
Supplementary Figures

Sup. Fig. 1: Example of QC Plots shown for P4. a, Raw channel intensities across cycles. b,
Similarity scores for registered and unregistered cycle images. Cycle 12 exhibits a perfect

score, as previous cycles are registered to that. The dashed line at 0.5 denotes an empirical

threshold. c, Called base fractions per cycle. d, Compression score distribution of the

barcodes along with the expected distribution. e, Entropy score distribution of the barcodes

along with the expected distribution. f, Basecalling chastity score distribution per cycle. g,
Histogram of the beads that has n cycles higher than the threshold. h, Histogram of the base

positions where a base is called with a score lower (red) or higher (blue) than the threshold.

i, Scores per cycle for two randomly chosen beads.

Sup. Fig. 2: Example of QC Sheet Plots shown for puck P4. a, Called bases in space for

every cycle. Here shown cycles 1, 6 and 12. b, Chastity scores in space for every cycle.

Here shown cycles 1, 6 and 12. c, Entropy score distribution in space. Higher values

correspond to higher barcode complexity. d, Compression score distribution in space. Higher

values correspond to higher barcode complexity.

Sup. Fig. 3: Registration and bead detection examples shown for P4. a, Beads are detected

from the reference image which is the overlay of all channel intensities of the last cycle. b,
Histogram matching and image registration examples shown for cycles 1, 6, 11 and 12.

Sup. Fig. 4: Heatmaps showing the number of matches between the optically decoded and

Illumina sequenced barcodes as a function of phasing and prephasing probabilities for the

pucks P1-P4. Moderate phasing and no pre-phasing effects are observed across all pucks.

Sup. Fig. 5: Heatmaps showing the number of matches between the optically decoded and

Illumina sequenced barcodes as a function of phasing and prephasing probabilities for the

Slide-Seq and Slide-SeqV2 pucks. Little-to-no phasing and pre-phasing effects are observed

across all pucks.

Sup. Fig. 6: Benchmarking the performance of various classifiers for the machine learning

basecaller. a, Number of matches between the optically decoded and the Illumina

sequenced barcodes for the in-house pucks and for four different machine learning

classifiers. b, Same as in a, but for the Slide-Seq and Slide-SeqV2 pucks.

Sup. Fig. 7: Heatmaps for specificity analysis of machine learning models. Here, different

algorithms are employed to predict the true barcodes of the training set (i.e. the barcodes

that match with the Illumina sequences after phasing correction). The values show the

absolute number and the percentage of misclassified barcodes a) for in-house pucks and b)

for Slide-Seq and Slide-SeqV2 pucks. GB: Gradient Boosting; MLP: Multilayer Perceptron;

RF: Random Forests; RNN: Recurrent Neural Networks

Sup. Fig. 8: Cumulative plots showing the number of matches between the optically

decoded and Illumina sequenced barcodes as a function of the number of top Illumina

barcodes used a) for in-house pucks and b) for Slide-Seq and Slide-SeqV2 pucks

Sup. Fig. 9: Number of matched barcodes after filtering them with a chastity score threshold

for the basecalling methods. Chastity score used is the mean score of the barcode’s cycles

a) for in-house pucks and b) for Slide-Seq and Slide-SeqV2 pucks

Sup. Fig. 10: Number of matched barcodes after filtering them with the prediction score

threshold for the machine learning methods. Prediction score is the probability of the called

base by the model and here the mean score of the barcode’s cycles is used a) for in-house

pucks and b) for Slide-Seq and Slide-SeqV2 pucks

Supplementary Methods

Image Processing
Puck images generated through the in-house platform consist of 6-channel images for every

cycle, where 4 channels were retained for further processing and the other two were ignored

since they were only used for internal microscopy setup control purposes. Pucks from

Slide-Seq and Slide-SeqV2 datasets are 4-channel images which were directly used for

further processing. For Slide-Seq, a TIFF file is provided per channel and we combined the

channels to create a multipage TIFF image for each cycle. For Slide-SeqV2 raw microscopy

data we used Puckcaller (https://github.com/MacoskoLab/PuckCaller) to generate the

stitched TIFF files. After loading the images, an overlay image for each cycle was generated

by summing up the intensities of all channels and was subsequently used for bead detection

and image registration. Image processing operations described below were implemented

with the OpenCV (v4.2.0) and Skimage (v0.18.3) packages.

Bead Detection
Beads were detected from the last cycle’s overlay image. First, a median blur (3x3) for noise

removal and contrast limited adaptive histogram equalisation (CLAHE) with 64x64 tiles were

applied to the overlay image. Then, Optocoder used the Hough Circle Transform OpenCV

implementation to detect beads. By default, Optocoder searches for beads with a radius

range of 4-10 pixels. These parameter and edge detection thresholds for Hough Transform

can be modified through the bead detection parameters as necessary. For the results

presented in this paper, we used the same parameters in all runs for both in-house and

Slide-Seq datasets. Furthermore, puck borders were detected by searching for the biggest

connected component in the image after applying a Gaussian blur. Detected beads outside

of the main puck area were ignored.

Image Registration
Every image was registered to the final cycle to correct misalignments between cycles. First,

a histogram matching step was applied. This was done via calculating the cumulative

distribution function for both the image-to-be-registered and the reference and consecutively

matching them. Image registration was done via the Enhanced Cross Correlation

Maximization (1) algorithm implementation in OpenCV with a Euclidean motion model.

Registration was done with a pyramidal scheme where the image was downsampled eight

times to speed up the registration process and improve the accuracy by aligning the image

in different resolutions, starting from the coarse to the finer resolutions. Warping parameters

https://sciwheel.com/work/citation?ids=3485136&pre=&suf=&sa=0

were acquired from the registration of the overlay images and they were consecutively

applied to the channel images.

Background Correction

For every cycle and every channel, the background of the image was calculated by using a

morphological opening operation with a 64x64 rectangular kernel. This background was

subtracted from the respective channel before correcting for crosstalk and phasing effects.

Basecalling

Input to basecalling is the detected beads where is bead𝐵𝑒𝑎𝑑𝑠 = (𝐵
1
,..., 𝐵

𝑁
) 𝐵

𝑖
∈ 𝑅𝑀 𝑥 4 𝑖, 𝑁

is the number of detected beads and is the number of cycles. Every bead has a𝑀

4-dimensional intensity vector for every sequencing cycle.

Calculating the Crosstalk Matrix
For crosstalk correction, Optocoder uses the iterative correction method from (2). Crosstalk

Matrix is a 4x4 matrix which represents the interaction between channels. We calculate𝑀

the crosstalk for all pairs of channels such that each corresponds to one element in the

crosstalk matrix. This matrix is calculated from the bead intensities of the first cycle.

First, is initiated as an identity matrix. Then, the crosstalk for every pair of channels is𝑀

calculated as below:

For a given pair of channel :𝑠 (𝑐ℎ
𝑎
, 𝑐ℎ

𝑏
)

1. The beads that have intensities between the 60th and 99th quantiles for the first

component are chosen. where is𝐵𝑒𝑎𝑑𝑠* = {𝑏
𝑖
 | 𝑄

𝐴
(0. 60) < 𝑏

𝑖,1,𝑎
 < 𝑄

𝐴
(0. 99)} 𝐴

the intensities of all beads in the first cycle for the first component channel and is𝑏
𝑖,1,𝑎

the intensity of channel a of bead i at cycle 1.

2. Beads in are binned such that every bin includes ~10 beads.𝐵𝑒𝑎𝑑𝑠*

3. A linear regression model is fitted to and the slope of this model is𝐵𝑒𝑎𝑑𝑠*

consecutively used to fill the crosstalk matrix entry for the respective pair.

The inverse of the crosstalk matrix is multiplied with the intensity data to calculate the𝐵𝑒𝑎𝑑𝑠

corrected intensities for all beads. The whole process is repeated to update the crosstalk

Matrix , until either 15 iterations are reached or the maximum slope is lower than 0.05.𝑀

https://sciwheel.com/work/citation?ids=11416267&pre=&suf=&sa=0

Generating the Phasing Matrix
Phasing matrix is defined with two values where p is the probability or expected amount of

phasing and is the expected amount of prephasing. Phasing matrix is initialised as an𝑞 𝑃

identity matrix of size (cycles x cycles) and is filled via a dynamic programming approach

similar to (3).

The values and can be selected by the user. Optocoder implements 0.07 phasing and𝑝 𝑞

0.01 prephasing values by default.

Basecalling

Crosstalk and Phasing Correction Model

The crosstalk and phasing correction model is defined as:

𝐵
𝑖
 = 𝐶 𝑆

𝑖
 𝑃,

where is a matrix containing the observed intensities of bead , is the𝐵
𝑖
∈ 𝑅𝑀 𝑥 4 𝑖 𝐶 ∈ 𝑅4 𝑥 4

crosstalk matrix, are the true intensities of bead , and is the phasing𝑆
𝑖
∈ 𝑅𝑀 𝑥 4 𝑖 𝑃∈ 𝑅𝑀 𝑥 𝑀

matrix, where is the number of cycles.𝑀

First, we calculate the crosstalk matrix and generate the phasing matrix as described above.

Then, ​​the inverse of the Kronecker product of the two matrices is calculated. This(𝐶 ⊗ 𝑃)−1

resulting correction matrix is multiplied with the bead intensities to acquire the corrected

intensities.

. (1) 𝑆
𝑖
 = (𝐶 ⊗ 𝑃)−1 𝐵

𝑖

For the baseline basecallers, we use two different intensity profiles. For naive basecalling,

we used the detected bead intensities after background correction without any crosstalk and

phasing correction as:

. (2)𝑆
𝑖
 = 𝐵

𝑖

For crosstalk-only correction basecalling, we first calculate the crosstalk matrix as𝐶

described above and the phasing matrix is taken to be the Identity matrix.𝑃

. (3)𝑆
𝑖
 = (𝐶 ⊗ 𝐼)−1 𝐵

𝑖

For the combined correction model, Phasing Matrix is computed as explained above with𝑃
the default parameters and applied to (1).

https://sciwheel.com/work/citation?ids=12343445&pre=&suf=&sa=0

Scaling and Basecalling

Before basecalling, we first scaled the intensity values for every channel using a Robust

Scaler, defined as:

,𝑐ℎ
𝑘𝑙

 − 𝑄
1
(𝑐ℎ

𝑘𝑙
)

𝑄
3
(𝑐ℎ

𝑘𝑙
) − 𝑄

1
(𝑐ℎ

𝑘𝑙
)

where are the intensities after corrections of all beads, S, for channel in cycle , and𝑐ℎ
𝑘𝑙

𝑘 𝑙

and are the quartiles 3 and 1, respectively. Finally, we applied a SoftMax function to𝑄3 𝑄1

the final intensities for each bead. Finally, the bases are called for each bead and each cycle

by taking the maximum intensity channel.

Phasing Parameter Search
To find the phasing and prephasing parameters that maximise the number of matches, we

search for every pair of phasing and prephasing values between 0.0 and 1.0 with 0.01 step

size. We calculated the number of matches for every pair and the parameter set with the

maximum number of matches is selected. Then we run the whole pipeline again with the

obtained optimised parameters.

Quality Control Measures

Compression Score
Compression score for every barcode is calculated by computing the length of a compressed

barcode. A barcode is compressed by computing the number of consecutive bases that are

identical. For example, a repetitive, low complexity barcode such as “GGGGGGAAAAAA”

would be compressed as “G6A6” while a complex barcode such as “GTACACATGCAC”

would be compressed as “G1T1A1C1A1C1A1T1G1C1A1C1”. In the QC plots, compression

score distribution of a puck is compared against a theoretical distribution that is expected.

The theoretical distribution is computed by calculating the compression score for a set of

randomly generated barcodes of the same size with .𝐵𝐶

Shannon Entropy
The Shannon entropy for every barcode is calculated by:

where is the relative frequency of barcode for . In the QC plots, entropy𝑓(𝑛, 𝑏𝑐
𝑖
) 𝑏𝑐

𝑖
𝑏𝑐

𝑖
∈ 𝐵𝐶

score distribution of a puck is compared against a theoretical distribution that is expected.

The theoretical distribution is computed by calculating the Shannon entropy for a set of

randomly generated barcodes of the same size with .𝐵𝐶

Chastity Score

We measure our base calling confidence by computing the chastity

,𝐶 𝑝𝑞 =
𝐼 𝑝𝑞

(𝑛)

𝐼 𝑝𝑞
(𝑛)

 + 𝐼 𝑝𝑞
(𝑛−1)

where and are the intensities of the channels with the highest and the 𝐼 𝑝𝑞
(𝑛)

𝐼 𝑝𝑞
(𝑛−1)

second highest values for bead in cycle .𝑝 𝑞

Registration Quality

Alignment score between two cycles is calculated by using the Structural Similarity Index

(SSIM) (4) which measures the similarity between the reference image (i.e the last cycle)

and the registered cycles by considering the texture information. This computation results in

a value between 0-1 where 0 implies a completely different texture, 1 is achieved when there

is a perfect match. In the QC plots, we show the scores for every cycle before and after

registration where we choose 0.5 as an ad-hoc threshold to evaluate the registration quality

of a run.

In-house spatial transcriptomics method protocol
Samples S1-S4 were generated with an in-house spatial transcriptomics method that is

based on Slide-Seq and Slide-SeqV2 protocols: an array with beads arranged on it is first

generated, termed puck. The cellular barcodes are then optically decoded with a microscope

as described in Slide-SeqV2 (5). ERCC RNA Spike-In Mix and a GFP reporter for S1 or E12

mouse brain sections for S2-S4 were subsequently placed on the optically decoded pucks

and spatial transcriptomics libraries were generated following (5, 6). The prepared libraries

were finally sequenced with NextSeq 500 Illumina machines and analysed as described

below.

Obtaining the Slide-Seq & Slide-SeqV2 optical sequencing barcodes
For Slide-Seq samples, we have downloaded the processed Puckcaller files from

(https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study) and extracted

the bead barcodes listed in the published AllBeadBarcodes.csv files for each sample. If there

were multiple runs, we used the one with the latest date stamp. For the Slide-SeqV2 sample,

we used the corresponding bead locations file from

(https://singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-transcri

ptomics-at-near-cellular-resolution-with-slide-seqv2).

https://sciwheel.com/work/citation?ids=3606722&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10133680&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6734462,10133680&pre=&pre=&suf=&suf=&sa=0,0
https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study

Processing & analysis of spatial transcriptomics sequencing data
To obtain the set of true barcodes of the samples S1-S4 we processed and analyzed the raw

fastq files with spacemake v.0.4.2 with default parameters (7). The cell barcode was

extracted from read1 as the reverse sequence of nucleotide positions 9-20, while the UMI

was extracted from read1 from nucleotide positions 1-8. Read2 was aligned to a combined

genome of ERCC RNA Spike-In Mix and GFP reporter for S1 and to the mm10 genome for

S2-S4. To obtain the set of true barcodes of the Slide-Seq and Slide-SeqV2 samples we

used the tool DigitalGeneExpression from Drop-seq tools v.2.5.0 with default parameters to

generate the digital gene expression matrix for the top 100,000 cell barcodes.

While the extracted top 100,000 cell barcodes are used for all the processing in the pipeline,

we also generated the top 300,000 barcodes to analyse the effect of the number of top

Illumina barcodes on the barcode matching process (Sup. Fig. 8). For the samples S1-S4,

spacemake output as explained above was used. For Slide-Seq and Slide-SeqV2 samples,

we used the DigitalGeneExpression tool as explained above, but with the barcode cutoff

300,000. It should be noted that due to the diverse read mappability, the top 100,000 of this

new set does not perfectly overlap with the original set of barcodes.

Comparing Illumina-sequenced and the optically sequenced barcodes

After the Digital Gene Expression matrices were generated, we selected the top 100,000

bead barcodes with the highest number of counts to compare their nucleotide sequences

against the sequences obtained by processing the optical sequencing data. For samples

S1-S4 and Slide-SeqV2 samples, we counted exact matches between the two sets of

barcodes. For Slide-Seq samples, images are generated through SOLiD sequencing and

therefore they do not directly map to the nucleotides outputted by Optocoder. We have

included a custom script that can convert the Illumina barcodes to the colour space by using

the correct image and ligation sequences. Essentially, we ran Optocoder on all 20 images

and took 14 non-constant cycles that are part of the barcode. While Optocoder outputs

barcodes with nucleotides, we converted these barcodes to the numerical indices to

represent them in the colour space. Then, the Illumina barcodes are converted to the colour

space using the ligation sequences and orders as defined in

https://github.com/MacoskoLab/PuckCaller and (6). Finally, we counted exact matches

between the two sets in colour space.

https://sciwheel.com/work/citation?ids=12170766&pre=&suf=&sa=0
https://github.com/MacoskoLab/PuckCaller
https://sciwheel.com/work/citation?ids=6734462&pre=&suf=&sa=0

Machine Learning Basecaller

Dataset
Machine learning basecaller is trained for every dataset separately provided that the

respective Illumina sequencing run is available. Optocoder first calculates the matching

barcodes between the optically decoded barcodes (after phasing correction) and the top

100,000 barcodes from the sequencing data. Specifically, input features for a sample is

} where is intensity matrix of bead i after robust𝐵𝑒𝑎𝑑𝑠𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 = {(𝐵𝑠
𝑖
, 𝑏𝑐

𝑖
) | ∀𝑏𝑐

𝑖
∈ 𝑆𝐵 𝐵𝑠

𝑖

scaling, is the barcode corresponding to bead i, and is the set of top 100,000 Illumina𝑏𝑐
𝑖

𝑆𝐵

sequenced barcodes. Input dataset is used for training and is split into training𝐵𝑒𝑎𝑑𝑠𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔

(80%) and validation (20%) sets, and the non-matching barcodes are used as the test set.

Models and Training

Optocoder implements four different types of classifiers. Random Forest (RF) and Multilayer

Perceptron (MLP) models are implemented using scikit-learn (v0.22.2.post1), Gradient

Boosting (GB) is implemented using XGBoost (v1.1.1), and finally a Recurrent Neural

Network (RNN) model is implemented using Keras (v2.3.1) and Tensorflow (v2.1.0).

For RF, MLP and GB models, Optocoder uses scikit-learn's Multi Output Classifier approach

where a classifier for each target is fitted. Here, one classifier for each sequencing cycle was

trained. A random search was done with 10 iterations to optimise hyperparameters.

Parameter ranges for the search are defined in the Optocoder machine learning module and

the parameters of the selected models for the data presented in this paper are listed in Sup.

Table 1. For the RNN model, we have one bidirectional LSTM layer, followed by dropout and

a dense layer with softmax activation function. The model is trained using Adam optimizer

and sparse categorical entropy loss. For every fit, 30 epochs with batch size 50 is used

along with an early stopping mechanism. All samples were trained with these parameters.

Furthermore, KerasTuner (v1.0.1) is used for the random hyperparameter search with 10

iterations. After training the models, new barcodes are predicted for non-matching beads.

Optocoder saves the barcodes for all four models on disk, but the main basecaller is

Gradient Boosting, as it consistently outperforms the others. Optionally, Optocoder machine

learning module can be run with k-fold cross validation for parameter search and training

steps.

Barcode Prediction and Matching
After training the models, new barcode sequences are predicted for all optically decoded

bead barcodes that do not match to any of the top 100,000 Illumina sequenced barcodes.

The predicted barcodes that match to a sequenced barcode are then retained and added to

the set of already matching barcodes.

Specificity Analysis of Machine Learning Models

To analyse the number of mismatches in the training set, we first predicted the barcodes in

the training set using the trained models for the respective puck. Then, we calculated the

difference between the original number of matching barcodes in the training set and the

number of matches after the predictions.

Score Thresholding Analysis

For the analysis of the chastity score thresholds, we calculated the average score for every

barcode in each method. Then, barcodes were filtered for the scores starting from 0.5, which

is the lower bound of the chastity score, to 1.0 with 0.05 increments. Remaining barcodes

after filtering were matched to the top 100,000 illumina barcodes and number of matches

were calculated. For the machine learning models, we followed the same procedure but

instead of the chastity score, we used the prediction score of the model for the most

probable bases.

Bibliography

1. Evangelidis,G.D. and Psarakis,E.Z. (2008) Parametric image alignment using enhanced
correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell., 30,
1858–1865.

2. Li,L. and Speed,T.P. (1999) An estimate of the crosstalk matrix in four-dye
fluorescence-based DNA sequencing. Electrophoresis, 20, 1433–1442.

3. Stanford University,D.T.,Govinda Kamath, Jesse Zhang Lecture 3: Base Calling for
Second-Generation Sequencing.
http://data-science-sequencing.github.io/Win2018/lectures/lecture3/ Last accessed:
28.04.2022

4. Wang,Z., Bovik,A.C., Sheikh,H.R. and Simoncelli,E.P. (2004) Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600–612.

5. Stickels,R.R., Murray,E., Kumar,P., Li,J., Marshall,J.L., Di Bella,D.J., Arlotta,P.,
Macosko,E.Z. and Chen,F. (2021) Highly sensitive spatial transcriptomics at
near-cellular resolution with Slide-seqV2. Nat. Biotechnol., 39, 313–319.

6. Rodriques,S.G., Stickels,R.R., Goeva,A., Martin,C.A., Murray,E., Vanderburg,C.R.,
Welch,J., Chen,L.M., Chen,F. and Macosko,E.Z. (2019) Slide-seq: A scalable
technology for measuring genome-wide expression at high spatial resolution. Science,
363, 1463–1467.

7. Sztanka-Toth,T.R., Jens,M., Karaiskos,N. and Rajewsky,N. (2021) Spacemake:
processing and analysis of large-scale spatial transcriptomics data. bioRxiv.

https://sciwheel.com/work/bibliography
https://sciwheel.com/work/bibliography/3485136
https://sciwheel.com/work/bibliography/3485136
https://sciwheel.com/work/bibliography/3485136
https://sciwheel.com/work/bibliography/11416267
https://sciwheel.com/work/bibliography/11416267
https://sciwheel.com/work/bibliography/12343445
https://sciwheel.com/work/bibliography/12343445
http://data-science-sequencing.github.io/Win2018/lectures/lecture3/
https://sciwheel.com/work/bibliography/3606722
https://sciwheel.com/work/bibliography/3606722
https://sciwheel.com/work/bibliography/10133680
https://sciwheel.com/work/bibliography/10133680
https://sciwheel.com/work/bibliography/10133680
https://sciwheel.com/work/bibliography/6734462
https://sciwheel.com/work/bibliography/6734462
https://sciwheel.com/work/bibliography/6734462
https://sciwheel.com/work/bibliography/6734462
https://sciwheel.com/work/bibliography/12170766
https://sciwheel.com/work/bibliography/12170766

Sup. Table 1. Machine Learning Model Parameters for the trained models

P1 P2 P3 P4

XGB
Classifier

colsample_bytree
0.795,
learning_rate
0.236,
max_depth
3,
min_child_weight
4,
n_estimators
911,
subsample
0.849,
tree_method
'hist'

colsample_bytree
0.767,
learning_rate
0.517,
max_depth
5,
min_child_weight
3,
n_estimators
477,
subsample
0.781,
tree_method
'hist'

colsample_bytree
0.817,
learning_rate
0.070,
max_depth
4,
min_child_weight
4,
n_estimators
489,
subsample
0.396,
tree_method
'hist'

colsample_bytree
0.855,
learning_rate
0.213,
max_depth
6,
min_child_weight
1,
n_estimators
550,
subsample
0.734,
tree_method
'hist'

Random
Forest
Classifier

bootstrap
False,
max_depth
110,
max_features
'auto',
min_samples_leaf
1,
min_samples_split
2,
n_estimators
180

bootstrap
False,
max_depth
70,
max_features
'auto',
min_samples_leaf
2,
min_samples_split
2,
n_estimators
500

bootstrap
False,
max_depth
50,
max_features
'auto',
min_samples_leaf
1,
min_samples_spli
t
5,
n_estimators
180

bootstrap
False,
max_depth
90,
max_features
'sqrt',
min_samples_lea
f
1,
min_samples_spl
it
10,
n_estimators
1000

MLP
Classifier

hidden_layer_size
s
(100,),
activation
'tanh',
solver
'adam',
alpha
0.05,
learning_rate
'constant',
max_iter
200

hidden_layer_sizes
(100,),
activation
'tanh',
solver
'adam',
alpha
0.1,
learning_rate
'adaptive',
max_iter
200

hidden_layer_size
s
(50, 100, 50),
activation
'tanh',
solver
'sgd',
alpha
0.1,
learning_rate
'adaptive',
max_iter
1000

hidden_layer_siz
es
(100,),
activation
'relu',
solver
'adam',
alpha
0.05,
learning_rate
'constant',
max_iter
1000

RNN
Classifier

units: 64
dropout: 0.1
learning_rate: 0.01

units: 288
dropout: 0.2
learning_rate: 0.01

units: 448
dropout: 0.3
learning_rate:
0.001

units: 256
dropout: 0.2
learning_rate:
0.01

SSP1 SSP2 SSP3 SSP4

XGBClas
sifier

colsample_bytree
0.639,
learning_rate
0.410,
max_depth
3,
min_child_weight
1,
n_estimators
742,
subsample
0.732,
tree_method
'hist'

colsample_bytre
e
0.822,
learning_rate
0.278,
max_depth
5,
min_child_weigh
t
1,
n_estimators
739,
subsample
0.726,
tree_method
'hist'

colsample_bytr
ee
0.832,
learning_rate
0.316,
max_depth
4,
min_child_weig
ht
4,
n_estimators
735,
subsample
0.825,
tree_method
'hist'

colsample_bytre
e
0.593,
learning_rate
0.366,
max_depth
3,
min_child_weigh
t
2,
n_estimators
754,
subsample
0.772,
tree_method
'hist'

Random
ForestCl
assifier

bootstrap
False,
max_depth
70,
max_features
'sqrt',
min_samples_leaf
2,
min_samples_split
2,
n_estimators
1000

bootstrap
False,
max_depth
60,
max_features
'sqrt',
min_samples_le
af
1,
min_samples_sp
lit
5,
n_estimators
130

bootstrap
False,
max_depth
100,
max_features
'sqrt',
min_samples_le
af
1,
min_samples_s
plit
2,
n_estimators
500

bootstrap
False,
max_depth
60,
max_features
'sqrt',
min_samples_le
af
1,
min_samples_sp
lit
2,
n_estimators
500

MLPClas
sifier

hidden_layer_sizes
(50, 100, 50),
activation
'tanh',
solver
'sgd',
alpha
0.1,
learning_rate
'constant',
max_iter
600

hidden_layer_siz
es
(100,),
activation
'tanh',
solver
'adam',
alpha
0.0001,
learning_rate
'adaptive',
max_iter
600

hidden_layer_si
zes
(50, 100, 50),
activation
tanh',
solver
'sgd',
alpha
0.05,
learning_rate
'adaptive',
max_iter
400

hidden_layer_siz
es
(100,),
activation
'tanh',
solver
‘adam',
alpha
0.0001,
learning_rate
‘constant',
max_iter
200

RNN
Classifier

units: 288
dropout: 0.3
learning_rate: 0.001

units: 448
dropout: 0.3
learning_rate:
0.01

units: 448
dropout: 0.1
learning_rate:
0.01

units: 352
dropout: 0.4
learning_rate:
0.001

Sup. Table 2. Slide-Seq and Slide-Seq Data

Puck Name (Optocoder) Puck ID Slide-Seq Version

SSP1 180413_7 V1 (SOLiD)

SSP2 180430_1 V1 (SOLiD)

SSP3 180528_23 V1 (SOLiD)

SSP4 200115_08 V2

