
Brief Communication
https://doi.org/10.1038/s41587-022-01427-7

1HHMI Janelia, Ashburn, VA, USA. 2Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. 3Faculty of Mathematics
and Natural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany. 4CNRS, UTLN, LIS 7020, Turing Centre for Living Systems, Aix Marseille University,
Marseille, France. 5MRC Laboratory of Molecular Biology, Cambridge, UK. 6Biozentrum, University of Basel, Basel, Switzerland.
✉e-mail: funkej@janelia.hhmi.org

We present a method to automatically identify and track
nuclei in time-lapse microscopy recordings of entire develop-
ing embryos. The method combines deep learning and global
optimization. On a mouse dataset, it reconstructs 75.8%
of cell lineages spanning 1 h, as compared to 31.8% for the
competing method. Our approach improves understanding
of where and when cell fate decisions are made in developing
embryos, tissues, and organs.

With recent advances in light-sheet imaging techniques, it is
possible to acquire whole embryo developmental datasets over long
time scales with high spatial and temporal resolution in complex
organisms such as mouse, Drosophila, and zebrafish1. The result-
ing datasets contain information required to track the movement
and division of nuclei over time, yielding lineage trees and quantita-
tive data on cellular dynamics that are crucial to the study of devel-
opmental biology at the cellular level2. However, manually tracing
lineages with dedicated tools like MaMuT3 or Mastodon (https://
github.com/mastodon-sc/mastodon) is arduous, and for complex,
developing organisms it is only feasible to annotate a small percent-
age of all tracks, making automatic cell tracking necessary for holis-
tic analysis.

Cell-tracking algorithms have been developed for and tested on
diverse datasets with different characteristics. While hand-engineered
features are sufficient for cell detection and tracking in some model
organisms4,5, learned dataset-specific features, given sufficient
training data, improve performance for datasets with heterogeneous
cell or nucleus phenotypes and varying imaging statistics over time
and space. In particular, deep learning has been shown to improve
cell detection6,7, segmentation8–11, and tracking7,11–14 on a variety of
datasets. Additionally, it has been shown that tracking methods that
take into account global spatiotemporal context perform better,
especially for datasets with more movement between time frames13.
Tracking by graph optimization over a large spatiotemporal context
allows inclusion of biological knowledge about track length and
cell cycle, improving track continuity6,15,16 and even allows recovery
from noisy detection and segmentation17.

Only a few of the aforementioned cell-tracking methods are
readily applicable to the unique challenges posed by contemporary
four-dimensional (3D+t) light-sheet datasets, the focus of this work.
Practical methods for this kind of data should take into account
temporal and 3D spatial context, easily scale to multi-terabyte
datasets, and ideally should not require a manual segmentation of
cells for training, owing to the time required to generate per-pixel

ground truth. Of methods that fulfill these requirements, tracking
with Gaussian mixture models (TGMM)5 has been shown to work
well on model organisms with approximately ellipsoid nuclei. More
recently, the ELEPHANT tracking platform employed deep learn-
ing for cell detection and per-frame linking in light-sheet datasets
with diverse cell appearance and movement12. ELEPHANT requires
a manual pseudo-segmentation of nuclei by ellipsoid fitting, which
takes less time to generate than a per-pixel manual segmentation,
but more than point annotations.

Our method combines global optimization and learned fea-
tures, generating cell lineages through global graph optimization
with learned costs. We show that this combination substantially
decreases tracking error on three diverse datasets of different model
organisms with different temporal resolution, signal-to-noise ratio,
and nuclear appearance. Features are learned from sparse point
annotations produced by current manual lineage tracking tools like
MaMuT and Mastodon, and thus do not require a manual segmen-
tation or dense lineage annotations, which allows rapid generation
of training data. Crucially, the steps of our method—including the
global optimization—can be computed in a distributed fashion,
which is necessary to process multi-terabyte light-sheet datasets and
enable the study of whole embryo morphogenesis.

An overview of our method is shown in Fig. 1. Because we are
learning features from the data, the method is not tied to a specific
input type or format: we use fused and unfused light-sheet record-
ings with a single fluorescent nuclear channel, and could easily
extend to multi-channel input. We use sparse point annotations to
train a convolutional neural network to predict at each pixel a ‘cell
indicator’ value that peaks at the center of each nucleus6,18. In con-
trast to ref. 6 we additionally predict a ‘movement vector’ that points
to the center of the same cell nucleus in the previous time frame7,12.
From these predictions, we generate a candidate graph in two steps:
first, we place nodes at the local maxima of the cell indicator values
to represent possible cell center locations, with a score to encode the
confidence of the network; and second, we locally connect nodes
in adjacent frames with edges to represent the possibility that the
nodes represent the same cell, and assign a score to each edge on the
basis of agreement with the predicted movement vector.

Next, we solve a globally constrained optimization problem on
the candidate graph to select a subset of nodes and edges that form
coherent lineage trees. We know that between time frames, cells
can move, divide into two, enter or leave the field of view, or die,
but not merge or split into more than two. Thus, we introduce tree

Automated reconstruction of whole-embryo cell
lineages by learning from sparse annotations
Caroline Malin-Mayor1, Peter Hirsch   2,3, Leo Guignard   1,4, Katie McDole1,5, Yinan Wan1,6,
William C. Lemon   1, Dagmar Kainmueller2,3, Philipp J. Keller   1, Stephan Preibisch   1
and Jan Funke   1 ✉

Nature Biotechnology | www.nature.com/naturebiotechnology

mailto:funkej@janelia.hhmi.org
https://github.com/mastodon-sc/mastodon
https://github.com/mastodon-sc/mastodon
http://orcid.org/0000-0002-2353-5310
http://orcid.org/0000-0002-3686-1385
http://orcid.org/0000-0003-4541-738X
http://orcid.org/0000-0003-2896-4920
http://orcid.org/0000-0002-0276-494X
http://orcid.org/0000-0003-4388-7783
http://www.nature.com/naturebiotechnology

Brief Communication NaTure BiOTechnOlOgy

constraints to prevent merging and divisions producing more than
two progeny. The objective function incorporates prior knowledge
that cell movement is much more common than division or death.
We further encourage long and continuous lineages by penalizing
the start of new tracks. These tree constraints and continuity costs
are similar to those in previous work6,15,17; however, we also incor-
porate the node and edge scores generated by the neural networks
into the objective function as learned costs. Thus, we optimize
for valid lineages that are both continuous and supported by the
learned cell location and movement features. While ref. 6 employ
a minimum-cost flow solver on the whole dataset, our integer lin-
ear program (ILP) formulation of the optimization problem addi-
tionally allows block-wise solving in parallel on large datasets by
introducing additional constraints to ensure consistent solutions
between adjacent blocks.

We evaluate our method on three sparsely annotated datasets
from different commonly used model organisms to study embryo-
genesis: mouse 19, Drosophila5, and zebrafish 20 (see Supplementary
Note 1 for details about the datasets and annotations). We com-
pare the performance of our method against TGMM, the previous
state-of-the-art method on these datasets5,19, and greedy track-
ing using a per-frame nearest neighbor linking algorithm simi-
lar to the ELEPHANT tracking method12. We compute multiple
metrics, including the fraction of perfectly constructed lineages
over a range of time periods, and errors per ground truth edge,
broken into the following error types: false negative edges (FN),
identity switches (IS; when two tracks switch off following the
same cell), false positive divisions (FP-D), and false negative divi-
sions (FN-D) (Supplementary Figure 1). False positive edges can-

not be computed using sparse ground truth, because we cannot
tell if unmatched reconstructions are false positives or tracking
unannotated cells, and thus they are not included in our quan-
titative analysis. We show in Fig. 2 that, with around 20 hours
of ground-truth annotation effort, our method correctly recon-
structs more cell lineages than both baselines over all time ranges
for all datasets. The largest improvement over TGMM is on the
mouse dataset: our method correctly tracks 75.8% of mouse cells
over a time span of 1 h (12 time frames), compared with 31.8%
for TGMM. By 175 min (35 frames), our method still correctly
tracks more than half of all cells, while TGMM tracks less than
8%. On all three datasets, our method greatly reduces false nega-
tive edges as compared to TGMM, while when compared with
the greedy baseline, our method produces far fewer false positive
divisions. Supplementary Note 2 contains a detailed description
of the evaluation metrics and baselines, and further observations
about the performance on various metrics across organisms and
evaluation regions.

Both the candidate graph generation and lineage optimization
steps of our method are fully parallelizable and scale linearly with
the size of the recording, which enables dense lineage reconstruc-
tion on very large datasets in reasonable time. On 20 GPUs and 100
CPU cores, reconstruction of dense lineages took about 44 h on the
4.7 TB mouse dataset, generating more than 7 million cell detec-
tions and 360,000 tracks over the 44-h recording. Given the esti-
mates that there are 6 million true cell detections in the dataset and
that an annotator can click on a cell center every 1.5–3 s, it would
take 2,500–5,000 annotator-hours to manually trace all lineages in
this dataset. The source code of our method is publicly available,

3D + t raw data

t

t

Cell indicators Movement vectors

Sparse point annotations

Candidate graph

x y z → x y z →

x y z →x y z →

ILP solution

Reconstructed lineagesa b

c

d e

f

Fig. 1 | Overview of the method, including data and results from the mouse dataset. a, Raw mouse data over 50 time points, visualized as a max
intensity projection. b, Sparse point annotations superimposed over the first frame of the raw data. Purple dots show the locations of annotated cells in
the first time point, and the tails show the movement over time. c, Top, examples of the cell indicators (shown as intensity values) and 3D movement
vectors (shown as RGB). The cell indicator is trained to have maxima at the center of each nucleus, and the movement vector network is trained to
predict the relative location of the same cell nucleus in the previous time point. Bottom, sketch of the predictions over time. Thick gray lines represent
ground truth lineages, dots are cell indicator maxima, and arrows are movement vectors. d, Candidate graph extracted from the network output.
Candidate cells are at cell indicator maxima, and nearby cells are connected with edges that are scored by agreement with the movement vector.
e, Consistent lineage trees extracted from the candidate graph by global optimization using learned features and biological priors. f, Densely
reconstructed lineages visualized over the mouse data.

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

Brief CommunicationNaTure BiOTechnOlOgy

together with training and inference scripts and extensive docu-
mentation (https://github.com/funkelab/linajea).

The ability to densely reconstruct cell lineages in such large,
information-rich datasets opens up vast opportunities for explor-
ing cell fate dynamics and tissue morphogenesis. Accurately fol-
lowing cells and their progeny over extended time periods allows
identification of individual cell behaviors that are not visible with
shorter and less accurate lineages. For example, being able to
accurately track more than half of all cells over a time window of
175 min in the mouse dataset, as compared to only 30 min with
previous methods, greatly reduces the manual curation needed to
test hypotheses such as the existence of neuromesodermal pro-
genitors that can produce neural or mesodermal progeny. While
further work is required to improve detection of cell division, the
dense cell lineages we publish with this method are a rich source
of information about the development and cell fate dynamics of
common model organisms.

Method
Network architecture, training, and prediction. To attain per-voxel
predictions for cell locations and movements, we use a U-Net
architecture with four resolution levels21. Our choice of the U-Net
architecture over alternatives like Mask-RCNN or YOLO is moti-
vated by two points: first, we found that the performance of the
U-Net for cell detection is sufficient for our use case (in particu-
lar, regarding high recall for subsequent filtering through the
ILP); and second, our proposed movement vectors require dense
predictions, which can be naturally generated with a U-Net archi-
tecture. We also chose the same architecture for the cell indicators
to unify, and thus simplify, our pipeline. To incorporate temporal
as well as spatial context, we concurrently feed seven 3D frames
centered on the target time point and use four-dimensional con-
volutions until, owing to valid convolutions, the time dimension
is reduced to 1. We downsample by factors (2, 2, 2) in xyz, except
for anisotropic datasets (mouse, Drosophila) where we do not
downsample in z in the first downsampling layer. We use 12 ini-
tial feature maps and increase by a factor of 3 at each level. When
upsampling, we restrict our upsampling convolutional kernels
to constant values, as we have observed this reduces artifacts in
the output.

The cell indicator network is trained on sparse point annota-
tions and predicts the centers of cell nuclei. The training signal
for this network, called the cell indicator value, is a Gaussian
with maximum value 1 at the cell center annotation and decreas-
ing according to a hyperparameter σ. With only sparse annota-
tions, it is unknown if pixels far from cell center annotations are
background or cells that were not annotated. To avoid training
on unknown regions, we construct a ‘training mask’ around each
annotation with a user-defined radius. This radius should be
small enough that the mask will not overlap with neighboring cell
nuclei. We only train on the mean squared error loss within the
training mask. We are not training our cell indicator network on
any background regions, so the behavior is unconstrained in the
background. After prediction, we use local non-maximum sup-
pression (NMS) to extract cell center candidates, with the goal of
detecting all cell centers along with potential false positives owing
to the unconstrained background behavior. The NMS window
size is dataset dependent and should be a bit smaller than the
minimal distance between two cell centers. To reduce the number

of false positives, especially in background regions, we only con-
sider detections above a threshold cell indicator value, deter-
mined empirically for each dataset and model. Additionally, if a
foreground mask is available (as in the zebrafish dataset) we filter
detections to those that lie in the foreground.

In addition to the cell indicator network, we train a movement
vector network to predict the movement of cells between frames.
For a pixel near to a cell in frame t, the movement vector is a 3D
offset vector that points to the relative location of the center of the
same cell in frame t − 1. Predicting the offset to the same cell in the
previous time frame, rather than the next time frame, allows divi-
sions to be represented naturally, since each daughter cell points
to the center of the parent cell. We calculate the loss on two dif-
ferent masked regions. Loss LA is the mean squared error between
the ground truth and predicted movement vectors, calculated over
the same training mask as the cell indicator network. Loss LB limits
the error to voxels with maximal cell indicator values after NMS
that also are within the training mask. The total loss is the weighted
sum L = αLA + (1 − α)LB, with α =

1
1+exp 0.01 (−i+20,000)), and i being

the number of training iterations. This weighting scheme weights
LA higher at the beginning of training, when the cell indicator net-
work is still converging, with a smooth transition to LB at 20,000
iterations.

These networks are trained simultaneously for 400,000 itera-
tions, with batch size 1. Batches are randomly sampled from
annotated locations, and random augmentations including elastic
deformation, mirroring, transposing axes, and intensity augmenta-
tion are applied using the GUNPOWDER library (https://github.
com/funkey/gunpowder). Prediction is then performed block-wise
using parallelization over multiple GPUs to process large datasets
efficiently. To eliminate edge artifacts, we ensure that our prediction
stride is a multiple of the network downsample factors22.

Candidate graph extraction. After prediction, we create a directed
candidate graph G = (V, E) with nodes that represent possible cell
center locations and edges that represent possible movements of the
same cell between frames. G is expected to contain extra nodes and
edges, which will be filtered out in the final step.

V is the set of NMS detections. Each v ∈ V has a three-dimensional
location lv, a time tv, a predicted cell indicator score sv, and a pre-
dicted movement vector mv. We avoid storing the predicted cell
indicators and movement vectors at every pixel by performing NMS
on the cell indicator values during prediction and only save the pre-
dicted values at the detection.

We construct the set of directed edges E by locally connecting
nodes in adjacent frames with edges that point one frame backwards
in time. For each candidate v at time tv, we compute the predicted
location l̂v of the same cell in the previous frame: l̂v = lv +mv.
Then, we add an edge from v to each node candidate u at time tv − 1
where the predicted distance d̂e =∥ l̂v − lu∥2 is less than a hyperpa-
rameter θ. d̂e is stored as a score on each edge.

Discrete optimization to find lineage trees. We construct a lineage
tree by selecting a subset of nodes and edges from G. We define a
vector y =

[

yV, yE
]⊺

∈ {0, 1}|V|+|E| such that each element of the
vector corresponds to a node or edge in G. Then G(y) is the sub-
graph induced by y that only contains nodes and edges with the
corresponding element of y equal to 1.

Fig. 2 | Comparison of tracking errors on three datasets. a–c, Comparison of tracking errors on mouse (a), Drosophila (b), and zebrafish (c) datasets.
a–c, Left, average errors per ground truth edge for each error type; middle top, fraction of error-free tracks for a given track length; middle bottom, top
right, and bottom right, example ground truth track (green) with superimposed tracking result (orange or red) for our method (top right), the greedy
baseline (middle bottom), and TGMM (bottom right), respectively. Other than the dashed false positive divisions, we only show detections that matched
the selected ground truth track.

Nature Biotechnology | www.nature.com/naturebiotechnology

https://github.com/funkelab/linajea
https://github.com/funkey/gunpowder
https://github.com/funkey/gunpowder
http://www.nature.com/naturebiotechnology

Brief Communication NaTure BiOTechnOlOgy

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Ours

Greedy

TGMM

a

b

c

0.033

0.039

0.087

0.009

0.009

0.039

0

0.086

0.037

0.007

0.003

0.006

0.049

0.136

0.169

Errors per ground-truth edge

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Errors per ground-truth edge

FN IS FP-D FN-D Sum

FN IS FP-D FN-D Sum

FN IS FP-D FN-D Sum

400
420

440
3,050

3,100

350

400

x
y

z

400
420

440
3,050

3,100

350

400

x

y

z

400
420

440
3,050

3,100
350

400

x
y

z

Ours:

Greedy: TGMM:

Time frames

T
ra

ck
 a

cc
ur

ac
y

Mouse

Ours

Greedy

TGMM

0.028

0.025

0.123

0.016

0.017

0.015

0.002

0.048

0.005

0.003

0.001

0.003

0.05

0.092

0.147

200 220 240 260 280 100

120

140
260

280

300

x
y

z

200 220 240 260 280 100

120

140
260

280

300

x
y

z

200 220 240 260 280 100

120260

280

300

x
y

z

Ours:

Greedy: TGMM:

Time frames

T
ra

ck
 a

cc
ur

ac
y

Drosophila

0 0.05 0.1 0.15 0.2

Ours

Greedy

TGMM

0.059

0.061

0.19

0.013

0.013

0.006

0.004

0.106

0.007

0.002

0.001

0.002

0.078

0.181

0.205

Errors per ground-truth edge

0 20 40 60 80
1,400

1,450

1,500300

350

x
y

z

0 20 40 60 80
1,400

1,450

1,500
300

350

x

y

z

0 20 40 60 80
1,400

1,450

1,500300

350

x

y

z

Ours:

Greedy: TGMM:

Time frames

T
ra

ck
 a

cc
ur

ac
y

Zebrafish

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

0 50 100 150

0 50 100 150

0 10 20 30 40 50

Ours
Greedy
TGMM

Ours
Greedy
TGMM

Ours
Greedy
TGMM

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

Brief CommunicationNaTure BiOTechnOlOgy

We then construct a constrained optimization problem that min-
imizes the objective

min
y

C(y) s.t. G(y) ∈ T 2,

where T 2 is the set of binary forests and C : y → R assigns a cost for
each set of selected nodes and edges. Thus, the goal is to select the
cost-minimal subset of nodes and edges from G that form a binary
forest.

To simplify the presentation of the cost function, we introduce
two auxiliary indicator vectors of length ∣V∣ that can be entirely
derived from y. The indicator for tracks appearing, yT, is 1 for nodes
at the beginning of a track and 0 otherwise. yD represents a division
and is 1 for the parent node of a division. For a formalization of the
definition of these auxiliary vectors from y, see below.

With these auxiliary indicator variables, we define a linear cost
function as follows:

C(y) = ⟨c, y⟩+ ⟨cT, yT⟩+ ⟨cD, yD⟩, (1)

where c =
[

cV, cE
]⊺ is a vector containing the cost for selecting each

node and edge, cT is a vector containing the cost cT of having to
start a new track and cD is a vector containing the cost cD of having
a division occurring. The costs cT and cD are constant parameters of
the method, but the predicted cell indicator values and movement
vectors are used to individualize the cost vector c for selecting each
node and edge.

With si as the cell indicator score for node i, we define the node
selection cost for node i as cVi = τV + wVsi, where τV and wV are
parameters of the method. To encourage selection of higher cell
indicator scores during minimization, wV should be negative.

Similarly, with d̂i as the distance between the predicted and
actual offsets at edge i, we define the edge selection cost for edge
i as cEi = wEd̂i. Unlike with node scores, wE should be positive to
encourage selection of edges with lower scores, since those edges
align better with the predicted cell movement.

To determine the optimal values of the ILP parameters cT,
cD, τV, wV, and wE, we performed a grid search where we fixed
cD = 1 to eliminate redundant solutions. We selected the param-
eter set that minimized the sum of errors over the validation set
(Supplementary Note 2).

Integer linear program formulation. We use an ILP to solve the con-
strained optimization problem with the Gurobi solver (https://
www.gurobi.com/). The objective is the cost function C(y) (Eq. 1).
To ensure a binary forest with correctly set auxiliary variables, we
implement three kinds of constraints: consistency, continuation,
and split constraints.

The first consistency constraint requires that if an edge is
selected, the incident nodes are selected as well. This constraint for
edge e = (v,u) is represented by the equation 2ye − yv − yu ≤ 0. The
second consistency constraint ensures that the number of selected
incoming edges is ≤2, that is, for each node v:

∑

n∈Nv
yn − 2yv ≤ 0

with Nv being the set of edges from nodes in tv + 1 to v. The continu-
ation constraint ensures that if a node is selected either it is marked
as the beginning of a track or the track continues. Let Pv be the set of
edges from node v in time tv to nodes in tv − 1. We define the track
continuation constraint as

∑

p∈Pvyp + yTv − yv = 0, ensuring that if
node v is selected, either there is exactly one selected edge to time
tv − 1 or the track (appear) indicator yTv is set to 1 (and thus the asso-
ciated cost has to be paid). Finally, the two split constraints ensure
that the division indicator yDv is set for every cell that divides, that is,
for each node v:

∑

n∈Nv
yn − yDv ≤ 1 and

∑

n∈Nv
yn − 2yDv ≥ 0.

Processing large volumes block-wise. Ideally, we would solve the ILP
for the whole candidate graph at once to obtain a globally optimal

solution. However, for large volumes, this is too time and memory
intensive. Therefore, to obtain lineage trees for arbitrarily large vol-
umes, we divide the candidate graph into a set of blocks B that tile
the whole volume and use multiple processes to solve the ILP for
many blocks in parallel.

Solving each block b ∈ B completely independently can result in
discontinuities in tracks between blocks, and the constraints would
no longer be fulfilled at the boundaries. To ensure a consistent, valid
solution across the whole volume, we allow each process to view a
context region around the target region b that must be at least as
large as the amount a cell can move in space between two frames
and contain at least one time frame in each direction. Let b̂ be the
union of b and the surrounding context area. A process reads all
nodes and edges in b̂, solves the ILP, and writes the result for only
the target region b into a central database. If the database already
contains results in the context region, these selections will be intro-
duced as further constraints into the ILP, ensuring the solution will
be consistent across boundaries. At the block boundaries, we set the
new track cost cT to zero, because we do not want to penalize solu-
tions that cross block boundaries.

The introduction of a context region introduces dependencies
between neighboring blocks, and thus they cannot be run trivially
in parallel. By ensuring that overlapping blocks are never run simul-
taneously using the DAISY library (https://github.com/funkelab/
daisy), we obtain a globally consistent solution while retaining a
high degree of parallel processing. While there is no guarantee of
global optimality, with a large enough context region, we assume
that nodes and edges further away do not affect the local solution
in a target region.

The number of frames in a block influences the choice of opti-
mal ILP hyperparameters. Therefore the size used in the grid search
has to be the same, or at least of the same magnitude, as during
inference.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41587-022-01427-7.

Received: 20 December 2021; Accepted: 12 July 2022;
Published: xx xx xxxx

References
	1.	 Wan, Y., McDole, K. & Keller, P. J. Light-sheet microscopy and its potential

for understanding developmental processes. Ann. Rev. Cell Dev. Biol. 35,
655–681 (2019). Publisher: Annual Reviews.

	2.	 Spanjaard, B. & Junker, J. P. Methods for lineage tracing on the
organism-wide level. Curr. Opin. Cell Biol. 49, 16–21 (2017).

	3.	 Wolff, C. et al. Multi-view light-sheet imaging and tracking with the MaMuT
software reveals the cell lineage of a direct developing arthropod limb. eLife 7,
e34410 (2018).

	4.	 Bao, Z. et al. Automated cell lineage tracing in Caenorhabditis elegans. Proc.
Natl Acad. Sci. USA 103, 2707–2712 (2006).

	5.	 Amat, F. et al. Fast, accurate reconstruction of cell lineages from large-scale
fluorescence microscopy data. Nat. Methods 11, 951–958 (2014).

	6.	 Kok, R. N. U. et al. OrganoidTracker: efficient cell tracking using machine
learning and manual error correction. PLoS ONE 15, e0240802 (2020).

	7.	 Hayashida, J., Nishimura, K. & Bise, R. MPM: joint representation of motion
and position map for cell tracking. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) 3822–3831 (IEEE, 2020).

	8.	 Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Star-convex
polyhedra for 3D object detection and segmentation in microscopy. In 2020
IEEE Winter Conference on Applications of Computer Vision (WACV)
3655–3662 (IEEE, 2020).

	9.	 Cao, J. et al. Establishment of a morphological atlas of the Caenorhabditis
elegans embryo using deep-learning-based 4D segmentation. Nat. Commun.
11, 6254 (2020).

Nature Biotechnology | www.nature.com/naturebiotechnology

https://www.gurobi.com/
https://www.gurobi.com/
https://github.com/funkelab/daisy
https://github.com/funkelab/daisy
https://doi.org/10.1038/s41587-022-01427-7
https://doi.org/10.1038/s41587-022-01427-7
http://www.nature.com/naturebiotechnology

Brief Communication NaTure BiOTechnOlOgy

	10.	Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist
algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

	11.	Medeiros, G. d. et al. Multiscale light-sheet organoid imaging framework.
Preprint at bioRxiv https://doi.org/10.1101/2021.05.12.443427 (2021).

	12.	Sugawara, K., Cevrim, C. & Averof, M. Tracking cell lineages in 3D by
incremental deep learning. eLife 11, e69380 (2022).

	13.	Ulman, V. et al. An objective comparison of cell-tracking algorithms.
Nat. Methods 14, 1141–1152 (2017).

	14.	Moen, E. et al. Accurate cell tracking and lineage construction in live-cell
imaging experiments with deep learning. Preprint at bioRxiv https://doi.
org/10.1101/803205 (2019).

	15.	Jug, F., Levinkov, E., Blasse, C., Myers, E. W. & Andres, B. Moral Lineage
Tracing. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition 5926–5935 (IEEE, 2016).

	16.	Haubold, C., Aleš, J., Wolf, S. & Hamprecht, F. A. A generalized successive
shortest paths solver for tracking dividing targets. In Computer Vision—
ECCV 2016 (Eds Leibe, B., Matas, J., Sebe, N. & Welling, M.) 566–582
(Springer International Publishing, 2016).

	17.	Schiegg, M., Hanslovsky, P., Kausler, B. X., Hufnagel, L. & Hamprecht, F. A.
Conservation Tracking. In 2013 IEEE International Conference on Computer
Vision 2928–2935 (IEEE, 2013).

	18.	 Höfener, H. et al. Deep learning nuclei detection: a simple approach can deliver
state-of-the-art results. Comput. Med. Imaging Graph. 70, 43–52 (2018).

	19.	McDole, K. et al. In toto imaging and reconstruction of post-implantation
mouse development at the single-cell level. Cell 175, 859–876.e33 (2018).

	20.	Wan, Y. et al. Single-cell reconstruction of emerging population activity in an
entire developing circuit. Cell 179, 355–372.e23 (2019).

	21.	Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional
networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention 234–241
(Springer, 2015).

	22.	Rumberger, J. L. et al. How shift equivariance impacts metric learning for
instance segmentation. In Proc. of the IEEE/CVF International Conference on
Computer Vision (ICCV, 2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2022

Nature Biotechnology | www.nature.com/naturebiotechnology

https://doi.org/10.1101/2021.05.12.443427
https://doi.org/10.1101/803205
https://doi.org/10.1101/803205
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturebiotechnology

Brief CommunicationNaTure BiOTechnOlOgy

Reporting summary. Further information on research design is avail-
able in the Nature Research Reporting Summary linked to this article.

Acknowledgements
We thank W. Patton and T. Nguyen for supporting the GUNPOWDER and DAISY
libraries, S. Wolf for his guidance and feedback, and N. Eckstein, J. Buhmann, and A.
Sheridan for helpful discussions. This work was supported by the Howard Hughes
Medical Institute. K.M. was supported by the Medical Research Council, as part of
United Kingdom Research and Innovation (MCUP1201/23). P.H. was supported by
HFSP grant RGP0021/2018-102, the MDC Berlin-New York University exchange
program. P.H. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.

Author contributions
Conceptualization: J.F., P.J.K. Funding acquisition: J.F., P.J.K., S.P., K.M., P.H., D.K.
Software: C.M.-M., P.H., J.F., L.G. Validation and evaluation: C.M.-M., P.H. Data and

annotation generation: K.M., Y.W., W.C.L. Supervision: J.F., S.P., P.J.K., D.K. Writing,
original draft: C.M.-M., J.F. Writing, review, and editing: C.M.-M., J.F., P.J.K., K.M., S.P.,
P.H., L.G., D.K.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41587-022-01427-7.

Correspondence and requests for materials should be addressed to Jan Funke.

Peer review information Nature Biotechnology thanks Péter Horváth, Talmo Pereira and
the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Biotechnology | www.nature.com/naturebiotechnology

https://doi.org/10.1038/s41587-022-01427-7
http://www.nature.com/reprints
http://www.nature.com/naturebiotechnology

	Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations

	Method

	Network architecture, training, and prediction.
	Candidate graph extraction.
	Discrete optimization to find lineage trees.
	Integer linear program formulation
	Processing large volumes block-wise

	Online content

	Fig. 1 Overview of the method, including data and results from the mouse dataset.
	Fig. 2 Comparison of tracking errors on three datasets.

