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1  |  INTRODUCTION TO SINGLE 
CELL TECHNOLOGIES

From the onset of Next Generation Sequencing technol-
ogies, many research groups and then companies started 
to develop protocols for amplification of minute amounts 
of nucleic acids to accommodate the needs of research 
projects with limited input material. The detection sensi-
tivity of these assays quickly arrived at the single cell level, 
which enabled researchers for the first time to resolve the 
genetic and transcriptional heterogeneity of cell types and 
cellular states in complex tissues with sequencing- based 
methods.1– 3 The tremendous benefits for research areas 
from cancer genomics to developmental biology became 
obvious when these approaches developed from ultra- low- 
input protocols for few single cells to highly scalable assays 
that enabled the investigation of the (patho- )physiology 

of complex organ systems.4– 6 A recent review article on 
single cell technologies applied to the human kidney7 
highlights the enormous impact on research in the field 
of physiology. Here, single cell technology- based studies 
are reviewed that dissect the genetic programs, pathways, 
and mechanisms of cellular crosstalk underlying physio-
logical kidney development and function, as well as the 
changes that occur in different pathological conditions. 
Driven by international efforts and concerted initiatives,8 
numerous innovations have contributed to a vast increase 
in throughput, sensitivity and scope, and in the meantime, 
a vast range of genomic, transcriptomic and epigenomic 
read- outs have become accessible at the single cell level 
(Figure 1).

Below, we will highlight some of the major technolog-
ical concepts at the foundation of what is now known as 
the single cell multi-  ‘Omics field.
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Abstract
Single cell multi-  ‘Omics and Spatial Transcriptomics are prominent technologi-
cal highlights of recent years, and both fields still witness a ceaseless firework of 
novel approaches for high resolution profiling of additional omics layers. As all 
life processes in organs and organisms are based on the functions of their funda-
mental building blocks, the individual cells and their interactions, these methods 
are of utmost worth for the study of physiology in health and disease. Recent 
discoveries on embryonic development, tumor immunology, the detailed cellu-
lar composition and function of complex tissues like for example the kidney or 
the brain, different roles of the same cell type in different organs, the oncogenic 
program of individual tumor entities, or the architecture of immunopathology in 
infected tissue are based on single cell and spatial transcriptomics experiments. 
In this review, we will give a broad overview of technological concepts for single 
cell and spatial analysis, showing both advantages and limitations, and illustrate 
their impact with some particularly impressive case studies.
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Common to all concepts is the labeling of nucleotide 
molecules from an individual cell with short artificial 
DNA sequences, representing the “cellular barcode”, 
followed by deep sequencing. However, the different 
concepts show a reverse correlation of throughput and 
sensitivity9 (Figure 2) which also shapes the applications 

they are mainly used for (Table 1). Tools exist that can 
help with decision making on study design concerning 
sample size and number of cells (e.g., How Many Cells 
| Satija Lab). During subsequent bioinformatic analysis, 
cells are clustered based on the similarity of their molec-
ular profiles to identify cell types, states and trajectories. 

F I G U R E  1  Cellular features accessible by single cell and spatial ‘Omics methods.
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F I G U R E  2  schematic view on single cell technological concepts and the associated throughput and resolution/sensitivity (cells are 
depicted in orange and beads in blue). (A) the split&pool approach of the combinatorial indexing concept assembles, one after one, index 
combinations that are unique for individual cells circumventing the need for compartmentalization. (B) droplet- based barcoding partitions 
single cells together with a barcoded gel bead in oil droplets where the cDNA synthesis takes place. (C) microwell- arrays partition cells 
together with uniquely barcoded microbeads that capture cellular mRNA for reverse transcription ad subsequent cDNA amplification. (D 
and E): The concept of assay miniaturization in nanowell arrays or plates down- scales library preparation protocols to finally generate one 
individual sequencing library per cell.
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While some excellent reviews provide detailed insights 
into the wealth of available bioinformatic tools and anal-
ysis strategies,10 we will here focus on the molecular 
techniques.

2  |  CONCEPT OF ASSAY 
MINIATURIZATION IN PLATES

The oldest approaches for sequencing of RNA or DNA 
from individual cells simply resemble miniaturized ver-
sions of bulk library preparation protocols combined 
with different techniques of pre- amplification. Here, cells 
are first isolated via microdissection, pipetting, or more 
commonly cell sorting into 96-  or 384- well plates, with 
the advantage that cell lysates can be stored at −80°C and 
kept safely for months until the project is ready to pro-
ceed. The released nucleic acids then undergo PCR-  or 
IVT- based amplification and barcoding reactions, with 
adjusted enzyme mixes and reduced reaction volumes, 
which decreases NGS library preparation costs per cell 
to less than one- tenths compared to bulk protocols. Since 
one individual NGS library is generated per cell, plate- 
based procedures are quite labor intensive compared to 
later methods, and the number of available indices pro-
vided by the adapter system limits the throughput or 
at least the number of pooled single- cell- libraries that 
can be sequenced together and thus the potential scale 
of projects. However, despite the tremendous increase 
in cell numbers in later single cell omics approaches, 
plate- based methods are far from obsolete and new vari-
ations still appear on a regular basis. Their major ad-
vantage is an unmatched sensitivity (unique molecules 
detectable per cell, e.g., for mRNA ~100 k/cell, Figure 2), 
high flexibility, and the possibility of further biophysi-
cal fractionation for multi- omics approaches.11– 14 Some 
of the (unwanted) complexity of the cell suspension can 
be easily reduced by flow cytometry, and many assays 
like the profiling of genomic copy number variations 
or genome- wide DNA methylation require comparably 
deep sequencing data (in general several Gb/cell), which 
makes larger cell numbers cost- prohibitive anyways. No 
special equipment (other than a flow cytometry device) 
or major upfront investment in consumables is presup-
posed but the usage of a reliable liquid handler is help-
ful, as dispensing of volumes of few μl or even below 1 μl 
is unadvisable to do manually, especially for 384- well 
plates. Todays “gold standard” of plate- based transcrip-
tome sequencing are the protocols from the SMART- Seq 
(“switching mechanism at 5’ end of RNA template”) 
family,15,16 with Smart- seq 317 and its modifications18– 20 
being the newest family members that also introduce a 
unique molecular identifier to eliminate PCR duplicates T
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and can achieve a detection sensitivity of more than 10 k 
genes per cell. While the more scalable concepts de-
scribed below usually detect the 3´end of polyadenylated 
RNA, SMARTseq offers full- length coverage of tran-
scripts, making isoform detection possible. As an exam-
ple, full length SMARTseq has been used in a project by 
Booeshaghi et al to identify specific isoform markers for 
different cell types in the mouse cortex. Used in conjunc-
tion with spatial RNA capture and gene- tagging methods, 
this enabled the inference of spatially resolved isoform 
expression. In a comprehensive analysis of 6160 mouse 
primary motor cortex cells, the authors provide exam-
ples of isoform specificity and isoform shifts that would 
have been masked in sc 3´mRNA analysis. Additionally, 
they showed that isoform specificity helps to further re-
solve cell identities, and that a multi- platform analysis of 
single- cell transcriptomic data leveraging multiple assay 
types provides a comprehensive atlas of transcription in 
the mouse primary motor cortex that improves on the 
possibilities offered by any single technology alone.21

As mentioned above, the plate- based concept also 
enables multi- omics via physical fractionation. Splitting 
cytoplasm and nucleus, or capturing poly- A transcripts 
from whole cell lysate, enables parallel transcriptome and 
genome or methylome sequencing from the same cell to 
obtain a functional read- out of (epi)allelic variation.22 
Cytoplasm can also be split for parallel profiling of miRNA 
and mRNA in the same cells to study post- transcriptional 
regulation.23 Single cell ChipSeq24,25 has been demon-
strated as well, and numerous variations of plate base- 
assays exist that have been described in detail elsewhere.26 
Multiomics assays are summarized for all major concepts 
in Table 2.

3  |  CONCEPT OF PICO/NANO/
MICROWELL- PLATES AND ARRAYS

Several commercial solutions have been introduced that 
use specialized equipment and dedicated kits for further 
miniaturization of single cell RNA- seq reactions, enabling 
parallel processing of thousands of cells. ICell 8 (Takara) 
uses a nanowell- chip with predispensed barcoded adapt-
ers in which scRNA or scATAC- Seq library prepara-
tion is conducted, while Seq- Well39 (commercialized by 
Honeycomb), GEXSCOPE chemistry (Singleron) and BD 
Rhapsodie (BD Biosciences) use arrays of microwells that 
can each accommodate a magnetic bead with covalently 
attached barcoded DNA primers for reverse transcription 
of mRNA. Since the cell barcodes are introduced already 
at the RT step, they are independent from the final library 
index, which facilitates sample multiplexing during se-
quencing. While cell sorting can be used to preselect viable 
cells, or to enrich for rare cell types, a cell sorting device 
is not a requirement as the procedures start from cellular 
suspensions of a defined concentration. The number of 
cells per well then follows a Poisson distribution, which 
means that cell counting needs to be as exact as possible 
and remaining duplicates need to be controlled by visual 
inspection under a microscope and/or with bioinformatic 
correction. While these commercial solutions achieve 
a considerable increase in cellular throughput, in some 
cases matching the output of droplet- based barcoding ap-
proaches (see below), they offer less flexibility in terms of 
multi- omic approaches and sometimes require an initial 
investment in laboratory equipment (e.g., BD Rhapsodie 
or ICell 8 systems) which is not the case for plate- based 
and combinatorial indexing approaches. However, most 

Concept
Combination of 
read- outs Protocol examples

Combinatorial 
indexing

scRNA + scATAC sci- CAR,27 SNAREseq2,28 CoTECH,29 
SHAREseq,30 Paired- seq31

scRNA + scChIPseq Paired- Tag32

scRNA + scGenome sci- L3- RNA/DNA33

scGenome + scHiC s3GCC34

Droplet- based scRNA + scATAC Multiome (10x genomics), SNAREseq35

scRNA + scATAC + 
epitopes

TEAseq,36 DOGMAseq37

scRNA + epitopes CITEseq38

scATAC + epitopes ASAPseq37

Plate- based scRNA + scATAC + 
scMethylome

scNMTseq11

scRNA + scGenome G&Tseq13

scRNA + sc- miRNA SMALLseq23

T A B L E  2  Road map for single cell 
multi ‘Omics
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assays can be combined with protein detection from the 
same cells via barcoded antibodies, and some specialized 
applications such as detection of metabolically labeled 
RNA are commercially only available in this format.

4  |  CONCEPT OF DROPLET- BASED 
BARCODING

In 2015, a major technological advance enabled scaling 
of scRNA- seq reactions to thousands of cells. Key to the 
concept was to encapsulate cells in microdroplet emul-
sions together with enzymes and beads that carry bar-
coded adapters for reverse transcription.40 Here, each cell 
is captured inside a reaction volume in the sub- nanoliter 
range, in which the nucleic acid amplification and barcod-
ing is performed, representing an extreme version of the 
miniaturization approaches described above, although 
the higher scalability of droplet- based approaches comes 
with slightly reduced detection sensitivity (Figure 2). The 
barcoded beads can either be magnetic with adapaters co-
valently linked to the bead surface for mRNA capture, or 
dissolvable to release RT primers into the nanoliter reac-
tion volume of the droplet, enabling more efficient reverse 
transcription.

The microfluidics used for droplet generation are sensi-
tive to clogging and put upper limits on the maximum cell 
size, but with the growing use of isolated nuclei also cells 
naturally larger than 40 μm in diameter can be processed 
without this risk. Some cell types however, like for exam-
ple neutrophils, are known to be sensitive to the micro-
fluidics procedure and subsequently underrepresented in 
the data. Both variable sensitivity as well as cellular sizes 
are known to cause biases in the observed proportions of 
cell types which is probably the major disadvantages of 
microfluidic systems. While open- source platforms are 
available,35,36,40– 42 droplet- based sequencing is usually car-
ried out with the use of commercial devices and dedicated 
kits. The number of devices placed in individual labs is 
dramatically increasing, making the droplet- based con-
cept the most widely used and the most accessible. Cell 
sorting is not mandatory, but often used to remove debris 
and dead cells, or to pre- enrich rare cell populations of 
interest. Since the cellular barcode is introduced during 
RT as part of the oligo(D)T capture oligo, only the 3´ends 
of transcripts are read out during short read sequencing. 
However, several groups have performed long- read se-
quencing of cDNA from droplet- based approaches and 
provided bioinformatic solutions that enable isoform de-
tection from this data.43,44

Main Vendors for commercial solutions are dolomite 
bio (Nadia instrument), Illumina/BIO- RAD (ddSEQ), 
mission bio (tapestri, only for a targeted genomic 

approach), and 10x Genomics45 (Chromium). The latter 
already includes a wide portfolio of additional omics lay-
ers and multi-  O‘mics solutions (T&B- cell receptor reper-
toire, CRISPR screens, CITEseq,38 scRNA+ scATACseq,46 
Table 2). Disregarding the infrastructure investment, the 
cost for the droplet- based approach is less than one tenth 
compared to the plate- wise approach in the range of few 
cents per cell. One excellent example how droplet- based 
RNAseq can be used for the generation of broad gene ex-
pression atlases is the work of Büchler et al. describing 
fibroblast lineages in health and disease. In this study, 
fibroblast atlases were constructed by integrating single- 
cell transcriptomic data from about 230 000 fibroblasts 
across 17 tissues and several disease states. Two universal 
fibroblast transcriptional subtypes were identified across 
tissues. The analysis suggested that these cells can serve 
as a reservoir that can yield specialized fibroblasts across 
a broad range of steady- state tissues and activated fibro-
blasts associated with pathogenicity in cancer, fibrosis, 
arthritis and inflammation.47

5  |  CONCEPT OF 
COMBINATORIAL INDEXING

Single cell combinatorial indexing (sci) was first pub-
lished in 2015 for a chromatin accessibility approach,48 
circumventing the need for compartmentalization of 
individual cells and therefore paving the way for al-
most unlimited throughput. Here, nucleic acids are 
tagged with cellular barcodes inside permeabilized 
cells in a multiwell plate, each well providing a differ-
ent barcode. Cells from all wells are then pooled and 
redistributed across the next multiwell plate for tagging 
with a second barcode (Figure 2). This procedure is per-
formed several times to label the cells with individual 
barcode combinations. The last barcode contains the 
PCR handle for library amplification as in the plate-
  or droplet- based approaches.49,50 The final combina-
tion of barcodes has a high probability to be unique for 
a single cell. After a (significant) initial investment in 
manufactured oligos, the processing costs per cell are 
comparably low (<1 cent/cell). This concept has been 
applied to many modalities like chromatin accessibil-
ity,48,51 chromatin conformation,52,53 genome sequenc-
ing,54 transcriptomes,50,55– 57 methylomes,58 scChiPseq27 
and also several multi ‘O'mics approaches27– 33 (Table 2). 
Since the procedure involves a series of enzymatic reac-
tions, each of them not 100% efficient, initial iterations 
of the concept provided only shallow information that 
was limited to several hundred UMIs per cell (Figure 2). 
In addition, much of the sequencing effort is wasted on 
aggregates of nuclei and incomplete cellular barcodes. 
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Of all concepts presented here, combinatorial index-
ing is also the one with the lowest cell recovery rate 
(<10%), which makes it only useful for projects with 
non- limited cell numbers. The absence of a “barcode- 
white- list” and many incomplete and therefore not at-
tributable barcodes make this concept bioinformatically 
particularly challenging. However, especially for devel-
opmental studies on whole organisms the enormous 
throughput excels the lower resolution. Most published 
studies are based on homebrew protocols, but first com-
mercial products are already entering the market (Parse 
Biosciences; SCALE Biosciences) and promise a sub-
stantial increase in sensitivity.

As an impressive example, Cao et all. Investigated 
the transcriptional dynamics of mouse organogenesis at 
single- cell resolution. Using the concept of combinatorial 
indexing, they profiled the transcriptomes of around 2 
million cells derived from 61 embryos staged between 9.5 
and 13.5 days of gestation. The resulting ‘mouse organo-
genesis cell atlas’ provides a global view of developmental 
processes during that time frame. Hundreds of cell types 
and 56 trajectories could be identified, many of them only 
detectable because of the depth of cellular coverage, and 
collectively defining thousands of corresponding marker 
genes.59

6  |  INTRODUCTION TO SPATIAL 
TECHNOLOGIES

While single cell omics approaches can provide an over-
view over the cell types and states that reside in a tissue, 
the function of complex tissues strongly depends on the 
correct positioning of their cells in space. Cells in local tis-
sue microenvironments display distinct molecular prop-
erties and gene expression programs that enable them to 
exert their specific physiological functions, and at the same 
time shape their local niche via juxtacrine and paracrine 
signaling and intercellular interactions. The importance of 
this complex spatial organization becomes apparent when 
tissue architecture is disrupted in disease contexts like in-
fections, inflammatory processes or cancer. Accordingly, 
changes in tissue architecture have long been used as diag-
nostic read out in histopathology, supported by molecular 
detection methods like in situ hybridization or immuno-
histochemistry. However, these methods only provide 
snapshots of a low number of transcripts or proteins per 
experiment. In the last decade, a host of new methods have 
been introduced that promise more comprehensive read 
outs of spatial gene expression patterns, paving the way for 
a molecular understanding of 3D tissue homoeostasis and 
of the pathogenic mechanisms that disturb cellular organi-
zation in disease settings.

Spatial omics technologies fall into two major cat-
egories: 1) NGS- based methods like laser capture mi-
crodissection (LCM) and spatial barcoding (SB), and 2) 
imaging- based methods like in situ hybridization (ISH) 
and in situ sequencing (ISS) (Figure 3). Each concept has 
its distinct advantages and disadvantages with respect to 
sensitivity, coverage, spatial resolution, labor intensity, de-
pendency on specialized equipment, and data integration, 
and no single method currently excels at each of these as-
pects. The right choice of method therefore depends on 
the sample type and biological question at hand (Table 3).

7  |  CONCEPT OF LASER CAPTURE 
MICRODISSECTION (LCM)

In LCM, a UV or IR laser beam is used to cut out and cap-
ture areas from mounted tissue sections on special glass 
slides for further processing. The first successful attempts 
to obtain untargeted transcriptomic read outs from LCM 
samples date back to the late 1990s, when several groups 
integrated laser capture microdissection (LCM) with IVT 
and cDNA microarrays.60,61 LCM has since been used in 
hundreds of studies and numerous biological systems 
and disease contexts and still remains the most widely 
used spatial technique,62 likely due to the availability of 
commercial LCM systems in core facilities. While most 
of LCM- based studies assay hundreds to thousands of 
cells per selected tissue area, LCM- RNAseq has recently 
achieved single cell resolution.63– 68 LCM has also been 
employed to profile additional modalities like DNA meth-
ylation, revealing for example the epigenetic basis of liver 
zonation69. Sequencing data from serial whole tissue sec-
tions has been used to reconstruct 3- dimensional gene ex-
pression maps in Zebrafish embryos and Drosophila.70– 72 
Despite its widespread usage, LCM remains labor inten-
sive and requires specialized equipment for sample collec-
tion. The potential throughput of LCM is also hindered by 
the difficulty to automate the necessary selection of cells 
or tissues areas for analysis. In addition, isolation of intact 
RNA can be challenging after the required tissue fixation, 
sectioning and dehydration steps.

Very recently, a variation of optical microdissec-
tion has been introduced with the Nanostring GeoMX 
spatial profiler, in which unique barcodes are released 
from hybridization probes or conjugated antibodies in 
selected tissue areas by UV irradiation and then read 
out by NGS for multiplexed protein and RNA profiling.73 
The detection sensitivity is still lower compared to LCM, 
so that distinct tissue areas or groups of at least 20 or 
200 cells have to be selected for protein or RNA analy-
sis, respectively. Integration with other data types can 
help to overcome this limitation. Jerby- Arnon et al. for 
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instance combined two different scRNAseq approaches 
with ChiP- Seq and spatial gene expression profiling via 
the GeoMx platform, to characterize the genetic and im-
mune mechanisms that shape the oncogenic programs 
in synovial sarcoma, which enabled them to uncover 
a malignant subpopulation of sarcoma cells in immu-
nodeprived niches.74 The compatibility with FFPE 
material, large field of view, multiplexed protein and 
transcriptome profiling capability, and easy integration 
of the NGS read out with pre- existing omics data have 
the potential for more widespread application of this 
technology to clinical samples, especially for analyses 
that do not require true single cell resolution. It should 
be noted, however, that also here distinct tissue areas 
need to be selected for analysis during the instrument 
run, necessitating a clear understanding of the tissue 

histology, and the availability of fluorescent labeled an-
tibodies that specifically highlight the tissue regions or 
cells of interest.

8  |  CONCEPT OF ARRAY- BASED 
METHODS /  SPATIAL BARCODING

NGS- based acquisition of spatially resolved gene expres-
sion information across whole tissue sections, without the 
need to manually preselect areas of interest, was first re-
ported in 2016 as Spatial Transcriptomics.75 Here, tissue 
sections are placed on a glass slide carrying an array of 
spatially barcoded oligo(d)T- capture probes. After metha-
nol fixation and H&E staining, the tissue is permeabilized, 
and the released polyadenylated transcripts are captured 

F I G U R E  3  schematic view on the major spatial technology concepts. (A) In laser capture microdissection, selected tissue areas are cut 
out using a UV or infrared laser and transferred to a collection tube for nucleic acid amplification and library preparation. (B) In array- 
based technologies, tissue sections are mounted on a glass slide with pre- printed capture arrays of spatially barcoded oligo(d)T oligos. Upon 
tissue lysis, polyadenylated RNAs are captured by the oligo(d)T sequence and reverse transcribed on the slide. cDNA is then collected and 
amplified for library preparation and deep sequencing. Sequence reads can eventually be mapped back to their initial spatial coordinates 
via the spatial barcode. (C) In smFISH, fixed tissue sections are incubated with panels of gene specific hybridization probes, followed by 
serial hybridization and imaging of fluorescent readout probes. (D) In ISS, gene specific padlock probes are hybridized to RNA or cDNA 
in situ, closed by ligation and amplified with rolling circle amplification. The DNA circles are then detected with secondary fluorescent 
hybridization probes or decoded by SBL.

LCM/GeoMX Arrays smFISH

amplification NGS

read-out probe hybridization + Imaging *N

ISS

RCA

SBL + imaging

Primary probe
hybridization

amplification

NGS

cDNA mRNA

Oligo dT
spatial barcode

(A) (B) (C) (D)

T A B L E  3  Main spatial technology concepts

LCM Arrays Single molecule FISH
In situ 
sequencing

Sensitivity ++ (+)a + +++ + (++)d

Resolution Subcellular (100 cells)b 50 μM (5 μM)c Subcellular Subcellular

Panel size Whole transcriptome Whole transcriptome Thousands Hundreds

Automatization Yes No (in development) Yes Yes

Note: a+bGeoMX; cVisium HD; dXenium.



8 of 14 |   CONRAD and ALTMÜLLER

and reverse transcribed on the slide surface. The cDNA 
is then amplified and converted into NGS libraries. Since 
the spatial address of each barcode is known, the loca-
tion of each transcript can be reconstructed from the se-
quencing data. Commercially available capture slides 
(10X Genomics Visium) currently have a spot diameter 
of 55 μM with 100 μM distance, meaning that one spot 
usually accommodates multiple cells. However, a version 
with 5 μm spots is under development and expected to be 
released in 2022. Nevertheless, even smaller spots only 
provide local transcript counts that potentially overlap 
with more than one cell as the thickness of sections as a 
third dimension as well as lateral diffusion of transcripts 
after permeabilization needs to be considered. To partially 
overcome this limitation in resolution, a growing number 
of bioinformatic solutions exist for integration with single 
cell RNAseq data from the same tissue, matched sample, 
or ideally adjacent section, which enables the mapping of 
cell- types and states to distinct spot locations and greatly 
leverages the power of array- based assays.76– 81

Since its inception, several research groups have re-
ported variations of the concept, including the use of mi-
crobead monolayers instead of spotted barcode arrays,82,83 
and the repurposing of next generation sequencers to gen-
erate such arrays.84,85 The resulting capture arrays have 
unmatched spatial resolution of just 0.5 –  1 μM, approach-
ing subcellular resolution. A capture area of >40 cm2 has 
been generated, although practical application to large 
sample areas such as whole human brain tissue sections 
remains to be demonstrated. Besides high cost, the biggest 
limitation of commercially array- based solutions is still 
the robustness of the library preparation itself. In current 
workflows, tissue sections have to be mounted directly 
on the capture arrays, and the tissue quality and section-
ing greatly impact on the success of the experiment. In 
addition, lysis conditions have to be optimized individ-
ually for each tissue type. Recently, commercial capture 
slides for FFPE samples have been introduced to provide 
access to the vast trove of archived clinical samples, and 
an automated device for the transfer of pre- existing FFPE 
sections to capture arrays has been released, enabling 
prior selection of optimal sections based on H&E or an-
tibody staining, which might help to overcome some of 
these limitations. An impressive example for array- based 
methods was published by Boyd et al., who used a droplet- 
based assay for scRNAseq- Seq in combination with spa-
tial transcriptomics to investigate the immunopathology 
of acute respiratory distress syndrome in a mouse model 
of acute influenza infection. They were able to identify a 
population of hyperactivated fibroblasts in the lower re-
spiratory tract that secrete matrix metalloproteases for 
remodeling of the local microenvironment upon viral 
infection. Spatial transcriptomics enabled them to locate 

that population in areas of interstitial inflammation in the 
distal airways, where fibroblast induced tissue remodel-
ing and cytokine release lead to robust immune cell in-
filtration at the expense of lung function. Strikingly, the 
authors also highlighted the significance of these findings 
in a clinical setting, where the observed levels of Adamts4 
in the lower respiratory tract of human intensive care pa-
tients were strong predictors of prolonged multiple organ 
dysfunction syndrome, prolonged acute hypoxic respira-
tory failure, and fewer ventilator- free days.86

9  |  CONCEPT OF IMAGING- BASED 
TECHNOLOGIES

Imaging- based approaches provide the reverse trade- off 
between sensitivity and gene throughput compared to 
capture arrays, offering subcellular and single molecule 
resolution with high detection sensitivity, but mostly re-
stricted to targeted gene panels. In situ hybridization of 
fluorescently labeled complementary probes has been used 
in the last 40 years to visualize gene expression in tissue 
sections,87 and the sensitivity of the approach was greatly 
enhanced with the advent of single molecule FISH,88,89 in 
which multiple fluorescent probes are hybridized to the 
same target to enable the quantitative measurement of 
transcript counts. Adaption of the method to histological 
samples paved the way for an understanding of spatial tis-
sue organization and homeostasis at unprecedented res-
olution, which the authors first showcased in a detailed 
analysis of stem cell dynamics in the mouse small intes-
tine90,91 The fluorescent signal can be further enhanced by 
amplifier probes that form tree- like structures on a single 
target- specific hybridization probe,92,93 an approach that 
was commercialized in 2012 as RNAscope.94 RNAscope 
allows the parallel detection of small numbers of genes 
in FFPE sections, and automatization of the labeling and 
imaging procedure enabled profiling of ~50 genes in the 
mouse somatosensory cortex from adjacent tissue sec-
tions.95 Alternatively, probes can be stripped after imaging 
to perform additional rounds of hybridization.96

In the last decade, multiplexed versions of single 
molecule FISH have been developed that enable si-
multaneous profiling of hundreds and even thousands 
of genes in parallel. The key innovation was the use 
of combinatorial labelling strategies where individual 
transcripts are repeatedly probed in different colors 
to increase the number of transcripts that can be read 
out with a limited number of available fluorophores. 
Initially, this entailed the simultaneous hybridization 
of probes with different fluorophores along individual 
transcripts, which in combination with super resolution 
microscopy enabled the parallel profiling of 32 genes in 
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yeast.89 Shortly afterwards, the same group introduced 
seqFISH, in which probes are stripped off by DNAse 
treatment after imaging, and additional rounds of hy-
bridization greatly increase the number of possible color 
combinations.97 Subsequent iterations of seqFISH im-
proved the sensitivity and specificity of the assay, which 
enabled multiplexed detection of hundreds of genes in 
the same tissue section.98,99

A major step towards imaging- based profiling of en-
tire transcriptomes was the design of gene- specific probes 
with custom barcode sequences, which are recognized by 
secondary fluorescent probes in subsequent hybridization 
rounds. This approach was first introduced by MERFISH 
and enabled the generation of theoretically unlimited 
barcode combinations, irrespective of the length or se-
quence of the target RNA.100 In the first implementation 
of MERFISH, a series of 14 hybridization rounds enabled 
the multiplexed detection of 1000 genes cells with ~80% 
detection efficiency.100 MERFISH was later combined 
with expansion microscopy to reduce the fluorescent sig-
nal density, which enabled profiling of 10 000 genes in 
tissue culture cells.101,102 In the meanwhile, the signal to 
noise ratio of MERFISH has been further improved by ad-
ditional tissue clearing103 and branched DNA amplifica-
tion of read out probes, providing close to 100% detection 
efficiency.104

A similar approach is used by SeqFISH+ which has 
been used to assay 10 000 genes in the mouse cortex, sub- 
ventricular zone, and olfactory bulb with 47% detection 
efficiency.105

The work of Zhang et al impressively demonstrates 
how even a medium sized panel of 258 genes can be used 
in MERFISH to obtain highly resolved spatial maps of 
complex tissues, in this case for the mouse primary motor 
cortex. Identification of 95 neuronal and non- neuronal 
cell clusters across 300 000 cells, enabled them to resolve 
the laminar fine structure of excitatory and inhibitory 
neurons within cortical layers. The authors finally demon-
strate how the integration of MERFISH measurements 
with retrograde fluorescent labelling can be used to trace 
the projection patters of neurons and resolve the complex 
network of interactions between neuronal clusters and 
their target regions.106

While single molecule FISH and especially RNAscope 
are widely used as validation tools, highly multiplexed 
FISH methods have still not spread far beyond the inven-
tor's laboratories. However, with the advent of commercial 
automated platforms that are currently close to market re-
lease or in early access programs, these technologies will 
soon become available to a larger audience of researchers 
and core facilities. While not all technical specifications 
have been released by the time of writing, all automated 
platforms will enable parallel profiling of hundreds of 

genes with the option for multiplexed protein detection. 
Considerable efforts have been made by the developers to 
improve data processing and cell segmentation, and all 
solutions deliver single cell gene expression matrices that 
can readily be integrated with NGS- based data sets.107,108 
Important differences may lie in the capacity for parallel 
slide processing, and in the time needed for slide read- out, 
which can take several days and thus substantially limit the 
potential throughput. It is also important to note that all 
automated imaging- based systems still require extensive 
manual sample processing for probe hybridization and an-
tibody staining prior to probe read- out in the instrument. 
Successful FISH experiments are highly dependent on a 
large number of technical factors,109 and accordingly great 
efforts are being made by commercial suppliers to provide 
optimized protocols and probe designs. Benchmarking 
the robustness of these approaches for a diverse range of 
primary tissue samples that may have gone through dif-
ferent fixation and storage conditions will be an important 
task during the implementation of the first generation of 
highly multiplexed FISH- based instruments.

10  |  CONCEPT OF IN SITU 
SEQUENCING

An alternative imaging- based approach is in situ sequenc-
ing of transcripts directly in the tissue. This was first 
demonstrated in 2013, when it was used to profile the ex-
pression of 31 genes in breast cancer tissue.110 In the first 
iteration of the approach, transcripts were reverse tran-
scribed in situ and gene- specific padlock probes were then 
hybridized to the target cDNAs. The nick in the padlock 
probes is closed by ligation, or by a DNA polymerase, and 
the circularized probes are amplified to DNA nanoballs by 
rolling circle amplification. Sequencing by ligation is then 
used to read out a 4 nt barcode on the padlock probes, or 
the 4  nt gap sequence. Signal amplification reduces the 
number of required padlock- probes per gene to ~5, which 
means that smaller genes or isoforms can be probed. At the 
same time, while the padlock probe design confers high 
specificity, the sensitivity of in situ sequencing is much 
lower compared to single molecule FISH, and the number 
of genes that can be detected simultaneously is limited to 
several hundred due to the size and diffusion of the DNA 
nanoballs. However, like other spatial technologies, in 
situ sequencing- based methods are still rapidly evolving. 
Several studies presented variations of the workflow, such 
as direct hybridization of padlock probes to mRNAs,111,112 
stabilization of the DNA nanoballs by crosslinking,113,114 
additional tissue clearing and the use of a hybridization- 
based barcode read- out115,116 all with the aim to increase 
sensitivity and throughput.
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The tremendous power of combined scRNAseq and 
spatial profiling over time has recently been showcased by 
La Manno et al117 By sampling the embryonic mouse brain 
each day between embryonic day E7 and E18, the authors 
identified more than 800 cellular states that together de-
scribe a developmental program for the major functional 
elements of the brain. The authors then mapped the 
spatial expression of key developmental genes via ISS to 
reveal how neuronal progenitors are spatially organized 
during patterning of the nervous system.

All of the above- described imaging- based methods rely 
on predesigned panels of gene- specific detection probes. 
However, already in 2014 fluorescent in situ RNA sequenc-
ing (FISSEQ) was introduced with the aim of untargeted 
transcriptome profiling.118 Here, transcripts are reverse 
transcribed in situ with random hexamer containing prim-
ers, and cDNAs are then circularized and directly sequenced 
by SBL. Although the original version of FISSEQ was very 
inefficient and time consuming, the concept has recently 
been combined with expansion microscopy and additional 
sequencing of the amplicons ex situ, which greatly im-
proved sensitivity and accuracy of the approaches.118.

So far, only ISS has been applied in a larger number of 
publications outside of the inventor's laboratory. However, the 
first commercial platform will be introduced in 2022 under the 
name Xenium, using direct binding of padlock probes followed 
by limited rolling circle amplification and hybridization- based 
barcode read out from the resulting DNA nanoballs. Initial 
panels are expected to target up to 500 genes, but the numbers 
are projected to increase in the future. As for the highly multi-
plexed FISH- based methods, the initial sample processing and 
primary probe hybridization are still manual, and thorough 
benchmarking will be required to compare the robustness of 
the workflow for different source materials.

11  |  OUTLOOK

Single cell and spatial omics technologies are still evolving 
at a rapid pace, and additional commercial platforms are 
continuously entering the market. Provided that the low 
sensitivity of the initial combinatorial indexing workflows 
can be overcome by the recently launched commercial 
solutions, the number of addressable cells can be drasti-
cally increased due to their virtually unlimited scaling ca-
pacity. At the same time, higher throughput versions of 
droplet- based approaches have been demonstrated,50 and 
the number of addressable cells can also be scaled up by 
increasing the surface area of microwell chips, eventually 
shifting the practical limitation of single cell ‘Omics ap-
proaches to the subsequent sequencing cost.

At the same time, spatial methods will likely witness 
a similar increase in addressable modalities as has been 

seen for single cell approaches. While the first commercial 
platforms enable simultaneous RNA and protein profil-
ing, additional modalities such as open chromatin detec-
tion has recently been demonstrated and can be expected 
to become accessible to a wider range of potential users 
in the future.119 In addition, recent proof of concept stud-
ies have utilized combinatorial indexing approaches for 
spatial profiling, which might mature into commercially 
available automated solutions in the future.120

A major challenge that we have not covered in this re-
view concerns the steps that precede and follow the actual 
measurements: the availability of high- quality input mate-
rial might be the biggest hurdle when aiming for informa-
tive single cell or spatial data. The way how input material 
is obtained, stored, and processed has a major impact on 
the quality and composition of cell suspensions or tissue 
sections, and will influence the observed transcriptional 
states, e.g., because of prior cellular stress. Especially valu-
able will be workflows for fixation and storage of tissues 
or cell suspensions that are compatible with downstream 
protocols, which would facilitate the collection and simul-
taneous processing of large sample cohorts. Ideally, also 
the upstream processing of tissue sections for spatial anal-
ysis prior to the final read- out step may become automized 
in the future, which would greatly facilitate access to users 
outside specialized labs and core facilities.

Single cell-  and Spatial O‘mics analysis brings clinicians 
closer to the bench, as the quality requirements for input 
material are high and the precise planning and scheduling 
of experiments is therefore of utmost importance.

Bioinformatic analysis needs to account for biases and 
background noise and, especially, the bioinformatic inte-
gration of multiple samples or omics layers requires ex-
pertise far beyond standard next generation sequencing 
analysis. For deep analysis and interpretation, a team of 
experts from different fields is therefore needed.

One additional challenge or limitation we face are the 
still enormous costs of single cell experiments –  much 
more projects would be feasible if these experiments 
would be more affordable and a possible translation to 
diagnostics seems to be prohibitive with current costs. 
How can library preparation costs be reduced? Similar 
to the increase in throughput from plates to micro/nano/
pico wells to droplets to combinatorial indexing concepts 
(Figure 2), the volume, in which the biochemical reactions 
take place, shrinks up to the cellular volume itself. Low re-
action volume goes along with low consumable costs and 
if combinatorial indexing strategies improve in sensitivity 
and flexibility, these will probably gain in importance.

The rapid pace of single cell-  and Spatial ‘Omics, and 
especially their combination and integration, will tremen-
dously enhance our understanding of life processes in 
cells, organs and organisms in the years to come.
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Maybe that's what he had in mind:

“Progress in science depends on new tech-
niques, new discoveries and new ideas, 
probably in that order.” —  Sydney Brenner, 
Nobel Prize laureate 2002 for medicine and 
physiology.
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