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Supplementary Text: Details on study population, RNA sequencing data 

preprocessing & quality control steps  

MRI scans  

MRI scans were obtained to assess body compartments from 594 participants. The measurements 

were performed with a 1.5T MRT scanner ("Magnetom Avanto", Siemens, Erlangen, Germany) 

and the Vibe Dixon sequence. The Vibe-Dixon sequence is a special MRI protocol for body fat 

analysis which separates the fat from tissue water. Automated segmentation algorithms of the MRI 

scans were used to quantify the fat mass in different body compartments with high repeatability 

and reproducibility. 

RNA extraction from SAT biopsies  

Subcutaneous adipose tissue biopsies were taken from 278 participants using a needle aspiration 

method with sufficient material extracted from 200 participants. For details regarding the 

subcutaneous AT biopsies, see Konigorski et al. (2019)1. From the SAT biopsies, the total RNA, 

genomic DNA, and total protein from the fat tissue samples were purified and separated using the 

Qiagen All Prep DNA/RNA Mini Kit. The purified genomic DNA has an average length of 15-30 

kb. Regarding the RNA, only RNA molecules longer than 200 nucleotides were purified and with 

the employed standard protocol, all short RNA molecules with length less than 200 nucleotides 

were removed. These removed small molecules include most of the ncRNA and short mRNA. The 

quantity and integrity of the purified DNA and RNA was verified using the NanoDrop 1000 

Spectrophotometer V3.7 (PeqLab) and the 2100 Bioanalyzer (Agilent), which uses an on-chip 

electrophoresis. For the assessment of gene expression of candidate adipokines with PCR, 2µg 
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RNA were reverse transcribed to cDNA using the High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems). 

Library preparation & multiplexing 

The extracted RNA was prepared for sequencing using the TruSeq RNA and DNA Sample 

Preparation Kit v2 (Illumina). First, it was polyA-selected to purify and enrich for mRNA, 

fragmented into small pieces and primed (with random hexamers) for cDNA synthesis. The cDNA 

products were then enriched with PCR and ligated to adapters to multiplex samples. In the ligation, 

single indexes were used. Finally, the cDNA libraries were created, validated, normalized (so that 

they had equal volume) and pooled. The resulting pooled single-indexed paired-end libraries of 

different samples were then applied to the flow cells (containing 8 lanes) on cBot (Illumina), so 

that multiple samples could be sequenced together. 

Sequencing and demultiplexing 

The multiplexed probes were sequenced on the Illumina HiSeq 2000 platform in 201 sequencing 

cycles. Of the 200 samples with total RNA extracted from the SAT biopsies, 198 samples were 

sequenced with 6 samples per lane, yielding on average 64,095,856 raw reads (SD=7,518,970), 

with minimum 43,373,110 and maximum 85,591,020 raw reads per probe. Two samples were 

sequenced each on one lane as a sensitivity check and to assess how many more genes can be 

detected with a greater sequencing depth. After the alignment and QC filtering (see description 

below), approx. 50 million single reads (i.e., about 25 million paired reads) were available at high 

quality per sample, and about 330 million single reads of the two deeply sequenced samples. 

The raw data containing the sequences of quality-scored base calls was saved in .bcl files. Next, 

the CASAVA (Illumina) software was used for converting the .bcl files to .fastq files. In the same 

step, the multiplexed samples were demultiplexed and the raw reads of each sample are extracted 

and saved. 
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Quality control of the raw sequencing reads 

For an assessment of the sequencing quality, the Q-score was used as quality scoring method, 

which is a prediction of the probability of an incorrect base call. All probes had a high percentage 

of bases with high quality (Q>30), on average 88.0% (SD=1.9%). The mean quality score of bases 

in a probe was 32.5 (SD=0.5). 

More quality checks were performed by investigating the sequence quality, GC content, sequence 

base content, the presence of adapters and duplicated reads using the FASTQC tool2. The sequence 

quality was high for all probes, across all base pair positions of all reads. The GC distribution across 

all reads was close to the expected theoretical distribution for all probes, with only minor deviations 

from some probes which didn't indicate systematic biases or deviations. There was no indication 

for any problems with adapters. Due to the PCR-steps involved in the cluster generation in RNA-

Seq, duplicate sequences were naturally observed, around 50% for all probes. There were no 

specific sequences that were reported to be systematically duplicated, hence there didn't seem to 

be any systemic problems. 

As a summary, the quality control checks of the raw reads showed a consistently high read quality 

without indication for systematic sequence biases, presence of adapter sequences, or duplication 

levels beyond what can be expected from RNA-Seq. Hence, the fastq files were parsed to the 

alignment stage with TopHat2 without trimming or deletion of reads. 

Read alignment 

The reads were aligned to the human reference genome GRCh38 (Homo_sapiens.GRCh38.78) 

using TopHat2 (version 2.0.12) with Bowtie2 (version 2.0.6.0) and samtools (version 0.1.18.0), 

which maps the RNA reads in the presence of insertions, deletions and gene fusions. In the 

alignment, all reads were used without trimming or discarding reads with low-quality calls. 
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Quality control of the aligned reads 

Low-quality reads, reads with multiple alignments, and not properly aligned pairs were filtered. In 

more detail, on average, 90.3% (SD=1.2%) of all reads could be aligned. Furthermore, on average, 

85.7% (SD=1.9%) or all raw reads could be aligned in pairs and on average 91.8% (SD=1.3%) of 

the mapped reads had a high mapping quality. Hence, in addition to the high sequencing quality, 

the alignments had high quality. 

Read counts as raw measures of gene expression levels 

The aligned reads were first sorted using samtools and then htseq-count was used to obtain counts 

as a raw measure of the gene expression levels. Counts were obtained for genes with respect to 

Ensembl gene identifiers. Default settings were used to discard aligned reads with mapping quality 

smaller than 10. Since all mapped reads had either mapping quality higher than 30 or lower than 

10, only high-quality-mapped reads were used to obtain counts. Reads overlapping multiple genes 

were not counted for any gene (based on the default mode "union"). The median absolute number 

of counted reads was 23,850,000. The percentage of mapped and counted reads relative to the raw 

reads was on average 56.7% (SD=3.0%).  

Quality control and normalization of read counts 

The Ensembl database3,4 lists in total 64,253 genes for the reference genome GRCh38.78 (obtained 

from http://dec2014.archive.ensembl.org/index.html). Based on the obtained raw gene expression 

levels, 48,126 genes were expressed in at least one probe. Interestingly, only 107 of the 48,126 

genes (≈0.2%) were uniquely observed in the 2 deeply sequenced probes which yielded 6 times as 

many reads. On average, the expression of 27,690 genes was observed per sample (SD=1,274, 

min=25,430, max=33,280), 19,460 genes had at least 5 counts per sample (SD=1,042, min=17,600, 

max=25,910), 17,500 genes had at least 10 counts per sample (SD=940, min=15,890, 

max=23,580), and 13,630 genes had at least 50 counts per sample (SD=696, min=12,420, 
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max=18,470). When investigating the changes when probes were sequenced at the depth of 1 

sample per lane, 3 samples per lane, and 6 samples per lane, as can be expected, the number of 

genes without observed counts decreases, and the average count per gene as well the maximum 

number of counts per gene increases, but the shape of the average observed counts per gene and 

the overall pattern don't change with sequencing depth. For further details regarding the 

comparison of different sequencing depths, the relative frequency of gene classes that are detected 

with the different sequencing depths was investigated. As could be expected, this percentage is 

always higher for the deeper sequenced probe, but again, the differences are not substantial 

especially for protein coding genes. 

In the analysis of gene expression measures from RNA-Seq, the observed counts are often 

dependent on the gene length (the longer the gene, the higher the counts), which can affect 

downstream analyses.5 To normalize gene expression measures we computed TPM6 (transcripts 

per million: counts per gene length adjusted for total counts per gene lengths in million) as within-

sample normalizations to correct for gene length and library size (i.e., total number of reads). TPM-

normalized counts were computed for the 48,019 genes which had non-zero counts in at least 1 

sample. For this, the gene lengths were obtained from the Ensembl database through biomaRt7 at 

dec2014.archive.ensembl.org (accessing GRCh38.78). In addition to the within-sample 

normalization, the TMM8 method was used for a between sample normalization to account for 

potential sequencing biases. TMM computes the trimmed mean of M-values between each pair of 

samples and thereby normalizes for RNA composition using scaling factors for the total number of 

reads (i.e., library sizes), which minimizes the log-fold changes between samples. The effective 

library size is computed and used instead of the observed library size. 

We checked the GC content of a gene, which can bias downstream analyses.5,9 The results indicated 

that the mean gene expression (i.e., TMM-normalized TPM value over all samples) was not 
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associated with GC content of all genes. As a result, the gene expression measures were not further 

normalized for GC content in order not to remove true biological variance and the TMM-

normalized TPM values were used as primary measure of gene expression. All genes with observed 

counts for at least one individual were passed on to the following stages of the data processing. 

As further validity check of the obtained gene expression measures that are analyzed in the 

following, correlations between RNA-Seq and qPCR gene expression estimates were computed for 

6 candidate genes that were investigated in Konigorski et al. (2019)1. The (Pearson) correlations 

were r=0.36 for FABP4, r=0.56 for leptin receptor, r=0.58 for adiponectin, and r=0.85-0.87 for 

leptin, interleukin-6, and resistin, in line with previous reports in the literature.10,11,12 

Transformations of normalized read counts 

Next, the distribution of the gene expression measures was investigated. Transformations (such as 

a log-transformation) lead to problems for very lowly expressed genes, where almost everyone has 

an observed count of 0. Hence, the following analyses and transformations were restricted to those 

30,917 genes, where at least 25% of the people (i.e., at least 50 probes) had non-zero observed 

counts. Most lowly expressed genes had a very skewed distribution: of the 30,917 genes, 15,569 

had skewness greater than 1, and 5498 had skewness greater than 2. 

The skewed genes (i.e., with skewness greater than 1) were transformed using the Yeo-Johnson 

transformation (which is the Box-Cox transformation of U + 1 for nonnegative values, and of |U| 

+ 1 with parameter 2-λ for U negative) using the yjPower() function in the car R package13, where 

the parameter λ for the transformation is determined in a first step using the powerTransform() 

function. This approach seemed to be successful in removing the skewness for all genes. Still, 

7,953 genes didn't seem to be normally distributed according to the Kolmogorov-Smirnoff test with 

a p-value smaller than 0.001, for example, due to bimodal or other forms of distributions. However, 

for those genes, there wasn't a clear indication which transformation could yield normally 
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distributed measures. Hence, the Yeo-Johnson transformed gene expression measures were used 

as final measure for the analysis. To incorporate that the normality of some genes is questionable, 

robust analyses incorporating multiple genes (e.g. the GO term enrichment analysis) were 

performed, and top associated genes with highest significance in the main analyses were inspected 

manually. 

Assessment of genetic variation 

In order to investigate genetic variants, SNVs (in coding regions) were called from the RNA-Seq 

reads using the mpileup tool of bcftools version 1.914,15 and further quality-controlled and trimmed. 

In total, 2,671,949 SNVs and indels were called. After quality-checks and filtering (trimming 

unseen alternative alleles, keeping only non-monomorphic biallelic SNVs with average depth >5 

and average genotype quality >15), 156,776 biallelic SNVs were retained. Further filtering by 

Hardy-Weinberg equilibrium HWE (p-value <10-7) and minor allele frequency (MAF)<0.01 left 

138,244 autosomal biallelic non-monomorphic quality-controlled SNVs. Of them, 97,376 SNVs 

were used for imputation with Beagle 5.016 (Browning et al. 2018) with the 1000 Genomes Project 

phase 3 reference panel17. This yielded 4,796,118 autosomal biallelic non-monomorphic quality-

controlled SNVs, which contained 71,093 singletons with a MAF of 0.0025 and 41,447 doubletons 

with MAF=0.005. Furthermore, 500,430 SNVs had MAF between 0.005 and 0.01, 1,435,935 SNVs 

had MAF between 0.01 and 0.05, and 2,747,213 SNVs had MAF greater than 0.05. For the 

complete-case analysis in the sample of n=160, 4,776,233 non-monomorphic SNVs were available. 

GO-term enrichment analysis 

For the GO-term enrichment analysis, the topGO R package18 was used with the biological 

processes (”BP”) sub-ontology, pruning GO terms with less than 10 annotated genes before the 

enrichment analysis, and computing gene-GO term mappings based on the Ensembl gene 

identifiers. As enrichment tests, classic Fisher’s exact test and the classic as well as adapted ”elim” 
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Kolmogorov-Smirnoff (KS) gene-set enrichment were performed. For a summary of the results, 

the differentially distributed GO terms of these genes (after adjusting for multiple testing of all GO 

terms) were traced back to the level 1 (i.e. highest order) GO terms and counted for SAT and 

SAT/TAT, separately. 
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Supplementary Tables 

GO terms SAT SAT/TAT 
Cellular process 186 174 

Biological regulation 158 95 

Metabolic process 49 99 

Immune system process 84 55 

Response to stimulus 84 49 

Localization 27 46 
Biological adhesion 16 14 
Cell proliferation 14 12 

Cellular component organization or biogenesis 30 9 

Developmental process 24 7 

Locomotion 8 20 

Multi-organism process 13 2 

Multicellular organismal process 27 11 

Signaling 33 10 

Table S1. Results of the GO term enrichment analysis in the obesity study. 

Shown are the number of (highest-level parent GO terms of those) GO terms that were under-
/overrepresented in the 441 genes associated with SAT (left panel) and 225 genes associated with 
SAT/TAT (right panel), compared to the full pool of 30,917 genes, using the classical KS test. 
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SAT  SAT/TAT 
# GO ID GO term  # GO ID GO term 
1 0002376 immune system process  1 0044710 single-organism metabolic process 
2 0006955 immune response  2 0044710 small molecule metabolic process 
3 0002682 regulation of immune system process  3 0044699 single-organism process 
4 0001775 cell activation  4 0044763 single-organism cellular process 
5 0045321 leukocyte activation  5 0002376 immune system process 
6 0002252 immune effector process  6 0001775 cell activation 
7 0002684 positive regulation of immune system process  7 0006955 immune response 
8 0016192 vesicle-mediated transport  8 0045321 leukocyte activation 
9 0050776 regulation of immune response  9 0055114 oxidation-reduction process 
10 0051234 establishment of localization  10 0006082 organic acid metabolic process 
11 0046649 lymphocyte activation  11 0002684 positive regulation of immune system process 
12 0051179 localization  12 0043436 oxoacid metabolic process 
13 0050778 positive regulation of immune response  13 0002682 regulation of immune system process 
14 0006810 transport  14 0032787 monocarboxylic acid metabolic process 
15 0002263 cell activation involved in immune response  15 1902578 single-organism localization 
16 0042110 T cell activation  16 0006954 inflammatory response 
17 0002366 leukocyte activation involved in immune response  17 0019752 carboxylic acid metabolic process 
18 0019882 antigen processing and presentation  18 0044765 single-organism transport 
19 0048002 antigen processing & presentation of peptide antigen  19 0006091 generation of precursor metabolites and energy 
20 0050896 response to stimulus  20 0006629 lipid metabolic process 

Table S2. Results of the GO term enrichment analysis in the obesity study, of the 441 genes associated with SAT (left panel) and 225 genes associated 
with SAT/TAT (right panel).  

Shown are the top 20 GO terms with smallest p-values based on the classic KS test.  
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GO ID GO term Annotated Significant Expected classicFisher 
GO:0046903 secretion 1421 64 33.6 3.10 × 10-7 
GO:0045055 regulated exocytosis 714 40 16.88 3.60 × 10-7 
GO:0006887 exocytosis 823 43 19.46 8.40 × 10-7 
GO:0016192 vesicle-mediated transport 1758 73 41.56 9.10 × 10-7 
GO:0002275 myeloid cell activation involved in immune response 525 32 12.41 9.60 × 10-7 
GO:0008283 cell proliferation 1799 74 42.53 1.10 × 10-6 
GO:1902578 single-organism localization 2956 107 69.89 1.30 × 10-6 
GO:0042127 regulation of cell proliferation 1421 62 33.6 1.50 × 10-6 
GO:0032940 secretion by cell 1308 58 30.92 2.00 × 10-6 
GO:0044699 single-organism process 11716 310 277 3.50 × 10-6 
GO:0002252 immune effector process 1033 48 24.42 5.10 × 10-6 
GO:0009605 response to external stimulus 1842 73 43.55 5.10 × 10-6 
GO:0002274 myeloid leukocyte activation 600 33 14.19 6.00 × 10-6 
GO:0043299 leukocyte degranulation 519 30 12.27 6.20 × 10-6 
GO:0002376 immune system process 2489 91 58.85 7.50 × 10-6 

Table S3. Results of the GO term enrichment analysis for SAT-associated genes in the obesity study. 

Shown are the 15 GO terms that were (statistically significantly after multiple testing correction for all 6287 analyzed GO terms) overrepresented in 
the 441 genes associated with SAT compared to the full pool of 30,917 genes, using Fisher’s exact test. Shown are the GO terms with their description, 
the number of genes that were annotated with the respective term in all 30,917 genes (“Annotated”), the number of genes that were annotated with the 
respective term in the 441 SAT-associated genes (“Significant”), which is contrasted with the expected number of annotated genes in this pool of 441 
genes (“Expected”), and the p-value from Fisher’s exact test.
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GO.ID Term Annotated Significant Expected classicFisher 
GO:0016054 organic acid catabolic process 223 22 2.8 6.90 × 10-14 
GO:0046395 carboxylic acid catabolic process 223 22 2.8 6.90 × 10-14 
GO:0043436 oxoacid metabolic process 997 44 12.52 1.20 × 10-13 
GO:0006082 organic acid metabolic process 1013 44 12.72 2.00 × 10-13 
GO:0055114 oxidation-reduction process 946 42 11.88 3.90 × 10-13 
GO:0019752 carboxylic acid metabolic process 890 40 11.17 1.10 × 10-12 
GO:0044281 small molecule metabolic process 1925 61 24.17 2.00 × 10-12 
GO:0044282 small molecule catabolic process 329 23 4.13 2.50 × 10-11 
GO:0044710 single-organism metabolic process 3990 89 50.1 8.10 × 10-10 
GO:0009063 cellular amino acid catabolic process 109 13 1.37 1.00 × 10-9 
GO:0032787 monocarboxylic acid metabolic process 512 26 6.43 1.30 × 10-9 
GO:0072329 monocarboxylic acid catabolic process 111 13 1.39 1.30 × 10-9 
GO:0044712 single-organism catabolic process 890 35 11.17 1.30 × 10-9 
GO:0044283 small molecule biosynthetic process 489 25 6.14 2.40 × 10-9 
GO:1901606 alpha-amino acid catabolic process 94 11 1.18 2.50 × 10-8 
GO:0006631 fatty acid metabolic process 318 18 3.99 1.10 × 10-7 
GO:0009083 branched-chain amino acid catabolic proc... 20 6 0.25 1.20 × 10-7 
GO:0009062 fatty acid catabolic process 91 10 1.14 2.00 × 10-7 
GO:0006635 fatty acid beta-oxidation 70 9 0.88 2.20 × 10-7 
GO:0009081 branched-chain amino acid metabolic 

proc... 
23 6 0.29 3.10 × 10-7 

GO:0019395 fatty acid oxidation 95 10 1.19 3.10 × 10-7 
GO:0044242 cellular lipid catabolic process 175 13 2.2 3.20 × 10-7 
GO:0034440 lipid oxidation 97 10 1.22 3.70 × 10-7 
GO:1901605 alpha-amino acid metabolic process 211 14 2.65 4.40 × 10-7 
GO:0015980 energy derivation by oxidation of organi... 253 15 3.18 7.20 × 10-7 
GO:0035384 thioester biosynthetic process 65 8 0.82 1.50 × 10-6 
GO:0071616 acyl-CoA biosynthetic process 65 8 0.82 1.50 × 10-6 
GO:0016042 lipid catabolic process 269 15 3.38 1.50 × 10-6 
GO:1901565 organonitrogen compound catabolic 

proces... 
343 17 4.31 1.60 × 10-6 

GO:0016053 organic acid biosynthetic process 279 15 3.5 2.40 × 10-6 
GO:0046394 carboxylic acid biosynthetic process 279 15 3.5 2.40 × 10-6 
GO:0044711 single-organism biosynthetic process 1373 38 17.24 2.50 × 10-6 
GO:0009108 coenzyme biosynthetic process 151 11 1.9 3.20 × 10-6 
GO:0051186 cofactor metabolic process 378 17 4.75 5.70 × 10-6 
GO:0050900 leukocyte migration 380 17 4.77 6.20 × 10-6 
GO:0006091 generation of precursor metabolites and ... 343 16 4.31 6.90 × 10-6 

Table S4. Results of the GO term enrichment analysis for SAT/TAT-associated genes in the obesity study. 
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Shown are the 36 GO terms that were (statistically significantly after multiple testing correction for all 6287 
analyzed GO terms) overrepresented in the 225 genes associated with SAT/TAT compared to the full pool of 
30,917 genes, using Fisher’s exact test. Shown are the GO terms with their description, the number of genes that 
were annotated with the respective term in all 30,917 genes (“Annotated”), the number of genes that were 
annotated with the respective term in the SAT/TAT-associated genes (“Significant”), which is contrasted with the 
expected number of annotated genes in this pool of 225 genes (“Expected”), and the p-value from Fisher’s exact 
test.  
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see file “TableS5.xlsx” 

Table S5. Results and annotations for the 430 autosomal genes associated with SAT mass. 

Shown are the Ensembl ID of the gene (“Ensembl”), the gene symbol (“Gene”), the genomic 
position in form of the chromosome number (“Chr”) as well as the start (“Gene_start”) and end 
(“Gene_end”) position in base pairs of the gene; whether the gene is known to be associated with 
obesity (based on the NCBI gene and GWAS Catalog databases), the corresponding protein 
encoded by the gene if it is known (from UniProt); the estimates of the effect size (“C-JAMP_beta”; 
estimate of beta_j in the marginal model of C-JAMP in equation (1) in the main text), its standard 
error estimates (“C-JAMP_SE”) and p-value (“C-JAMP_pvalue”) from the C-JAMP association 
analysis of SAT and SAT/TAT conditional on the gene expression and covariates; the results from 
the Mendelian randomization (MR) analysis in form of the number of SNVs in the gene that were 
incorporated in the MR analysis (“MR_no_var”), the explained variance of the gene expression 
based on a multiple linear regression model containing these SNVs (“MR_R2”), and the p-value 
from the inverse-variance weighted MR method (“MR_pvalue”); as well as the results of the 
replication analysis in form of the number of SNVs in the gene that were incorporated in the MR 
analysis (“no_var”), the explained variance of the gene expression based on a multiple linear 
regression model containing these SNVs (“R2”), and the p-value from the linear regression analysis 
(“pvalue”).  
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see file “TableS6.xlsx” 

Table S6. Results and annotations for the 215 autosomal genes associated with SAT/TAT. 

Shown are the Ensembl ID of the gene (“Ensembl”), the gene symbol (“Gene”), the genomic 
position in form of the chromosome number (“Chr”) as well as the start (“Gene_start”) and end 
(“Gene_end”) position in base pairs of the gene; whether the gene is known to be associated with 
obesity (based on the NCBI gene and GWAS Catalog databases), the corresponding protein 
encoded by the gene if it is known (from UniProt); the estimates of the effect size (“C-JAMP_beta”; 
estimate of beta_j in the marginal model of C-JAMP in equation (2) in the main text), its standard 
error estimates (“C-JAMP_SE”) and p-value (“C-JAMP_pvalue”) from the C-JAMP association 
analysis of SAT and SAT/TAT conditional on the gene expression and covariates; the results from 
the Mendelian randomization (MR) analysis in form of the number of SNVs in the gene that were 
incorporated in the MR analysis (“MR_no_var”), the explained variance of the gene expression 
based on a multiple linear regression model containing these SNVs (“MR_R2”), and the p-value 
from the inverse-variance weighted MR method (“MR_pvalue”); as well as the results of the 
replication analysis in form of the number of SNVs in the gene that were incorporated in the MR 
analysis (“no_var”), the explained variance of the gene expression based on a multiple linear 
regression model containing these SNVs (“R2”), and the p-value from the linear regression analysis 
(“pvalue”).  
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Characteristics Women Men 
Sample size 2571 2333 
Age, years 55.0 (7.4) 56.7 (7.5) 
Smoking, %     

never 62.9 54.6 
previous 31.7 37.7 
current 5.4 7.8 

Vocational training, %     
College/university 39.2 45.8 
A/AS levels 15.1 12.9 
0 levels/GCSE 23.8 17.6 
CSE 4.8 4.7 
NVQ/HND/HNC 3.5 7.6 
Other 13.5 11.3 

BMI, kg/m2 26.3 (4.6) 27.2 (3.8) 
aSAT, kg* 7.5 (3.1) 5.5 (2.0) 
VAT, kg* 2.4 (1.5) 4.7 (2.3) 

Table S7. Sex-stratified characteristics of the study population from the UK Biobank (n=4904). 

Values are relative frequencies, mean and SD, or *median and median absolute deviation. aSAT, 
abdominal subcutaneous adipose tissue; BMI, body mass index; CSE, Certificate of Secondary 
Education; GCSE, General Certificate of Secondary Education; HNC, Higher National Certificate; 
HND, Higher National Diploma; NVQ, National Vocational Qualifications; VAT, visceral adipose 
tissue.
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Supplementary Figures 

 

Figure S1. Scatterplots of p-values from the copula analysis C-JAMP versus linear regression from 
the transcriptomic association analysis with obesity traits.  

P-values are on a −log10 scale from C-JAMP models of SAT and SAT/TAT conditional on gene 
expression and covariates with grey dashed lines at the Bonferroni-adjusted significance threshold 
α = 3.2 × 10−5. 


