4 and 786-O cells. Spearman’s rank-order correlation was used to assess the association (n = 9,493 and 8,065 for RCC4 and 
786-O respectively). The absence of correlation indicates that genes induced by VHL loss were not preferentially translated upon induction compared to 
genes that are not induced by VHL. (c) Scatter plot comparing changes in MRL upon EIF4E2 inactivation in 786-O cells with or without VHL (n = 7,753). 
(d) Immunoblotting analysis of four previously reported eIF4e2–HIF2A target genes in 786-O cells9,10 as a function of VHL and eIF4e2. HIF2A induction 
did not alter eGFR protein abundance. EIF4E2 inactivation did not alter NDRG1 and SLC2A1 protein abundance in the presence of HIF2A. Although CA9 
was reported to be an eIF4e2–HIF2A target in 786-O cells10, CA9 protein expression could not be detected in 786-O cells in agreement with previous 
studies showing that CA9 is transcriptionally induced by HIF1A but not by HIF2A83. Identical results were obtained using a second targeting gRNA for 
eIF4e2 in 786-O cells. (e) Analysis of changes in mRNA abundance of negative regulators of mTOR pathway upon VHL loss. mRNA abundance was 
measured as transcripts per million (TpM) and the significance of differential expression was assessed using the Wald test (n = 3 and 4 for each condition 
in RCC4 and 786-O respectively).
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Extended Data Fig. 7 | Alternate TSS usage in VHL-defective and hypoxic cells. Correlations between VHL-dependent changes in alternative TSS usage in 
RCC4 (x-axis) and such changes in other cells or conditions (y-axes); panels show correlations with VHL loss in 786-O cells (left); with VHL loss in HIF1B 
inactivated 786-O cells (middle) and with hypoxia (1% O2 for 24 h) in RCC4 VHL cells (right). Genes with too little mRNA expression for quantitative 
analysis were excluded from the analyses (see Methods). pearson’s product moment correlation coefficient was used to assess the associations (n = 124, 
126, and 148 for the respective comparisons).

NATuRe STRucTuRAl & MOleculAR BIOlOgY | www.nature.com/nsmb

http://www.nature.com/nsmb


ArticlesNATuRE STRucTuRAl & MOlEculAR BIOlOgy

Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | VHl dependent alternate TSS usage generates mRNAs with an altered translational efficiency. The plot shows the differences 
in translational efficiency (expressed as mean ribosome load, MRL) between mRNA isoforms that are generated from VHL-dependent alternative TSSs 
and all other isoforms transcribed from the same gene. Data are for RCC4 cells. Genes are sorted by log2 fold difference in MRL; significant differences in 
polysome distribution (FDR < 0.1) are indicated by black colouring. The magnitude of changes in alternative TSS usage is shown by the size of point. Genes 
whose alternate TSS isoform contains a different predicted CDS are indicated with a check mark; NA, CDS could not be predicted. Genes with too little 
alternate TSS isoform expression for MRL calculation were excluded from the analysis (see Methods).
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Extended Data Fig. 9 | See next page for caption.

NATuRe STRucTuRAl & MOleculAR BIOlOgY | www.nature.com/nsmb

http://www.nature.com/nsmb


Articles NATuRE STRucTuRAl & MOlEculAR BIOlOgy

Extended Data Fig. 9 | Difference in translation of VHl-dependent isoform from that of other isoforms. (a) bubble chart showing the proportion of genes 
manifesting greater (white bubbles, n = 22) or lesser (black bubbles, n = 20) MRL on alterative versus other mRNA isoforms, grouped by the difference 
in the number of uORF between those isoforms (x-axis). The analysis was performed for 42 genes for which 5′ UTR sequences of the alternate TSS and 
the majority of other isoforms could be predicted, among the 75 genes whose VHL-dependent alternate TSS isoforms were translated differently to other 
isoforms of same gene. (b) examples of the effect of VHL-dependent alternate TSS usage on translation. bar charts (left panels) show the abundance 
of UDp-N-Acetylglucosamine pyrophosphorylase 1 (UAP1) and deoxyribose-phosphate aldolase (DERA) mRNA isoforms defined by TSS, estimated as 
transcript per million (TpM) from 5′ end-Seq data. Data presented are the mean of measurements for three independent clones of RCC4 and RCC4 VHL 
cells. Line charts (middle panels) show the proportion of each TSS-defined mRNA isoform of UAP1 or DERA distributed across polysome fractions in RCC4 
cells; the line indicates the mean value while the shaded area shows the standard deviation of the data from the three independent clones. The number of 
uORFs in the relevant 5′ UTR is indicated in the schematics (right panels). Note that VHL inactivation induced the TSS3 isoform of UAP1 and DERA with 
less or more uORFs than other isoforms. In both cases, the isoform with less uORFs was better translated.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Differential sensitivity to mTOR inhibition amongst functional groups of transcripts induced upon VHL loss. (a) The figure 
is identical to Fig. 5b, but genes involved in the HIF signaling pathway are labelled. (b) Gene set enrichment analysis among genes induced upon VHL 
loss (FDR < 0.1 and mRNA fold change > 1.5) and either hypersensitive (green) or resistant (pink) to mTOR inhibition in RCC4 cells (see Methods for 
definition). The top 5 most enriched gene ontology or KeGG orthology terms are shown. n = 124 and 122 mTOR hypersensitive or resistant genes were 
considered for the analysis. (c) Schematic showing inverse changes in mRNA abundance upon VHL loss to changes in translational efficiency upon mTOR 
inhibition for genes encoding glycolytic enzymes in RCC4 cells. (d) boxplots comparing changes in translational efficiency for the indicated classes of HIF-
target gene in response to treatment with an mTOR inhibitor in this and previous published studies14,21. Data are expressed as log2 fold change in mean 
ribosome load (MRL) for the Hp5 data and as translational efficiency for the ribosome profiling data. The distributions in each data set were compared 
using the two-sided Mann-Whitney U test; the number of genes in each class is indicated in parenthesis. The horizontal lines show the median changes 
in MRL or translational efficiency of all expressed genes. The colours indicate whether the changes are above or below the median value of all genes (blue 
and red respectively). pC3: human prostate cancer cells; MeF: mouse embryonic fibroblasts. (e) proportion of genes with the indicated number of uORFs 
(top panel), CDS length (middle panel), and the length of TOp motif (bottom panel), amongst the specified functional class of HIF-target genes. For the 
plot of the CDS length, the two most mTOR sensitive groups are indicated by a red box. These analyses were performed for genes for which the 5′ UTR 
sequence could be predicted for the majority of expressed mRNAs (n = 11 and 27 for glycolysis and angiogenesis or vascular process genes respectively). 
(f) boxplots showing changes in mRNA abundance of HIF-target genes upon VHL loss in 786-O cells (that is induction of HIF2A) as a function of the 
encoded protein class. The changes in mRNA abundance of angiogenesis or vascular process genes were compared against those of all other HIF-target 
genes using the two-sided Mann-Whitney U test (n = 27 and 305 respectively). boxplots show the median (horizontal lines), first to third quartile range 
(boxes), and 1.5× interquartile range from the box boundaries (whiskers).
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