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We present a method to automatically identify and track 
nuclei in time-lapse microscopy recordings of entire develop-
ing embryos. The method combines deep learning and global 
optimization. On a mouse dataset, it reconstructs 75.8% 
of cell lineages spanning 1 h, as compared to 31.8% for the 
competing method. Our approach improves understanding 
of where and when cell fate decisions are made in developing 
embryos, tissues, and organs.

With recent advances in light-sheet imaging techniques, it is 
possible to acquire whole embryo developmental datasets over long 
time scales with high spatial and temporal resolution in complex 
organisms such as mouse, Drosophila, and zebrafish1. The result-
ing datasets contain information required to track the movement 
and division of nuclei over time, yielding lineage trees and quantita-
tive data on cellular dynamics that are crucial to the study of devel-
opmental biology at the cellular level2. However, manually tracing 
lineages with dedicated tools like MaMuT3 or Mastodon (https://
github.com/mastodon-sc/mastodon) is arduous, and for complex, 
developing organisms it is only feasible to annotate a small percent-
age of all tracks, making automatic cell tracking necessary for holis-
tic analysis.

Cell-tracking algorithms have been developed for and tested on  
diverse datasets with different characteristics. While hand-engineered  
features are sufficient for cell detection and tracking in some model 
organisms4,5, learned dataset-specific features, given sufficient 
training data, improve performance for datasets with heterogeneous 
cell or nucleus phenotypes and varying imaging statistics over time 
and space. In particular, deep learning has been shown to improve 
cell detection6,7, segmentation8–11, and tracking7,11–14 on a variety of 
datasets. Additionally, it has been shown that tracking methods that 
take into account global spatiotemporal context perform better, 
especially for datasets with more movement between time frames13. 
Tracking by graph optimization over a large spatiotemporal context 
allows inclusion of biological knowledge about track length and 
cell cycle, improving track continuity6,15,16 and even allows recovery 
from noisy detection and segmentation17.

Only a few of the aforementioned cell-tracking methods are 
readily applicable to the unique challenges posed by contemporary 
four-dimensional (3D+t) light-sheet datasets, the focus of this work. 
Practical methods for this kind of data should take into account 
temporal and 3D spatial context, easily scale to multi-terabyte 
datasets, and ideally should not require a manual segmentation of 
cells for training, owing to the time required to generate per-pixel 

ground truth. Of methods that fulfill these requirements, tracking 
with Gaussian mixture models (TGMM)5 has been shown to work 
well on model organisms with approximately ellipsoid nuclei. More 
recently, the ELEPHANT tracking platform employed deep learn-
ing for cell detection and per-frame linking in light-sheet datasets 
with diverse cell appearance and movement12. ELEPHANT requires 
a manual pseudo-segmentation of nuclei by ellipsoid fitting, which 
takes less time to generate than a per-pixel manual segmentation, 
but more than point annotations.

Our method combines global optimization and learned fea-
tures, generating cell lineages through global graph optimization 
with learned costs. We show that this combination substantially 
decreases tracking error on three diverse datasets of different model 
organisms with different temporal resolution, signal-to-noise ratio, 
and nuclear appearance. Features are learned from sparse point 
annotations produced by current manual lineage tracking tools like 
MaMuT and Mastodon, and thus do not require a manual segmen-
tation or dense lineage annotations, which allows rapid generation 
of training data. Crucially, the steps of our method—including the 
global optimization—can be computed in a distributed fashion, 
which is necessary to process multi-terabyte light-sheet datasets and 
enable the study of whole embryo morphogenesis.

An overview of our method is shown in Fig. 1. Because we are 
learning features from the data, the method is not tied to a specific 
input type or format: we use fused and unfused light-sheet record-
ings with a single fluorescent nuclear channel, and could easily 
extend to multi-channel input. We use sparse point annotations to 
train a convolutional neural network to predict at each pixel a ‘cell 
indicator’ value that peaks at the center of each nucleus6,18. In con-
trast to ref. 6 we additionally predict a ‘movement vector’ that points 
to the center of the same cell nucleus in the previous time frame7,12. 
From these predictions, we generate a candidate graph in two steps: 
first, we place nodes at the local maxima of the cell indicator values 
to represent possible cell center locations, with a score to encode the 
confidence of the network; and second, we locally connect nodes 
in adjacent frames with edges to represent the possibility that the 
nodes represent the same cell, and assign a score to each edge on the 
basis of agreement with the predicted movement vector.

Next, we solve a globally constrained optimization problem on 
the candidate graph to select a subset of nodes and edges that form 
coherent lineage trees. We know that between time frames, cells 
can move, divide into two, enter or leave the field of view, or die, 
but not merge or split into more than two. Thus, we introduce tree 
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constraints to prevent merging and divisions producing more than 
two progeny. The objective function incorporates prior knowledge 
that cell movement is much more common than division or death. 
We further encourage long and continuous lineages by penalizing 
the start of new tracks. These tree constraints and continuity costs 
are similar to those in previous work6,15,17; however, we also incor-
porate the node and edge scores generated by the neural networks 
into the objective function as learned costs. Thus, we optimize 
for valid lineages that are both continuous and supported by the 
learned cell location and movement features. While ref. 6 employ 
a minimum-cost flow solver on the whole dataset, our integer lin-
ear program (ILP) formulation of the optimization problem addi-
tionally allows block-wise solving in parallel on large datasets by 
introducing additional constraints to ensure consistent solutions 
between adjacent blocks.

We evaluate our method on three sparsely annotated datasets 
from different commonly used model organisms to study embryo-
genesis: mouse 19, Drosophila5, and zebrafish 20 (see Supplementary 
Note 1 for details about the datasets and annotations). We com-
pare the performance of our method against TGMM, the previous 
state-of-the-art method on these datasets5,19, and greedy track-
ing using a per-frame nearest neighbor linking algorithm simi-
lar to the ELEPHANT tracking method12. We compute multiple 
metrics, including the fraction of perfectly constructed lineages 
over a range of time periods, and errors per ground truth edge, 
broken into the following error types: false negative edges (FN), 
identity switches (IS; when two tracks switch off following the 
same cell), false positive divisions (FP-D), and false negative divi-
sions (FN-D) (Supplementary Figure 1). False positive edges can-

not be computed using sparse ground truth, because we cannot 
tell if unmatched reconstructions are false positives or tracking 
unannotated cells, and thus they are not included in our quan-
titative analysis. We show in Fig. 2 that, with around 20 hours 
of ground-truth annotation effort, our method correctly recon-
structs more cell lineages than both baselines over all time ranges 
for all datasets. The largest improvement over TGMM is on the 
mouse dataset: our method correctly tracks 75.8% of mouse cells 
over a time span of 1 h (12 time frames), compared with 31.8% 
for TGMM. By 175 min (35 frames), our method still correctly 
tracks more than half of all cells, while TGMM tracks less than 
8%. On all three datasets, our method greatly reduces false nega-
tive edges as compared to TGMM, while when compared with 
the greedy baseline, our method produces far fewer false positive 
divisions. Supplementary Note 2 contains a detailed description 
of the evaluation metrics and baselines, and further observations 
about the performance on various metrics across organisms and 
evaluation regions.

Both the candidate graph generation and lineage optimization 
steps of our method are fully parallelizable and scale linearly with 
the size of the recording, which enables dense lineage reconstruc-
tion on very large datasets in reasonable time. On 20 GPUs and 100 
CPU cores, reconstruction of dense lineages took about 44 h on the 
4.7 TB mouse dataset, generating more than 7 million cell detec-
tions and 360,000 tracks over the 44-h recording. Given the esti-
mates that there are 6 million true cell detections in the dataset and 
that an annotator can click on a cell center every 1.5–3 s, it would 
take 2,500–5,000 annotator-hours to manually trace all lineages in 
this dataset. The source code of our method is publicly available, 
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Fig. 1 | Overview of the method, including data and results from the mouse dataset. a, Raw mouse data over 50 time points, visualized as a max 
intensity projection. b, Sparse point annotations superimposed over the first frame of the raw data. Purple dots show the locations of annotated cells in 
the first time point, and the tails show the movement over time. c, Top, examples of the cell indicators (shown as intensity values) and 3D movement 
vectors (shown as RGB). The cell indicator is trained to have maxima at the center of each nucleus, and the movement vector network is trained to 
predict the relative location of the same cell nucleus in the previous time point. Bottom, sketch of the predictions over time. Thick gray lines represent 
ground truth lineages, dots are cell indicator maxima, and arrows are movement vectors. d, Candidate graph extracted from the network output. 
Candidate cells are at cell indicator maxima, and nearby cells are connected with edges that are scored by agreement with the movement vector.  
e, Consistent lineage trees extracted from the candidate graph by global optimization using learned features and biological priors. f, Densely 
reconstructed lineages visualized over the mouse data.
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together with training and inference scripts and extensive docu-
mentation (https://github.com/funkelab/linajea).

The ability to densely reconstruct cell lineages in such large, 
information-rich datasets opens up vast opportunities for explor-
ing cell fate dynamics and tissue morphogenesis. Accurately fol-
lowing cells and their progeny over extended time periods allows 
identification of individual cell behaviors that are not visible with 
shorter and less accurate lineages. For example, being able to 
accurately track more than half of all cells over a time window of 
175 min in the mouse dataset, as compared to only 30 min with 
previous methods, greatly reduces the manual curation needed to 
test hypotheses such as the existence of neuromesodermal pro-
genitors that can produce neural or mesodermal progeny. While 
further work is required to improve detection of cell division, the 
dense cell lineages we publish with this method are a rich source 
of information about the development and cell fate dynamics of 
common model organisms.

Method
Network architecture, training, and prediction. To attain per-voxel  
predictions for cell locations and movements, we use a U-Net 
architecture with four resolution levels21. Our choice of the U-Net 
architecture over alternatives like Mask-RCNN or YOLO is moti-
vated by two points: first, we found that the performance of the 
U-Net for cell detection is sufficient for our use case (in particu-
lar, regarding high recall for subsequent filtering through the 
ILP); and second, our proposed movement vectors require dense 
predictions, which can be naturally generated with a U-Net archi-
tecture. We also chose the same architecture for the cell indicators 
to unify, and thus simplify, our pipeline. To incorporate temporal 
as well as spatial context, we concurrently feed seven 3D frames 
centered on the target time point and use four-dimensional con-
volutions until, owing to valid convolutions, the time dimension 
is reduced to 1. We downsample by factors (2, 2, 2) in xyz, except 
for anisotropic datasets (mouse, Drosophila) where we do not 
downsample in z in the first downsampling layer. We use 12 ini-
tial feature maps and increase by a factor of 3 at each level. When 
upsampling, we restrict our upsampling convolutional kernels 
to constant values, as we have observed this reduces artifacts in  
the output.

The cell indicator network is trained on sparse point annota-
tions and predicts the centers of cell nuclei. The training signal 
for this network, called the cell indicator value, is a Gaussian 
with maximum value 1 at the cell center annotation and decreas-
ing according to a hyperparameter σ. With only sparse annota-
tions, it is unknown if pixels far from cell center annotations are 
background or cells that were not annotated. To avoid training 
on unknown regions, we construct a ‘training mask’ around each 
annotation with a user-defined radius. This radius should be 
small enough that the mask will not overlap with neighboring cell 
nuclei. We only train on the mean squared error loss within the 
training mask. We are not training our cell indicator network on 
any background regions, so the behavior is unconstrained in the 
background. After prediction, we use local non-maximum sup-
pression (NMS) to extract cell center candidates, with the goal of 
detecting all cell centers along with potential false positives owing 
to the unconstrained background behavior. The NMS window 
size is dataset dependent and should be a bit smaller than the 
minimal distance between two cell centers. To reduce the number  

of false positives, especially in background regions, we only con-
sider detections above a threshold cell indicator value, deter-
mined empirically for each dataset and model. Additionally, if a 
foreground mask is available (as in the zebrafish dataset) we filter 
detections to those that lie in the foreground.

In addition to the cell indicator network, we train a movement 
vector network to predict the movement of cells between frames. 
For a pixel near to a cell in frame t, the movement vector is a 3D 
offset vector that points to the relative location of the center of the 
same cell in frame t − 1. Predicting the offset to the same cell in the 
previous time frame, rather than the next time frame, allows divi-
sions to be represented naturally, since each daughter cell points 
to the center of the parent cell. We calculate the loss on two dif-
ferent masked regions. Loss LA is the mean squared error between  
the ground truth and predicted movement vectors, calculated over 
the same training mask as the cell indicator network. Loss LB limits  
the error to voxels with maximal cell indicator values after NMS 
that also are within the training mask. The total loss is the weighted 
sum L = αLA + (1 − α)LB, with α =

1
1+exp 0.01 (−i+20,000)), and i being 

the number of training iterations. This weighting scheme weights 
LA higher at the beginning of training, when the cell indicator net-
work is still converging, with a smooth transition to LB at 20,000 
iterations.

These networks are trained simultaneously for 400,000 itera-
tions, with batch size 1. Batches are randomly sampled from 
annotated locations, and random augmentations including elastic 
deformation, mirroring, transposing axes, and intensity augmenta-
tion are applied using the GUNPOWDER library (https://github.
com/funkey/gunpowder). Prediction is then performed block-wise 
using parallelization over multiple GPUs to process large datasets 
efficiently. To eliminate edge artifacts, we ensure that our prediction 
stride is a multiple of the network downsample factors22.

Candidate graph extraction. After prediction, we create a directed 
candidate graph G = (V, E) with nodes that represent possible cell 
center locations and edges that represent possible movements of the 
same cell between frames. G is expected to contain extra nodes and 
edges, which will be filtered out in the final step.

V is the set of NMS detections. Each v ∈ V has a three-dimensional 
location lv, a time tv, a predicted cell indicator score sv, and a pre-
dicted movement vector mv. We avoid storing the predicted cell 
indicators and movement vectors at every pixel by performing NMS 
on the cell indicator values during prediction and only save the pre-
dicted values at the detection.

We construct the set of directed edges E by locally connecting 
nodes in adjacent frames with edges that point one frame backwards 
in time. For each candidate v at time tv, we compute the predicted 
location l̂v of the same cell in the previous frame: l̂v = lv +mv. 
Then, we add an edge from v to each node candidate u at time tv − 1 
where the predicted distance d̂e =∥ l̂v − lu∥2 is less than a hyperpa-
rameter θ. d̂e is stored as a score on each edge.

Discrete optimization to find lineage trees. We construct a lineage 
tree by selecting a subset of nodes and edges from G. We define a 
vector y =

[

yV, yE
]⊺

∈ {0, 1}|V|+|E| such that each element of the 
vector corresponds to a node or edge in G. Then G(y) is the sub-
graph induced by y that only contains nodes and edges with the 
corresponding element of y equal to 1.

Fig. 2 | Comparison of tracking errors on three datasets. a–c, Comparison of tracking errors on mouse (a), Drosophila (b), and zebrafish (c) datasets.  
a–c, Left, average errors per ground truth edge for each error type; middle top, fraction of error-free tracks for a given track length; middle bottom, top 
right, and bottom right, example ground truth track (green) with superimposed tracking result (orange or red) for our method (top right), the greedy 
baseline (middle bottom), and TGMM (bottom right), respectively. Other than the dashed false positive divisions, we only show detections that matched 
the selected ground truth track.
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We then construct a constrained optimization problem that min-
imizes the objective

min
y

C(y) s.t. G(y) ∈ T 2,

where T 2 is the set of binary forests and C : y → R assigns a cost for 
each set of selected nodes and edges. Thus, the goal is to select the 
cost-minimal subset of nodes and edges from G that form a binary 
forest.

To simplify the presentation of the cost function, we introduce 
two auxiliary indicator vectors of length ∣V∣ that can be entirely 
derived from y. The indicator for tracks appearing, yT, is 1 for nodes 
at the beginning of a track and 0 otherwise. yD represents a division 
and is 1 for the parent node of a division. For a formalization of the 
definition of these auxiliary vectors from y, see below.

With these auxiliary indicator variables, we define a linear cost 
function as follows:

C(y) = ⟨c, y⟩+ ⟨cT, yT⟩+ ⟨cD, yD⟩, (1)

where c =
[

cV, cE
]⊺ is a vector containing the cost for selecting each 

node and edge, cT is a vector containing the cost cT of having to 
start a new track and cD is a vector containing the cost cD of having 
a division occurring. The costs cT and cD are constant parameters of 
the method, but the predicted cell indicator values and movement 
vectors are used to individualize the cost vector c for selecting each 
node and edge.

With si as the cell indicator score for node i, we define the node 
selection cost for node i as cVi = τV + wVsi, where τV and wV are 
parameters of the method. To encourage selection of higher cell 
indicator scores during minimization, wV should be negative.

Similarly, with d̂i as the distance between the predicted and 
actual offsets at edge i, we define the edge selection cost for edge 
i as cEi = wEd̂i. Unlike with node scores, wE should be positive to 
encourage selection of edges with lower scores, since those edges 
align better with the predicted cell movement.

To determine the optimal values of the ILP parameters cT, 
cD, τV, wV, and wE, we performed a grid search where we fixed 
cD = 1 to eliminate redundant solutions. We selected the param-
eter set that minimized the sum of errors over the validation set 
(Supplementary Note 2).

Integer linear program formulation. We use an ILP to solve the con-
strained optimization problem with the Gurobi solver (https://
www.gurobi.com/). The objective is the cost function C(y) (Eq. 1). 
To ensure a binary forest with correctly set auxiliary variables, we 
implement three kinds of constraints: consistency, continuation, 
and split constraints.

The first consistency constraint requires that if an edge is 
selected, the incident nodes are selected as well. This constraint for 
edge e = (v,u) is represented by the equation 2ye − yv − yu ≤ 0. The 
second consistency constraint ensures that the number of selected 
incoming edges is ≤2, that is, for each node v: 

∑

n∈Nv
yn − 2yv ≤ 0 

with Nv being the set of edges from nodes in tv + 1 to v. The continu-
ation constraint ensures that if a node is selected either it is marked 
as the beginning of a track or the track continues. Let Pv be the set of 
edges from node v in time tv to nodes in tv − 1. We define the track 
continuation constraint as 

∑

p∈Pvyp + yTv − yv = 0, ensuring that if 
node v is selected, either there is exactly one selected edge to time 
tv − 1 or the track (appear) indicator yTv  is set to 1 (and thus the asso-
ciated cost has to be paid). Finally, the two split constraints ensure 
that the division indicator yDv  is set for every cell that divides, that is, 
for each node v: 

∑

n∈Nv
yn − yDv ≤ 1 and 

∑

n∈Nv
yn − 2yDv ≥ 0.

Processing large volumes block-wise. Ideally, we would solve the ILP 
for the whole candidate graph at once to obtain a globally optimal 

solution. However, for large volumes, this is too time and memory 
intensive. Therefore, to obtain lineage trees for arbitrarily large vol-
umes, we divide the candidate graph into a set of blocks B that tile 
the whole volume and use multiple processes to solve the ILP for 
many blocks in parallel.

Solving each block b ∈ B completely independently can result in 
discontinuities in tracks between blocks, and the constraints would 
no longer be fulfilled at the boundaries. To ensure a consistent, valid 
solution across the whole volume, we allow each process to view a 
context region around the target region b that must be at least as 
large as the amount a cell can move in space between two frames 
and contain at least one time frame in each direction. Let b̂ be the 
union of b and the surrounding context area. A process reads all 
nodes and edges in b̂, solves the ILP, and writes the result for only 
the target region b into a central database. If the database already 
contains results in the context region, these selections will be intro-
duced as further constraints into the ILP, ensuring the solution will 
be consistent across boundaries. At the block boundaries, we set the 
new track cost cT to zero, because we do not want to penalize solu-
tions that cross block boundaries.

The introduction of a context region introduces dependencies 
between neighboring blocks, and thus they cannot be run trivially 
in parallel. By ensuring that overlapping blocks are never run simul-
taneously using the DAISY library (https://github.com/funkelab/
daisy), we obtain a globally consistent solution while retaining a 
high degree of parallel processing. While there is no guarantee of 
global optimality, with a large enough context region, we assume 
that nodes and edges further away do not affect the local solution 
in a target region.

The number of frames in a block influences the choice of opti-
mal ILP hyperparameters. Therefore the size used in the grid search 
has to be the same, or at least of the same magnitude, as during 
inference.
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able in the Nature Research Reporting Summary linked to this article.
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