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Background Disease progression of subjects with coronavirus disease 2019 (COVID-19) varies dramatically. Under-
standing the various types of immune response to SARS-CoV-2 is critical for better clinical management of coronavi-
rus outbreaks and to potentially improve future therapies. Disease dynamics can be characterized by deciphering the
adaptive immune response.

Methods In this cross-sectional study we analyzed 117 peripheral blood immune repertoires from healthy controls and
subjects withmild to severe COVID-19 disease to elucidate the interplay between B and T cells. We used an immune reper-
toire Primer Extension Target Enrichment method (immunoPETE) to sequence simultaneously human leukocyte antigen
(HLA) restricted T cell receptor beta chain (TRB) and unrestricted T cell receptor delta chain (TRD) and immunoglobulin
heavy chain (IgH) immune receptor repertoires. The distribution was analyzed of TRB, TRD and IgH clones between
healthy and COVID-19 infected subjects. Using McFadden's Adjusted R2 variables were examined for a predictive model.
The aim of this study is to analyze the influence of the adaptive immune repertoire on the severity of the disease (value on
the World Health Organization Clinical Progression Scale) in COVID-19.

Findings Combining clinical metadata with clonotypes of three immune receptor heavy chains (TRB, TRD, and IgH), we
found significant associations between COVID-19 disease severity groups and immune receptor sequences of B and T cell
compartments. Logistic regression showed an increase in shared IgH clonal types and decrease of TRD in subjects with
severe COVID-19. The probability of finding shared clones of TRD clonal types was highest in healthy subjects (controls).
Some specific TRB clones seems to be present in severe COVID-19 (Figure S7b). The most informative models
(McFadden�s Adjusted R2=0.141) linked disease severity with immune repertoire measures across all three cell types, as
well as receptor-specific cell counts, highlighting the importance of multiple lymphocyte classes in disease progression.

Interpretation Adaptive immune receptor peripheral blood repertoire measures are associated with COVID-19 dis-
ease severity.

Funding The study was funded with grants from the Berlin Institute of Health (BIH).

Copyright � 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

Keywords: COVID-19; Immune repertoires; Immune receptor; Clinical course
*Corresponding authors.

E-mail address: bettina.heidecker@charite.de (B. Heidecker).
1 These authors contributed equally to this work.
2 Pa-COVID Study Group, Members are listed in the Supplementary Appendix 2.

www.thelancet.com Vol 48 Month June, 2022 1

http://creativecommons.org/licenses/by/4.0/
mailto:bettina.heidecker@charite.de
https://doi.org/10.1016/j.eclinm.2022.101438
https://doi.org/10.1016/j.eclinm.2022.101438


Articles

2

targeted therapies as well as better allocation of resour-
Research in context

Evidence before the study

We have searched PubMed for publications containing
keywords “COVID”, “t cell receptor”, “b cell receptor”
and “severity” published until December 17, 2021 (exact
search phrase: (covid) AND (severity) AND (t cell recep-
tor) AND (b cell receptor)). The search resulted in 22
publications with the required search terms. The studies
mainly investigated changes of the immune repertoire
during the course of COVID-19 and immune memory.
There has been no prior study comparing multiple
immune compartments with the method used in our
cohort.

Added value of the study

Using an immune repertoire primer extension target
enrichment method (immunoPETE), we identified very
few individual B and T cell clones, which appeared to be
associated with a severe course of COVID-19. Our find-
ings suggest a potentially relevant contribution of both
cell types in the immune response to SARS-CoV-2.

Furthermore, this study reports for the first time the
results of a novel method of comprehensive immune
repertoire analysis and its first application in a clinical
study.

Implications of all the available evidence

Combining clinical data with clonotypes of three
immune receptor heavy chains (TRB, TRD, and IgH), we
identified associations between COVID-19 disease
severity groups and immune receptor sequences of B
and T cell compartments. Our data highlight the impor-
tance of multiple lymphocyte classes in disease
progression.
Introduction
At the end of 2019, a new virus called severe acute respi-
ratory syndrome 2 (SARS-CoV-2) was first reported in
the city of Wuhan, China. Within months, the virus
spread to all continents inducing the coronavirus dis-
ease 2019 (COVID-19). COVID-19 comprises a wide
spectrum of clinical courses from asymptomatic, mild,
to severe hyperinflammatory syndromes.1,2 COVID-19
subjects’ severity risk stratification is crucial for triage
and supply of available monitoring, respiratory equip-
ment and other resources especially under the pressures
of an ongoing pandemic.3 Although numerous host risk
factors for severe disease such as previous history of car-
diopulmonary diseases, obesity, old age, etc. are known,
these are currently not reliable for risk stratification of
COVID-19 subjects.4−7 Thus, there is an urgent need to
better understand the predisposition for severe disease,
providing a framework for development of novel specific
ces.
While the adaptive immune system is well armed to

eliminate pathogens, it can also contribute to tissue
injury and severe disease progression.8,9 Recent reports
have documented a strong association between human
leukocyte antigen (HLA) genotypes and COVID-19 dis-
ease severity, further underscoring the role of both
hereditary and somatic components of the adaptive
immune system in this disease.10,11 While specific
SARS-CoV-2 antigen T cell receptors and monoclonal
antibodies have been identified, there is still a lack of
understanding of measures and dynamics of the coordi-
nated adaptive immune response in individuals with
COVID-19 at the immune receptor repertoires level.
Next Generation Sequencing (NGS) based deep clono-
typing of either B cell receptors (BCR)12 or T cell recep-
tors (TCR)13 have been applied in the context of COVID-
19 severity and identified antibody features or shared
TCRs in COVID-19 patients, respectively. Our study
aims to demonstrate that sequencing both HLA
restricted T cell receptor beta chain (TRB) and unre-
stricted T cell receptor delta chain (TRD) and immuno-
globulin heavy chain (IgH) immune receptor
repertoires provide additional information about the
coordinated adaptive immune response to the SARS-
CoV-2 viral infection.
Methods

Approaches and hypotheses
In this cross-sectional study, the immune repertoires of
healthy donors and COVID-19 individuals with mild to
severe disease were sequenced in order to elucidate rep-
ertoire signatures associated with disease severity. Spe-
cifically, we aimed to provide answers to the following
questions: Is there a signature in the adaptive immune
receptor repertoire (IgH, TRB, TRD) associated with
COVID-19 disease severity? Which arm of the adaptive
immunity (IgH, TRB, TRD) confers the strongest signa-
ture? Will our method detect previously reported and
novel clonotypes specific for SARS-CoV-2 epitopes?
Laboratory and statistical analysis
An immune repertoire Primer Extension Target Enrich-
ment method (immunoPETE) was used to target the Com-
plementarity-Determining Region 3 (CDR3) regions of
Variable-Diversity-Joining (V-D-J) rearrangements. Immu-
noPETE combines primers for all TRB, TRD and IgH
immune receptor heavy chains in a single assay, simulta-
neously determining all B and T cell chain repertoires for
each sample. We performed two types of analysis on the
immune repertoire data: (1) analyses linking immune pro-
files of individual samples with their clinical status, for
example, finding CDR3 clones or Grouping of Lymphocyte
www.thelancet.com Vol 48 Month June, 2022
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Interactions by Paratope Hotspots (GLIPH) motifs
enriched in COVID-19 patients; and, (2) analyses per-
formed on sample pairs to model the similarity (overlap) of
their immune profiles with respect to the clinical status of
the two samples (Details see Supplement). To analyze the
overlap of the immun profils we compared two sample
media used (whole blood and buffy coat), calculated the
Gini index to examine clonal diversity and performed a
pairwise comparison of the shared clonal types using Jac-
card overlap.

Boxplots were produced using the default settings
in R. In all boxplots (e.g. Figure 1B and C,
Figure 1. Cohort characteristics. (a) WHO score subject distributio
severe 7−8. (b) Donors age distribution for all samples used in the s
The days since symptom onset, relative to sample collection timep
all boxplots (Figure 1B and C), the bottom and top of the box are Q
the middle of the box is Q2 (median, 50th percentile). The height o
and upper whiskers are determined according to the following equa
whisker ¼ min

�
maxðxÞ; Q3þ 1:5� IQR

�
Where x is the variable b
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Figure 2A−H, etc.), the bottom and top of the box
are Q1 and Q3 (25th and 75th percentiles), and the
black line near the middle of the box is Q2 (median,
50th percentile). The height of the box is the interquar-
tile range (IQR ¼ Q3� Q1). The lower and upper
whiskers are determined according to the following
equations:

Lower whisker ¼ max min xð Þ; Q1� 1:5� IQRð Þ

Upper whisker ¼ min max xð Þ; Q3þ 1:5� IQRð Þ
Where x is the variable being plotted.
n of 3−8 by severity category: mild 3−4, moderate 5−6, and
tudy, separated by healthy control and WHO severity groups. (c)
oint. Boxplots were produced using the default settings in R. In
1 and Q3 (25th and 75th percentiles), and the black line near

f the box is the interquartile range (IQR ¼ Q3� Q1). The lower
tions: Lower whisker ¼ max

�
minðxÞ; Q1� 1:5� IQR

�
Upper

eing plotted.
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Figure 2. Comparison of diversity metrics stratified by COVID-19 severity. (a) Cell count per ng input for PBMC samples. Severe samples have lower T/B-cell counts relative to mild and mod-
erate (p-value 0.08312). (b) Cell count per ng input for whole blood samples. Severe samples have significantly lower cells counts relative to healthy samples (p-value 9.23E-06) and mild sam-
ples (p-value 0.007937). c) IgH per ng in PBMC samples. IgH concentrations were similar across all severity groups. (d) TRD per ng in PBMC samples, TRD concentrations were significantly
lower in severe samples relative to mild (p-value 0.009778). (e) TRB per ng in PBMC samples. TRB concentrations were significantly lower in severe samples relative to mild (p-value 0.02562).
(f) IgH Gini index by disease and severity group. IgH Gini index was significantly higher across all COVID-19 samples compared with healthy donors (p-value 4.334E-17) but consistent across
mild, moderate, and severe groups. (g) TRD Gini index by disease and severity group. TRD Gini index was significantly higher across all COVID-19 samples compared with healthy donors (p-
value 2.204E-4), but consistent across mild moderate, and severe groups. (h) TRB Gini index by disease and severity group. TRB Gini index was not significantly different between COVID-19
samples relative to healthy (p-value 0.1112), and not significantly different between the groups. . Boxplots were produced using the default settings in R. In all boxplots (Figure 2A−H), the
bottom and top of the box are Q1 and Q3 (25th and 75th percentiles), and the black line near the middle of the box is Q2 (median, 50th percentile). The height of the box is the interquartile
range (IQR ¼ Q3� Q1). The lower and upper whiskers are determined according to the following equations: Lower whisker ¼ max

�
minðxÞ; Q1� 1:5� IQR

�
Upper whisker ¼ min

�
max

ðxÞ; Q3þ 1:5� IQR
�
Where x is the variable being plotted.
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Figure 3. Shared CDR3 in the IgH and TRD cell subsets differentiate mild and severe subjects. (a) IgH-TRD Jaccard overlap matrix.
Both IgH and TRD matrices were median normalized against each other. Positive values represent a greater proportion of shared
IgH clones and negative values represent a greater proportion of shared TRD clones. (b) Logistic regression was used to model the
odds ratio of non-zero vs zero overlap between pairs of samples from the IgH Jaccard overlap matrix. The model comprised different
COVID-19 severity groups, and compared them against a healthy-healthy baseline as indicated by the vertical dashed line. As dis-
ease severity increases, the odds of finding shared IgH clones also increases between COVID-19 individual pairs. (c) Logistic regres-
sion comparing the odds ratio of non-zero vs zero overlap between pairs of samples from the TRD Jaccard overlap matrix, for
COVID-19 severity groups compared against healthy-healthy background. As disease severity increases, the odds of finding shared
TRD clones decreases between COVID-19 individual pairs. (d) McFadden’s adjusted pseudo-R2 for different models in terms of the
association of COVID-19 clinical status (healthy, mild or severe) with sample covariates describing IgH-, TRB- and TRD- specific cell
counts and clonal overlaps. In forest plots depicting logistic regression results (Figure 3B and C), the open circles are point estimates
of odds ratios. The horizontal bars flanking them mark 95% confidence intervals of odds ratios.
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In forest plots depicting logistic regression results (e.
g. Figure 3B and C), the open circles are point estimates
of odds ratios. The horizontal bars flanking them mark
95% confidence intervals of odds ratios.
Patient recruitment and clinical evaluation
In total, 70 subjects recruited at the Charit�e Univer-
sit€atsmedizin Berlin (37 mild, 11 moderate, and 22
severe COVID-19 cases) were analyzed and compared
against a background cohort consisting of 47 healthy
individuals. To evaluate disease severity, the maximum
World Health Organization (WHO) clinical progression
score was recorded for each COVID-19 subject. Patients
who received medications known to have a relevant
effect on immune response, such as corticosteroids,
were excluded from this analysis to avoid potential con-
founders. All of the healthy control blood samples were
collected before the pandemic, providing high
www.thelancet.com Vol 48 Month June, 2022
confidence that those individuals were never exposed to
SARS-CoV-2 (Supplementary material).

Collection of blood samples and data survey from
patients with COVID-19 took place from March 2020 to
August 2020 at three sites of Charit�e Universit€atsmedi-
zin Berlin, Germany. Subjects were enrolled in the
emergency department/outpatient care facility, as well
as in COVID-19 wards and intensive care units (Table
S1). The diagnosis of a COVID-19 infection was con-
firmed by detection of SARS-CoV-2 viral ribonucleic
acid (RNA) in nasopharyngeal swabs using reverse tran-
scription-polymerase chain reaction (RT-PCR). Venous
blood samples were taken as part of clinical treatment
and stored permanently at �80℃.
Ethics approval
The ethics committee of Charit�e Universit€atsmedizin
Berlin, Germany (EA2/066/20) approved this study.
5
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All subjects were over 18 years old and provided their
consent to this study after verbal and written informa-
tion (Details see Supplement).
Role of the funding source statement and data access
The source of funding had no influence on the study
and no involvement into the interpretation of the
results. Dannenbaum Richard, Suwalski Phillip, Berka
Jan and Heidecker Bettina had full access to the data.
The decision to submit the manuscript was made jointly
by all authors. The manuscript was reviewed using the
STROBE checklist (companion file STROBE checklist).
Results
To evaluate disease severity, the maximum WHO clini-
cal progression score was recorded for each COVID-19
subject, independent of the time of the blood draw.
WHO scores (scale 3−8) were binned into three groups:
mild 3−4 (symptomatic, assistance needed, no oxygen
therapy), moderate 5−6 (oxygen therapy), and severe 7
−8 (intubated; Figure 1a). Since an individual’s adaptive
immune response also undergoes changes with respect
to age and time,14 disease groups were compared for dif-
ferences in age and time since symptom onset
(Figure 1b, c). Healthy controls were significantly youn-
ger compared to the COVID-19 cohort (median age of
29 and 61 years, healthy controls vs COVID-19, respec-
tively, Table S1). However, the age of COVID-19 subjects
was comparable among all disease severity groups
(Figure 1b). Samples from subjects with mild, moderate,
and severe COVID-19 covered a similar window of time
since the onset of symptoms (Figure 1c).

Using immunoPETE, we obtained an average of
6611,034 reads from 1687 ng of genomic deoxyribonu-
cleic acid (DNA) input, yielding 28,487 cells per donor
across 4 replicates (Supplementary Methods and Figure
S5). A total of 696,210 IgH cells, 92,593 TRD cells, and
2543,308 TRB cells were analyzed across all individuals.
ImmunoPETE incorporates a 9-nt unique molecular
identifier (UMI) sequence onto each molecule in the
first primer extension step of the method (Supplemen-
tary Methods). CDR3 clonal types are reported at single-
molecule resolution, determined by the clustering of
UMI & CDR3 sequence pairs together (Supplementary
NGS sequencing data analysis). In short, it is expected
that we have only one productive IgH, TRB or TRD rear-
rangement per cell which is identified by the presence
of the UMI families (reads clustering around a similar
UMI and CDR3 sequence pair). Therefore, the total
count of high quality UMI families is proportional to
the total number of recovered cells for each sample.

The genomic DNA source for the COVID-19 sam-
ples varied between whole blood and PBMC samples,
which have different B and T cell concentrations due to
the presence of non-VDJ cell types such as neutrophils
and macrophages in whole blood. Because immuno-
PETE specifically targets V-D-J rearrangements, we
compared the total cells per ng of PBMC and whole
blood samples separately (Figure 2a, b). Genomic DNA
from PBMC samples of subjects with severe COVID-19
showed a slight decrease in total cells recovered, but
was not significantly different compared to subjects
with mild disease (Figure 2a). Samples from subjects
with severe COVID-19 had significantly fewer total cells
recovered from whole blood compared with samples
obtained from subjects with mild clinical course or
healthy controls (p-value 9.23E-06, Figure 2b). Leukope-
nia and neutrophilia have been previously described in
COVID-19.5 Accordingly, we observed a decrease of lym-
phocytes in the total blood cell population, determined
as described above and in Supplementary Methods. IgH
cell type concentrations were consistent across all
COVID-19 severity groups (Figure 2c). However, TRD
and TRB cell type concentrations were significantly
lower in subjects with severe disease course compared
with mild COVID-19 (p-value 0.009778 and 0.02562
for Figure 2d and 2e, respectively). Such a reduction in
T cell frequency has also been previously reported.15

Together, these results indicate different B and T cell
numbers in subjects with mild and severe COVID-19.

To further investigate the combined B & T-cell
immune response, clonal diversity for each cell type
across all disease severity groups was analyzed
(Figure 2f−h). Clone diversity was calculated using the
Gini index, which represents the inequality of clone
fractions on a scale from 0 (diverse and equal) to 1 (clon-
ally expanded or unequal). All COVID-19 samples com-
bined showed an increase in IgH and TRD Gini index
compared with healthy samples (p-value 4.33E-17 and
2.204E-4 for Figure 2f and 2g, respectively), but no sig-
nificant increase was determined for TRB based on Wil-
cox t-test (p-value 0.1112 Figure 2h). There was no
significant difference in Gini index between mild, mod-
erate, or severe subjects across all cell types. IgH diver-
sity was also measured in the context of somatic
hypermutation (not shown). Change-O was used to clus-
ter IgH, defining the CDR3 lineage (Supplementary
Methods). Clustered IgH Gini index was increased in
the COVID-19 samples relative to the healthy donors
(Figure S2), indicating active somatic hypermutation in
response to SARS-CoV-2 infection.

To investigate the degree of clonal sharing between
individuals in this study, pairwise comparisons of
shared clonal types were performed by calculating the
total similarity using the Jaccard overlap index
(described in detail in the Supplementary Methods). We
explored the similarity of repertoire chain-specific
CDR3 sequences within and between cohorts via hierar-
chical clustering. The high-similarity block on the IgH
heat map comprised mainly severe and moderate
COVID-19 subjects, whereas the high-similarity block
on the TRD heatmap was populated by healthy controls
www.thelancet.com Vol 48 Month June, 2022
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and mild COVID-19 subjects (Figure S7). Because of the
opposite trends observed between IgH and TRD com-
partments with respect to disease state, hierarchical
clustering was repeated by subtracting IgH and TRD
similarity matrices (Figure 3a). This heatmap appears to
retain information from both individual heatmaps, indi-
cating the synergy of data from these two cell types for
contrasting healthy and mild to severe COVID-19 dis-
ease states.

The qualitative observations from hierarchical clus-
tering encouraged us to generate formal hypotheses
whose significance could be tested via confirmatory
analysis. We sought to check whether there was a signif-
icant association between the Jaccard overlap of two
samples and the cohorts that they belonged to. Due to
the high level of diversity in CDR3, many samples did
not share any common clonal types, resulting in a
sparse Jaccard overlap matrix with a high proportion of
zeros. This yielded a zero-inflated distribution for IgH
and TRD overlaps (Figures S8−10). One approach for
modeling zero-inflated data is a two-part model which is
carried out in the following steps: First, the probability
of a zero versus a nonzero response and the dependence
of this probability on the predictors is modeled using
logistic regression (response here refers to the Jaccard
overlap index between each pair of samples, and the pre-
dictor is the cohorts where the two samples belong to).
Second, the size of nonzero response values and its
dependence on the predictors is modeled in a regression
setting according to the distribution of the nonzero
component.16 After exploring the empirical distribu-
tions of the Jaccard overlaps using the Cullen-Frey
graphs, we applied a linear, a log-linear and a gamma
regression to model the nonzero components (Supple-
mentary Methods, Figure S8−10, Tables S3−5). The
results from the three models largely agreed in terms of
their main outcomes which are the significance of
effects (p-values) and the direction (sign) of difference
of overlaps between sample pairs coming from various
cohorts - compared to the baseline of control-control
sample pair. The distribution of TRB overlap was not
zero-inflated and therefore was not analyzed with logis-
tic regression. Logistic regression showed the probabil-
ity of nonzero overlap of IgH clonal types to be lowest
between pairs of healthy controls and highest between
COVID-19 samples (Figure 3a). Additionally, as
COVID-19 progressed in severity, an increase in shared
IgH clonal types was detected which was highest in sub-
jects with severe disease. This meant that it was more
likely to find shared clones between COVID-19 samples,
especially severe ones. Furthermore, if overlap was non-
zero (some shared clones were discovered (not shown)),
the magnitude of overlap (proportion of the shared
clones out of the sum of discovered clones in the two
samples) was likely to be higher among COVID-19
patients (Table S3, model 3). Conversely, the probability
of finding shared clones (nonzero overlap) of TRD
www.thelancet.com Vol 48 Month June, 2022
clonal types was highest in healthy controls and lowest
in COVID-19 samples (Figure 3b). Severe COVID-19
individual pairs had the lowest probability of shared
clones of TRD compared with all other sample pairs.
These results are consistent with the contention that a
common set of TRD clonal types exists within a healthy
immune repertoire, which upon severe infection is
recruited to target tissue.17−19 The regression results of
the TRD nonzero component (Table S4, model 2) did
not show a concordant trend; for example, the magni-
tude of overlap between “severe-severe” pairs was not
significantly different from “control-control” pairs
according to the best model for TRD (log-linear regres-
sion).

Differences in cell count may confound the similar-
ity analysis. It is more likely to find overlaps when com-
paring high cell count samples. Furthermore, the
seemingly anti-correlated relationship of IgH and TRD
overlaps with COVID-19 severity raises a question: Do
sequencing data from the three cell receptor types (IgH,
TRB and TRD) provide independent information, or
does having one of them make the others redundant?
To evaluate the potential confounding effect of cell
count and the possible redundancy of the three clonal
types, we compared the goodness-of-fit and information
content of several models incorporating all or different
subsets of variables describing IgH-, TRB- and TRD-
specific overlaps and cell counts. Details of the model
selection analysis are provided in Supplementary Table
S2. Figure 3d identifies the model containing cell count
and overlap information from all three clonal types as
the best model: It has the lowest Akaike information cri-
terion (AIC, not shown) and the highest McFadden’s
adjusted pseudo-R2. Both of these parameters measure
the goodness-of-fit of the model penalized by complexity
(number of predictors) − they favor the most informa-
tive model with the fewest predictors. Our results pro-
vide three key conclusions: (1) The effect of cell count
(repertoire size) is strong and should be incorporated in
any analysis of immune repertoire similarity. (2) A
higher overlap measure is not a mere artifact of larger
cell counts: the best model of clinical status incorporates
both classes of predictors. (3) None of the three clonal
types becomes redundant by including one or two of the
others. The best model according to both metrics (AIC
and McFadden’s adjusted pseudo-R2) is the one with
overlap and cell count measures from all three. This
finding emphasizes the benefit of using an inclusive
strategy of sequencing three different cell types as com-
pared to one or two.12,20−26 Moreover, sequencing IgH,
TRB and TRD cells in one assay means that their clone
counts are internally normalized with respect to one
another.

TRB T cells were also compared for the rate of clonal
sharing, but with low sample sizes, the possible effect
of HLA types on the analysis makes the exact interpreta-
tion difficult. Nonetheless, there appears to be fewer
7
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shared TRB clones in COVID-19 subjects with the
severe disease course (Figure S7b), which is also illus-
trated in Figure 2E as a drop in TRB concentration.

Although we did not find significant differences in
clonality associated with disease severity, we further
compared severity groups for the presence of common
clonal types. Indeed, multiple literature reports have
focused on discovery and functional characterization of
SARS-CoV-2 reactive antibodies and T-cell receptors
recently.12,23,27−32 Since neither isolation of SARS-CoV-
2 antigen specific B- or T-cells during sample prepara-
tion, nor characterization of paired heavy-light receptor
chains at single cell level were in scope of this study, we
sought to compare the presence of common clonal types
that might distinguish mild from severe disease. Shared
clonal types do not need to be exclusively SARS-CoV-2
specific, instead we hypothesized that mild and severe
COVID-19 could be determined by a mixture of antigen
driven responses, whether they are SARS-CoV-2 reac-
tive, hyper-inflammatory, or auto-immune driven.33

Shared clonal types, significantly enriched in either the
COVID-19 subject cohort or in healthy controls are pre-
sented in Figure 4A. A total of 30 clonal types were sig-
nificantly enriched in the COVID-19 cohort with a p-
value of 0.01 or less. The list of clones and the associ-
ated p-values from the enrichment test are provided in
Table S6. Regarding non- HLA-restricted clonal types, a
profound enrichment of common TRD clones distin-
guishing healthy controls, and common IgH clones dis-
tinguishing COVID-19 individuals, was determined
consistent with the analysis in Figure 3 (Figure 4b).

We also searched for, and identified a few COVID-19
specific clonal types which might differentiate mild and
severe subjects, using all COVID-19 enriched clones
with a p-value of 0.05 or less (Figure 4c). Furthermore,
the ab T cell response was analyzed employing enriched
patterns instead of full length CDR3 and matching V/J
genes. The enriched patterns were identified within the
CDR3 region using GLIPH2.22 We observed a distinct
pattern in a group of clusters that were enriched in dif-
ferent COVID-19 severity groups (severe vs. mild)
(Figure 4d and Supplement). In combination, these
results show that differences in antigen responses are
observed between mild and severe COVID-19 disease.
Discussion
Our results illustrate the dynamic interplay between
three lymphocyte cell types during active COVID-19 dis-
ease in infected individuals when compared to healthy
controls. Mild and severe disease patterns differ based
on their receptor repertoire measures across all three
cell types obtained from unsorted peripheral whole
blood. BCR repertoire clonal focusing reflects an active
antibody response against viral antigens. TRB repertoire
diversity metric remained unchanged across study
cohorts. TRD repertoire diversity decrease observed in
the diseased subjects is in agreement with previous
reports on gamma-delta T cell role in viral infections.34

Our method allowed for individual lymphocyte type cell
enumeration by counting UMI-tagged clonotype clus-
ters. We observed reduction in T cells with disease
severity increase, whereas B cell numbers were compa-
rable in different COVID-19 severity groups. Analysis of
clonal type repertoire overlap demonstrated additional
differences between severe and mild COVID-19 and the
clonotypes that they share. COVID-19 clinical status
(healthy, mild or severe) correlated with sample covari-
ates describing IgH, TRB- and TRD- specific cell counts
and clonal overlaps.

Detection of repertoire sharing of both BCR and TCR
clonotypes based on convergent receptor evolution dur-
ing the immune response against SARS-CoV-2 antigens
was possible due to efficient capture of all three types of
immune receptors from one undivided DNA sample,
thus minimizing experimental biases. Other studies
have highlighted the need to apply statistical modeling
to quantify the degree of clonotype sharing.12 Our
approach, modeling zero-overlap inflated data, detected
the most overlap in the IgH compartment, the least
overlap in the TRD repertoire, and likely due to the
unknown HLA genotypes, no significant overlap of TRB
clonotypes. Large scale efforts to map HLA Class I and
II restricted SARS-Cov-2 epitopes and corresponding
specific cluster of differentiation 4 (CD4) and CD8
TCRs are under way.13,35

Our study reports results from a broad, comprehen-
sive adaptive immune receptor repertoire molecular clo-
notyping of COVID-19 disease subjects. An effective
immune response against this novel coronavirus
requires a coordinated adaptive immune response
which includes CD4 and CD8 alpha-beta T cells, B cells,
as well as gamma-delta T cells. Severe COVID-19 dis-
ease may be a result of disrupted, overt and chaotic
immune response. Our findings demonstrate differen-
ces encoded in the immune repertoire determining dis-
ease severity that can best be described by a model
incorporating measures across all three cell types. Each
of the three lymphocyte subtypes functions by different
immunological mechanisms. Therefore, it is reasonable
to speculate each will have an independent role in shap-
ing the immune response in COVID-19, driving pheno-
typic differences between mild and severe disease. The
observed opposite trends of repertoire overlap between
B (IgH clonotypes) and gamma-delta T-cells (TRD clo-
notypes), evident from the clustering and logistic regres-
sion results, seem to reflect the known fact that these
immune cells are active in different tissues and via sepa-
rate response mechanisms. The regression-based meth-
ods we used for Jaccard overlap index can be applied to
the analysis of any measure of immune repertoire simi-
larity or distance between sample pairs. They comple-
ment other published statistical methods that start from
CDR3 sequences and depend on accurate estimation of
www.thelancet.com Vol 48 Month June, 2022



Figure 4. CDR3 clonotypes across all 3 chains distinguish COVID-19 vs Healthy and Severe vs Mild. (a) Volcano plot of CDR3 clono-
types shared between the Healthy and COVID-19 subjects. Significance of overlap in the Healthy or COVID-19 cohorts was deter-
mined by randomization. For each clone,% shows the percentage of samples in the healthy or COVID-19 cohort in which that clone
was detected (prevalence of the clone in that cohort). X axis shows the difference in the prevalence of each clone in the COVID-19
cohort and the healthy cohort. (b) Volcano plot comparing IgH and TRD enriched clonal types alone. TRD clonal types are dispropor-
tionately enriched in healthy samples while IgH clonal types are disproportionately enriched in COVID samples. (c) Analyzing COVID-
19 enriched clones (p-value < 0.05) for differences between mild and severe, using Fisher’s exact test. A few TRB clones were found
to be significantly enriched in mild and severe samples. (d) Summary of GLIPH2 motifs identified, differentiating mild and severe
samples. “%” indicates a position in the global pattern that allows amino acid variants.22

Articles
clone frequencies. The very high diversity as well as
both temporal and spatial variability of immune reper-
toire, rendering even biological samples taken from the
same subject substantially different, means that strong
and definitive clinical insights will be difficult to expect
from any single study with tens or even hundreds of
participants. One solution to mitigate this problem is to
move beyond exact amino acid sequences and infer
structural and functional features of the receptor
sequences − which are more likely to be conserved
across subjects and over time. The GLIPH2 analysis
presented here is an example, but much more research
effort is required to improve the efficiency of
www.thelancet.com Vol 48 Month June, 2022
computational methods for predicting binding affinity
and immunizing functionality of antibodies and TCRs.

The authors acknowledge several limitations of the
present study, namely missing HLA typing, small size
of the cohort with mild symptoms as well as limitations
in sequencing depth per sample. Furthermore, we real-
ize the lack of longitudinal data points for each disease
subject, which would allow for insights into the dynam-
ics of B- and T-cell clonality patterns during the onset of
infection, disease progression, and recovery. Such sam-
ples were difficult to obtain within the routine clinical
setting during the pandemic early phases and future
research should be pointed in that direction.
9
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Molecular characterization of the adaptive cellular
immune response to novel viruses is essential to enable
translation of the knowledge to clinical applications. Diag-
nostic evaluation of past and present exposure to SARS-
CoV-2, disease severity prognostication, and quantitative
measures of levels and duration of both B and T cell
immunological memory are some of the clinical applica-
tions potentially enabled by repertoire sequencing. Identifi-
cation of B and T cell responses against immunogenic
viral epitopes has implications in vaccine and antibody
drug design. While similar research goals have been
addressed by multiple published studies, clinically relevant
insights have been limited due to small cohort sizes and
the dearth of longitudinal samples.12,25,36−38 The continu-
ing collective efforts of scientists investigating receptors of
the adaptive immune system to accumulate more reper-
toire data will in the future allow meta-analysis and the
building of more powerful predictive models. One applica-
tion of such models will be to use repertoire data to antici-
pate the susceptibility and strength of immune response of
subjects to various diseases, in the same way that genomic
data is used today to assign disease risk to certain variants.

Our study, while discovery in nature, points towards
the future of repertoire sequencing based diagnostics:
NGS enables deep, sensitive detection of rare receptor
clonotypes from randomly sampled blood lymphocytes.
Extracted lymphocyte genomic DNA is an ideal speci-
men for routine clinical use due its stability upon long
term storage, and our UMI-tagged repertoire libraries
containing unbiased representation of all three receptor
chain amplicons further reduces experimental noise
and simplifies laboratory and bioinformatic processes.
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