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Abstract

Lung carcinoid tumors, also referred to as pulmonary neuroendocrine tumors or lung

carcinoids, are rare neoplasms of the lung with a more favorable prognosis than other

subtypes of lung cancer. Still, some patients suffer from relapsed disease and meta-

static spread. Several recent single-cell studies have provided detailed insights into

the cellular heterogeneity of more common lung cancers, such as adeno- and squa-

mous cell carcinoma. However, the characteristics of lung carcinoids on the single-

cell level are yet completely unknown. To study the cellular composition and single-

cell gene expression profiles in lung carcinoids, we applied single-cell RNA sequenc-

ing to three lung carcinoid tumor samples and normal lung tissue. The single-cell

transcriptomes of carcinoid tumor cells reflected intertumoral heterogeneity associ-

ated with clinicopathological features, such as tumor necrosis and proliferation index.

The immune microenvironment was specifically enriched in noninflammatory mono-

cyte-derived myeloid cells. Tumor-associated endothelial cells were characterized by

distinct gene expression profiles. A spectrum of vascular smooth muscle cells and

pericytes predominated the stromal microenvironment. We found a small proportion

of myofibroblasts exhibiting features reminiscent of cancer-associated fibroblasts.

Stromal and immune cells exhibited potential paracrine interactions which may shape

the microenvironment via NOTCH, VEGF, TGFβ and JAK/STAT signaling. Moreover,

single-cell gene signatures of pericytes and myofibroblasts demonstrated prognostic

value in bulk gene expression data. Here, we provide first comprehensive insights

into the cellular composition and single-cell gene expression profiles in lung carci-

noids, demonstrating the noninflammatory and vessel-rich nature of their tumor
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microenvironment, and outlining relevant intercellular interactions which could serve

as future therapeutic targets.
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What's new?

Single-cell transcriptomic profiling has been used as a powerful tool to dissect tumor cellular

heterogeneity in conventional subtypes of lung cancer. The characteristics of lung carcinoids on

the single-cell level are yet to be determined. Here, the authors found that the single-cell trans-

criptomes of carcinoid tumor cells reflect intertumoral heterogeneity and clinicopathological

features. They provide comprehensive insights into the cellular composition and specific fea-

tures of the lung carcinoid tumor microenvironment and potential intercellular interactions. The

study uncovers new aspects of lung carcinoid tumor biology and may lead to the identification

of novel biomarkers and therapeutic targets.

1 | INTRODUCTION

Lung cancer is a heterogeneous disease comprising different histopath-

ological subtypes. Besides adenocarcinomas and squamous cell carcino-

mas, the 2021 WHO classification contains the category of pulmonary

neuroendocrine neoplasms (NENs).1 This category comprises the high-

grade neuroendocrine carcinomas (NECs), small cell lung carcinoma

(SCLC) and large cell neuroendocrine carcinoma (LCNEC) and the low-

and intermediate-grade neuroendocrine tumors (NETs) of the lung, also

referred to as typical and atypical carcinoids, respectively. Lung carci-

noids contribute to 1% of lung cancer cases2 with an increasing inci-

dence over the last decades.3 On average, lung carcinoids have a better

outcome than conventional lung cancers. Typical carcinoids and atypical

carcinoids, of which the latter are specified by higher mitotic rate or

presence of tumor necrosis, have a 5-year survival rate of approxi-

mately 90% and 70%, respectively.3,4 About 10% of carcinoid patients

present with regional lymph node metastasis.3,5 Atypical carcinoids

have a higher risk of lymphonodal and systemic metastatic spread, and

recurrent disease.5,6 However, no consensus exists for a standardized

systemic therapeutic regimen of metastasized lung carcinoids.7

Conventional subtypes of lung cancer, that is, adenocarcinomas

and squamous cell carcinomas, as well as NECs are related to smoking

and characterized by high tumor mutational burden. In contrast, lung

carcinoids affect younger patients and nonsmokers, harbor a signifi-

cantly lower mutational load and a different spectrum of oncogenic

mutations.8 Consequently, novel targeted and immune therapies,

which have already improved the outcome in lung adeno- and squa-

mous cell carcinomas,9 cannot easily be translated to lung carcinoids.

Moreover, predicting the efficacy of modern targeted and immune

therapies is limited by intratumoral heterogeneity, where tumors may

harbor primary resistant tumor cell subclones, as well as the complex

tumor microenvironment, modulating immune responses against the

tumor. Single-cell gene expression profiling allows to overcome this

limitation and has already provided valuable insights into the cellular

heterogeneity of lung adenocarcinomas.10-14

In this study, we comprehensively analyzed the cellular composi-

tion of lung carcinoids by applying single-cell RNA sequencing to

three carcinoid tumor and normal lung tissue samples. We show that

single-cell gene expression profiles of carcinoid tumor cells reflect

clinicopathological features and allow assignment to recently defined

molecular clusters.15 Further, we found that the tumor microenviron-

ment was characterized by differentiating monocyte-derived myeloid

cells with noninflammatory features, tumor-associated endothelial

cells, a spectrum of vascular smooth muscle cells and pericytes and

myofibroblasts with cancer-associated fibroblast-like features. Our

analysis provides the basis for further studies of the lung carcinoid

tumor microenvironment, potential prognostic and predictive bio-

markers as well as novel therapeutic targets.

2 | METHODS

2.1 | Collection of tissue specimens

Fresh tissue samples of approximately 0.1 to 0.5 cm3 of tumor tissue

and normal lung parenchyma were obtained during intraoperative

pathologist consultation. Normal tissue samples of patients 2 and 4 to

10 have already been part of a previous study (patient 2 = P028, patient

4 = P018, patient 5 = P019, patient 6 = P027, patient 7 = P029,

patient 8 = P030, patient 9 = P031 and patient 10 = P033).14

2.2 | Tissue dissociation and single cell isolation

For transport, tissue samples were stored for maximum 3 hours on ice

in Tissue Storage Solution (Miltenyi). First, tissue samples were
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minced into pieces of maximum 1 mm3 using two scalpels. Minced tis-

sue samples were disaggregated using the Tumor Dissociation Kit,

human (Miltenyi) according to the manufacturer's protocol in a

gentleMACS Octo Dissociator with heaters (Miltenyi) using the pre-

installed program 37C_h_TDK_1 for 30 to 45 minutes. Subsequently,

cell suspensions were filtered through 100 μm filters and kept at 4�C

or on ice for all subsequent steps. Next, cells were pelleted by centri-

fugation at 300g for 5 minutes in BSA-coated low-binding tubes, and

resuspended in 1 mL ACK buffer for 60 seconds for erythrocyte lysis.

Cells were washed with DMEM, again pelleted and resuspended in

PBS. After filtering the cell suspensions through 20 μm filters, debris

was removed using the Debris Removal Solution (Miltenyi) according

to the manufacturer's protocol. Finally, cell concentration was deter-

mined using a Neubauer chamber.

2.3 | Single-cell RNA sequencing

Immediately after single cell isolation, 10 000 single cells per tissue

sample were subjected to barcoding and library preparation, using the

Chromium Single Cell 30Reagent Kit v3 (10� Genomics) and the Chro-

mium Controller (10� Genomics) according to the manufacturer's pro-

tocol. Libraries were sequenced on a HiSeq 4000 Sequencer

(Illumina), using paired-end sequencing for 100 cycles. The sequencing

coverage and quality statistics for each sample are summarized in

Table S1.

2.4 | H&E and immunostaining

For hematoxylin and eosin (H&E), and immunohistochemical staining,

3 to 5 μm tissue sections were prepared from formalin-fixed and par-

affin-embedded (FFPE) tissue.

For H&E staining, tissue sections were incubated in acidic

hemalum staining solution (Waldeck) for 8 minutes, washed and incu-

bated in eosin staining solution (Sigma-Aldrich) for 2.5 minutes at room

temperature using a Tissue-Tek Prisma Plus slide stainer (Sakura).

For antigen retrieval, tissue sections were incubated in CC2

buffer (for mouse anti-INSR) or CC1 mild buffer (for all other anti-

bodies, Ventana Medical Systems) for 30 minutes at 100�C. Sections

were incubated with the primary antibody for 60 minutes at room

temperature, washed and incubated with the secondary antibody for

30 minutes at room temperature. Antibodies were diluted in Dako

Real Antibody Diluent (Dako, S2022). Staining was performed on the

BenchMark XT immunostainer (Ventana Medical Systems).

The following primary antibodies were used: mouse anti-Syn-

aptophysin (1:50, clone 27G12, Leica, NCL-L-SYNAP-299), rabbit

anti-Chromogranin A (1:100, clone EP38, Epitomics, AC-0037), mouse

anti-CD44 (1:50, clone DF1485, Dako, M7082), rabbit anti-EGFR

(prediluted, Roche, 790-4347), rabbit anti-TFF3 (1:250, Abcam,

ab108599), rabbit anti-ERG (prediluted, clone EPR3864, Roche, 790-

4576), mouse anti-Ki67 (1:50, clone MIB-1, Dako, M7240) and mouse

anti-INSR (1:50, clone CT-3, Invitrogen, AHR0271).

Slides were imaged using a Pannoramic SCAN 150 slide scanner

(3DHISTECH).

2.5 | Single-cell gene expression analysis

2.5.1 | Preprocessing

After sequencing, reads were aligned and UMIs quantified using

Cellranger 3.0.2 (10� Genomics) with reference transcriptome

GRCh38. All subsequent analyses were performed in R using the

toolkit Seurat v4,16 if not stated otherwise. Single-cell gene expres-

sion data of all patients were merged and filtered for the following

quality parameters: 500 to 10 000 genes detected, 1000 to 100 000

UMIs counted, fraction of mitochondrial reads <40% and fraction of

hemoglobin reads <5%. The sequencing coverage and quality statistics

for each sample are summarized in Table S1. Single-cell gene expres-

sion data was normalized using the scTransform function with default

parameters, and the number of UMIs per cell and the fraction of mito-

chondrial reads was regressed out.

2.5.2 | Cell type annotation

After principal component analysis (PCA), the top 10 principal compo-

nents were used for clustering and UMAP embedding of single-cell

transcriptomes. Main cell types (epithelial, immune and stromal) were

assigned based on cluster-wise expression of canonical cell type marker

genes (resolution = 0.3, otherwise default parameters). The dataset

was split into three main cell type subsets, and PCA, clustering and

UMAP embedding was rerun on each subsets using the top 10 principal

components and a clustering resolution of 2 with otherwise default

parameters. In order to assign epithelial, immune and stromal cell types,

selected cell type marker genes according from Habermann et al17 and

Tata et al,18 and cell type signatures according to Vieira Braga et al19

and Travaglini et al20 were used. Clusters contaminated with epithelial

or immune transcriptomes were identified by expression of EPCAM or

PTPRC, respectively, and removed from the dataset prior to subsequent

analyses. In the epithelial subset, cell clusters which were overrepre-

sented in tumor tissue samples were annotated as tumor cells.

2.5.3 | Differential gene expression analysis

Prior to differential gene expression analysis of epithelial cells, tumor

cells from tumor samples were subset and gene expression rescaled.

Immune and stromal subsets were split into lymphoid, myeloid, endo-

thelial and fibroblastic/smooth muscle subsets and gene expression

rescaled. Next, marker genes of each cell cluster were calculated

against all other clusters of the subset using the FindAllMarkers func-

tion with Wilcoxon rank-sum test and the following parameters:

include only positive markers, proportion of expressing cells inside the

cluster ≥0.25, difference between proportions of expressing cells
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inside and outside the cluster ≥0.25, log 2 fold change between cells

inside and outside the cluster ≥0.25.

2.5.4 | Functional analysis

Cell cycle phases were assigned using the CellCycleScoring function.

The AddModuleScore function was used to score the expression of

functional relevant gene signatures: the hallmark signatures of the col-

lection of the Broad Institute,21 and naiveness, cytotoxicity and

exhaustion signatures according to Guo et al.13 To assign single-cell

transcriptomes to molecular clusters according to Alcala et al,15 the top

50 upregulated genes of each molecular cluster vs the two other clus-

ters were selected and combined to one gene set each (A1 vs A2 and

A1 vs B for gene set A1; A2 vs A1 and A2 vs B for gene set A2; B vs

A1 and B vs A2 for gene set B; see supplementary data 10 in Ref. 15).

The expression of the resulting three gene sets (A1, A2, B) was scored

using the AddModuleScore function. Oncogenic signaling pathway

activity scores were computed using the R toolkit Progeny22,23 based

on the top 500 genes with otherwise default parameters. The Cel-

lPhoneDB toolkit was used with default parameters to calculate poten-

tial cell-cell interactions.24 The curated list of high-confidence ligands

and receptors of oncogenic pathways can be found in Ref. 14.

2.6 | Bulk gene expression and survival analysis

Bulk gene expression data were downloaded from the GitHub reposi-

tory https://github.com/IARCbioinfo/DRMetrics25 and clinical data

from Ref. 15 was added. After filtering out genes located on sex and

mitochondrial chromosomes, bulk gene expression data was normal-

ized using the VarianceStabilizingTransformation function of the

DESeq2 toolkit. Data on histological subtype (typical vs atypical) was

available for 75 carcinoid cases. Overall survival data was available for

76 carcinoid cases. Single-cell gene expression data was split into

myeloid, lymphoid, endothelial and fibroblastic/smooth muscle sub-

sets and rescaled. Marker genes were calculated as described above.

Next, marker gene lists were used as gene sets for single-sample gene

set enrichment analysis (ssGSEA)26 of the bulk gene expression data

using the gsva function of the R toolkit GSVA, assuming Gaussian dis-

tribution with otherwise default parameters. For survival analyses,

ssGSEA enrichment scores were dichotomized (ES > median or

≤median). Survival curves, log-rank statistics and Cox regression were

calculated using the R packages survival and survminer.

3 | RESULTS

3.1 | Single-cell RNA sequencing uncovers the
cellular diversity of lung carcinoids

To explore the cellular composition of lung carcinoids and their

tumor microenvironment on the single-cell level, we collected fresh

tissue samples of tumor tissue and normal lung parenchyma from

three previously untreated lung carcinoid patients undergoing pri-

mary surgery (patients 1-3, Figure 1A). All three patients showed

tumor cells growing in solid nests with expression of the neuroen-

docrine marker proteins synaptophysin and chromogranin A

(Figure 1B). Tumors comprised one typical carcinoid (patient 1), one

atypical carcinoid with high proliferative activity (patient 2, see

Figure S1A for Ki67 immunostaining) and one atypical carcinoid

with focal tumor necrosis (patient 3, see Figure S1B for H&E

staining of necrotic area). Both atypical carcinoid cases (patients 2

and 3) had regional lymph node metastases at the time of diagnosis.

Tissue samples were enzymatically dissociated and subjected to sin-

gle-cell RNA sequencing using a commercial droplet-based system.

Single-cell gene expression data of seven normal lung tissue samples

from a previously published cohort (patients 4-10)14 were included

in the subsequent analyses. Altogether, we analyzed 73 105 single-

cell transcriptomes of which 64 697 high-quality transcriptomes

remained after quality control and filtering (Figure 1C, see

Figure S1C,D for quality control parameters).

Visualization of single-cell transcriptomes by uniform manifold

approximation and projection (UMAP) revealed distinct shifts

between normal and tumor tissue samples (Figure 1D). Note that

single-cell transcriptomes of different patients overlapped in many

clusters, excluding systematic batch effects across samples

(Figure 1E). In the epithelial, immune and stromal cell compart-

ment, which were defined by gene expression of canonical marker

genes (Figure S1E), we observed tumor-specific changes

(Figure 1F). In the tumor tissue samples, we mostly found epithelial

and stromal single-cell transcriptomes, whereas immune single-cell

transcriptomes were more abundant in the normal tissue samples

(Figure 1G).

3.2 | Intertumoral heterogeneity of lung carcinoids
reflects clinicopathological features and molecular
subtypes

To further analyze the epithelial cell compartment, epithelial sin-

gle-cell transcriptomes were subset and re-clustered. Epithelial cell

clusters overrepresented in normal or tumor tissue samples were

assigned as normal or tumor cell clusters, respectively (Figure S2A,

B). We observed that normal cell clusters were shared by different

patients whereas tumor cell clusters were highly patient-specific

(Figure 2A). In the normal cell clusters, using canonical marker

genes and predefined gene signatures,19,20 we identified alveolar

epithelial type 1 and 2, ciliated, club and basal cells (Figures 2A,B

and S3A,B). As indicated by the highly patient-specific tumor cell

clusters, we found many differentially expressed genes in the

tumor cells between patients (Figure 2C), such as CD44, TFF3 and

EGFR, which correlated with differential protein expression, as

shown by immunohistochemistry (Figure 2D). Highly expressed

genes in the typical carcinoid of patient 1 comprised many that

have been associated with good prognosis, such as MT1G, MT1M,

BISCHOFF ET AL. 2061

https://github.com/IARCbioinfo/DRMetrics


MT1X, PCK1, LPL, CD44.27 While we found distinct transcriptional

differences between different tumor cases, transcriptional profiles

within individual tumors were quite homogeneous and varied

mainly depending on the number of reads and genes per cell

(Figure S2C-F).

To further explore interpatient heterogeneity, we inferred dif-

ferent functional traits from the single-cell gene expression pro-

files, namely cell cycle phase, proportion of mitochondrial reads

and signaling pathway activity. The tumor cells of patient 2 had

the highest proportion of cells in S phase while at the same time

showing the highest Ki67 proliferation index in immunohistochem-

istry (Figures 2E and S1A for Ki67 immunostaining). The highest

proportion of mitochondrial reads was observed in tumor cells of

patient 3 which was characterized by focal tumor necrosis

(Figures 2F and S1B for H&E of necrotic area). Tumor cell trans-

criptomes of patient 3 had high scores for EGFR pathway activity

and strong EGFR expression on the protein level (Figure 2D,G).

The pathway activity scores for estrogen and androgen receptor

signaling correlated with the patient's sex (Figure 2G; and see

Figure 1A for clinical characteristics). Recently, it has been shown

that lung carcinoids can be subtyped into three distinct molecular

clusters based on transcriptional and epigenetic features.15 In our

single-cell gene expression profiles, we could assign the tumors of

patients 2 and 3 to cluster A1, and the tumor of patient 1 both to

cluster A2 and cluster B (Figure 2H). Notably, the immune and

stromal cell compartment exhibited only minor expression scores

of molecular cluster gene signatures.

Taken together, lung carcinoid tumor single-cell transcriptomes

revealed intertumoral heterogeneity which reflected different clinical

and histomorphological features, such as patient's sex, tumor prolifer-

ative activity and tumor necrosis, as well as recently proposed molec-

ular clusters of lung carcinoids.
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genes indicated by black arrowheads in (C). (E) Proportion of tumor epithelial cells assigned to different cell cycles, grouped by patient. (F)
Proportion of mitochondrial reads in tumor epithelial transcriptomes, grouped by patient. (G) Mean pathway activity scores of tumor epithelial

cells, grouped by patient and normal epithelial cells, grouped by patient groups. (H) Module scores of marker genes of molecular clusters
according to Alcala et al15 in epithelial, immune and stromal cells, grouped by patient
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F IGURE 3 Composition of the immune tumor microenvironment in lung carcinoids. (A) UMAPs based on the top 10 principal components of
all immune single-cell transcriptomes, split by tissue type, color-coded by cell type and proportions of lymphoid and myeloid cell types per tissue
type and, for tumor samples, per patient, Mann-Whitney U test, **P < .01. (B) Average gene expression of selected marker genes of immune cell
types, for cell type color code see (A). (C) Module scores of gene signatures related to naiveness, cytotoxicity and exhaustion in different
lymphoid cell types, split by tissue type, for cell type color code see (A). (D) Average gene expression of selected marker genes of monocyte
subsets and relative size of monocyte clusters, for tissue type color code see (C). (E) Average gene expression of selected marker genes of
conventional dendritic cell subsets and relative size of conventional dendritic cell clusters, for tissue type color code see (C). (F) Differentially
expressed genes in myeloid cells in tumor samples, grouped by cell type, top 10 genes shown per cell type, for cell type color code see (A), black
arrowheads indicate genes mentioned in the main text. (G) Module scores of gene signatures related to immune response in different myeloid cell
types, split by tissue type, for cell type color code see (A), for tissue type color code see (C)
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3.3 | The immune microenvironment of lung
carcinoids is characterized by noninflammatory
monocyte-derived myeloid cells

To discover the cellular composition of the immune microenviron-

ment, immune single-cell transcriptomes were subset and re-clus-

tered. We identified a variety of different cell types within the

immune cell compartment using canonical marker genes and

predefined gene signatures19,20 (Figures 3A,B and S3A,B).

We identified different lymphoid cells, such as conventional T

cells, CD8+ T cells, NK cells, B cells and plasma cells (Figures 3A and

S4A,B; Tables S2 and S3). On average, the proportion of lymphoid cell

types in tumor tissues closely resembled normal tissues, while we also

noted some interpatient heterogeneity in both tumor and normal tis-

sues. Gene signatures reflecting naiveness, cytotoxicity or exhaus-

tion13 of lymphoid cells exhibited similar expression scores in normal

and tumor tissues (Figure 3C). Note that signature scores for exhaus-

tion were low in all lymphoid cell types. Together, the lymphoid micro-

environment of lung carcinoids resembled the lymphoid cell

compartment of normal lung parenchyma.

Within the myeloid cell compartment, we identified monocytes,

dendritic cells, macrophages and mast cells with different abundancies

in tumor and normal tissues (Figures 3A and S4A,C; Tables S4 and S5).

Among the monocytes, the classical monocyte cluster 2 was enriched

in tumor tissues (Figure 3D). Conventional dendritic cells comprised

two clusters of which the CD141+ cluster 1 was mostly found in

tumor tissues (Figure 3E). Beyond, we identified a tumor-enriched cell

cluster with high expression levels of both monocyte markers, such as

CD14 and LGMN, a gene upregulated in differentiating monocytes28

(Figure 3B). We conclude that this cell cluster represents the spectrum

of monocyte-derived myeloid cells differentiating either into macro-

phages, as shown by high APOC1 and APOE expression in cluster 3, or

into dendritic cells, as shown by high S100A8 and S100A9 expression

in cluster 129,30 (Figure S4D). While the proportions of monocytes

and conventional dendritic cells were heterogeneously increased

across patients in tumor vs normal tissues, monocyte-derived myeloid

cells were consistently increased across all three carcinoid tumors

analyzed (P = .0070). Monocyte-derived myeloid cells were further

characterized by high expression of SELENOP, C1QA, C1QB, C1QC

and the chemokines CCL3 and CCL4 (Figure 3F). Compared to normal

tissues, monocyte-derived myeloid cells in tumor tissues showed

equal to slightly lower expression scores of various gene signatures

related to inflammation and immune response (Figure 3G). Our results

indicate that the lung carcinoid immune microenvironment is pre-

dominated by noninflammatory monocyte-derived myeloid cells.

The composition of the myeloid cell compartment was to some

degree heterogeneous across the three lung carcinoids analyzed by

single-cell RNA sequencing. In order to study interpatient heterogene-

ity in a larger cohort, we quantified the expression of marker genes of

characteristic immune cell types in a published bulk gene expression

dataset of lung carcinoids.15,25 Here, we found that marker genes of

the tumor-enriched monocyte-derived myeloid cell cluster 2 and 3

were associated with atypical carcinoids, albeit not correlated with

overall survival (Figure S4E), indicating microenvironmental differ-

ences between lung carcinoid subtypes.

3.4 | Vascular cells and CAF-like myofibroblasts
constitute the stromal microenvironment of lung
carcinoids

To gain insight into the composition of the stromal microenvironment,

stromal single-cell transcriptomes were subset and re-clustered. Here,

we identified different clusters of endothelial, fibroblastic and smooth

muscle cells using canonical marker genes and predefined gene signa-

tures19,20 (Figures 4A,B and S3A,B).

Among the endothelial cells we could distinguish bronchial, capil-

lary, arterial and venous endothelial cells based on predefined marker

gene signatures20 (Figures 4A and S3A; Tables S6 and S7). While dif-

ferent subtypes of endothelial cells were present in normal lung

parenchyma, tumor tissues were significantly enriched in bronchial-

type endothelial cells (P = .0070) (Figures 4A and S5A). Here, the

majority of endothelial transcriptomes was obtained from the tumor

of patient 1, correlating with dense vascularization as shown by

immunostaining (Figure S5B). Endothelial cells in tumor tissues

showed high mRNA expression of INSR, a marker gene of tumor-asso-

ciated endothelial cells,31 and high INSR protein expression, contra-

sting normal lung tissue (Figure S5C,D). Moreover, we found high

expression of genes that have been related to angiogenesis, such as

VWA1, COL15A1, IGFBP7 and GSN10 (Figure S5D).

Within the fibroblastic and smooth muscle cell compartment in

tumor tissues, we found myofibroblasts, vascular smooth muscle cells

and pericytes, whereas fibroblasts were significantly decreased com-

pared to normal tissues (P = .0091) (Figure 4A; Tables S8 and S9).

F IGURE 4 Composition of the stromal tumor microenvironment in lung carcinoids. (A) UMAPs based on the top 10 principal components of
all stromal single-cell transcriptomes split by tissue type, color-coded by cell type and proportions of endothelial and fibroblastic/smooth muscle
cell types per tissue type and, for tumor samples, per patient, Mann-Whitney U test, *P < .05, **P < .01. (B) Average gene expression of selected

marker genes of stromal cell types, for cell type color code see (A). (C) Differentially expressed genes in fibroblastic/smooth muscle cells, grouped
by cell type, top 10 genes shown per cell type, for cell type color code see (A), black arrowheads indicate genes mentioned in the main text. (D)
Mean pathway activity scores of different fibroblastic/smooth muscle cell clusters, mesothelial cells excluded, black arrowheads indicate
pathways and cell types mentioned in the main text. (E) Average expression of selected marker genes of myofibroblast cluster 1 as indicated by
black arrowhead. (F) Average gene expression of pericytes in tumor vs normal tissues, top 10 genes overexpressed in tumor tissues indicated,
genes mentioned in the main text in bold. (G) UMAPs of fibroblastic/smooth muscle cells, colored by gene expression of canonical pericyte
marker genes
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Myofibroblasts were strongly enriched in tumor tissues (P = .0074)

and showed high expression of extracellular matrix components, such

as COL1A1, COL3A1 and COL6A3, as well as matrix-degrading

enzymes, such as SULF1 (Figure 4C), suggesting that these cells might

be involved in extracellular matrix remodeling. Moreover, myo-

fibroblasts were characterized by high activity of TGFβ signaling

(Figure 4D). Within the myofibroblasts, cluster 1 showed a specific

overexpression of FAP and MMP11 as well as a higher expression of

various collagens, compared to myofibroblast cluster 2 and other

fibroblast and smooth muscle cell clusters (Figure 4E). In an

independent cohort of lung carcinoids characterized by bulk RNA

sequencing,15,25 the marker gene signature of myofibroblast cluster 1

was significantly associated with atypical carcinoids and correlated

with worse overall survival (Figure S5E). Together, these data indicate

that myofibroblasts in lung carcinoid tumor tissues exhibit biological

traits characteristic of cancer-associated fibroblasts.

The stromal microenvironment of carcinoids was predominated

by vascular smooth muscle cells (P = .0160) and pericytes. The

highest proportion of pericytes was found in case 1 which was diag-

nosed as a typical carcinoid whereas fewer pericytes were found in
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F IGURE 5 Potential paracrine interactions within the lung carcinoid tumor microenvironment. (A) Characteristic cell types of the lung
carcinoid tumor microenvironment and selected cell type marker genes. (B) Number of potential autocrine/paracrine interactions between
characteristic cell types of the lung carcinoid tumor microenvironment, calculated using the CellPhoneDB algorithm. (C) Number of potential cell-
cell interactions filtered for high-confidence receptors and ligands of relevant signaling pathways, grouped by interaction families. Each heatmap
shows potential interactions where the respective receptor is expressed in the cell type indicated above
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patients 2 and 3 diagnosed with atypical carcinoids (Figure 4A). Corre-

spondingly, in an independent lung carcinoid cohort characterized by

bulk RNA sequencing,15,25 the pericyte marker gene signature was

associated with typical carcinoids and correlated with better overall

survival (Figure S5F). Pericytes in tumor tissues showed a high expres-

sion of RGS5, a gene involved in pericyte development, and ACTA2, a

smooth muscle marker gene (Figure 4F). Smooth muscle cells

expressed low levels of pericyte marker genes, such as COX4I2 and

PDGRB (Figure 4C). We found these genes expressed in a graded fash-

ion suggesting that pericytes and vascular smooth muscle cells rather

form a continuum than discrete cell types in tumor tissues (Figure 4G).

These results show that the stromal microenvironment of lung carci-

noids is composed of myofibroblasts reminiscent of cancer-associated

fibroblasts, and a spectrum of vascular smooth muscle cells and peri-

cytes. Myofibroblasts and pericytes may be linked to worse and better

overall survival, respectively.

3.5 | Interactions between tumor
microenvironmental cells potentially activate NOTCH,
VEGF, TGFβ and JAK/STAT signaling

We observed that different cell types are specifically enriched in the

lung carcinoid microenvironment (Figure 5A). In order to delineate

functional relationships between microenvironmental and tumor cells,

we quantified potential paracrine receptor-ligand interactions.24 Inter-

estingly, most potential interactions were found between cell types of

the stromal microenvironment, involving tumor-associated endothelial

cells, myofibroblasts, vascular smooth muscle cells and pericytes,

whereas tumor cells are less involved in potential paracrine interac-

tions (Figure 5B, Table S10). Note that the number of potential inter-

actions was independent from the number of cells or mean number of

mRNA counts per cell type (Figure S6A,B). Focusing on the most rele-

vant signaling pathways, we found many interactions potentially acti-

vating NOTCH, TGFβ, VEGF and JAK/STAT signaling (Figure 5C).

Tumor-associated endothelial cells receive potentially VEGF, TGFβ

and NOTCH pathway-activating signals, while myofibroblast mainly

receive potentially TGFβ pathway-activating signals, both via various

paracrine and autocrine interactions. Dendritic cells, monocytes and

monocyte-derived myeloid cells receive potentially JAK/STAT path-

way-activating signals mainly via autocrine and paracrine interactions

with other immune cells. These results indicate that autocrine and

paracrine interactions between various stromal and immune cells may

shape the lung carcinoid tumor microenvironment.

4 | DISCUSSION

In this study, we analyzed the tumor heterogeneity and cellular com-

position of the tumor microenvironment in lung carcinoids. By apply-

ing single-cell RNA sequencing to tumors from three patients, we

outline the single-cell landscape of lung carcinoids in unprecedented

depth and comprehensiveness. We could show that tumor cell

transcriptomes reflect high intertumoral but low intratumoral hetero-

geneity. The immune microenvironment was characterized by non-

inflammatory monocyte-derived myeloid cells, classical monocytes

and conventional dendritic cells, while the lymphoid cell compartment

was comparable to normal lung parenchyma. The stromal microenvi-

ronment was composed of tumor-associated endothelial cells, myo-

fibroblasts with features of cancer-associated fibroblasts and a

spectrum of pericytes and vascular smooth muscle cells.

Since gene expression profiles are linked to the biological behav-

ior of tumors, transcriptional subtypes have been defined for many

tumor entities. Recently, Alcala et al described three molecular clus-

ters of lung neuroendocrine neoplasms based on transcriptome and

methylome profiling.15 However, it is not known to what extent infor-

mation from bulk multiomic profiling originate from tumor cells or the

associated nonneoplastic immune and stromal cells. Indeed, molecular

subtypes of some entities have been shown to be mainly driven by

features of the tumor microenvironment, such as in colorectal can-

cer.32 In our dataset, we could show that assignment of lung carci-

noids to recently defined molecular clusters is not substantially driven

by immune or stromal cells, but rather represent tumor-intrinsic fea-

tures. Nonetheless, molecular clusters of lung neuroendocrine neo-

plasms have been suggested to be associated with distinct cell types

of the tumor microenvironment.15 Although the size of our dataset

does not allow to define patient subgroups based on tumor microen-

vironment composition, we observed that the tumor of patient 1 was

assigned to molecular cluster B and harbored the highest proportion

of monocytes while patient 3 was assigned to cluster A1 and harbored

the highest proportion of conventional dendritic cells. Exemplarily,

this underlines the proposed association of molecular clusters of

lung neuroendocrine neoplasms with tumor microenvironment

composition.15

Many studies have dissected the composition of the immune

microenvironment of lung cancer and its potential effects on response

to immune checkpoint blockade, being an important pillar in treatment

of advanced disease.33 However, the immune cellular diversity in lung

carcinoids has much less been studied. It has been described that only

a small proportion of carcinoids are substantially infiltrated by CD8+

T cells, which does not correlate with survival.34 While most studies

report no expression of PD-L1 in lung carcinoids at all,34,35 some stud-

ies report a small proportion of PD-L1-positive cases and a correlation

of PD-L1 expression with metastatic spread.36 We observed that the

composition of the lymphoid cell compartment closely resembled nor-

mal lung parenchyma which is in line with a recent study analyzing the

lung carcinoid immune microenvironment by flow cytometry.37 While

it has been discussed that carcinoid tumors are not eligible for

immune checkpoint inhibitor therapy due to their low mutational and

neoantigen load,38 still, combined anti-PD1 and anti-CTL4 blockade

has shown efficacy in individual advanced atypical carcinoid cases.39

Beyond CD8+ T cells, myeloid cells in the microenvironment can

modulate the response to immune checkpoint inhibitors.40 Across all

three lung carcinoids analyzed, we observed a consistent decrease in

tissue-resident alveolar macrophages and an increase in monocyte-

derived myeloid cells, compared to normal lung tissue, which has
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likewise been observed in lung adenocarcinomas.10,14 Monocyte-

derived myeloid cells can give rise to monocyte-derived dendritic cells

or monocyte-derived macrophages exhibiting different functionalities in

the tumor microenvironment.29 In our dataset, gene expression patterns

favored a differentiation towards monocyte-derived macrophages.

However, complementary information on protein expression is neces-

sary to determine the lineage commitment of these cells since cell types

are yet mainly defined by surface marker profiles obtained in FACS

studies.29 Furthermore, in our study, monocyte-derived myeloid cells

exhibited low expression scores of various inflammation-related path-

ways, high expression of SELENOP1, which has been associated with

M2 polarization of tumor-associated macrophages, high expression of

the cytokines CCL3 and CCL4, which both can exert protumorigenic or

antitumorigenic functions,41,42 and high expression of all components of

the C1q protein complex, which has been found to have tumor-promot-

ing features.43,44 Together, we conclude that monocyte-derived myeloid

cells exhibit rather noninflammatory and protumorigenic features in the

lung carcinoid tumor microenvironment.

The microenvironment of neuroendocrine neoplasms often har-

bors a dense vascular network. We found that tumor-associated

endothelial cells in lung carcinoids exhibit a distinct gene expression

profile and share many highly expressed genes, such as INSR, VWA,

COL15A1, IGFBP7 and GSN, with tumor-associated endothelial cells of

more aggressive cancers, such as lung adenocarcinoma.10,14 In addi-

tion, we observed a high proportion of vascular smooth muscle cells

and pericytes. Antiangiogenic drugs have been in clinical trials and the

VEGFR inhibitor sunitinib has been approved for therapy of pancre-

atic neuroendocrine tumors.38 Interestingly, compared to normal tis-

sues, tumor-associated pericytes expressed high levels of RGS5, which

has been found to be overexpressed in developing pericytes during

embryogenesis45 and is associated with reduced response to VEGF

inhibition in mouse models.46 Moreover, we observed high expression

of smooth muscle actin ACTA2 in tumor-associated pericytes, which

has been proposed as a marker for tumors refractory to VEGFR2 inhi-

bition in a pancreatic neuroendocrine tumor mouse model.47 Further-

more, the microenvironment of lung carcinoids contained a small

proportion of myofibroblasts which were characterized by high TGFβ

and hypoxia signaling, high expression of matrix components, matrix

degrading enzymes and marker genes such as FAP, all being features

of cancer-associated fibroblasts.48,49

The tumor microenvironment of lung carcinoids differs from that

of other lung cancers,34,35,37 such as adenocarcinomas. On the single-

cell level, these differences comprise a normal-like composition of the

lymphoid cell compartment without significant T cell exhaustion, and

a predominance of vascular smooth muscle cells and pericytes within

the stromal cell compartment in lung carcinoid tumors, compared to

lung adenocarcinomas (Figure S7A-C). Albeit being biologically distinct

tumor entities, carcinoids and adenocarcinomas of the lung share

some microenvironmental features, such as the presence of tumor-

associated endothelial cells, cancer-associated myofibroblasts and

noninflammatory monocyte-derived myeloid cells. Beyond these

patient-overarching features of the lung carcinoid microenvironment,

we observed interpatient heterogeneity in its cellular composition. In

a larger cohort of lung carcinoids profiled by bulk RNA sequencing,

we found that certain cell types such as monocyte-derived myeloid

cells, pericytes and myofibroblasts might be associated with different

histological subtypes of lung carcinoids (typical vs atypical) and patient

prognosis. However, since the microenvironment of lung carcinoids is

rather sparse yet complex, its cellular composition can only to a lim-

ited extent be inferred from bulk gene expression data. Therefore, our

study forms a basis for subsequent single-cell transcriptome profiling

or multiplex immunofluorescence studies of larger cohorts. In the

future, a more detailed and comprehensive understanding of the

tumor microenvironment could reveal specific cell types that are eligi-

ble for novel targeted therapies, and provide valuable prognostic and

predictive information to improve the clinical management of lung

carcinoid patients.
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