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ABSTRACT

Phenotypically identical cells can dramatically vary
with respect to behavior during their lifespan and
this variation is reflected in their molecular compo-
sition such as the transcriptomic landscape. Single-
cell transcriptomics using next-generation transcript
sequencing (RNA-seq) is now emerging as a pow-
erful tool to profile cell-to-cell variability on a ge-
nomic scale. Its application has already greatly im-
pacted our conceptual understanding of diverse bi-
ological processes with broad implications for both
basic and clinical research. Different single-cell RNA-
seq protocols have been introduced and are reviewed
here––each one with its own strengths and current
limitations. We further provide an overview of the bio-
logical questions single-cell RNA-seq has been used
to address, the major findings obtained from such
studies, and current challenges and expected future
developments in this booming field.

INTRODUCTION

The analysis of single cells by global approaches has the
potential to change our understanding of whole organisms
since cell lineages can be traced and heterogeneity inside
an organ be described with unprecedented resolution (1).
Studying cells at the single-cell level offers unique opportu-
nities to dissect the interplay between intrinsic cellular pro-
cesses and extrinsic stimuli such as the local environment
or neighboring cells in cell fate determination. Single-cell
studies are also of paramount interest in the clinics, helping
to understand how an ‘outlier cell’ may determine the out-
come of an infection (2), drug or antibiotic resistance (3,4)
and cancer relapse (5). Furthermore, since the vast major-
ity of living cells in the environment cannot be cultivated
in vitro (sometimes referred to as ‘microbial dark matter’
(6)), single-cell approaches hold the promise of discovering

unknown species or regulatory processes (6) of biotechno-
logical or medical relevance.

Global studies of single cells have been enabled by a
tremendous increase in the sensitivity of scientific instru-
ments and an ever-growing automation of all steps from
sample preparation to data analysis. Nowadays, one can
rapidly sequence the genomes of many single cells in par-
allel using next-generation sequencing techniques (7), or
profile expressed proteins using fluorescence and mass cy-
tometry (8). mRNA profiling of single cells has been pio-
neered by a host of probe-dependent methods including re-
porter fusions to fluorescent proteins, fluorescence in situ
hybridization (FISH), quantitative real-time PCR (qRT-
PCR), and microarrays (9), some of which can report ex-
pression changes of multiple genes in parallel. In this review,
we will focus on the analysis of single-cell transcriptomes by
RNA-seq, a technique that has already revolutionized the
scope and depth of transcriptome analysis of cell popula-
tions.

The transcriptome constitutes an essential piece of cell
identity since RNA plays diverse roles as a messenger, reg-
ulatory molecule, or essential component of housekeeping
complexes. Genome-wide transcriptomics, ideally profiling
all coding and non-coding cellular transcripts, is there-
fore well suited to reveal the state of a cell in a specific
environment. The probe-independent RNA-seq technique
(10,11), in which cellular RNA molecules are converted
into cDNA and subsequently sequenced in parallel using
next-generation sequencing technology (7), is increasingly
becoming the method of choice to achieve this task. Im-
portantly, it can cover the entire transcriptome with single-
nucleotide resolution, a feat that is practically impossible to
achieve with any of the previous gene expression profiling
techniques. Genome-wide RNA-seq analyses have recently
uncovered an unexpected complexity in the transcriptomes
of organisms from all domains of life with respect to gene
structure and output from non-coding regions (12–27). It
is now clear that eukaryotic genomes are pervasively tran-
scribed; for example, while protein-coding genes constitute
less than 2% of the human genome, more than 80% of its re-

*To whom correspondence should be addressed. Tel: +49 931 3182575; Fax: +49 931 3182578; Email: joerg.vogel@uni-wuerzburg.de

C© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.



8846 Nucleic Acids Research, 2014, Vol. 42, No. 14

gions may be transcribed (13). In addition, many genomic
loci give rise to multiple transcripts, and this has dramati-
cally changed our perception of genome organization, the
definition of a gene and the diversity of functions exerted
by RNAs (28–31). Likewise, RNA-seq has facilitated the
annotation of prokaryotic genomes by defining 5′ and 3′
untranslated regions of mRNAs and discovered many pre-
viously unrecognized RNA molecules including an unex-
pected degree of genome-wide antisense transcription (21).
Moreover, variants of the RNA-seq technique globally de-
termine many other RNA-related aspects in the cell, for ex-
ample, secondary structures of transcripts (32), editing sites
(33), transcript stability (34), translation rates (35) and the
protein–RNA interactome (36).

To date, most transcriptome studies are conducted on a
‘population level’ usually averaging the transcriptomes of
millions of cells. However, in some cases such as stem cells,
circulating tumor cells (CTCs) and other rare populations,
sufficient material cannot be obtained for analysis on such
a scale. In addition, bulk approaches fail to detect the sub-
tle but potentially biologically meaningful differences be-
tween seemingly identical cells. That is, although individual
mammalian cells are estimated to contain 105–106 mRNA
molecules (37), the relative proportions of different tran-
script classes in a population are highly variable (38): a
quantitative analysis in yeast (39) has shown that the major-
ity of mRNAs are present in a few (<5 transcripts) copies
per cell, and most long non-coding RNAs (lncRNAs) even
in <0.5 copies per cell. As for bacteria, the average copy
number of an mRNA in Escherichia coli is 0.4 per cell (40).
Furthermore, a specific transcript will be expressed at differ-
ent levels within a cell population either due to deterministic
reasons because it is part of an activated cellular process or
due to random different levels of expression between cells,
a phenomenon also called transcriptional noise that cannot
be considered insignificant since it has broad implications
in cell fate decisions (41).

Pioneering single-cell studies of differential gene expres-
sion within a cell population in the cellular response to a
specific signal or environment mainly relied on fluorescence
microscopy techniques whereby only a few genes could be
studied simultaneously (42). RNA-seq of single cells has
provided the first characterization of the extent of transcrip-
tional differences of both coding and non-coding RNAs on
a genome-wide scale (43). In addition to differential gene
expression levels, additional layers of transcriptional differ-
ences emerge between individual cells. We have learnt that
splicing patterns (43) and allelic random expression (44)
are widely variable between cells. Single-cell transcriptomics
will also help to reconstitute temporal transcription net-
works during developmental processes (45) or when cells are
exposed to external stimuli (43), all of which can be masked
on a population level.

As will be reviewed in the next two sections, single-cell
RNA-seq requires the successful combination of two inde-
pendent techniques: the isolation of individual cells of in-
terest from culture, tissue or dissociated cell suspensions,
and––after converting the minute amount of cellular RNA
into cDNA––the massively parallel sequencing of cDNA li-
braries. The third and fourth part of this review will discuss

current applications and future challenges, respectively, of
single-cell RNA-seq.

ISOLATION OF SINGLE CELLS

The initial step in obtaining the transcriptome of a single
cell is the isolation of individual cells from a potentially het-
erogeneous population. This section provides an overview
of the available isolation methods that are compatible with
downstream RNA-seq analysis.

Single-cell isolation from dissociated cell suspensions

Flow-activated cell sorting. This is the most commonly
used method to isolate single cells (Figure 1A); it combines
multiparametric flow cytometry and sorting based on a pre-
set fluorescence gating strategy. Fluorescently labeled anti-
bodies are used to isolate cells of interest according to the
targeted cell-surface markers. Currently up to 17 individ-
ual markers can be used simultaneously (46,47), which en-
ables complex immuno-phenotyping that can identify novel
subsets of cells even within previously well-characterized
cell populations, for example, a T cell sub-population with
stem-cell-like memory and high proliferative capacity (48).
The cytometers can be interfaced with 96/384-well plates,
allowing hundreds of cells to be efficiently sorted within a
couple of minutes to a purity of nearly 100%, one cell per
well (49). Furthermore, the ‘index-sorting’ option enables
the retrieval and association of the original fluorescent sig-
nal with each sorted cell. The popularity of flow-activated
cell sorting (FACS) stems mainly from the wide availabil-
ity of robust commercial platforms within laboratory facil-
ities, their ‘user-friendly’ interfaces, efficient data visualiza-
tion tools as well as their low running costs.

Another variant of flow cytometry uses antibodies
against certain intracellular proteins to select cells accord-
ing to their signaling state (8,50). As this requires perme-
abilization and fixation of cells (8,50), it may hamper sub-
sequent transcriptomic analysis. However, a mild fixation
does not seem to compromise RNA quality and down-
stream cDNA synthesis for global transcriptomic investiga-
tions (51). Recent progress using the cell cytometry (52) has
enabled the isolation of cells based on a defined transcrip-
tional state by quantifying the expression level of a selected
transcript labeled by FISH, although the compatibility with
downstream single-cell RNA-seq protocols remains to be
demonstrated.

Potential limitations of FACS include the need for anti-
bodies that target specific proteins; fortunately, large-scale
projects such as the Human Protein Atlas are continuously
producing antibodies that will enable the isolation of ever
more subtypes of cells (53). Another relevant limitation of
FACS is the requirement of a large starting volume, which
hampers the isolation of cells from extremely low volume
samples (containing a few microliters) such as fine-needle
aspirates (54). Similarly, FACS is neither well suited for the
isolation of extremely rare cells (for example, one target cell
within 1 million non-targets) because of false positive sig-
nals, nor for environmental samples containing extremely
heterogeneous cell sizes. Currently, FACS also fails to image
the cell to be sorted, thereby preventing the combination of
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Figure 1. Methods to isolate single cells. (A) Principle of fluorescence-activated cell sorting. A stream of droplets, each containing a single cell, passes
through an excitation laser beam and the fluorescence signal emerging from each cell is analyzed by a multispectral detector. If the emitted fluorescence
signal gates in the preset window, the respective cell will be sorted into a multi-well plate. (B) Optofluidic-based cell handling. (i) A cell suspension is
arrayed in a plate, each well containing a single cell. (ii) A laser, also called an optical tweezer, is used to manipulate each individual cell. Adapted from
(62). Reprinted by permission from Macmillan Publishers Ltd on behalf of Scientific Reports, copyright 2013. (C) Two examples of emerging microfluidics-
based cell sorting technologies. (i) A microfluidic system integrates all steps from single-cell trapping to gene expression analysis: (step 1) cells are retained
individually in microfabricated chambers (each cell is indicated with a black arrowhead); (step 2) cells are lysed and RNA is reverse transcribed; (step 3)
detection and analysis is achieved by digital PCR. Adapted with permission from (85,86). Copyright 2013 American Chemical Society. (ii) Representation of
a microfluidic system that integrates all steps necessary for sorting extremely rare cancer cells from whole blood: (step 1) red blood cells (RBCs) are separated
from white blood cells based on their size and (step 2) rare cells are further isolated from the stream of white blood cells by magnetophoresis. Adapted from
(75). Reprinted by permission from Macmillan Publishers Ltd on behalf of Nature Protocols, copyright 2014. (D) Laser capture microdissection. (i) Cells
of interest are identified in a stained section of rat cervical dorsal root ganglia (indicated by black arrowheads), (ii) cut with a UV laser and (iii) transferred
onto a membrane. Scale bar 200 �m. Adapted from (82). Reprinted by permission from Macmillan Publishers Ltd on behalf of Nature Medicine, copyright
1999.
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morphological and transcriptomic analyses. Developments
in flow imaging-based cytometry (55,56) may address this
problem in the future.

Micromanipulation. Here, a glass micropipette is used to
aspirate single cells from a cell population under a micro-
scope. Micromanipulation has been successfully used to
pick individual cells such as neurons from rat primary neu-
ronal cultures (57,58), single cells from diverse developmen-
tal stages of the embryo (59) as well as individual bacteria
(60). Potential limitations of this technique are the signifi-
cant effort of manual handling and a low throughput (a few
cells per hour). Similar to FACS, it can also not be used to
manipulate cells present in low microliter volumes.

Optical tweezers. Unlike micropipettes, optical tweezers
use a highly focused laser beam to physically hold and move
microscopic dielectric objects. Combined with imaging-
based cell selection, they can trap and manipulate individ-
ual cells in suspension (61) or from a cell array inside a mi-
crofluidic device (62–65) (Figure 1B). Although currently
confined to a few specialized labs due to the demanding op-
tical set-up (65), optical tweezers may soon be available as
part of automated robots (62).

Microfluidics and other emerging isolation technologies.
The rapid expansion of microfabrication techniques and
their transfer to biological laboratories has resulted in the
first fully integrated microsystems (66) that are able to per-
form all the steps from cell culture, single-cell isolation
to the biochemical steps of cDNA synthesis and detec-
tion, an example of which is shown in Figure 1C. Nano-
liter microfluidic chambers have been used to isolate non-
culturable cells from small-volume microbial community
samples for individual genome amplification (64,67). Of
note, nanoliter-scale volumes substantially reduce external
contamination (68). Beyond microbes, the Fluidigm C1

TM

machine now enables the manipulation of up to 96 mam-
malian cells in parallel.

Recent advances in engineering have allowed researchers
to go beyond using molecular markers by specifying cells
based on physiological and biophysical features such as cell
size (69), deformation (70,71), and electric (72) or magnetic
properties (73). Identifying cells via these novel biomark-
ers can help isolate cancer (74) and stem (71) cell sub-
populations and, combined with single-cell transcriptomics,
has the potential to improve our understanding of the un-
derlying inter-cellular differences.

Highly diluted, rare species such as CTCs, of which only
a few are present among a million blood cells, constitute
a great challenge for cell isolation. CTCs have been iso-
lated from patients using epithelial cell surface markers and
microfluidics-based technologies; these technologies have
also enabled manipulation of single CTCs (75,76) that in
principle could be analyzed via single-cell sequencing (Fig-
ure 1C). Together, these systems have enabled the molec-
ular characterization of sub-populations of isolated cells
(77,78) and have also been transferred to the clinics. Unfor-
tunately, the use of microfluidics-based techniques has been
hindered by the necessity to engineer the devices, which
requires specialized equipment and knowledge, their rela-

tively low throughput compared to flow cytometry-based
sorting (96 cells treated in parallel against thousands for
flow cytometry) and their current high cost, even though
the latter can be expected to drop in the future.

Single-cell isolation from tissue samples

Monolayer cultures of immortalized cell lines have provided
valuable in vitro models for single-cell gene expression stud-
ies, but it has become increasingly clear that long-term pas-
saging of cells can cause dramatic genomic rearrangements
and mutations compared to the reference genome (79). This
also extends to changes in gene expression, as shown by a
comparison of 2D monolayers with 3D spheroid cultures
of melanoma cells (80). Moreover, mechanical forces that
are present within tissues have a dramatic effect on the
expression of many genes (81). As the interest in analyz-
ing primary cells directly obtained from tissue grows, iso-
lation procedures that preserve RNA integrity despite the
necessary embedding, fixation, histology staining and cell
dissociation procedures are needed. This may be achieved
by a combination of tissue cryo-preservation, histological
staining and single-cell dissociation with infrared-based mi-
crodissection (82,83). Laser-capture microdissection (84),
as illustrated in Figure 1D, lends itself to retrieving single
cells from a whole tissue. It works without prior dissocia-
tion of the cells and thus preserves their 3D structure. An
exciting development are ex vivo systems that mimic con-
ditions of a cell’s local microenvironment, as achieved for
complex organs such as the brain, the lung or blood ves-
sels (66). Such reconstituted systems are compatible with
microscopy techniques, meaning that they can open new op-
portunities to combine imaging techniques with single-cell
transcriptomics.

SINGLE-CELL RNA-SEQ

Until recently the method of choice to study gene expres-
sion of single cells was multiplexed qRT-PCR; however, its
throughput has remained limited to several hundreds of
genes even when using highly parallel microfluidic systems
(85–87). More fundamentally, qRT-PCR is biased toward
the specific set of genes chosen by the experimentalist, and
therefore must be hypothesis-driven. Microarrays enable
single-cell analyses on transcriptome-wide scale (88–90),
but compared to RNA-seq, they suffer from limited sensi-
tivity and dynamic range. In addition, hybridization-based
methods typically require large starting amounts of RNA;
i.e. microgram quantities (89) versus nanogram quantities
required for library preparation for RNA-seq (91,92). Fi-
nally, the necessary number of specific probes for a full tran-
scriptome coverage, in which non-coding regions are also
covered and splice-junctions or processing sites can be de-
fined, makes microarrays a very expensive technology. Thus,
as seen previously with populations of cells (11), RNA-seq
is also replacing hybridization-based methods on the single-
cell level (93).

Since it is not yet possible to directly sequence RNA
molecules, a common strategy used to capture the single-cell
transcriptome relies on three major steps (Figure 2): RNA
reverse transcription into first-strand cDNA, second-strand
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Figure 2. Existing methods to prepare sequencing libraries from a single cell. The methods differ with respect to the strategy used to amplify cDNA that is
obtained by oligo(dT)- or/and random-primed reverse transcription. (A) Universal primers are inserted at the 3′ end along with the reverse transcription
initiation oligonucleotide and at the 5′ end of the initial RNA molecules after reverse transcription via either (i) poly(A) tailing at the 3′ end of the first cDNA
strand or (ii) template-switching mechanism involving a template-switching oligonucleotide (TSO). (B) During cDNA synthesis, a T7 RNA polymerase
primer can be integrated that enables the further amplification of RNA via in vitro transcription. This results in an antisense RNA (aRNA) that can be
subjected to library preparation and sequencing. (C) Alternatively, after cDNA synthesis and chromosomal DNA degradation, cDNA can be circularized
and amplified by a technique referred to as rolling circle amplification using the Phi29 polymerase.
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synthesis and cDNA amplification, and cDNA sequenc-
ing using next-generation sequencing technologies. Since
single-cell RNA-seq provides an indirect representation of
the transcriptome, a careful assessment of all aspects of the
process is required, for example, biological variability versus
technical variability, the latter of which is due to loss of spe-
cific transcripts during RNA isolation and library prepara-
tion; inclusion of different transcript classes; transcript cov-
erage; maintenance of strand specificity; maintaining the
initial transcript abundance. Moreover, for statistical sig-
nificance, one must sequence many individual cells from a
given sample (ideally, hundreds to thousands), which makes
automation of the entire process desirable. In this section,
we will provide an overview of the strategies used to cap-
ture RNA and amplify cDNA and discuss the limitations
and the strengths of these methods.

The many routes from single cells to cDNA libraries

Cell lysis and reverse transcription. Generally, eukaryotic
cells are lysed in a hypotonic buffer containing a detergent.
Cells contain many diverse RNA molecules and the gold
standard would be to amplify all of them with the exception
of tRNA and rRNA that would otherwise populate >90%
of the sequencing reads (94) if not removed. Therefore, most
methods selectively reverse transcribe polyadenylated RNA
using a poly(dT) primer (Figure 2). This poly(A)+ selection
strategy has the advantage of capturing the most informa-
tive transcripts such as mRNAs and most lncRNAs, while
excluding the undesirable rRNAs and tRNAs in a single
step. Nevertheless, certain non-polyadenylated yet informa-
tive RNAs including microRNAs and non-polyadenylated
lncRNAs will be lost (95). Also note that such a strategy is
not compatible with RNA isolated from prokaryotic cells
since only a minority of the cellular RNAs are polyadeny-
lated, and these represent transcripts that are targeted
for degradation (96). To remedy this, 5′-monophosphate-
dependent exonuclease has been used to deplete tRNA and
rRNA from the lysate of a single prokaryotic cell (97), but
this treatment will inevitably also deplete physiologically
relevant processed mRNA or small RNA species. Other de-
pletion methods have been proposed for bacteria (94) but a
systematic assessment has yet to be conducted.

Subsequently, first-strand cDNA synthesis (Figure 2) is
performed using an engineered version of the reverse tran-
scriptase (RT) of Moloney Murine Leukemia Virus (M-
MuLV) that has low RNase H activity (98), increased ther-
mostability (99) and produces a higher cDNA yield than
other RT enzymes (100). This enzyme enables the genera-
tion of RNA:DNA hybrid molecules with an average length
of 1.5–2 kb (101).

To generate the second cDNA strand several different
protocols have been described based on one of three cur-
rently available amplification methods (Figure 2): PCR-
based amplification, in vitro transcription or rolling circle
amplification.

PCR-based amplification. This method involves the addi-
tion of a universal primer to the cDNA at the 5′ end of
the original transcript either after homopolymer tailing of
the cDNA or a template-switching reaction. Homopolymer

tailing (Figure 2A and Table 1) uses a terminal deoxynu-
cleotidyl transferase to add a ∼30 nt poly(A) stretch (102)
to the 3′ end of the first-strand cDNA. The initial proto-
col stems from the late 1980s (103) and was later optimized
for microarray analysis (90,104) and subsequently adapted
to RNA-seq (93,105–107). However, this approach has two
major problems. First, the premature termination intrinsic
to reverse transcription significantly reduces transcript cov-
erage at the 5′ end of transcripts (108). More importantly,
the introduction of a poly(A) tail at the 3′ end of the first-
strand cDNA in addition to the natural poly(A) sequence
at the 3′ end of the input RNA causes a loss of strand infor-
mation in the resulting double-stranded cDNA molecules.

To guarantee homogenous transcript coverage, a
template-switching mechanism was developed (108–
109,116) (Figure 2A and Table 1). This SMART-seq
method (Switching mechanism at 5′ end of the RNA
transcript) utilizes an intrinsic property of RT M-MuLV
to add three to four cytosines specifically to the 3′ end
of the first cDNA strand, which is subsequently used to
anchor a universal PCR primer (117). This ensures that
only full-length transcripts are amplified and maintain
strand specificity due to the added cytosines (see below).
One drawback of template switching, however, seems to be
a lower sensitivity compared to homopolymer tailing (107),
which may be explained by an imperfect efficiency of RT
M-MuLV to add 3′ cytosines.

In vitro transcription. This alternative method to amplify
first-strand cDNA (Figure 2B) was originally introduced
in the early 1990s (110). Also known as the Eberwine
method, it was recently adapted to single-cell RNA-seq
(113–114,118). Instead of exponential PCR amplification,
in vitro transcription (IVT) amplifies RNA linearly using
T7 RNA polymerase. IVT is biased toward the 3′ end of in-
put transcripts (57), and each of RNA amplification round
leads to a further shortening of the transcript occurring dur-
ing the second strand synthesis (57,119). Several improve-
ments and variants of the method have been developed, and
reviewed elsewhere (89). Nonetheless, the IVT protocol re-
mains labor intensive (57). To compensate for this draw-
back, methods to pool cells and libraries, known by the
acronyms CEL-seq (Cell expression by linear amplification
and sequencing) (113) and MARS-seq (Massively parallel
RNA single-cell sequencing) (114), have been recently de-
veloped (Table 1).

Rolling circle amplification. This third strategy has been
successfully applied to generate cDNA libraries from sin-
gle eukaryotic (111) and prokaryotic cells (97). Here the
RNA is reverse transcribed, circularized and amplified us-
ing Phi29 DNA polymerase (Figure 2C) which preserves
full-length transcript coverage. Interestingly, one of these
studies (97) has used random primers to generate cDNA,
making the approach suitable for prokaryotes.

Maintaining full-length and strand specificity information

Given the prevalence of pervasive and antisense transcrip-
tion (30) it is critical to maintain the information from
which genomic DNA strand an RNA molecule was orig-
inally transcribed. This remains technically challenging
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Table 1. Principal characteristics of currently used single-cell RNA-seq methods

Poly(A)
tailing

Template
switching

In vitro
transcription

Rolling circle
amplification 5′ selection 3′ selection

Associated
acronyms

n/a SMART-seq n/a n/a STRT CEL-seq,
MARS-seq

Full-length
transcripts?

Yes Yes Yes Yes No No

Strand
specificity?

No Possiblea Possiblea No Yes Yes

Early
poolingb?

Noa Noa Noa No Possible Possible

Positional
bias?

Weakly 3′ Weakly 3′ Weakly 3′ No 5′ only 3′ only

Applied for
which cells?

Eukaryotic Eukaryotic Eukaryotic Eukaryotic
and
prokaryotic

Eukaryotic Eukaryotic

Key
references

(93,105) (91,108–109) (57,110) (97,111) (37,112) (113–115)

n/a: not available. a would be possible if coupled to long-read sequencing but not with short-read sequencing. b refers to the possibility to introduce a
cellular barcode identifier during first-strand synthesis.

(120), especially if one would like to maintain both strand
specificity and full-length transcript coverage at the same
time. As described above, template switching and IVT (Fig-
ure 2A and B) theoretically maintain strand specificity and
full-length coverage. Yet the currently popular sequencing
technologies only generate short reads. Moreover, current
library preparation protocols require fragmentation of ei-
ther the input RNA or the resulting cDNA. For bulk RNA-
seq experiments, fragmentation of the RNA (120) prior
to adapter ligation can rescue information about strand
orientation. Due to the minute RNA amounts per cell,
however, the currently used single-cell RNA-seq proto-
cols consider fragmentation only after transcript amplifica-
tion (i.e. on the cDNA level), meaning that strand speci-
ficity is lost. However, directional information can be pre-
served by compromising the full-length coverage and se-
lecting either 5′ ends by affinity purification, STRT (Single-
cell Tagged Reverse Transcription) (37,112,121) (Figure 3A
and Table 1) or 3′ ends by selective PCR after transcript
fragmentation (113) (Figure 3B and Table 1).

Cellular and molecular barcoding strategies

An in-depth single-cell RNA-seq analysis of a whole tissue
may require the profiling of several thousands if not mil-
lions of representative individual cells. To reduce sequenc-
ing costs and increase throughput, previously developed
methods that focus on just the 3′ or 5′ ends of transcripts
have been modified for massively parallel RNA-seq of sin-
gle cells (Figure 3) (112–113,121). The incorporation of a
unique cellular identifier composed of a 4–5 bp random
sequence in the template-switching oligonucleotide (Figure
3A) or in the oligo(dT) primer (Figure 3B) has made it pos-
sible to pool up to 1500 cells from a spleen for simultaneous
sequencing (114); through the unique cellular barcode, each
read could subsequently be assigned to its original cell.

Barcoding strategies can also be used to perform ab-
solute quantification of each transcript in a single cell.
Usually in RNA-seq, transcript abundance is quantified
as RPKM and FPKM (reads/fragments per kilobase per
million mapped reads) but these represent an indirect way

to quantify RNA molecules and can be distorted by dif-
ferential amplification efficiencies for different fragments.
The absolute number of each transcript can be measured
by barcoding every cDNA before amplification by insert-
ing a unique random sequence at the 5′ end in the tem-
plate switching oligonucleotide (37,122) or at the 3′ end
in the oligo(dT) primer (114,115), respectively (Figure 3).
Transcript quantification and data normalization based on
‘molecular counting’ compared to quantification based on
the number of sequencing reads has been shown to improve
reproducibility between different cells (37,115), especially
for low abundant transcripts (<10 molecules/cell).

Sub-single-cell sequencing: localizing transcripts within a cell

All the methods described above fail to preserve spatial in-
formation about the transcript inside the cell because the
latter is lysed prior to detection. However, the localization
of mRNAs within sub-cellular compartments is a cellular
strategy to regulate gene expression (123), so it would be
insightful to sequence cellular transcripts while preserving
their natural context.

A first strategy consists of isolating a compartment of a
cell and applying the previously described RNA-seq tech-
niques. This has been achieved for single nuclei (124) as
well as dendrites from neurons (125). Another strategy con-
sists of sequencing RNA directly inside a cell without ly-
sis (126,127), a method called ‘in situ sequencing’. Tran-
scripts are converted into cDNA using gene-specific (126)
or random primers (127), followed by rolling circle ampli-
fication and in situ sequencing-by-ligation using a fluores-
cence microscope. To fix their location inside the cell of in-
terest, the transcripts are chemically linked to the protein
matrix (127). The method has been successfully applied to
fibroblasts (127) but has the potential to be applied to tis-
sue sections and embryos. In particular, tissue and organ
development and disease progression would greatly benefit
from the preservation of the spatial context of individual
cells. Proof-of-concept for such an in situ sequencing ap-
proach of tissue samples has already been described for a
set of pre-selected genes (126), but also seems within reach
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Figure 3. Strand specificity and barcoding strategies. (A) Using a template-switching mechanism, a restriction site together with the universal priming
sequence can be integrated at the 5′ end of the initial RNA transcript. Likewise biotin can be introduced at both the 3′ and 5′ ends via the use of biotinylated
primers. Upon binding to streptavidin beads, enzymatic cleavage will lead to the selection of only the 5′-most fragments for library construction. In addition,
during template switching cellular and/or molecular barcodes can be integrated. (B) Alternatively using in vitro transcription, 3′ ends can be selected after
ligation of 3′ and 5′ adaptors to fragmented RNA in order to selectively prime PCR amplification of only the 3′-most fragments. The oligo(dT) primer is
used to introduce cellular and/or molecular barcodes.

on the genome-scale (127). The coupling of in situ sequenc-
ing and tissue-array technologies (128) could be envisaged
to eventually enable the interrogation of hundreds of tissue
samples in parallel.

APPLICATIONS OF SINGLE-CELL RNA-SEQ

Once a cDNA library is prepared and sequenced, how does
one interpret the data and make sense of cell-to-cell vari-
ability? In the next section, we will review cell-to-cell gene
expression variability in two different contexts: first, when
individual cells have the same genetic background (mon-

oclonal cells) and, second, when stable genetic variants
give rise to changes in gene expression among cells. Subse-
quently, we will detail single-cell RNA-seq applications in
different areas of basic research and highlight medical im-
plications.

Similar but not the same

Same genetic background but different gene expression.
The transcriptome of genetically identical cells within a
population will differ on the single-cell level. Such cell-to-
cell variability manifests itself in several different views of
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gene expression. A first level is global cell-to-cell expres-
sion variability. For example, when freshly isolated dendritic
cells were compared by single-cell RNA-seq, the authors
calculated a Pearson coefficient of only 0.48 in gene ex-
pression (43), which is in stark contrast to the 0.98 cor-
relation observed when sequencing different populations
each containing 105 cells. An independent assessment of the
observed cell-to-cell variability using an amplification-free
method, i.e. image-based expression quantification with
RNA FISH (43), validated the variability to reflect real
biological differences in gene expression, at least for the
highly expressed genes that were analyzed. Note that single-
cell qRT-PCR is another commonly used method to in-
dependently validate cell-to-cell variations in gene expres-
sion. The second level of analysis is to compare the expres-
sion level of individual transcripts between different single
cells and to plot their expression distribution. Analyzing im-
mune cells after exposure to a bacterial antigen (43), it was
found that housekeeping genes followed a log-normal dis-
tribution. Some other genes showed bimodal gene expres-
sion, meaning that these latter transcripts were lowly ex-
pressed in some cells and highly (at least one order of mag-
nitude higher) in other cells (43). The last level of cell-to-
cell variability considers splice variants. For instance, us-
ing SMART-seq to primarily analyze full-length transcripts
(see above and Table 1), extensive variability in isoform vari-
ants was observed (43).

How can variability between cells with the same ge-
netic content be explained? From a molecular point of
view, single-cell RNA-seq confirms the previously observed
widespread nature of stochastic gene expression. As re-
viewed elsewhere (38,129–130), a random assembly of RNA
polymerase factors at the promoter influences the initial
decision of whether and how efficiently a given gene will
be transcribed. Single-cell RNA-seq has discovered novel
facets of stochastic gene expression, for example, that
stochasticity in allele-specific gene expression can affect up
to one fourth of all somatic genes in embryonic and differ-
entiated cells (44). While the underlying molecular mecha-
nisms and functional consequences remain to be explained,
one may speculate that such allele-specific variability could
enable a small sub-set of cells that happen to have the
‘ideal’ gene expression program at the right time to rapidly
adapt to external perturbations, thereby benefitting the en-
tire population.

Different genetic backgrounds induce differential gene expres-
sion. While genetic mutations that impair the expression
of an essential gene will be counter-selected, mutations that
result in only slight or conditional expression changes will
usually co-exist together with the wild-type cells in a pop-
ulation. These latter genetic variations produce a reservoir
of genetically different cells and different transcriptomes.

Gene expression variation derived from genetic variants
is referred to as expression quantitative trait loci (eQTLs).
It has been analyzed in many studies to better understand
disease-related pathways (131) but until recently, only on
a population level. A systematic study of 92 genes concen-
trated on the Wnt signaling pathway from 15 individuals us-
ing high-throughput single-cell qRT-PCR (132,133) uncov-
ered novel facets of eQTLs by linking single nucleotide poly-

morphisms (SNPs) to stochastic gene expression properties
such as burst frequency and amplitude. We expect that this
initial study will prompt genome-scale studies using single-
cell RNA-seq and in-depth functional characterization of
such genetic variants.

Data analysis framework. What are the functional impli-
cations of cell-to-cell variability? First, principal compo-
nent analysis of single-cell RNA-seq data can reveal bio-
logically distinct sub-populations, for example, ones that
correspond to different developmental stages (43,114,134–
137). Even closely related cells that apparently share the
same phenotype could be discriminated, which is important
to distinguish functionally different subtypes. Second, once
cells are classified into distinct cell identities, genes can be
clustered using co-variation analysis to extract regulatory
circuits (43,45,51,137). For example, such co-expression
analysis has revealed preferred signaling pathways among
the different cell lineages of lung epithelial cells (137). Third,
single-cell RNA-seq can dissect the temporal choreography
of gene expression that underlies many processes of cell dif-
ferentiation or reprogramming, as well as cellular responses
to external stimuli (45,137). To facilitate this type of analy-
sis, an unsupervised algorithm called Monocle (which does
not rely upon known markers) has been introduced to un-
ravel transcriptome dynamics (45). Importantly, the novel
pathways identified could not have been revealed by RNA-
seq of cell populations.

Application of single-cell studies to basic research

The diverse applications of single-cell transcriptomics dis-
cussed below illustrate the power of the technique for re-
defining cell identities based on a molecular profiling and
for the discovery of new cell differentiation routes. Single-
cell transcriptomics has also been successfully applied to
neurobiology, as reviewed in depth elsewhere (138).

Stem cell differentiation. Since stem cell differentiation is
per se a single-cell decision process, studying the molecu-
lar basis of how stem cells commit to the differentiation
process ultimately requires single-cell techniques. Single-cell
RNA-seq has been used to dissect the development of the
murine lung (137), identifying previously unknown lineage-
specific markers of the different cell subtypes that constitute
this organ. Another study (45) that aimed to resolve the dif-
ferentiation trajectory of skeletal muscles subjected human
primary myoblasts to single-cell RNA-seq at different time
points during differentiation in vitro. This study identified
eight transcription factors required to direct the differential
expression of >1000 genes during the individual phases of
differentiation.

Embryogenesis. Embryonic development can be consid-
ered as the differentiation transition from the cellular to
the whole-organism level. Studying the early stages of em-
bryonic development demands methods that are compatible
with minute quantities of cells. Single-cell RNA-seq studies
have enabled a global analysis of early mammalian devel-
opment (93,134,139–141), helping to substitute hypothesis-
with discovery-driven science. All these studies relied on
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the poly(A) tailing protocol (Figure 2A), thus focusing on
mRNA expression. New insights into early embryogene-
sis include, for instance, major changes in mRNA isoform
abundance and defined patterns of allele-specific gene ex-
pression during murine blastomere development (93,142),
functional modules of co-regulated genes (141), and the first
lncRNA expression maps of embryonic stem cells (ESCs)
and human preimplantation embryos (140). We expect that
RNA-seq will also improve single-cell analyses of sub-
regions of the embryo, for example, the inner cell mass of
murine blastocysts from which individual cells have already
been analyzed via qRT-PCR and microarray (143).

Whole-tissue analysis. Dissecting the transcriptome of all
the cells from a tissue will provide an opportunity to rede-
fine our knowledge of lineage hierarchy with unprecedented
molecular resolution. Massive parallel single-cell RNA-seq
(114) of thousands of cells from the spleen without prior se-
lection based on an a priori cell-surface marker combined
with unsupervised hierarchical clustering was used to re-
constitute the global cell heterogeneity within splenic tis-
sue. Notably, the cells could be grouped into seven large
sub-populations and dendritic cells could be further sub-
classified into four groups. Upon exposure to a bacterial
antigen, this single-cell RNA-seq method (114) revealed the
reorganization of cell sub-populations within the tissue and
show the emergence of new sub-populations with poten-
tially functional roles that have not yet been characterized.
Finally, this leads to the question if single-cell techniques
can be extended to study the transcriptome of a whole or-
ganism?

Single-cell RNA-seq for whole-organism studies. A major
goal in studying embryogenesis and organogenesis is to un-
derstand how single cells divide and differentiate to eventu-
ally build up an entire organism (1). There is a comprehen-
sive knowledge of lineage commitment of every single cell in
the body of the model worm Caenorhabditis elegans (144).
Consequently, this organism was selected as a model system
to establish the CEL-seq technique (Figure 2B and Table 1)
(113). Profiling of the early stages of embryonic develop-
ment in C. elegans discovered, for example, extensive tran-
scriptional activity at developmental stages that had pre-
viously been considered transcriptionally inert (113). Simi-
lar to unrelated findings in mouse blastocysts (143), hetero-
geneity in the transcriptomes of individual cells seems to be
a prerequisite for them to segregate into different lineages.

A medical perspective on single-cell studies

Considering the rapid development of sequencing methods,
one can expect single-cell RNA-seq to soon enter the clin-
ics to facilitate more personalized therapeutic decisions for
patients. In addition, the analysis of minimal invasive sam-
ples (from blood or fine-needle aspirates) instead of whole
tissue holds the promise of enabling a rapid point-of-care
diagnostic (145). Over a decade ago, individual cells that
had disseminated from a primary tumor to the bone mar-
row in chemotherapy patients were analyzed (146). Whole-
transcriptome amplification followed by microarray anal-
ysis suggested a now-established link between the integral

plasma membrane protein CD147/EMMPRIN and tumor
invasiveness and chemoresistance (147). Aberrant expres-
sion of several membrane proteins was also observed in the
first RNA-seq study of single CTCs isolated from periph-
eral blood of melanoma patients (108). These proteins are
thought to contribute to the invasiveness of CTCs and their
ability to escape the immune system. Using the SMART-seq
protocol, the authors captured almost the full-length tran-
scripts (Figure 2A and Table 1), and so could look for SNPs
that identified CTCs derived from melanoma. There is great
hope that RNA-seq of CTCs will aid the identification of a
tumor’s origin, improving the treatment of patients.

FUTURE CHALLENGES OF SINGLE-CELL RNA-SEQ

While the focus of single-cell RNA-seq has thus far been
on polyadenylated mRNAs of eukaryotes, many other tran-
script classes remain to be fully explored. Moreover, mod-
ern biology explores a huge range of organisms, including
many infectious prokaryotes, studies of which will require
further development of the current methods for single-cell
transcriptomics to be attempted. Below we will discuss the
limitations that need to be overcome to reap the maximum
benefits from single-cell RNA-seq.

Single-cell RNA-seq still requires significant further de-
velopment before it provides a comprehensive view of the
complete transcriptome of any given cell. Individual im-
provements notwithstanding, the current approaches suffer
from a number of problems. For example, it is difficult to
maintain strand specificity and detect isoform variants at
the same time (Figure 3) when short read-based sequenc-
ing is used. RNA losses are estimated to be between 50 and
60% (37,44), with a much higher risk for low abundant tran-
scripts (<5–10 transcripts per cell). Non-polyadenylated
RNA species, in spite of them being the major fraction
of transcripts in many important organisms, are currently
under-represented, and post-transcriptional RNA modifi-
cations (148,149) and RNA editing events (150) have not at
all been explored in single cells.

Some of these problems are being remedied. Long-read
sequencing technologies have enabled RNA-seq with a me-
dian read length of up to 1.5 kb (101,151). Adapting these
methods to single cells will abolish the compromise be-
tween strand specificity and full-length coverage. To capture
poly(A)− and poly(A)+ transcripts simultaneously, several
strategies are currently being developed. These include the
use of ‘not-so-random’ primers that are bioinformatically
predicted to bind to all cellular transcripts except riboso-
mal RNA (152). In addition, 5′-monophosphate-dependent
exonuclease treatment for the removal of abundant stable
RNAs has been optimized for small input amounts (97).

The limited sensitivity of single-cell RNA-seq is another
limiting factor at the moment. It remains currently diffi-
cult to distinguish between technical noise and biological
variability for low-abundance (∼10 copies/cell) transcripts
(37,115), resulting in a considerable loss of information
from cellular transcriptomes (43). For example, lncRNAs,
even though typically present in only few copies per cell,
can have important regulatory functions (153). Thus, sen-
sitivity needs to be dramatically improved such that even
transcripts with a single copy per cell can be quantitatively
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Figure 4. Envisioned strategies for nanopore-based RNA-seq. Left: while a single-stranded RNA stretch is translocated through a hemolysin pore in a
membrane, each ribobase could be detected by measuring current changes between the cis (−) and trans (+) compartment divided by the lipid bilayer.
Right: single-stranded RNA is cleaved by polynucleotide phosphorylase (PNPase) and each released ribobase could be read separately by measuring the
current between the cis (−) and trans (+) compartment. Nanopore drawing is reproduced from (169) by permission from Macmillan Publishers Ltd on
behalf of Scientific Reports, copyright 2013. RNA exosequencing principle is adapted with permission from (167) and copyright 2013 American Chemical
Society.

detected to fully understand such regulatory processes at the
single-cell level.

Other important transcript classes that have been ne-
glected in previous single-cell RNA-seq studies are microR-
NAs and other small RNAs with a length of less than 30
nucleotides. Multiplexed qRT-PCR has been used to ana-
lyze 220 microRNA in single ESCs (154,155), but in order
to profile all of the predicted 2500 different human microR-
NAs (156), RNA-seq again will be the method of choice. In
fact, this should already be possible with the current proto-
cols.

Today’s single-cell studies are typically conducted with
dissociated cells. Since RNA-seq can be applied to an indef-
inite number of cells (114), at some point this may enable re-
searchers to assemble the transcriptome of a whole organ.
However, maintaining the 3D information of tissue archi-
tecture at the same time as sequencing remains a challenge.
Laser microdissection would be too laborious for an entire
organ and the method itself is not appropriate for complex
tissues such as the brain. One could imagine combining lin-
eage tracking methods with multicolor-imaging (157) and
single-cell RNA-seq. For example, the already discussed in
situ sequencing (127) can detect thousands of transcripts
while maintaining the natural environment of the cell ei-
ther from cells grown in a monolayer or a tissue section.
Finally, the general lack of poly(A) tails has clearly ham-
pered progress in single-cell transcriptomics of prokaryotic
cells (97,158). However, we predict this will become increas-
ingly important in the coming years because more than 99%
of prokaryotes cannot be cultivated (159). Metatranscrip-
tomics has already been applied on the population level and
revealed the existence of new small RNAs (160). Given their
importance for many infectious diseases as well as biotech-
nological applications, bacteria lend themselves for RNA-
seq studies of decision-making processes in single cells.

Many of the scientific challenges discussed above might
be solved with the anticipated next wave in the sequenc-
ing revolution via nanopores. Briefly, in nanopore-based se-
quencing the identity and sequential order of nucleotides
is determined as the nucleic acid molecule of interest is
threaded through one of many tiny (nano)pores in a mem-
brane (161–163,168). Of note, the nanopore principle the-
oretically holds the promise of direct RNA-sequencing (i.e.
without a cDNA intermediate) without size discrimination,
down to the single-molecule level and very low cost. Al-
though no hard data are yet available, it is claimed that
the nanopore sequencers under development can already se-
quence single-stranded DNA of up to few kilobases (164).
For direct RNA-sequencing via the nanopore principle, two
strategies have been envisioned. First, as outlined above
each nucleotide can be read while the whole RNA molecule
is translocated through the pore (Figure 4, left part). It has
been demonstrated that, as they cross the pore, individual
ribonucleotides can be distinguished based on ionic current
flow changes (165). Moreover, RNA strands as long as 6
kb can be threaded through the pore (166), but interest-
ingly RNA translocation is currently too fast to allow ac-
curate reading of ‘one nucleotide after the other’ and there-
fore molecules that slow down translocation are being intro-
duced. The other strategy is based on RNA exosequencing
(167) (Figure 4, right part), i.e. RNA is successively cleaved
by polynucleotide phosphorylase (PNPase) (168) and each
released nucleotide is read separately in the nanopore. Ei-
ther way, as direct RNA-sequencing would render both re-
verse transcription and amplification obsolete, it appears to
be the ultimate gold standard for single-cell transcriptomics.

CONCLUSION

RNA-seq has revolutionized transcriptomics and rapidly
become the method of choice to address both quantita-
tive and qualitative aspects of gene expression. Nonetheless,
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most studies have analyzed the average transcriptome of a
whole population of cells. The recent years, however, have
taught us that many important cellular aspects can only be
assessed with the help of single-cell approaches. Examples
include mono-allelic gene expression, lineage tracing during
cellular differentiation and organ or embryo development
in eukaryotes, as well as bi-stable gene expression, biofilm
formation or persister cell formation in bacteria. A major
future challenge will be to go beyond the poly(A) transcrip-
tome of eukaryotes and bring single-cell RNA-seq to the
level that all types of cellular transcripts are analyzed in
parallel. Important first steps toward single-bacterium tran-
scriptomics have been taken (97). As cDNA synthesis dic-
tates the transcript classes to be captured and represents the
material-limiting and most length bias-prone step in the ex-
perimental pipeline, the long-term goal must be to directly
sequence full-length RNA molecules. With such powerful
techniques researchers could eventually address ambitious
projects such as global expression maps of low-abundance
lncRNAs in single mammalian cells or a new type of Dual
RNA-seq of infected single cells in which all eukaryotic
transcripts of the host are read simultaneously with those
from an intracellular bacterial pathogen (170).
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