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Abstract
Cerebral hypoperfusion and vascular dysfunction are closely related to common risk factors for ischemic stroke such as 
hypertension, dyslipidemia, diabetes, and smoking. The role of inhibitory G protein-dependent receptor (GiPCR) sign-
aling in regulating cerebrovascular functions remains largely elusive. We examined the importance of GiPCR signaling 
in cerebral blood flow (CBF) and its stability after sudden interruption using various in vivo high-resolution magnetic 
resonance imaging techniques. To this end, we induced a functional knockout of GiPCR signaling in the brain vasculature 
by injection of pertussis toxin (PTX). Our results show that PTX induced global brain hypoperfusion and microvascular 
collapse. When PTX-pretreated animals underwent transient unilateral occlusion of one common carotid artery, CBF 
was disrupted in the ipsilateral hemisphere resulting in the collapse of the cortically penetrating microvessels. In addi-
tion, pronounced stroke features in the affected brain regions appeared in both MRI and histological examination. Our 
findings suggest an impact of cerebrovascular GiPCR signaling in the maintenance of CBF, which may be useful for 
novel pharmacotherapeutic approaches to prevent and treat cerebrovascular dysfunction and stroke.
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Introduction

Gi proteins are the principal signal transducers of a broad sub-
set of G protein-coupled receptors (termed GiPCRs), includ-
ing those for acetylcholine, adenosine, and catecholamines 
that control blood circulation [1–5]. In spite of many studies, 
the functions of Gi protein-dependent signaling in the brain 
vasculature have been largely ignored. One major reason for 
the undefined role of Gi proteins may be the lack of appro-
priate animal models, since a simultaneous genetic ablation 
of the major Gαi isoforms (Gαi2 and Gαi3) produces embry-
onic lethality in mice [6]. On the other hand, the significance 
of singular knockouts is limited by overlapping functions of 
these isoforms. Pertussis toxin (PTX) has been used to study 
Gi protein signaling in the cardiovascular system [7, 8], but 
the effects on cerebrovasculature have not yet been elucidated.

In vivo, PTX irreversibly and with high specificity blocks 
Gi-linked GPCR signal transduction — hereafter referred to as 
non-cerebral GiPCR KO — by catalyzing covalent modification 
of a C-terminal cysteine residue of cellular Gαi isoforms [9–11]. 
In arteries and microvessels, PTX inhibits endothelium-dependent 
relaxation to certain agonists such as β-adrenergic ligands, angio-
tensin, serotonin, or relaxins and is therefore useful for the study 
of vasculopathies [2, 7, 8, 12–18]. We have previously demon-
strated that PTX, administered in a single peritoneal injection, 
does not cross the blood–brain barrier (BBB) and does not modify 
GiPCR signaling in neurons [19]. PTX administration, however, 
still irreversibly interrupts GiPCR signaling for up to 96 h in cells 
outside of the CNS, including brain vasculature. Using PTX, in 
this work, we evaluate the effects in cerebral blood flow caused 
by permanent GiPCR modification of cells outside of the brain.

MRI provides a powerful set of neuroimaging tools that 
allow quantification of pathological changes at the functional 
level in the brain [20–22]. In vivo MRI allows consistent acqui-
sition of multiple tissue characteristics in a single session per-
mitting evaluation of their longitudinal development [20, 22].

In the present study, we focused, first, on the effects of 
PTX administration in systemic blood flow, cerebral blood 
flow (CBF), and microvascular patency and, second, on 
GiPCR-dependent vascular responses after acute vascular occlu-
sion. Our data reveal that injection of PTX severely reduces cer-
ebral perfusion and impedes compensatory mechanisms regulat-
ing CBF. As a result, microcirculation collapses during vascular 
occlusion, contributing to ischemic brain lesions.

Materials and Methods

Animal Experiments

The study was carried out in compliance with the ARRIVE 
guidelines. All experiments were performed according to the 

EU Animals Scientific Procedures Act and the German law for 
the welfare of animals and were approved by the local animal 
ethical committees (Regierungspräsidium Tübingen, PH 10/13, 
PH 1/11, PH 04/19). C57BL/6 female, 8-week-old, mice were 
kept under specified pathogen-free conditions, controlled tem-
perature, and humidity in 12-h day/night light cycles, receiving 
food and water ad libitum. Workflows of all experiments are 
sketched in the corresponding figures. We induced non-cere-
bral GiPCR KO using a single dose of PTX (150 μg/kg body 
weight) (Merck, Darmstadt, Germany) 48 h before intervention 
(sham or surgery), as previously shown [19, 23, 24]. Details are 
provided in the “Supplementary Information.”

Whole‑Body Semi‑quantitative Perfusion

In order to determine whether PTX produced whole-body sys-
temic organ-perfusion changes, mice weighing 20–23 g were 
evaluated using dynamic contrast-enhanced (DCE) MRI. Vehi-
cle (phosphate-buffered solution, PBS) or PTX was injected 
intraperitoneal (i.p.) into 5 mice per group. After 48 h, trans-
versal DCE images focusing on multiple body regions includ-
ing the lung, kidney, paravertebral muscle, abdominal vessels, 
heart, and brain were acquired. Details are provided in the 
“Supplementary Information.”

Longitudinal Multiparametric MRI—Animals 
and Treatment

For these experiments, 8-week-old mice were divided into four 
groups: PBS-pretreated sham-operated, PTX-pretreated sham-
operated, PBS-pretreated occluded, and PTX-pretreated occluded. 
These groups were studied in two main experimental settings: in 
the first setting, mice were imaged immediately after vessel occlu-
sion using a non-absorbable suture around one common carotid 
artery (CCA) or a sham surgery. In the second setting, the groups 
were imaged 1 week before (baseline) and 48 h after a transient 
occlusion (lasting 30 min) of one CCA or a sham surgery. Fur-
ther experimental details are shown in the corresponding figures, 
Table 1, and “Supplementary Information.” PTX (150 µg/kg b.w., 
i.p.) or PBS were injected 48 h before surgery.

Longitudinal Multiparametric MRI—Acquisitions 
and Analysis

Multiparametric MRI acquisitions were performed using a 
ClinScan 7-T small-animal MR scanner, a rat whole-body 
transmitting coil, and a 4-channel mouse brain surface receiv-
ing coil (Bruker Biospin). The imaging protocol consisted of 
anatomical T2-weighted images (T2WI), diffusion-weighted 
images (DWI), perfusion-weighted images (PWI), and multi-
turbo-spin-echo T2-weighted acquisitions focusing specifi-
cally on the Bregma/Interaural 3.82 ± 0.25 mm brain region as 
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previously performed [20–22] and detailed in the “Supplemen-
tary Information.”

Volumes of Interest

All parametric images were coregistered to a common tem-
plate using Pmod software (Bruker Biospin). Volumes of 
interest (VOIs) delimiting the striatal and cortical regions 
on both hemispheres were manually drawn at the above-
described Bregma/Interaural brain regions using the T2WI 
as anatomical reference. The VOIs were overlaid on the 
PWI, ADC, and T2 maps followed by extraction of raw data. 
Lesion volumes were drawn on anatomical T2WI which cov-
ered the whole brain. Details are provided in the “Supple-
mentary Information.”

Single‑Vessel Multi‑gradient Echo (MGE) Imaging 
Experiment

We performed multi-gradient echo data acquisitions for 
single-vessel imaging using a 14.1 T / 26 cm magnet (Mag-
nex, Oxford, UK) with an Avance III console (Bruker Bio-
spin) and a 12-cm-diameter gradient providing 100G / cm 
with 150-µs rise time (Resonance Research, Massachusetts, 
U.S.A). A home-made RF surface coil (8-mm outer diame-
ter) was used for single-vessel mapping. Details are provided 
in the “Supplementary Information.”

Histology and Immunohistochemistry

For characterization of cerebral lesions, samples were 
stained with antibodies against CD31 (Abcam, Cambridge, 
UK), GFAP (Clone 6F2, Dako GmbH, Germany), HIF-1α 
(Clone ESEE 122, Abcam), and EPO (Clone H-162, 
Santa Cruz Biotechnology, Inc.). H&E staining was also 

performed. Details are provided in the “Supplementary 
Information.”

Statistics

Sample size and power calculations were conducted and 
approved by the local animal ethical committees. Animal 
numbers for the main experiments are shown in Table 1. We 
evaluated non-Gaussian distribution for all experimental data-
sets previous to statistical testing using the Jarque–Bera test. 
Whole-body perfusion data presented several datasets that were 
non-normality distributed; therefore, statistical evaluation was 
performed using a 2-sided non-parametric Wilcoxon signed-
rank test. All other experiments were evaluated using either 
2-way or 3-way ANOVA [25], followed by multiple compari-
son corrections using Tukey’s honestly significant test [26]. 
Details are provided in the “Supplementary Information.”

Results

Differential Effects of a Functional Non‑cerebral 
GiPCR KO on Blood Flow to Different Organs 
and Body Compartments

First, we examined the rough impact of PTX-induced func-
tional non-cerebral GiPCR KO on blood flow in different 
organs and compartments using whole-body dynamic con-
trast-enhanced (DCE) MRI. ANOVA determined a statisti-
cally significant main group difference between PTX and 
control animals. To detect differences between the same 
organs of both groups, Wilcoxon matched-pairs signed-rank 
test was performed, and a statistically decreased blood flow 
was only found in the brain of PTX animals (Fig. 1A). As 
with some other organs and compartments, median blood 
flow in the ventricle, reflecting ejection fraction in this 
experimental setting, was lower than in the control group, 

Table 1   Summary of imaging experimental setup. The table shows the 
subdivisions of groups and time points. The number of animals used 
for statistics at every time point and animal group are displayed. Ani-
mals were injected with PTX 150 µg/kg b.w. i.p. or PBS 48 h before 
surgery. Images were obtained from mice in two main experimental 

settings. One main group was imaged during occlusion or sham sur-
gery (Top). The other main group was examined at baseline (BL) and 
48 h after occlusion/reperfusion (unilateral transient CCA) or sham 
surgery (96 h)

Group name n PTX Surgery Image time point

Sham PBS 5 - Sham 0 h
Sham PTX 4  +  Sham 0 h
Occlusion PBS 6 - Occlusion 0 h
Occlusion PTX 5  +  Occlusion 0 h
Sham PBS 5 - Sham BL / 96 h
Sham PTX 4  +  Sham BL / 96 h
Occlusion/reperfusion PBS 5 - Occlusion/reperfusion BL / 96 h
Occlusion/reperfusion PTX 4  +  Occlusion/reperfusion BL / 96 h
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but without being statistically significant (Fig. 1B–F). Blood 
flow to the renal cortex after PTX treatment also suggested 
sustained perfusion of the kidney (Fig. 1C). The contrast 
agent accumulated in the renal calyceal system of PTX-
treated animals, also indicating continued tubular excre-
tion. The systemic results led us to investigate the effects of 
PTX in the brain using MRI techniques with better spatial 
resolution.

Reduction of Global CBF Following Functional 
Systemic Non‑cerebral GiPCR KO with PTX

To confirm and extend our observation of decreased CBF, 
we subjected the mice to an arterial spin labeling (ASL) 
MRI protocol (for details, see the “Materials and Meth-
ods” section and Fig. 2A, B), which shows the distribu-
tion of blood perfusion in the brain and provides reliable 
quantifications of CBF [21, 27, 28]. Coronal cross-sectional 
perfusion-weighted imaging (PWI) confirmed whole-brain 
hypoperfusion in PTX-pretreated sham-operated mice 
(Fig. 2C; yellow arrow). We quantified the CBF for the 
striatal and cortical regions (Fig. 2D, E). Both ipsi- and 
contralateral CBF were reduced by more than half in these 
regions compared to untreated sham-operated controls 
(Fig. 2D, E). Nevertheless, all of these reduced CBF values 

were above a range associated with ischemic lesions [29, 
30]. Thus, in agreement with the DCE measurements (see 
Fig. 1), our ASL data clearly reveal a systemic suppressive 
effect of PTX on CBF.

PTX Administration Sensitizes to Ischemia

Having established that a functional non-cerebral GiPCR KO 
with PTX had an effect in CBF per se, we examined the conse-
quences of acute occlusion of one common carotid artery (CCA) 
in cerebral hypoperfusion (see the “Materials and Methods” 
section and Fig. 2A, B). As evident from PWI, unilateral CCA 
occlusion in control animals treated with PBS resulted in a large 
decrease on CBF ipsilateral to the occlusion (Fig. 2C, Suppl. 
Fig. 1B; green arrow). This is also reflected in the calculated 
CBF values, which showed a clear hypoperfusion for the ipsi-
lateral striatum and cortex (Fig. 2D). However, the hypoper-
fusion did not reach a level described to cause ischemia and 
necrosis [29, 30]. Of note, blood flow in the contralateral regions 
remained stable (Fig. 2E), which should allow for potential com-
pensatory blood flow to the hypoperfused regions [31].

In contrast, PTX-pretreated mice showed global cerebral 
hypoperfusion that was further aggravated ipsilateral to the 
unilateral CCA ligation resulting in a complete breakdown 
of perfusion in both the striatum and cortex (Fig. 2C, D; 
Suppl. Fig. 1B; red arrow). These ipsilateral values were 

Fig. 1   Functional non-cerebral GiPCR  KO using PTX induces cer-
ebral hypoperfusion. Whole-body perfusion was measured using 
dynamic contrast-enhanced imaging in PTX-pretreated and PBS-
pretreated animals (n = 5 per group). A Wilcoxon matched-pairs 
signed-rank test found significant hypoperfusion in the brain of PTX-

injected mice in comparison to PBS-treated animals (* p < 0.05). 
B Lung showed normal perfusion, whereas C kidney, D muscle, E 
abdominal vessels, and F heart yielded a hypoperfusion trend. Shown 
are median, 1st, and 3rd quartile of data distribution. The whiskers 
extend to the largest and smallest data point, respectively.
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below the threshold at which ischemic injury occurs [29, 30]. 
On the contralateral side, an extent of reduction occurred 
that we had already observed in the sham-operated mice 
pretreated with PTX, and that may impede compensatory 
blood flow to the hypoperfused ipsilateral regions (Fig. 2E, 
Suppl. Fig. 1B).

Our findings show that a functional non-cerebral 
GiPCR KO with PTX suppresses cerebral perfusion, which 
upon challenge by unilateral CCA occlusion severely 
disrupts CBF distal to the ligation, i.e., in the ipsilateral 
hemisphere. We were therefore interested in how perfusion 
subsequently developed and compared PWI at baseline and 
48 h after surgery, which corresponded to 96 h after PTX 
administration (Suppl. Fig. 2A, B). The CBF in the brain of 

the PBS-injected mice, sham-operated or transiently CCA-
occluded, was invariant from baseline post surgically at 
48 h (Suppl. Fig. 2C-F). The corresponding CBF in the 
non-cerebral GiPCR KO mice was reduced albeit not sig-
nificantly compared to baseline. Compared with the CBF of 
non-cerebral GiPCR KO mice during occlusion (see Suppl. 
Fig. 1B and Fig. 2D, E) the CBF of mice monitored 48 h 
later, i.e., 96 h after PTX dosing (see Suppl. Fig. 2C-F), 
indicated a partial recovery. However, there was no differ-
ence in CBF in PTX-pretreated mice regardless of whether 
they were sham-operated or transiently CCA-occluded 
48 h before (see Suppl. Fig. 2C-F). This finding was in 
contrast to the different results in the two PTX-pretreated 
groups, i.e., sham-operated or transiently CCA-occluded 

Fig. 2   Functional PTX-induced non-cerebral GiPCR  KO sensitizes 
for cerebral ischemia during permanent carotid artery occlusion. A 
Timeline of PBS/PTX injection, surgery (sham or CCA occlusion), 
and arterial spin-labeling MRI analysis. B Schematic overview of 
axial and coronal cross-sections of the mouse brain. The differ-
ent brain regions of interest used for analysis are indicated. The red 
line shows the position of the cross-section corresponding to the 
coronal view. The blue line depicts the limit of ipsi (left)- and con-
tra (right)-lateral brain hemispheres. C Perfusion-weighted images 
(PWI) indicate hypoperfusion of sham-operated PTX-treated mice 
(yellow arrow) compared to the sham PBS group. During left carotid 
artery ligation (occlusion), PBS-treated mice showed hypoperfusion 
visible in the ipsilateral hemisphere (green arrow), whereas PTX-

pretreated mice exhibited global cerebral hypoperfusion, confirming 
the effects observed in whole-body perfusion analysis. Moreover, the 
perfusion of PTX-pretreated mice was interrupted in the ipsilateral 
hemisphere (red arrow) during occlusion, in comparison to animals 
receiving PBS. Shown are images of one representative mouse per 
group. Further examples are provided in Suppl. Fig. 1B. Correspond-
ing quantification and statistics of CBF are shown in D for ipsi- and 
E for contralateral striatum and cortex (for details see Table 1). Sta-
tistical analysis was performed using 2-way ANOVA (* p < 0.05, 
*** p < 0.001). Shown are median, 1st, and 3rd quartile of data dis-
tribution. The whiskers extend to the largest and smallest data point, 
respectively.
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Fig. 3   Cytotoxic and vasogenic edema in non-cerebral GiPCR  KO 
following transient CCA occlusion. A Timeline of baseline MRI 
acquisition, PBS/PTX injection, surgery (sham or CCA occlusion), 
and post-operative MRI acquisitions. B Representative images of 
mouse brains showing the apparent diffusion coefficient (ADC), 
T2 map, and T2-weighted images (T2WI). Red arrows indicate the 
ischemic lesions in occluded PTX-pretreated mice consisting of 
reduced signal intensity of ADC images as well as hyperintensity in 
T2WI and T2 maps (for more details, see Tables 1, 2, and 3). Corre-

sponding quantification and statistical analysis of ipsilateral ADC (C) 
and T2 (D) in the striatum. Only PTX-pretreated mice following tran-
sient CCA occlusion presented a lesioned striatum with increments 
in ADC, accompanied by an increased T2 relaxation time. Statistical 
analysis was performed using 3-way ANOVA (* p < 0.05, ** p < 0.01, 
*** p < 0.001). Shown are median, 1st, and 3rd quartile of data dis-
tribution. The whiskers extend to the largest and smallest data point 
respectively.

Table 2   Contralateral striatum 
results

Measurement (unit) Group BL 0 h 96 h

ADC
(× 10–3 mm2/s)

Sham PBS 0.66 ± 0.04 0.68 ± 0.15 0.68 ± 0.13
Sham PTX 0.64 ± 0.08 0.62 ± 0.26 0.66 ± 0.15
Occlusion PBS 0.65 ± 0.08 0.55 ± 0.13 0.65 ± 0.11
Occlusion PTX 0.65 ± 0.08 0.62 ± 0.15 0.64 ± 0.08

T2 relaxation time
(ms)

Sham PBS 56.7 ± 2.0 59.0 ± 3.4 58.7 ± 11.1
Sham PTX 59.2 ± 2.4 55.6 ± 7.8 60.6 ± 5.5
Occlusion PBS 61.0 ± 5.6 53.8 ± 3.6 56.8 ± 2.6
Occlusion PTX 58.5 ± 3.8 56.2 ± 3.0 56.4 ± 2.4
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at the time of occlusion (see Suppl. Fig. 1B and Fig. 2D, 
E). This prompted us to further investigate consequences 
of collapsed perfusion in non-cerebral GiPCR KO mice 
after transient unilateral CCA occlusion (Suppl. Fig. 3A).

Functional Non‑cerebral GiPCR KO Together 
with Transient Unilateral Carotid Artery Occlusion 
Leads to Cytotoxic and Vasogenic Edema

Diffusion-weighted images (DWI) provide a measurement 
of diffusion that can be quantified in the apparent diffu-
sion coefficient (ADC) using MRI. ADC restrictions in 
the brain are the gold standard to identify ischemic stroke 
lesions, which have been shown to strongly correlate to 
final infarct lesions in tissue sections [32–35]. Diffu-
sion restrictions have been known to start rapidly after 
stroke onset, peaking within one day, followed by slow 
value normalization [36, 37]. Consistent with these pre-
vious reports, PTX-pretreated and occluded mice already 
showed incipient ADC restrictions during occlusion (see 
Suppl. Fig. 3B-D), which were still evident in the mice 
imaged at 48 h post-surgery, corresponding to 96 h after 
PTX administration (Fig. 3B; red arrow, Fig. 3C). These 
ADC restrictions were clearly demarcated in DWIs of 
these mice (Suppl. Fig. 3B-D).

Moreover, T2 relaxation maps and T2WI representing 
vasogenic edema, demonstrated hyperintense signals only in 
the PTX-pretreated occluded animals at the latest timepoint 
(Fig. 3B, D; Suppl. Fig. 3B, E, F), consistent with previous 
literature [36, 37]. As the occluded animals pretreated with 
PTX showed vasogenic edema, we quantified edema vol-
ume in relation to their anatomical structures (Suppl. Fig. 4). 
In contrast, no signs of cytotoxic or vasogenic edema were 
detectable in both sham-operated groups and the PBS-
treated occluded group 48 h after occlusion (Figs. 3C, D).

Because cytotoxic and vasogenic edema developed only 
in PTX-pretreated animals with transient CCA occlusion, we 
performed histological and immunohistochemical analyses 
to confirm the presence of an ischemic stroke phenotype, 
as we have previously done in other stroke models  [20, 

35]. Detection of ischemic lesions using hypoxia-inducible 
factor 1α (HIF-1α) and erythropoietin (EPO) immunohis-
tochemistry has been previously shown to clearly delimit 
the infarct core and the peri-infarct stroke region [38, 39] 
(Fig. 4A-D; Suppl. Fig. 5). The immunohistochemical stain-
ing showed focal lesions in the PTX-pretreated and CCA-
occluded animals demonstrating ischemia ipsilateral to the 
occlusion, which perfectly colocalized with hyperintense 
lesions seen in DWIs and T2WIs (Fig. 4). Furthermore, 
H&E staining and immunohistochemistry for the endothelial 
markers CD31 and GFAP (Suppl. Fig. 5) revealed promi-
nent lesions with neuronal pallor, vacuolation of the neuropil 
and edema (H&E) in various regions of the ipsilateral hemi-
sphere, as well as blood vessels (CD31) and reactive glio-
sis (GFAP). Thus, clear signs of ischemic stroke through in 
vivo imaging were confirmed in PTX-pretreated transiently 
CCA-occluded animals using immunohistochemistry and 
histology.

Functional Non‑cerebral GiPCR KO with PTX 
Reduces Patency of Individual Cortex‑Penetrating 
Microvessels

We investigated whether hypoperfusion was associated 
with collapsed microvessels. To specifically investigate 
the immediate response of microvessels to CCA occlu-
sion, we used a multi-gradient echo (MGE) MRI sequence 
(Fig. 5A) [40–42]. High-resolution MGE-MRI provides a 
penetrating microvessel-specific measurement of the cor-
tex that allows the estimation of microvascular collapse. 
Comparison of PBS-treated mice regardless of CCA occlu-
sion revealed no difference in the number of vessels in both 
hemispheres (Fig. 5), indicating a normal microvascular 
function.

In contrast, the PTX-induced functional non-cerebral 
GiPCR KO provoked a reduction of quantifiable microves-
sels in the cortex of both hemispheres compared to the PBS 
groups (Fig. 5). The effect was further aggravated in the 
PTX-pretreated occluded mice, where an even more promi-
nent number of microvessels collapsed in the ipsilateral 

Table 3   Contralateral cortex 
results

Measurement (unit) Group BL 0 h 96 h

ADC
(× 10–3 mm2/s)

Sham PBS 0.65 ± 0.12 0.72 ± 0.20 0.65 ± 0.12
Sham PTX 0.65 ± 0.15 0.65 ± 0.08 0.68 ± 0.15
Occlusion PBS 0.66 ± 0.04 0.58 ± 0.23 0.67 ± 0.04
Occlusion PTX 0.60 ± 0.06 0.60 ± 0.13 0.67 ± 0.06

T2 relaxation time
(ms)

Sham PBS 59.8 ± 7.1 58.4 ± 4.0 59.9 ± 7.1
Sham PTX 57.9 ± 4.7 57.8 ± 4.4 61.9 ± 4.7
Occlusion PBS 59.6 ± 3.9 56.4 ± 4.4 59.6 ± 3.9
Occlusion PTX 60.8 ± 1.6 57.0 ± 1.4 57.1 ± 1.6
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cortex (Fig. 5). In combination with our perfusion experi-
ments, these data suggest that PTX does not only cause 
global cerebral hypoperfusion but also micro-cerebrovas-
cular collapse, which has also been described to occur under 
low-perfusion pressure in heart vessels [7].

Discussion

Cerebrovascular functions of GiPCR-driven signaling are 
still largely unknown. To gain more insight, we employed 
the highly specific inhibitor PTX in order to specifically 
disrupt extraneuronal GiPCR signaling. Our results point 
to previously unrecognized functions of GiPCR signaling 
in the regulation of CBF and possibly systemic blood flow. 
Furthermore, extraneuronal functional PTX-induced non-
cerebral GiPCR KO in combination with unilateral CCA 
produces brain lesions with similar imaging characteristics 
to human ischemic stroke.

One major drawback of the functional non-cerebral 
GiPCR KO with PTX is the ubiquitous nature of the KO 
in a multitude of systemic cellular processes. The systemic 
non-cerebral GiPCR KO may induce alterations in various 
systems, such as cardiovascular and immune system. In fact, 
it is used to establish the pertussis toxin-induced reversible 
encephalopathy dependent on monocyte chemoattractant 
protein-1 overexpression (PREMO) model, consisting on the 
injection of Mycobacterium tuberculosis and two injections 
of PTX [43]. We have previously shown that although PTX-
sensitive Gi proteins are ubiquitously expressed, a single 
extraneuronal application of the toxin in vivo does not mod-
ify neuronal GiPCR and does not cross through the intact 
BBB [19]. Therefore, it is possible under this specific set-
ting, to evaluate the effects of PTX in the perfusion of brain 
vessels and in systemic perfusion, without unwanted effects 
in neurons. We evaluated systemic hemodynamic effects 
using whole-body perfusion in order to reveal major possible 
alterations, and although we found only significant effects in 

Fig. 4   Colocalization of DWIs and T2WIs with immunohistochemi-
cal ischemia in occluded PTX-pretreated mice. A Timeline of PBS/
PTX injection protocol, surgery, and MRI acquisition. B DWI (b 
value = 600 s/mm2) and T2WI of animals at 96 h on the coronal pro-
jection. The occluded PTX-pretreated mice show hyperintensities 
in the striatal, hippocampal, and cortical brain regions on DWI and 
T2WI (orange arrowheads). Animals of the other groups showed no 

visible lesions. For more details, see Table 1. C HIF-1α is stained in 
hippocampal stroke regions and marks the infarcted region colocal-
izing with the DWIs. D. Staining of the hypoxia-inducible cytokine 
EPO shows a focalized lesion similar to the HIF-1α-positive hypoxic 
region further confirming an ischemic event. Immunohistochemistry 
was done in n = 4 mice per group.

370



Molecular Imaging and Biology (2 023) 25:363–374

1 3

the brain, other effects on systemic hemodynamics cannot be 
excluded. In fact, it has been demonstrated that PTX induces 
changes in blood pressure in hypertensive rats [2]. Moreover, 
it has been reported that in the cardiovascular system, PTX 
activity induces vessel size-dependent changes in vascular 
resistance [7], impairs endothelial Ca2+ influx [8], or lowers 
Ca2+ sensitivity of vasoconstriction in response to noradren-
aline [2]. In line with these previous works, our findings now 
reveal a relevant effect in global cerebral hypoperfusion and 
microvascular collapse of cerebral vessels. The microvessel 
dysfunction could be at least partially mediated by interfer-
ence with vascular Gi protein-mediated signaling affecting 
nitric oxide, β-adrenergic, angiotensin II type 1, serotonin-
1A, or relaxin receptor function [2, 15, 18, 44]. Moreover, 
PTX has been shown to inhibit endothelium-dependent 

relaxation in hypercholesterolemic and atherosclerotic arter-
ies [15, 16], which specifically links a disrupted G protein-
mediated transduction to microvascular dysfunction. Indeed, 
chronic hypertension, dyslipidemias, diabetes, and increased 
age have been correlated to hypoperfusion and microarterial 
impairment [45–47].

Interestingly, PTX has been recently reported to be neuro-
protective due to a reduction of glutamate-induced calcium 
influx into ischemic neurons [48]. Tang et al. injected PTX 
as a neuroprotectant at a dose of 40 µg/kg b.w. 30 min after 
applying a permanent middle cerebral artery occlusion. This 
occlusion triggered a BBB breakdown, allowing PTX to enter 
the brain [37, 49]. Consequently, Tang et al. injected PTX at 
a lower dose and at a time when the ischemic brain had a per-
meable BBB and could potentially benefit from inhibition of 

Fig. 5   Functional non-cerebral GiPCR KO reduces patency of cortex-
penetrating microvessels. A Timeline of PBS/PTX injection and sur-
gery protocol following multi-gradient echo (MGE) MRI acquisition. 
These experiments were performed during occlusion or sham surgery. 
Results of quantification of vessel numbers in the ipsi- (B)  and (C) 
contralateral cortex (n = 6–9). Vessel numbers of PTX-pretreated 
mice are reduced in both hemispheres, which is further aggravated 

upon occlusion in the ipsilateral cortex. Statistical analysis was per-
formed using 2-way ANOVA (* p < 0.05, ** p < 0.01, *** p < 0.001). 
D Representative pictures from all four groups measured by MGE 
(upper panel). The black boxes mark the assessed areas, and the red 
dots are the identified vessels (lower panel). Shown are median, 1st, 
and 3rd quartile of data distribution. The whiskers extend to the larg-
est and smallest data point, respectively.
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calcium influx. However, no perfusion deficits were observed 
in this study. In the current study, we administered the toxin 
again at 150 µg/kg b.w. 48 h before carotid artery occlusion; 
thus, the BBB was intact at the moment of PTX injection and 
not able to reach the neurons [19]. The comparison of the 
work from Tang et al. to our study is an excellent reminder 
of how timing and dosage of therapeutic interventions, espe-
cially in niche compartments, are important for outcome.

The significance of our findings in the clinical field 
is directly related to the involvement of G protein sign-
aling alterations in the pathogenesis of neurodegenera-
tive and cerebrovascular diseases. G protein signaling is 
involved with neurotransmitters such acetylcholine, GABA 
(gamma-aminobutyric acid), and glutamate. Here, for 
example, the acetylcholine receptor has been associated 
to formation of Aß peptide and neurofibrillary tangles in 
Alzheimer’s disease [50]. From a vascular perspective, 
alterations in G protein signaling involving monoamines 
such as adrenaline, noradrenaline, serotonin, dopamine, 
and histamine could be directly associated with cerebral 
hypoperfusion, a well-known imaging hallmark of neu-
rodegenerative diseases [21, 51, 52]. Cerebral hypoper-
fusion is also a common risk factor in cerebrovascular 
diseases such as cerebral microbleeds and stroke [53, 54]. 
Therefore, GiPCR-driven signaling for the maintenance of 
CBF may be relevant to identify novel therapeutic targets. 
The PTX-triggered CBF impairment sensitized the brain 
to ischemic injury by disabling the mechanisms of blood 
flow regulation, an interesting effect that requires further 
mechanistic clarification focusing on the deficiency of 
specific G protein isoforms. The impaired hemodynamic 
stability and responsiveness of the cerebrovascular system 
caused by functional non-cerebral GiPCR KO in mice are 
reminiscent of observed hypoperfusion and vascular dys-
function in humans with chronic vascular disease, which 
is also predictive of human stroke severity [47].

Up to now, blocked GiPCR signaling had not yet been 
linked to the occurrence of cerebrovascular hypoperfusion 
and vascular collapse. It will be interesting to identify the 
specific GiPCRs involved in the maintenance of CBF and 
vascular tone. Furthermore, the effects of hypoperfusion and 
microvascular collapse induced by functional non-cerebral 
GiPCR KO may be useful for neuroscience, functional neu-
roimaging, and neurooncology.
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