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Abstract

Spatial sequencing methods increasingly gain popularity within RNA biology studies.

State-of-the-art techniques can read mRNA expression levels from tissue sections and at the

same time register information about the original locations of the molecules in the tissue.

The resulting datasets are processed and analyzed by accompanying software which,

however, is incompatible across inputs from different technologies. Here, we present

spacemake, a modular, robust and scalable spatial transcriptomics pipeline built in

snakemake and python. Spacemake is designed to handle all major spatial transcriptomics

datasets and can be readily configured to run on other technologies. It can process and

analyze several samples in parallel, even if they stem from different experimental methods.

Spacemake’s unified framework enables reproducible data processing from raw sequencing

data to automatically generated downstream analysis reports. Moreover, spacemake is built

with a modular design and offers additional functionality such as sample merging, saturation

analysis and analysis of long-reads as separate modules. Moreover, spacemake employs

novoSpaRc to integrate spatial and single-cell transcriptomics data, resulting in increased

gene counts for the spatial dataset. Spacemake is open-source, extendable and can be

readily integrated with existing computational workflows.

Introduction

Tremendous advances during the last decade led to high-throughput single-cell RNA

sequencing technologies (scRNA-seq) that became the state-of-the-art for dissecting cellular

heterogeneity within tissues. Spatial transcriptomics sequencing (STS) technologies present

a further vital development that allows the assignment of single molecules to spatial

positions, thus obtaining coordinates of gene expression. When spatial resolution is high

enough to discern individual cells, this enables the identification of cell types and their
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interactions in spatial context. Spatial information is crucial in studying cell-cell

communication mechanisms within the native tissue context and can yield new insights in

disease states [1]. Recently published array-based methods are able to retain spatial

information at different resolutions. Slide-seq (and Slide-seqV2) operates with 10μm beads

that are evenly and randomly distributed on a 2D surface termed “puck” [2,3]. This size

roughly corresponds to single-cell resolution. Other methods, such as spatial transcriptomics

or the commercially available 10X Visium, work with a grid of 100μm diameter spots,

regularly placed on a square glass (with 200μm distance between the centers), or 55μm

diameter spots with 100μm distance between the centers, respectively [4,5]. These methods

usually capture between 1-10 cells per spot, depending on the cellular density of the studied

tissue. In more recent publications, high-definition spatial transcriptomics recovers gene

expression at 2μm spatial resolution [6], while MiSeq Illumina flowcells were used to

sequence mouse colon and liver tissues, achieving subcellular spatial resolution [7].

Fluorescent RNA labeling methods also achieve very high, often subcellular resolution, but

operate on only a pre-selected panel of genes and are hence restricted to targeted studies of

gene expression [1,8,9].

Akin to a technological revolution that took place with the advance of RNA-seq and

scRNA-seq, we anticipate STS techniques to become invaluable for better understanding

biological processes and mechanisms that lead to diseased states. Dissection of a tumor’s

transcriptional heterogeneity is a prime example. Tumor progression is an intricate process

that involves the coexistence of several cell types within the tumor, such as immune cells,

native tissue cell types and abnormally growing tumor cells. While scRNA-seq can accurately

identify different cell types and their transcriptional programmes, all spatial information

regarding the cellular communication across cell types is lost. This information is critical to

characterize spatial interactions within the tumor microenvironment and identify the

mechanisms that create suitable conditions for the further progression of the disease, such

as angiogenesis and hypoxia.

The various array-based STS methods differ not only in their experimental

procedures, but also in the data they output and the associated software provided to

process and analyze the raw data. Therefore, researchers who wish to take advantage of

multiple methods need to get acquainted with several computational pipelines that operate

with different logic and output structures. Such a situation can be time-consuming,

perplexing, and can lead to the accumulation of errors when alternating between the

different methods. There are a few computational processing tools available to date, namely

the spaceranger from 10X [5], the ST pipeline [10] and slideseq-tools [2,3,10]. These tools,

however, were developed for one specific STS technology (ST-pipeline and spaceranger for

Visium and slideseq-tools for Slide-seq datasets), and are therefore not accommodating

different types of data. Furthermore, they lack a unified framework to enable simultaneous

processing of many different samples. Finally, they lack additional functionality, such as

sub-sampling or merging of samples, integration of scRNA-seq with spatial datasets or
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support for troubleshooting of sequencing library construction by using long-read

sequencing (Table 1).

Table 1. Comparison of spacemake with other published spatial transcriptomics pipelines.

Here, we present spacemake, a unified computational framework for analyzing

spatial transcriptomics datasets produced with Visium, Slide-seq, Seq-scope or any other STS

technology. Importantly, spacemake performs data processing and downstream analysis in

the same way, resulting in uniform reports and quality metrics that are easier to compare

and interpret across different technologies. This renders spacemake an excellent candidate

for multi-method projects. Apart from the standardized processing of raw data, spacemake

can perform additional analyzes which we organize in different modules: downsampling and

saturation analysis, merging of biological replicates, spatial reconstruction of scRNA-seq data

or merging of scRNA-seq and STS datasets by using novoSpaRc [11] and analysis of long-read

sequencing data for troubleshooting. Spacemake is written in snakemake [12] with a

back-end logic written in Python. It provides an-easy-to-use command-line interface,

through which it can be configured and run using a handful of commands. It readily works

with various types of array-based STS methods and allows diverse, user-definable processing

modes. Spacemake is versatile and can be used either as a new workflow, or be readily

integrated into existing pipelines. Finally, spacemake is open-source and freely distributed

through a Github repository.

Results

Spacemake processes different input data in a single workflow

Spacemake can handle different sequencing-based spatial-transcriptomic datasets, such as

those stemming from - but not limited to - Slide-seqV2, 10x Visium or Seq-scope. In
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particular, it processes raw data (Illumina basecalls or fastq files) in identical fashion,

regardless of the sequencing technology or the barcoding strategy of the spatial unit. As STS

methods differ experimentally, we employ throughout the text the term spatial unit to

describe the fundamental barcoded unit in space, e.g. beads, spots or clusters.

To allow for maximum flexibility, in spacemake each sample is associated with a set

of ‘sample variables’, namely: a ‘barcode-flavor’, at least one ‘run-mode’, a ‘puck’ and a

‘species’ (Methods). The ‘barcode-flavor’ describes the barcoding strategy, that is, how the

spatial unit barcodes and the unique molecular identifiers (UMIs) should be extracted from

Read1 and Read2. The ‘run-mode’ parameter contains several variables which describe how

the sample will be processed downstream and currently include: poly(A) and adapter

trimming, tissue detection, multi-mapping read counting, intronic read counting, barcode

cleaning, meshgrid creation and UMI cutoff (Methods). The ‘puck’ parameter allows the user

to specify the spatial dimensions and bead diameter size of the underlying STS assay. Lastly,

‘species’ is a pair of a genome fasta file and an annotation file, from which spacemake will

generate indices to be used later during mapping. After spacemake is configured and all

parameters are set for all samples, it can be run, producing a unified and structured output

for each sample (Sup. Fig. 1, Methods).

Overview of the spacemake pipeline

Spacemake processes each sample starting from raw reads, which can be either Illumina

basecalls, or demultiplexed fastq files. In the first case, spacemake demultiplexes the data

using Illumina’s bcl2fastq2 tool [13]. Once raw fastq files have been created, a custom

preprocessing script creates an unmapped BAM file: from each Read1, Read2 pair, a spatial

unit barcode (or Cell Barcode, CB) and a UMI will be extracted and attached to the

unmapped BAM file as CB and MI tags respectively. For each sample, this extraction is based

on the previously defined barcode-flavor. Read sequences in this unmapped BAM come from

Read2 sequences. Next, using Dropseq-tools [14] adapters and 3’ poly(A) stretches are

optionally trimmed from each read. Reads are then mapped with STAR [15] and by using

samtools [16] to input the unmapped BAM. After mapping, each read that maps to a gene

body will be assigned a gene annotation using the TagReadWithGeneFunction command of

Dropseq-tools. If the run-mode has multi-mapper counting turned on, spacemake will

process the mapped BAM file line-by-line, and out of all possible alignments keep at most

one alignment per read, to be counted later. Specifically, a multi-mapper is kept only if there

is exactly one alignment to a genic region and all others to intergenic regions. In this case,

the intergenic alignments are discarded. If a read aligns to multiple genes it is discarded.

Finally, the digital gene expression (DGE) matrix is created using the DigitalExpression

command of Drop-seq tools, with spatial unit barcodes used as whitelist (Sup. Fig. 1). After

the DGE matrix is created, each sample is automatically analyzed: data filtering and

clustering is done with scanpy [17] and the resulting data is saved as an hdf5 file. At the last

step, web-based reports are generated by using Rmarkdown [18] and knitr [19] (Methods).
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Figure 1. Spacemake produces uniform quality-control reports. (A) Histograms showing the number
of genes, reads, UMIs and reads/UMIs ratio per spatial unit. (B) Quality control metrics plotted in
tissue space. Top to bottom: number of genes, percentage of mitochondrial counts, reads/UMIs
ratios and Shannon entropy, all shown per spatial unit. (C) Nucleotide frequencies per barcode
position and quantile (segregated by the number of reads). (D) Shannon entropy and string
compression length of the sequenced barcodes versus the expected theoretical distributions.

Spacemake produces unified quality-control (QC) reports

Spacemake assesses the quality of each sample with multiple metrics. The commonly used

FastQC [20] tool is first optionally called to assess sequencing library quality by flagging

repetitive sequences, adapter content, GC bias, nucleotide composition and basecall

qualities among others. Then, each sample is mapped to rRNA with bowtie2 [21] to assess

the efficacy of poly(A) mRNA capture relative to abundant, contaminating ribosomal RNAs.

After these QC steps are run, a per-sample web-based QC report is generated (Fig. 1). In

particular, the number of genes, reads, UMIs and the reads/UMIs ratio are shown both as a

histogram over all barcodes (Fig. 1A) and in tissue space (Fig. 1B). Randomness underlies the

combinatorial complexity of the barcodes and is required for collision-free encoding spatial
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information. To assess the barcode randomness, a per-position nucleotide ratio is plotted,

separated into quartiles by read counts, together with the Shannon entropy and the string

compression length of the barcodes (Fig. 1C and 1D, Methods).

Spacemake can readily aggregate spatial units

In some cases, it is useful to join nearby spatial units, effectively trading spatial resolution for

statistical power by accumulating read counts (Fig. 2, Methods). This is particularly suitable

for irregularly-spaced data points, such as Slide-seq, or when the data stems from an STS

assay with subcellular resolution and is hence sparse, such as Seq-scope[7]. In addition, this

aggregation also facilitates the comparison of spatial technologies operating at different

resolutions, for instance Slide-seq and Visium.

In Seq-scope, for instance, ~800,000 barcodes spread out on a 1x1mm2 surface, so

that the underlying diameter of each spatial unit is smaller than 1μm and contains a very

low (not more than a few dozen) number of transcripts. To efficiently analyze such a sparse

dataset, it is practical to create a ‘meshed’ grid (meshgrid) in-silico, where the diameter of

each newly created spatial unit is 10μm, the approximate size of a eukaryotic cell.

Spacemake offers two types of meshgrids out of the box: (1) a Visium-style meshgrid, where

circles with a certain diameter are placed at equal distances from each other in a hexagonal

grid (Fig. 2A); (2) a hexagonal meshgrid, where equal hexagons are created on top of the

whole dataset, without holes in between (Fig. 2B). As the hexagonal meshgrid covers the

entire area, no counts are discarded. For both meshgrids, spatial units falling into the same

hexagon/circle are joined together and their gene expression counts are summed up (Fig.

2A,B).
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Figure 2. Spacemake seamlessly aggregates spatial units. (A) Spacemake can automatically create a
Visium-style mesh grid (55μm diameters in a 100μm distance; also user-defined) and further
processes the data mapped on this mesh. (B) Running on subcellular resolution datasets, such as
Seq-scope, spacemake utilizes mesh-creation to join sub-cellular diameter spots into a 10μm-side
hexagonal mesh. After the hexagonal mesh is created, downstream analyzes use it as input, e.g for
cell type identification. (C) The highest expressed gene for this adult mouse liver sample is shown.
Top right: raw-counts in the subcellular spots; bottom-right: counts assigned to hexagonal mesh cells.

Downsampling analysis reveals library complexity and depth saturation

To assess library complexity and if saturation has been reached in scRNA-seq or STS

experiments, a downsampling analysis is employed to estimate whether resequencing would

result in a higher number of molecular counts per spatial unit. In spacemake, saturation

analysis is implemented as a separate module (Fig. 3, Methods). First, the final BAM file is

subsampled to 10%, 20%,…, 90% of the total reads using sambamba [22], and for each ratio

a separate DGE matrix is generated. A saturation report is then compiled where median

metrics are plotted as a function of the downsampling ratio (Fig. 3A). From the linearity of

this curve it can be deduced that saturation has not yet been reached for this Seq-scope

sample, even at 109 sequenced reads. In addition to plotting the median values, spacemake
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also reports histograms for each downsampling ratio per spatial unit, showing the global

pattern rather than a single value per ratio (Fig. 3B, Sup. Fig. 4D).

Figure 3. Spacemake can readily downsample the data to perform a saturation analysis. (A) Median
number of reads, UMIs and reads/UMIs ratios per spatial unit are plotted against the downsampling
percentage. Saturation analysis reveals that this Slide-seq sample hasn't reached saturation yet, as
the median UMIs curve hasn't reached a plateau. (B) Density plots of a Seq-scope downsampled
dataset.

Spacemake can readily merge resequenced samples

Resequencing a library of sufficient complexity is a common practice to achieve higher

molecular counts. In these cases the original and resequenced dataset have to be joined

together, so that counts are quantified in the DGE matrix by properly removing duplicate

reads. In spacemake, this process is implemented in the sample merging module which

inputs the two separate, already processed datasets and joins them. Merging takes place at

the level of the mapped BAM files. The resulting merged BAM file is further processed

downstream, placing files in a new directory structure as if it was a separate sample.
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Spacemake offers a spatial reconstruction baseline of scRNA-seq data

Although spacemake is primarily designed to process STS datasets, it can also efficiently

process data produced by the more standardized and popular scRNA-seq technologies. By

now several pipelines exist for analyzing scRNA-seq data, for instance [23]. None of these,

however, aims at incorporating a spatial reconstruction to the analysis. For this, spacemake

utilizes novoSpaRc, a computational framework that reconstructs spatial information solely

from scRNA-seq data based on the hypothesis that cells which are spatially neighboring also

share similar transcriptional profiles [11,24]. Although novoSpaRc greatly benefits when a

reference atlas of gene expression is available, its de novo mode is powerful and can yield

insights into sub-structures of complex tissues, such as liver lobules, the intestinal

epithelium or the kidney [24]. Spacemake employs novoSpaRc to yield a basic spatial

reconstruction of scRNA-seq data that can serve as a baseline and can be used to derive

further insights (Fig. 4, Table 2, Methods). Applied to a dataset of an adult mouse brain, for

instance, spacemake recovers the basic structure representation of the mouse brain cortex

(Fig. 4A).

Table 2. NovoSpaRc modes offered by spacemake and their outcome based on data availability.

Spacemake can integrate scRNA-seq data to a spatial transcriptomics dataset

When both spatial and scRNA-seq datasets of the investigated tissue are available,

spacemake leverages novoSpaRc to integrate them. For this, the spatial dataset is regarded

as a reference atlas and the scRNA-seq transcriptomes are mapped onto the locations of the

spatial units. The integration of the two datasets leads to increased gene counts per spatial

unit for the spatial dataset (Fig. 4B). Importantly, spacemake is not restricted to a specific

technology but can utilize any spatial dataset as a reference atlas guiding the reconstruction.

This becomes especially useful for widely studied or stereotypical tissues for which spatial

datasets are already available, such as the adult mouse brain [25]. Mapping a publicly

available scRNA-seq dataset [25] onto an existing spatial dataset [26], for instance, results in

an enhanced number of genes per spatial unit (Fig. 4B). Furthermore, we observed that the

expression profiles of spatially informative genes (identified with Moran’s I algorithm using

squidpy’s spatial_autocorr function) become more distinct and more defined in space after

novoSpaRc integration (Fig. 4C). To quantify the number of genes that are expressed in
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Visium spots after novoSpaRc integration, we modelled the expression of each gene by using

a Gaussian Mixture Model with 2 components (Fig. 4D). Assuming that the lower (upper)

mode of the bi-modal distribution describes low-to-no (low-to-high) expression, we

calculated for each spot the number of genes expressed and compared it to the original data

(Fig. 4B,D).

Figure 4. Spacemake can integrate scRNA-seq and spatial transcriptomics datasets. (A) Mapping an
adult mouse brain scRNA-seq dataset with 30,000 cells onto an in silico created circular puck with
5000 locations reveals cortical layers. Tissue labels used: Thal, CA1, Hypoth, Ctx2, DentGyr, SScortex.
(B) Integrating the single-cell and spatial transcriptomics datasets increases the number of genes
quantified per spatial unit. (C) Expression of spatially informative genes as identified using squidpy.
NovoSpaRc integration (right column) results in smoother expression patterns compared to the
original ones (left column). (D) The bimodal distributions of gene expression are shown together with
the corresponding mean values. To arrive at the results of panel (B), the expression of each gene was
modeled with a Gaussian Mixture model with 2 components. For each spatial unit, only genes whose
expression was in the upper mode were counted.
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Spacemake can leverage long-reads to troubleshoot library construction

Generation of STS and scRNA-seq libraries can be challenging due to the low amounts of

RNA that may be captured from some samples. Especially when protocols are customized to

accommodate specific experimental goals and needs, we have found it helpful to investigate

our sequencing libraries by long-read sequencing. To this end, spacemake features a module

to automatically annotate tens of thousands of long reads against a user-provided reference

of expected adapter sequences and other oligo-nucleotides such as primers used during

library construction (Sup. Fig. 3, Methods). The module then groups these annotations into

recurring patterns of how these building blocks are arranged and provides an overview of

the relative contributions of each class of such arrangements to the library. This allows the

user to monitor cDNA integrity, for example from 10X Chromium beads (Sup. Fig. 3B,C), and

enables to detect and subsequently mitigate potential primer and TSO concatenations as

described in [27].

Spacemake has flexible run-mode settings

A major strength of spacemake are the user-defined run-mode settings. A run-mode is

created with the configuration command and provides complete control over how samples

using this run-mode should be processed downstream (Methods). Adapter- and

poly(A)-trimming can be turned on or off, and multi-mapper and intronic-read counting rules

can be set. As each of these settings produces different results (Fig. 4A,B), it is often

beneficial to initially run the analysis with several run-modes in parallel and then identify

robust and reproducible results.

To demonstrate spacemake’s flexibility, we compared it against spaceranger on a

publicly available adult mouse brain dataset [26]. We found that spacemake produced

identical results to spaceranger when poly(A) trimming is turned off, only exonic reads are

counted and multi-mapping read counting is turned on (Fig. 4A and Sup. Fig. 2).

Building on top of this flexibility in preprocessing and mapping, spacemake also

allows to cluster the data using different parameters and saves all clustering results in the

same automated analysis report (Fig. 4B). For the aforementioned dataset, higher clustering

resolution leads to more biologically meaningful regions identified: at resolution 1.2, for

instance, the pyramidal layer of the hippocampus separates into CA1/2, CA3 and the dentate

gyrus (Fig. 4C).
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Figure 5. Spacemake offers several processing modes and produces a unified downstream output.
(A) Spacemake can be run using several user-defined settings. Gene quantification depends on the
run mode set to include reads mapping only on exons; on both exons and introns; on exons and
intergenic regions; and whether the reads should be trimmed for poly(A)-tails and adapters. (B)
Comparison of spacemake run-modes with spaceranger. Different run modes result in different.
quantification with the highest correlation exhibited when only exonic reads are counted,
multi-mappers are included and no trimming is performed. (C) For each sample and run-mode,
clustering will be done on several resolutions. As we can appreciate, higher resolutions lead to more
definable structures in space, at resolution we see a separation in the cortical layers as well as
CA1/CA2, CA3 and the dentate gyrus

Spacemake provides automated downstream analysis

After processing is completed, spacemake performs a basic automated analysis of the data

(Methods). For this spacemake employs scanpy [17] and squidpy [17,28]. More specifically,

spacemake identifies cell types and their corresponding marker genes and plots them in an

automatically generated report. If the user defines multiple UMI cutoffs for performing the

downstream analysis, then multiple such reports are generated. For STS datasets in

particular, spacemake uses squidpy to generate a cluster-to-cluster neighborhood
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enrichment heatmap (Sup. Fig. 4C), to calculate co-occurrence of spatial units and predict

ligand-receptor interactions between spatial units.

We benchmarked spacemake against the results obtained in a Slide-seqV2 dataset

[3]. For this, we first generated a raw fastq file from the slideseq-tools processed BAM file

provided by the authors. Then, from the same file we created a DGE matrix using

Dropseq-tools [14]. Finally, using the raw fastq files as input we ran spacemake and

compared the results with the DGE matrix from the Slide-seqV2 BAM file. Spacemake

achieves very high correlation with the Slide-seqV2 data, with most beads having a

gene-gene correlation higher than 0.95 and the overall correlation being as high as 0.98

(Sup. Fig. 4B). Spacemake automatic clustering identifies spatially informative clusters, such

as the cortical region, mouse hippocampus pyramidal layer, dentate gyrus and thalamic

region, and the squidpy neighborhood enrichment analysis reveals spatial closeness of

pyramidal-layer and cortical neurons (Sup. Fig. 4C).

Spacemake is fast and scales with number of reads

Spacemake is fast, scalable and supports multithreaded processing. To benchmark

spacemake, we processed the publicly available adult mouse 10X visium data using both

spaceranger and spacemake. We observed that when using 6 cores, spacemake is 1h faster

than spaceranger while producing the same results (Sup. Fig. 5A). Spacemake also scales

well with the number of reads: for the Slide-seqV2 sample with 70 million reads, total run

time was just over 1h, while 1 billion Seq-scope reads took 18 hours to process (Sup. Fig.

5A,B). Moreover, spacemake can run several samples in parallel. For a single sample,

spacemake requires 4 cores minimum to run, so that with 8 or 12 cores several samples can

be processed together, thus starkly reducing the average running time per sample.

Discussion

As spatial sequencing technologies become increasingly available, the existence of robust,

reproducible bioinformatics pipelines is of paramount importance. Here, we present

spacemake, a comprehensive computational framework that efficiently analyzes spatial

transcriptomics datasets stemming from different technologies. Spacemake is extendable,

scalable and provides a complete solution from processing of raw data, over several quality

controls and automated reports all the way to advanced downstream analyzes. Spacemake’s

core strength is the unified processing of different data types, rendering it highly suitable for

projects that use multiple methods. Spacemake is open-source, freely available and can be

smoothly integrated with other packages that perform downstream analysis [28].

Spacemake is highly modular. It currently contains modules for downsampling and

saturation analysis, sample merging, a baseline spatial reconstruction of scRNA-seq datasets

and analysis of long-reads, and can be readily extended to add more functionality. Moreover,

spacemake is versatile enough and can be used to analyze not only spatial transcriptomics

datasets, but also scRNA-seq data. To demonstrate spacemake’s capabilities, we have used it
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to process and analyze Slide-seqV2 and 10X Visium datasets, showing that spacemake

accurately reproduces the processed data of the two technologies. We further illustrated

how spacemake can  integrate scRNA-seq and STS datasets by employing novoSpaRc.

It should be noted that currently, spacemake processes and analyzes sequencing

data, but not imaging data. Some spatial transcriptomics techniques, however, require to

register the barcodes of the beads or spots in space by imaging. In a companion paper, some

of us present a complete computational framework for efficiently handling such datasets,

called Optocoder [32]. Spacemake can be readily integrated with Optocoder or similar

methods.

Finally, it would be useful to extend spacemake to handle different types of data, e.g.

protein expression or chromatin state. As novel techniques that provide diverse molecular

readouts from the same cell are being constantly developed, it will be essential to possess a

unified framework that can process the different data modalities. We plan to extend

spacemake to accommodate such datasets in the future.

Methods

Run-mode settings

For each sample one or multiple ‘run-modes’ are defined to describe how spacemake should

process it downstream. Each run-mode has a name and several parameters: automatic

tissue detection (on/off), poly(A) and adapter trimming (on/off), intronic read counting

(on/off), multi-mapping read counting (on/off), data meshing (on/off), number of expected

barcodes, UMI-cutoff, DGE matrix cleaning (on/off). Each of these parameters are set

through the command line. Currently, spacemake offers the following run-modes out of the

box: scRNA_seq, visium, slide_seq and seq_scope, with parameters corresponding to each

technology.

Data preprocessing and mapping

The publicly available datasets were obtained as described in the data availability section

below. FastQC (v0.11.9) was used to assess sequencing quality and a Python custom script

was used to retrieve the cellular barcodes and UMIs for the different read structures

(Visium: R1[1-16] for the spot barcode and R1[16-24] for the UMI and cellular barcodes;

Seq-scope: R1[1-20] for the bead barcode and R2[1-9] for UMI; Slide-seq: R1[1-14] for bead

barcode and R2[15-23] for UMI). During the barcode and UMI retrieval an unmapped BAM

was created where each R2 sequence was tagged with the correct cell-barcode and UMI.

Poly(A) and adapter trimming

If poly(A) and adapter trimming is switched on for the current run-mode, the 3’ ends of

reads are trimmed for poly(A) and overlapping user-defined adapter stretches. This
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processing is performed with the functions TrimStartingSequence and PolyATrimmer of

Drop-seq tools (v2.4.0) for poly(A) and adapter trimming respectively.

Mapping and gene tagging

Alignment to the genome was performed with STAR (v2.7.9a) using the unmapped BAM as

input and under the default parameters. The following genomes and annotation files were

used: mm10 & M23 and were downloaded from Gencode. Gene tags were added with the

function TagReadWithGeneFunction of Drop-seq tools.

Multi-mapping read counting

Multi-mapping reads were counted using a custom python script which parsed the

read-name sorted (STAR default output) final BAM line-by-line. For each read name,

maximally one read was kept. If a read mapped to several genomic locations - but only one

exonic region - this exonic-mapping read was kept and the rest were discarded. If a read

mapped to several exonic locations it was removed altogether. During parsing, each kept

read was flagged as primary, and the parsed output (now containing at most 1 read for each

multi-mapper) was piped into the DigitalExpression of Dropseq-tools, which was run with a

MAPQ=0 filter, to ensure multi-mapper inclusion.

DGE creation

Once the aforementioned steps are run, the DGE matrix is generated. If the provided dataset

contains a list of spatial barcodes, it is used as a ‘whitelist’. Otherwise, snakemake uses the

n_beads parameter of the current run-mode to select the top n_beads number of barcodes

with the highest read count using the BamTagHistogram function of Dropseq-tools. Finally,

the DGE matrix is generated using either the ‘whitelist’ of spatial barcodes or the top

n_beads barcodes.

DGE barcode cleaning

For a user-defined set of primers, spacemake can optionally discard barcodes that overlap

with any of these primers. This is controlled by the clean_dge parameter of a run-mode.

When set to true, the following barcodes are removed: (1) barcodes that have at least 4nt

overlap with any of the primers in the 3’-end; (2) barcodes that have an at least 7nt overlap

with any of the primers, anywhere in the barcode itself. If selected, this step is run before

generating the DGE matrix.

Tissue detection

For the samples that was required, spacemake performed tissue detection as follows: first,

for each spatial unit its neighboring spatial units were computed. For 10X Visium that is

straightforward, as the data points lie within a hexagonal grid. For irregular grids such as

Slide-seq datasets, we created a meshgrid and then quantified the spatial unit
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neighborhoods. This resulted in the generation of contiguous areas. The largest contiguous

area was then considered to be under the tissue.

Automated downstream analysis

For downstream analysis the text based DGE matrix was first parsed line-by-line using a

custom python script to create a sparse matrix (Compressed Sparse Column), and cast as an

AnnData object, and finally saved in h5 format to ensure minimal space. Then, the standard

scanpy single-cell workflow followed with default parameters. We selected the top 2,000

highly variable genes and 40 principal components to use for clustering using the leiden

algorithm [29] and lower-dimensional representation with UMAP [30]. Each sample was

clustered using the scanpy.tl.leiden functions and for several resolution values. Cell type

markers were identified with the rank_genes_groups function. For STS datasets squidpy was

used by running the built-in squidpy.gr.spatial_neighbors function. Spatial co-occurrence was

computed with squidpy.gr.co_occurrence and the ligand-receptor analysis with

squidpy.gr.ligrec.

Meshgrid creation

We created the mesh grids in silico using the numpy.mesh function. For both grids

(Visium-style and hexagonal), a rectangular grid was first created with spot_distance_um

(spacemake parameter - user definable) horizontal distances and sqrt(3) * spot_distance_um

vertical distances. This mesh was then duplicated and spatially translated, so that the result

of the two meshes was a mesh where the distance between any two neighboring points was

exactly spot_distance_um. For the Visium-style mesh we joined beads which fall into any

circle (with mesh points as circle centers) with a diameter of diameter spot_diameter_um.

For the hexagonal mesh we calculated the distance between each spatial unit in the data

and the mesh-points, and for each spatial unit we selected exactly one mesh point, the one

with the minimum value.

Downsampling analysis

Downsampling analysis was done by first splitting the final BAM file into different

percentages with sambamba (v0.6.8). Then the downsampled BAM files were fed into the

same processing pipeline described above for further analysis.

Spatial reconstruction with novoSpaRc

The de novo spatial reconstruction of the adult mouse brain scRNA-seq data was done with

novoSpaRc (v0.4.3) and by using the default parameters and a circular disk as a target space.

The top 100 highly variable genes were selected for the reconstruction. For the spatial

reconstruction with markers, the corresponding Visium dataset was used to first create a

reference atlas. The top 200 highly variable genes were first obtained (both from Visium and

single-cell datasets) and 195 of them remained after intersecting them. Reconstruction was

done with novoSpaRc and with parameter alpha=0.5.
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Long-read analysis

The cDNA molecules should contain specific oligo-nucleotide building blocks in the right

places, in addition to mRNA sequence and (parts of) the original poly(A) tail. Spacemake first

aligns a catalog of such building blocks (SMART primer handles, poly(T), Template Switch

Oligo, Illumina sequencing adapters, etc.) via local Smith & Waterman to each read. These

alignments are then analyzed jointly for each long read and condensed into “signatures”

which identify the presence/absence and relative ordering of each building block. Finally, the

observed signatures are counted, compared systematically against the expected signature

(for example: P5, bead_start, poly(T), N70X for a DropSeq bead-derived Illumina library) and

the following diagnostic plots are generated: graphical breakdown of the library by

signatures, zoom-in on bead-related features, mismatch and deletion analysis, as well as

histograms of start/end positions for each part of the expected signature. We acquired the

publicly available data as described below and every 250th read was selected and analyzed

with the spacemake.longread module using the ‘chromium’ longread-signature.

QC reports

QC plots were created with custom R scripts based on the ggplot2 package (v3.3.5). The

automatically generated QC sheets were created with a custom Python script that collected

the plots into a single pdf file. The Shannon entropy for each spatial unit barcode BC was

calculated using the following formula:

𝐻
𝐵𝐶 

=  −
𝑛∈𝐵𝐶

∑ 𝑓(𝑛,  𝐵𝐶) * 𝑙𝑜𝑔
2
(𝑓(𝑛,  𝐵𝐶)),  

where is the relative frequency of a nucleotide in barcode . The length of𝑓(𝑛,  𝐵𝐶) 𝑛 𝐵𝐶

string compression for a spatial unit barcode was calculated the following way: first the

barcode BC was compressed (such that AAACATTA becomes 3A1C1A2T1A) and then the

character-length of this compression representation was returned. The observed values

were compared against theoretical values as follows: random barcodes were first generated

for each sample and their Shannon entropy and string compression were then computed.

The number of random barcodes generated was always the same as the number of real

barcodes, for all samples.

External DGE processing

Spacemake offers the possibility to process external count data. In this case, instead of

starting from the raw data, the sample is processed downstream from the DGE matrix

creation. Spacemake will perform the automated analysis and clustering and generate the

corresponding reports.

Code availability and requirements

Spacemake is freely available and can be found on Github:

https://github.com/rajewsky-lab/spacemake
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License: GPLv2

Operating system: Unix

Programming language: Python, R

Requirements: Python 3.6 or higher. R 4.0 or higher.

Data availability

The Slide-seqV2 adult mouse brain dataset was downloaded from

https://singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-transc

riptomics-at-near-cellular-resolution-with-slide-seqv2 (Puck_200115_08).

The 10X Visium dataset was downloaded from

https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Adult_Mouse

_Brain.

Seq-scope data was downloaded from

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169706. For the analysis shown in

this paper the dataset from healthy mouse liver with accession id SRR14082759 was used.

We used tile Nr. 2105 and extracted the bead barcodes and their positions were from raw

fastq files found here

https://deepblue.lib.umich.edu/data/concern/data_sets/9c67wn05f?locale=en, with the

help of Seq-scope’s own script available here:

https://github.com/leeju-umich/Cho_Xi_Seqscope/blob/main/script/extractCoord.sh

For the single-cell and novosparc mapping we used publicly available adult mouse brain data

from [25], available here: https://storage.googleapis.com/linnarsson-lab-loom/l5_all.loom.

We only used tissue labels comparable with the spatial Visium sample, namely: Thal, CA1,

Hypoth, Ctx2, DentGyr, SScortex. We processed the data using spacemake and by treating

them as an external DGE matrix.

For long-read sequencing data we used a subset of reads from SRR9008425 and

SRR9008429, which were nanopore sequenced cDNA sequences derived from 10X

Chromium beads from [31].
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Supplementary Data and Figures

Supplementary Figure 1. Overview of spacemake. (A) Spacemake can handle various types of inputs:
Read1 and Read2 cell-barcoding strategy is flexible. (B) Preprocessing, QC and processing steps. Each
sample is processed the same way, regardless of the input type. (C) Spacemake is modular and
extendable. Each module is implemented with a separate set of rules and commands, and everything
is put together in the top level Snakefile.
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Supplementary Figure 2. Spacemake offers customizable run-mode settings and correlates well with
spaceranger. (A) Correlations of spacemake run-modes with spaceranger. (B) Histograms of Pearson
correlations for the different run-modes. (C) Correlations of aggregated gene counts. Each dot
represents a gene. Red-colored genes exhibit an at least 2-fold increase in spaceranger vs spacemake,
while green-colored genes exhibit an at least 2-fold increase in spacemake vs spaceranger.
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Supplementary Figure 3. Nanopore long-read analysis (A) Capture and reverse transcription of
mRNA molecules with barcoded beads (top) can lead to the production of different cDNA species
(bottom). The expected product contains Template Switch Oligo (TSO), mRNA, poly(T), and the
bead-side primer handle labeled ‘bead_start’. Identifiable building blocks labeled in bold-face. (B, C)
Spacemake long-read module annotation of 10X Chromium-derived cDNA from [31]. Left: the most
common signatures are plotted on a horizontal bar-chart (log-scaled x-axis). Right, top: overview
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donut-plot showing that the majority of cDNAs contain the expected bead primer-handle (bright
green). Right, bottom: breakdown of the primer-handle containing cDNAs reveals that < 5% lack a
detectable poly(T) tract and that 51% (B, SRR9008425) and 24% (C, SRR9008429) of reads are not
terminated by identifiable TSO sequences. Note that oligo block labels for (B), (C) include ‘chr_’ as a
prefix for 10X Chromium specific sequences, whereas (A) applies more broadly, for example also to
Drop-seq beads.
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Supplementary Figure 4. Spacemake efficiently processes Slide-seqV2 data (A) Distribution of UMIs
per bead over the puck. (B) Per-gene correlation of slideseq-tools and spacemake. Red genes are
2-fold enriched in slideseq-tools, while green genes are 2-fold enriched in spacemake. (C) Automated
analysis identifies spatially resolved clusters, such as the cortical layer, dentate gyrus, pyramidal layer
and thalamic region. (D) Neighborhood-enrichment with squidpy identifies clusters 3 and 4 to be
neighboring in space. (E) Downsampling analysis reveals that distributions of UMIs per bead increase
with sequencing depth (left) while the reads/UMIs ratio remains low (right), indicating that the

sample has not reached sequencing saturation.

26



Supplementary Figure 5. Spacemake is fast, scales well and can simultaneously process multiple
samples. (A) Spacemake is fast and is slightly faster than 10X spaceranger, while offering
user-modifiable run-mode settings. Data here shown for a run-mode with spaceranger-like settings
(multi-mapping reads counted, no poly(A) trimming, only exonic reads counted). (B) Spacemake
scales well with increased library size. When normalized to the number of input reads, spacemake
performs similarly regardless of sequencing depth.
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