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Supplementary Note 1: Datasets and Annotations

We test our cell tracking method on time-lapse light-sheet record-
ings from three common model organisms: Drosophila, mouse,
and zebrafish. We call these datasets Droso, Mouse, and ZFish,
respectively, and summarize some relevant information about them
in Supplementary Table 1. Each dataset records a fluorescent
nuclear marker: for ease of discussion, we will refer to each
nucleus as corresponding to a single cell. While two of the
datasets, Droso and Mouse, have a single view of the organism,
the ZFish contains two orthogonal, registered but unfused views.
To enable treating these views as interchangeable inputs to our
networks, we resample them to isotropic resolution.

We use sparse point annotations to train our method. As we
leverage annotations originally performed for biological analysis,
the annotated lineages are not randomly distributed, instead focus-
ing on the developing nervous system of each organism. Although
not necessary for training purposes, annotators ensured that lin-
eages were fully traced by following a cell and all subsequent
progeny until they were no longer visible. Thus, there are more
annotations in later frames of each recording. See Supplementary
Table 1 for the number of cells and divisions annotated in each
dataset.

For each organism, we divide the available annotations by
time, location, and lineage into train, validation, and test sections,
and report results on each split of the data individually, as well as
averaged across splits as a form of k-fold cross validation. Cells
in Drosophila and zebrafish rarely cross the center line of the
organism, so we split the lineages into two groups based on side,
discarding a small number of zebrafish lineages that did cross the
center line. We then train two models using lineages from each
side, leaving out 50 central time frames (200-250 for Droso, 150-
200 for ZFish) for validation. We test each model on lineages from
the side that was not used for training. Supplementary Table 2

shows the number of cells and divisions in each train, validation,
and test region for Droso and ZFish.

Within a developing mouse embryo, there is not a clearly
defined center line that cells do not cross. Thus, instead of splitting
lineages into groups by region, we define three sections of Mouse
by time frame: ”early” (50-100), ”middle” (225-275), and ”late”
(400-450). Due to extensive embryonic development over the 44
hour recording, early, middle, and late stages represent different
cell environments and organization, and there are far more cells
by the end of the recording than at the early stages. Each model
is trained leaving out two of those sections, one for validation and
one for testing. This is repeated for all combinations of validation
and testing, resulting in six total train/validation/test splits. The
number of cells and division in each Mouse split is shown in
Supplementary Table 3.

Supplementary Note 2: Evaluation
Metrics
Cell lineages can be used for a wide variety of analyses, and
different kinds of errors can affect downstream results differently;
therefore, reducing performance of a tracking method to a single
number that represents ”overall performance” is generally not pos-
sible. Therefore, we distinguish five types of tracking errors: false
positive edges (FP), false negative edges (FN), identity switches
(IS)—when one reconstructed track takes over following a cell
from another reconstructed track—false positive divisions (FP-D)
and false negative divisions (FN-D), as shown in Supplementary
Figure 1. To allow comparison across datasets, we normalize the
number of errors by the number of ground truth edges, resulting in
an errors per edge metric. Additionally, we compute the fraction of
ground truth lineages that were perfectly reconstructed over T time
points, for a range of values for T. Ground truth segments over time
T were identified using a sliding window of time T over the whole
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Dataset Time (h) Time Step
(min) Size Annotated

Points
Annotated Di-
visions

Droso 3.75 0.5 86 GB 75,745 299
Mouse 44.33 5 4.7 TB 37,009 148
ZFish 9.125 1.5 2.1 TB 34,530 88

Supplementary Table 1: Summary information about the three datasets used to develop and evaluate our method.

Split Train Validate Test
Droso side 1 30262 (96) 7327 (54) 38156 (149)
Droso side 2 30688 (107) 7468 (42) 37589 (150)
ZFish side 1 11875 (29) 2121 (6) 14535 (35)
ZFish side 2 12234 (33) 2301 (2) 13996 (35)

Supplementary Table 2: Number of annotated cells (divisions)
used for training, validation, and evaluation in Droso and ZFish.
Sides of the organisms were arbitrarily labeled 1 and 2, and each
split is named for the evaluation side.

Split Train Validate Test
early 1 33522 (132) 3178 (13) 309 (3)
early 2 30287 (109) 6413 (36) 309 (3)
middle 1 33522 (132) 309 (3) 3178 (13)
middle 2 27418 (99) 6413 (36) 3178 (13)
late 1 30287 (109) 309 (3) 6413 (36)
late 2 27418 (99) 3178 (13) 6413 (36)

Supplementary Table 3: Number of annotated cells (divisions)
used for training, validation, and evaluation in Mouse. Splits are
named for the evaluation set, so early 1 and early 2 are both
evaluated on the early section.

evaluation region, splitting at divisions only when they occur
in the first frame of the window. Matched reconstructions were
considered perfect when none of the error types above occurred
over the course of the window.

Evaluating with sparse point annotations presents two unique
challenges. First, we cannot determine false positive edges, so we
omit this error type from our analysis. Due to the non-maximal
suppression window used when extracting cell candidates, our
method cannot naively minimize the false negative edge metric
by extreme overdetection of false positive cells. However, false
positive tracks can still appear, and without dense annotations

FN
IS FP-D FN-D

Supplementary Figure 1: Diagram illustrating the four kinds of
tracking errors used in our analysis: false negative edges (FN),
identity switches (IS), false positive divisions (FP-D) and false
negative divisions (FN-D). False positive edges are not pictured,
as they cannot be determined from sparse ground truth. Red graphs
represent ground truth tracks and green reconstructed tracks, while
blue lines represent edges that are matched between the ground
truth and reconstructed tracks.

we are limited to qualitative analysis. Second, we cannot use
segmentation overlap to match ground truth to reconstructed cells.
Instead, we choose a matching threshold that is a bit larger than
the radius of a nucleus in the dataset. Considering only nodes
within this threshold as potential matching endpoints, we pair
ground truth and reconstruction edges using Hungarian Matching
to minimize the sum of endpoint distance. Both reconstruction and
ground truth edges can be matched to a dummy edge, allowing
detection of false negative ground truth edges and reconstructions
that do not match to any ground truth.

In addition to evaluating tracking performance, we examine the
performance of the cell indicator and movement vector networks.
The efficacy of the cell indicator model is determined by the cell
recall, or the percent of ground truth cells that have a cell indicator
maxima within the matching threshold. To evaluate the quality of
the movement vectors, we find the closest cell indicator maxima
for each ground truth node (within the matching threshold) and
compute the distance between the parent location predicted by the
movement vector at that maxima and the actual parent location.
We use the ”no movement” prediction as a baseline, to simulate
the assumption that cells stay in the same place.

Baselines
Due to the size of our datasets and nature of our ground truth,
we can only compare against cell tracking methods that can be
run efficiently on multi-terabyte 3D datasets, and that do not
require dense annotations or segmentations for training. Tracking
with Gaussian Mixture Models (TGMM) (Amat et al., 2014) was
previously run on certain time regions of Droso and Mouse,
and we were able to extend those results to the full time series.
Because TGMM cannot process multi-channel input, for ZFish we
produced tracks for each of the two views separately, and reported
the best result for each evaluation region. More recently, the track-
ing method included in the ELEPHANT framework has potential
to be scalable to multi-terabyte datsets (Sugawara et al., 2021).
The cell detection step requires sparse nuclear segmentations by
manual ellipsoid fitting, preventing us from comparing directly
with the full method, so instead we run a greedy nearest-neighbor
linking algorithm inspired by this work on our cell candidates.
Starting in the final frame 𝑡, we consider all cell candidates to
be part of a track. We then greedily select edges from 𝑡 to 𝑡 − 1
with the smallest difference between predicted and actual offset,
enforcing the constraint that cells cannot divide into more than two
by removing edges that connect to nodes in 𝑡 − 1 that already have
two selected incoming edges. We then process each subsequent pair
of frames going back in time, first extending existing tracks, and
then creating new tracks if any valid edges remain.

Results
Figure 2 shows the sum of errors per edge for each organism,
averaged over the train/validation/test splits. Across all datasets, our
method produces significantly fewer errors per edge than TGMM
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and the greedy baseline, with the greedy baseline landing between
TGMM and our method. Our method performs similarly between
Mouse and Droso (0.049 and 0.050 total errors per edge) and
slightly worse on ZFish (0.078).

Considering individual types of errors provides more insight
into the performance of the different methods. For both TGMM
and our method, false negative edges (FN) are the most common
error type. In every case, our method produces fewer FN and fewer
false positive divisions (FP-D) than TGMM. The false negative
division (FN-D) performance is similar between our method and
TGMM - in absolute numbers, neither our method nor TGMM
correctly identifies more than a third of the divisions, but divisions
are so underrepresented in the evaluation sets that this error type
does not significantly affect the overall sum of errors. On Mouse,
our method does not produce any divisions, and thus the FP-D rate
is always zero, while TGMM has a very high FP-D rate and still
does not detect many of the true divisions.

While our method does not always have fewer identity switches
(IS) than TGMM, exmaning performance by dataset shows clear
trends. For Mouse, our method always produces fewer IS than
TGMM. However, for Droso and ZFish, TGMM produces hardly
any IS, likely due to the high number of FN. Since an IS can only
occur when two neighboring ground truth edges are matched to
different reconstructed tracks, a high number of FN reduces the
opportunities for IS to occur. Our method significantly reduces the
number of FN on these datasets, resulting in slightly more IS than
TGMM but fewer overall errors.

Figure 2 also shows the track accuracy, or fraction of perfectly
reconstructed tracks, for a range of track lengths. For length 1, this
metric is the fraction of false negative edges, and thus our method
and the greedy baseline outperform TGMM. However, as the time
window increases, the greedy baseline accuracy drops quickly for
all datasets, reflecting the lack of global track optimization in
this per-frame tracking algorithm. TGMM’s accuracy is similar
to the greedy baseline on Mouse, but for Droso and ZFish,
the slope of the decline is much flatter, indicating that TGMM
perfectly reconstructs more long track segments on these datasets.
Combining the fairly high track accuracy of TGMM with the large
number of false negative edges, we can infer that on Droso and
ZFish, TGMM’s errors are grouped together, resulting in some
tracks being faithfully reconstructed and others missed completely.
Our method has the highest track accuracy across all datasets, with
a similar rate of decline as TGMM on Droso and ZFish but a
higher starting accuracy.

We further investigate which portion of the errors stem from
inaccurate cell detections versus errors introduced during the
discrete optimization due to suboptimal node and edge scores. To
this end, we computed a best effort solution, i.e., the best solution
the discrete solver could obtain with the given candidate graph.
In Supplementary Figure 4 we contrast the fraction of correctly
reconstructed segments over 𝑡 time frames of our solution with the
best effort. With the exception of the zebrafish dataset (which has
lower cell recall, see Supplementary Figure 5), we find that the
majority of tracking errors could be avoided by providing better
scores to the discrete solver (cell indicator scores and movement
vector estimates).

To examine differences in performance between models trained
and evaluated on tracks from different regions, we show results
for each train/test split described in Supplementary Note 1 in
Supplementary Figure 2 (errors per edge) and Supplementary
Figure 3 (track accuracy). Due to the cross validation used for

Mouse, we have results from two models for each evaluation
region, with each model trained and validated on different data
splits. For both sum of errors and track accuracy, the models that
were trained on more data (early 1, middle 1, and late 1 as shown
in Supplementary Table 3) performed slightly better than those
trained on less. The sum of errors also slightly increased for our
method from early to late regions on Mouse, reflecting increasing
difficulty of the task over time, although overall trends about relative
performance and error types between our method and the baselines
hold. Droso shows similar results between the two evaluation
regions, but the same is not true for ZFish. TGMM performs
much better on ZFish side 2 than side 1 in both track accuracy
and sum of errors. Indeed, on side 2, TGMM and our method
have a similar track accuracy, while TGMM performance on side
1 degrades significantly using both metrics. Manual examination
of the raw data shows that the tracks on side 1 are harder for a
human to identify due to less clear signal on that side of the dataset;
thus, the relative results indicate that our method is more robust to
varied imaging conditions than TGMM. Unexpectedly, the greedy
baseline performs worse on the easier side 2. To explain this, we
observe that the cell indicator model for side 2 predicts significantly
more candidate cells, and more false positive candidates, than the
model for side 1, likely due to randomness in the training pipeline
(see Supplementary Note 3). The greedy method creates many false
positive divisions involving those candidates, while ours does not,
showing that the optimization step can extract coherent tracks from
a noisy candidate graph.

Supplementary Figure 5 shows the standalone performance of
the cell indicator and movement vector networks. Cell recall for all
mouse and Drosophila models exceeds 0.99, indicating that nearly
all ground truth cells in these datasets have a nearby candidate cell.
Recall is slightly lower for both zebrafish models, but still exceeds
0.96. The movement vector network has a smaller mean distance
between predicted and actual parent location than the baseline for
all models, and the distribution of distances is concentrated closer to
zero. The mouse cells move further on average than the Drosophila
and zebrafish cells, so the magnitude of improvement compared for
mouse is greater. The max distance is higher for our model than the
baseline in all but one case, indicating that in the scenarios where
cells move the most, such as after division, the movement vector
network can point the wrong way. However, overall the movement
vector network tends to point in the direction of the parent, as
expected.

The sparse ground truth annotations used so far do not allow
us to evaluate false positive detections. To count false positive
detections, we manually picked three regions in the Mouse dataset
(in the “early”, “middle”, and “late” parts of the dataset), each
with a side length of 80µm, spanning 10 frames. The regions were
chosen to contain cells with low contrast that are still possible
for humans to follow. The selection of the regions was blind to
our automatic reconstruction. We then manually evaluated the
automatic reconstruction in those regions, labelling false positives
and identity switches. While we found identity switches in those
regions (9, 5, and 2, respectively for “early”, “middle”, and “late”),
we did not observe false positive cell detections, suggesting that the
ILP is successfully in filtering non-contiguous false positive cell
detections.
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Cell Tracking Challenge
We further evaluated our method through a submission to the Cell
Tracking Challenge1 (Ulman et al., 2017). Specifically, we submit-
ted results for the two 3D+t datasets Fluo-N3DH-CE and Fluo-
N3DL-DRO, for which we used only the training data provided
by the challenge organizers. For the Fluo-N3DH-CE dataset, a
developing C. Elegans embryo was imaged with a voxel size of
0.09 × 0.09 × 1µm at a temporal resolution of 1.5 minutes using a
Zeiss LSM 510 Meta (Murray et al., 2008). The Fluo-N3DL-DRO
dataset shows a developing Drosophila embryo imaged with a voxel
size of 0.406×0.406×2.03µm at a temporal resolution of 30 seconds
using a SIMView light-sheet microscope (Amat et al., 2014). On
both datasets, our method (named Jan-US on the challenge website)
led, at the time of submission to the challenge, the board in terms
of the Tra score (a score to measure tracking accuracy, with a
score of 1 being perfect, see Ulman et al. (2017) for details) and
on Fluo-N3DH-CE additionally in terms of the Det score (an
analogous score to measure detection accuracy). On Fluo-N3DH-
CE we additionally incorporate a cell state classifier to improve
the performance on divisions (Hirsch et al., 2022): We observed
a modest improvement with a Tra score of 0.979 compared to
the previously best score of 0.975 out of 13 submissions and a Det
score of 0.981 compared to the previously best score of 0.979 out of
18 submissions; this has since been surpassed by a new submission
(Tra 0.987, Det 0.990). On the more challenging Fluo-N3DL-
DRO dataset, we reach a Tra of 0.785, thus substantially improving
over the previously best score of 0.668 out of five submissions.

Supplementary Note 3: Ablation Study
Our training method contains multiple sources of randomness,
from batch sampling to augmentation. To determine the effect of
this randomness, we train, validate, and test the same model five
times. The results shown in Supplementary Figure 6a illustrate
that random batch selection and augmentation in training do
affect tracking performance. The sum of errors and distribution
of errors between false negative edges and identity switches vary
substantially between the five models.

In addition to our standard model, we test three changes to
architecture, sampling, and augmentation. In our U-Net archi-
tecture, we experiment with two different upsampling methods:
with and without limiting the transpose convolutional kernel to a
kernel of ones. We call these two upsampling methods transpose
upsampling (TU) and constant upsampling (CU). Because divisions
are underrepresented in the training data and particularly difficult,
we try sampling batches specifically at divisions 25% of the time
(+D). We also simulate more cell movement by adding a random
shift augmentation between the previous frame and the target frame
(+S).

Results for each combination of these training and architec-
ture variations on one Mouse split are shown in Supplementary
Figure 6b. To draw conclusions about the effect of any of these
variations, the resulting change in performance has to be greater
than the effect of random retraining shown in Supplementary
Figure 6a. In general, none of the models produced a large,
consistent difference in tracking score, although division sampling
seems to produce worse results in general. Due to training time and
expense, we were not able to train every model in the ablation study
multiple times or on every dataset, which would have allowed more

1. http://celltrackingchallenge.net

FN IS FP-D FN-D Sum
block-wise 1154 656 71 114 1995
global 1122 633 122 96 1973

Supplementary Table 4: Error comparison between block-wise and
global ILP inference on the Droso dataset.

FN IS FP-D FN-D Sum
GT 𝑙 and 𝑚 0 0 0 0 0
𝑙 ± 5µm 0 0 0 0 0
𝑙 ± 10µm 4 2 0 0 6
𝑙 ± 15µm 657 2 4 5 668
𝑚 ± 5µm 2 0 0 0 2
𝑚 ± 10µm 0 2 1 0 3
𝑚 ± 15µm 2 0 1 0 3
𝑚 ± 20µm 28 6 5 0 39
𝑚 ± 25µm 74 2 6 2 84
𝑚 ± 30µm 417 6 0 13 436
predicted 𝑙 and 𝑚 94 34 0 13 141

Supplementary Table 5: Errors for different random perturbations
of ground truth location 𝑙 and movement vectors 𝑚 on Mouse
(middle).

conclusive comparisons. While further exploration into architecture
and training decisions could yield incremental improvements, these
initial results are insufficient to incorporate any of the three changes
into our main model.

We further investigated the effect of the block-wise solving of
the tracking ILP, compared to a globally optimal solution over full
frames on the Droso dataset (split Droso side 2, the maximum
block size is restricted by the size of the validation set, in this
case 50 frames per block with a total of 450 frames). A detailed
summary of error types is given in Supplementary Table 4. In total,
the block-wise inference results in 1.1% more errors compared to
the global solution in the same time interval.

Similarly, we investigated the sensitivity of ILP inference to
imprecise predictions. For that, we used the available ground truth
as a drop-in replacement for actual detections, and computed
the number of errors made for different amounts of noise added
(uniformly distributed within different intervals). Results are shown
in Supplementary Table 5. Generally, the ILP solution is robust to
perturbations up to 10µm for cell locations and 15µm for movement
vectors. Larger perturbations lead primarily to FNs, since the cells
are moved further than one cell radius (≈ 10µm) and are no longer
counted as a TP.

Finally, we investigated the impact of the movement vectors on
the performance on the Droso dataset (split Droso side 2). Solving
the ILP without them results in a ≈ 5% increase in errors and the
number of correctly reconstructed divisions drops to almost zero
(≈ 1% vs ≈ 25-30% of divisions correctly reconstructed).

Supplementary Note 4: Amount of Training Data
Contemporary machine learning methods require substantial
amounts of training data to provide accurate predictions. To study
the relationship between the amount of annotated cells (including
links over time and divisions), we retrained our models using
varying amounts of the available ground truth on the Droso
and Mouse datasets (see Supplementary Table 1 for the total
amount of annotations per sample, and Supplementary Table 2
and Supplementary Table 3 for the amount used for training and
validation for Droso and Mouse, respectively).

http://celltrackingchallenge.net
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Supplementary Figure 7a shows the progression of the number
of errors for 1%, 5%, 10%, 20%, 40%, 60%, 80%, and 100% of
the ground truth used on the Droso dataset (split Droso side 2).
Reported numbers are averages over three independent training and
evaluation runs to account for variations due to random subsampling
of the training data and initialization of the network. On this dataset,
we observe that training on more than 40% of the available training
data (corresponding to ≈ 12000 annotated cells and ≈ 50 divisions)
does not lead to noticeable improvements.

We observe a similar effect on the Mouse dataset (split Mouse
late 2), shown in Supplementary Figure 7b. On this dataset, we see
a similar saturation after 40% (corresponding to ≈ 11000 annotated
cells and ≈ 40 divisions).

Those results suggest that incremental generation of training
data might be a viable strategy to minimize the amount of total
annotations needed.

Supplementary Discussion
Using deep learning allows the method to adapt to different imaging
conditions and organisms, and boosts performance compared to a
heuristic approach as shown by the comparative performance of
TGMM and the greedy baseline. However, deep learning in general
requires annotated training data, which can be time consuming and
costly to acquire. Our method minimizes the annotation burden
by leveraging sparse point annotations in segments as short as
two frames. Furthermore, the amount of training data required
is reduced because the models do not need to achieve perfect
performance: the global optimization can filter out superfluous
detections and ignore individual inaccuracies in favor of global
evidence and biological priors. Based on our results, between 10
and 30 thousand sparse point annotations created with MaMuT
or Masodon would be sufficient to train a model to track cells
in new organisms or imaging conditions. Assuming each point
annotation can be generated in 3 seconds, sufficient training data
can be produced in 8 to 24 hours of manual annotation.

The unavoidable uncertainty in the placed annotations with
respect to the exact correct location is one reason for the use
of Gaussians. Another is to facilitate smooth transitions in the
gradient-based learning process. Yet, particularly as we are not
interested in segmentation, the Gaussians do not have to match
the shape of the corresponding cell precisely. They have to be
sufficiently small to always allow for a distinction of neighbouring
cells and large enough to provide a stable training signal. The
method is quite robust with respect to the variability in shape and
size of the cells. This can be attested by, for instance, its ability to
correctly handle the elongated cells in the Droso dataset. However,
there are limits. In case of severely varying sizes, as during the
development of C. elegans embryos, the width of the Gaussians
has to be adjusted.

While the optimization step filters out some false positive can-
didate detections in the backround, even better performance could
be achieved by including negative examples in training. While we
cannot quantitatively measure false positives when evaluating with
sparse annotations, qualitative analysis of the results showed that
the cell indicator network does predict false positives, especially
in regions with high intensity but no discernible nuclei. When
these false positive candidates persist through multiple frames,
they can be linked to create false positive tracks. Incorporating our
cell indicator model into the ELEPHANT interactive training and
annotation framework (Sugawara et al., 2021) is a possible solution,

since annotators could easily generate negative training examples
in regions where the network most needs guidance. Using targeted
negative examples, we expect the cell indicator network could learn
to suppress cell prediction in these high intensity regions with
limited fine-tuning.

Conversely, false negative detections are detrimental to our
method. Although we have not observed this to be a problem on the
datasets investigated in this study, false positives have the potential
to disrupt the lineage tracking. The discrete optimization performed
via the ILP can only remove candidate nodes and edges, but does
currently not add missing ones. This might pose a problem for
datasets where cells or their nuclei are sporadically invisible.

When applying our method to a new dataset, one bottleneck of
the method is the need to grid search the hyperparameters of the
ILP. Even with blockwise processing, solving the ILP on the whole
validation set takes tens of minutes per run, so we limited the grid
search to four values per hyperparameter, resulting in 256 runs.
We were guided by experience in choosing the range of values to
search, but there is no guarantee that our solution was optimal, or
that the same range would apply to different datasets. In the future,
we will examine alternatives to grid searching a manually selected
range of values, such as using a structured support vector machine
to find the best set of ILP parameters on a given dataset.

Finally, identifying divisions is an important question for
developmental analysis, but divisions are underrepresented com-
pared to non-dividing cells, and have distinct movement and
appearance. To address the difficulties that divisions present,
we tried sampling divisions more frequently during training and
adding a shift augmentation to mimic the movement of dividing
cells, as discussed in Supplementary Note 3. However, even with
these tactics, our method does not consistently identify divisions.
One possible explanation is that the failure to identify divisions
occurs in the optimization step, while our interventions focus on
improving network predictions. During validation, we choose the
ILP hyperparameters that minimize the sum of all error types.
The underrepresentation of divisions in the validation set means
that false negative divisions do not contribute heavily to the sum
compared to false negative edges or even false positive divisions.
Minimizing sum of errors thus can lead to models that select very
few divisions, as long as the other error categories are minimized.
Focused efforts to improve division performance will be necessary
to attain reliable results.
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(Mouse: McDole et al. (2018), Droso: Amat et al. (2014), ZFish:
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of our method, together with the lineage tracks produced by
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linajea experiments.

Figure 1: Mouse: raw data, training data, recon-
structions

Figure 2: Mouse, Droso, ZFish: raw data,
ground-truth annotations, reconstruc-
tions

Sup. Figure 2: Mouse, Droso, ZFish: ground-truth
annotations, reconstructions

Sup. Figure 3: Mouse, Droso, ZFish: ground-truth
annotations, reconstructions

Sup. Figure 4: Mouse, Droso, ZFish: ground-truth
annotations, reconstructions

Sup. Figure 5: Mouse, Droso, ZFish: ground-truth
annotations, reconstructions

Sup. Figure 6: Mouse: ground-truth annotations, re-
constructions

Sup. Figure 7 Mouse, Droso: ground-truth annota-
tions, reconstructions
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(a) Mouse early 1
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(b) Mouse middle 1
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(c) Mouse late 1
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(d) Mouse early 2
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(e) Mouse middle 2
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(f) Mouse late 2
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(g) Droso side 1
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(h) Droso side 2
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(i) ZFish side 1
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(j) ZFish side 2

Supplementary Figure 2: Errors per edge for our method, the greedy baseline, and TGMM, on all datasets and evaluation regions.
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(a) Mouse early 1 (b) Mouse middle 1 (c) Mouse late 1

(d) Mouse early 2 (e) Mouse middle 2 (f) Mouse late 2

(g) Droso side 1 (h) Droso side 2

(i) ZFish side 1 (j) ZFish side 2

Supplementary Figure 3: Fraction of ground truth segments correctly reconstructed over t time frames, for a range of t, on all datasets
and evaluation regions.
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(a) Mouse
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(b) Droso
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(c) ZFish

Supplementary Figure 4: Fraction of ground truth segments correctly reconstructed over 𝑡 time frames, for a range of 𝑡. ours is identical to
Figure 2b, best effort shows the best solution attainable by the discrete solver, given the found cell candidates and edges between frames.

(a) cell indicator network (b) movement vector network

Supplementary Figure 5: Performance of the cell indicator and movement vector networks. (a) Recall of cell indicator networks, as
measured by the number of ground truth annotations in the evaluation set that have a cell indicator maxima within the matching threshold.
(b) The distance between the predicted parent locations and actual parent locations for each ground truth cell with a matched candidate
within the matching threshold, represented as a violin plot with hashes at the min, max and median values. Baseline of no movement is
shown in blue, and our predicted movement vectors are shown in orange.
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(a) Effect of Retraining
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(b) Architecture and Training Variations

Supplementary Figure 6: Supplementary experiments to determine the effect of randomness in training and architecture and training
variations. (a) Sum of errors per ground truth edge, for five copies of the same model trained, validated, and tested on Mouse late 2.
Variation in the error counts stems from random network initialization and random training sample selection and augmentation. (b) Sum
of errors per ground truth edge for eight different models trained, validated, and tested on Mouse late 2, comparing constant (CU) and
transpose upsampling (TU), shift augmentation (+S), and division sampling (+D).
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(a) Droso side 2
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(b) Mouse late 2

Supplementary Figure 7: Reconstruction errors for different amounts of training data on Droso and Mouse


