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The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent

development of pneumonic COVID-19. However, the protective immunological response

associated with successful viral containment in the upper airways remains unclear. Here, we

combine a multi-omics approach with longitudinal sampling to reveal temporally resolved

protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected

patients and associate specific immune trajectories with upper airway viral containment. We

see a distinct systemic rather than local immune state associated with viral containment,

characterized by interferon stimulated gene (ISG) upregulation across circulating immune

cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential

of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype asso-

ciated with protective immunity in COVID-19. Together, we show protective immune tra-

jectories in SARS-CoV2 infection, which have important implications for patient prognosis

and the development of immunomodulatory therapies.
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Due to its high contagiousness and an approximate case
fatality rate of 1.0–2.3% the COVID-19 pandemic has
confronted the world with a major health care and eco-

nomic challenge1–3. Approximately 10% of cases have a severe
disease course4. Extensive data now underlines immunopathol-
ogy, the concept of self-inflicted damage to tissues by the immune
system, as an important factor contributing to disease progression
in COVID-194–8.

Various detrimental pathways have been identified to drive
immunopathology in COVID-19: A cytokine storm with high
levels of IL-6 and some similarity to chimeric antigen receptor
(CAR) -T cell hyperinflammation was postulated9,10. Recent data
highlighted a failure in host interferon I and III responses asso-
ciated with progression to severe COVID-1911–13. In contrast to
influenza, severe COVID-19 has also been associated with
impaired Interferon-y expression in T cells4,7,14. Seminal work
revealed auto-antibodies against interferon pathway related pro-
teins and inherent dysfunctional mutations in a significant pro-
portion of severe COVID-19 cases15,16. T cells in severe cases
show upregulation of exhaustion and apoptosis markers5. Apart
from adaptive immunity, the concept of a dysregulated innate
immune cell axis evolved consistently across studies, with an
expansion of HLA-DRlow monocytes and a surge in (premature)
neutrophils, which in turn cause vascular inflammation and
immunothrombosis in the lung and remote organs17–19.

Interestingly, most infected patients, even those with known
risk factors like advanced age, hypertension, or obesity, efficiently
clear SARS-CoV-2 without developing pneumonia20,21. This
highlights the ability of the host immune system to mount an
effective response and contain the virus in the upper airways
without causing pulmonary damage in the majority of cases22.

Yet, the pathways that provide protective immunity in SARS-
CoV-2 infection are less well understood. Outpatients and
patients with oligo- and asymptomatic SARS-CoV-2 infection
have been underrepresented in mechanistic studies.

To better understand how protective immune response and
immunopathology differ in SARS-CoV-2 infection, we launched a
multi-cohort multi-omics study characterizing the immune
response in ambulatory and non-pneumonic infected individuals.
With this experimental approach, we first used a well char-
acterized, exploratory cohort of high-risk patients for hypothesis
generation and subsequently confirmed our findings in a large
cohort of outpatient SARS-CoV-2 infected individuals. Our
approach allowed us to identify protective cell responses in these
individuals by contrasting them with COVID-19 pneumonia
cases and healthy controls in a longitudinal manner.

We identify a distinct immunological signature of successful
viral containment, featuring a prominent, early interferon sti-
mulated gene (ISG) upregulation across circulating immune cell
subsets. This systemic ISG signature does not correlate with
plasma interferon levels or with mucosal antiviral immune
responses early in disease. In addition, reduced cytotoxic potential
of Natural Killer (NK) and T cells compared to pneumonic
patients and control subjects, as well as a monocyte phenotype
with immune-modulatory properties are hallmarks of protective
immunity.

Results
Longitudinal clinical and cellular characteristics of the suc-
cessful and failing immune response to SARS-CoV-2. We
compared high-risk patients with an immune response that
successfully prevents pulmonary involvement in SARS-CoV-2
infection to the response of patients developing COVID-19
pneumonia. We performed single-cell RNA sequencing (sc-RNA
seq), in-depth RNA sequencing of sorted immune cell

populations and nasal swabs, 50-dimensional flow cytometry,
plasma shotgun proteomics together with cytokine profiling
longitudinally throughout the disease course. We used a long-
itudinally sampled exploratory high-risk cohort for hypothesis
generation (n= 14 patients), an independent longitudinally
sampled outpatient versus hospitalized confirmation cohort for
peripheral blood mononuclear cell (PBMC) and plasma analysis
(n= 58), and nasal swabs from ambulatory as well as hospitalized
patients to analyze local immune responses (n= 69 patients)
(Fig. 1a, b, also see Supplementary Table 1 for WHO severity
scale and Supplementary Table 2 for viral load data).

For the exploratory cohort, the sampling time points post PCR
test positivity were day 3.0 [IQR 2.5,6.5] first sampling, median
day 8.0 [IQR 8,11] second sampling and median day 17 [IQR
14,35] third sampling (Fig. 1a and Suppl. Fig. 1a, b, and Methods
section).

In our exploratory cohort, radiological assessment of non-
pneumonic, SARS-CoV-2 infected patients revealed no signs of
lung injury on high-resolution computed tomography compared
to patients experiencing pulmonary symptoms (Fig. 1c). Upper
respiratory tract viral loads derived from nasopharyngeal swabs
between pneumonic and non-pneumonic patients in the
exploratory group were comparable (Fig. 1d). Patients in the
exploratory cohort had on average 2.9 risk factors for developing
a severe disease course, with all patients having at least 1 risk
factor for a severe disease course, and a trend towards more risk
factors in the non-pneumonic cohort (Table 1, see Methods
section).

Absolute leukocyte counts did not differ between groups, while
other inflammatory markers such as CRP, IL-6, and Lactate
Dehydrogenase (LDH) were elevated in the pneumonic group as
expected (Fig. 1e). Further differentiation of leukocyte subsets
revealed lower lymphocyte counts in the pneumonic group, but
similar neutrophil and monocyte counts as reported previously
(Suppl. Fig. 1c)8,12,23,24.

To allow for an in-depth analysis of leukocyte subsets, we
performed phenotyping of surface marker expression by flow
cytometry in our exploratory cohort (Suppl. Fig. 1d). Changes in
the mononuclear phagocyte (MNP) and NK-cell compartment
included no major differences at early timepoints and higher
relative pDC counts in non-pneumonic patients compared to
patients with pulmonary injury throughout the disease course
(Suppl Fig. 1e).

We also observed shifts in T cell populations at late timepoints,
mainly presenting with a relative increase in CD4+ T cell counts
in non-pneumonic patients, but without numerical changes in
CD8+ T cells (Suppl Fig. 1e). These trends remained if patients
were binned according to time after PCR-positivity (Suppl.
Fig. 1e).

Unsupervised UMAP clustering of single-cell RNA-seq data of
PBMCs identified 17 distinct immune cell populations (Suppl.
Fig. 2a, b). The subclusters were integrated into the following
immune cell populations: T cells, B cells, monocytes, NK cells,
myeloid dendritic cells, plasmacytoid dendritic cells, plasma cells,
proliferating cells, and gamma delta T cells (Fig. 1f, g). T cells
were further differentiated into CD4+ (Population 5), CD8+

(Populations 1, 4, 8), and γδ T cells (Population 13). The top
cluster defining genes of the overarching cell types are depicted in
Suppl. Fig. 2a. Consistent with our flow cytometry data, cell-based
clustering revealed no major differences between cohorts
(Fig. 1g).

Plasma shotgun proteomics identified 1102 proteins. Internal
quality control revealed a strong positive correlation of CRP
determined by our proteomic approach with clinical CRP
(r= 0.9136) and fibrinogen measurements (r= 0.7967, Suppl.
Fig. 3a). Principal component analysis slightly separated control
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patients from SARS-CoV-2 infected patients, without strong
differences between disease severities (Suppl. Fig. 3b). Compar-
ison with another plasma proteome study of COVID patients25

showed correlations of the plasma proteome up to 38% (Suppl.
Fig. 3c). 171 plasma proteins were significantly upregulated in
either the pneumonic or non-pneumonic group and down-
regulated in the other group in comparison to healthy controls
(Suppl. Fig. 3d). Especially acute phase plasma proteins (APO-E,
PZP, CSFR1, SERPINA1), coagulation factors (FCN2, F5, F11),
and components of the complement system (C3, C1RL) were
upregulated in pneumonic COVID-19 patients (Fig. 1h and
Suppl. Fig. 3e).

Taken together, comparison of non-pneumonic and pneumo-
nic patients revealed only mild global changes in circulating

immune cells and plasma proteins, consistent with previous
reports18.

Enhanced interferon response across immune cell populations
defines protective immunity in non-pneumonic SARS-CoV-2
infection. To better understand how the cellular response to
SARS-CoV-2 infection might shape disease course, we next
analyzed our transcriptomic data in detail.

First, we sought to identify global, dynamic pathways that showed
significant variation over the disease course in the exploratory
cohort. We reasoned that these might be crucial in shaping disease
outcome26. For this purpose, we utilized an algorithm that fully
exploits the advantage of longitudinal sampling and allows cell
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trajectory inferences without relying on pseudotime analyses:
Tempora27 deducts longitudinally alternating integrative gene
pathways (further depicted in methods). Significant cellular
trajectories identified across all immune cell types evolved around
interferon signaling and included pathways such as “type I interferon
signaling” or “interferon alpha beta signaling”. These showed strong
temporal expression variation, driven mainly by high expression
levels in non-pneumonic individuals at first sampling (Fig. 2a and
Suppl Fig. 4a). To understand if interferon signaling indeed differs

between pneumonic and non-pneumonic patients, we directly
compared differentially expressed genes (DEGs) across sampling
time points between the two disease states. Assessment of T cell, B
cell, NK cell, and monocyte populations revealed consistent
upregulation of interferon-stimulated genes (ISGs) in the non-
pneumonic cohort. For example, transcripts encoding Interferon
Induced Protein 44 Like (IFI44L) and Interferon-induced Trans-
membrane Protein 1 (IFITM1), both of which are involved in viral
containment28,29, showed significantly higher levels in both CD4+

Fig. 1 Study overview and longitudinal clinical and cellular dynamics in non-pneumonic and pneumonic SARS-CoV-2 infection. a, b Experimental setup
and processing pipeline. a Plasma and PBMCs of n= 22 non-infected Controls, n= 29 pneumonic/hospitalized COVID-19, n= 53 non-pneumonic/
ambulatory infected patients were sampled b Exploratory cohort: longitudinal samples from 11 pneumonic and non-pneumonic infected patients and one
timepoint from three non-infected control patients were used for shotgun plasma proteomics, 50-dimensional flow cytometry or single-cell RNA
sequencing. scRNA sequencing: n= 12 patients (n= 6 pneumonic, n= 3 non-pneumonic, n= 3 control), 4-panel flow cytometry: n= 11 patients (n= 7
pneumonic, n= 4 non-pneumonic), shot-gun proteomics: n= 14 patients (n= 7 pneumonic, n= 4 non-pneumonic, n= 3 control). Not all patients from
one cohort were included into every analysis due to a lack of respective sample availability. Confirmation cohort: Longitudinal samples were used for
leukocyte subset RNA sequencing: n= 55 patients (n= 39 ambulatory patients, n= 7 hospitalized patients, n= 9 controls) and cytokine assays n= 56
(n= 40 ambulatory patients n= 7 hospitalized patients, n= 9 controls). Nasal swab cohort: RNAseq of nasal swabs n= 69 (n= 41 ambulatory patients
n= 18 hospitalized patients, n= 10 controls). Nasal swabs were included from both hospitalized and ambulatory patients that were either already included
in the two independent cohorts mentioned above (n= 37) or were additionally recruited (n= 32). c Representative axial and coronal computed-
tomographic scans of hospitalized pneumonic and non-pneumonic infected patients. d Baseline characteristics of the exploratory group: log10 of viral load
as measured in copies/ml of upper respiratory tract swap samples. n= 6 pneumonic COVID-19, n= 4 non-pneumonic infected patients. Age in years of
patients. n= 7 pneumonic COVID-19, n= 4 non-pneumonic. Box-and-whiskers plot (median, IQR and min-max). e Qualitative longitudinal clinical
laboratory values of CRP (mg/dl), LDH(U/l), IL-6 (pg/ml), and total leukocyte count (1000/µl) at time points 1–3. n= 7 pneumonic COVID-19 per time
point, n= 3 non-pneumonic COVID-19 patients per time point, except TP1 CRP and LDH n= 4. f Integrated UMAP representation of the pooled
exploratory cohort showing the assigned cell populations. g Integrated UMAP representation of the sequenced samples showing the assigned cell
populations per group for all time points. h Plot depicting significantly (p < 0.05) differentially expressed proteins in plasma samples pooled across all three
time points. Log fold changes are computed relative to the control proteins’ expression. All error bars are mean ± s.e.m. unless otherwise noted. Source
data are provided as a Source Data file.

Table 1 Additional clinical characteristics of exploratory patient cohort.

Cohort: Control Non-pneumonic
COVID-19

Pneumonic COVID-
19

Two-sided t test / Fisher’s exact test
non-pneumonic vs. pneumonic

Patient count 3 4 7 –
Age, median year [interquartile range [IQR]] 74 [69–74] 72 [41–88] 61 [37–75] n.s.
Male, n [%] 2 [66] 4 [100] 4 [57] n.s.
COVID-19 risk factors
Cardiovascular disease, n [%] 3 [100] 3 [75] 2 [29] n.s.
Arterial hypertension, n [%] 3 [100] 3 [75] 3 [43] n.s.
Diabetes mellitus, n [%] 2 [66] 2 [50] 3 [43] n.s.
Asthma/COPD/OSAS, n [%] 1 [33] 1 [25] 1 [14] n.s.
Male, n [%] 2 [66] 4 [100] 4 [57] n.s.
Age >60, n [%] 3 [100] 2 [50] 4 [57] n.s.
≥1 risk factors for severe COVID-19, n [%] 3 [100] 4 [100] 7 [100] n.s.

Pathogens (if tested)
SARS-CoV-2, n [% positive result] 0 [0] 4 [100] 7 [100] –
Other pathogens (Influenza, RSV, etc.), n [%
positive result]

0 [0] 0 [0] 0 [0] –

Clinical information at admission
COVID-19 typical symptoms (New onset
fever, cough or dyspnea), n [%]

0 [0] 2 [50] 7 [100] n.s.

Clinical information during enrollment in the study
O2-requirement 0 [0] 0 [0] 6 [86] *
Immunomodulatory treatment/trial
enrollment

0 [0] 0 [0] 3 [43] n.s.

Radiological findings
Chest CT, n [%] 3 [100] 3 [75] 7 [100]
COVID-19 typical bipulmonary infiltrates,
n [%]

0 [0] 0 [0] 7 [100] **

COVID-19 typical ground glass opacities,
n [%]

0 [0] 0 [0] 7 [100] **

*p < 0.05, **p < 0.01.
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T cells and NK cells of non-pneumonic SARS-CoV-2 infected
patients (Fig. 2b–d). Additionally, interferon signaling in B-cells was
elevated in patients without pulmonary injury, indicated by
increased expression of MX130, XAF131, and IFI44L compared to
patients with pneumonic COVID-19 (Fig. 2e, f). IFI44L28, IFI4428,
IFI632, LY6E32, ISG1533 were significantly higher expressed in
monocytes from non-pneumonic cases compared to patients with
pulmonary involvement (Fig. 2g, h).

To further analyze longitudinal dynamics of ISG responses, we
performed a focused Tempora analysis including our predeter-
mined ISG gene list (see Methods section)27. This analysis of the
longitudinal behavior of ISGs in non-pneumonic patients
revealed a strong and early burst of ISG signaling across multiple
cell clusters (Suppl. Fig. 4b).

We next subdivided ISGs into groups that showed similar
longitudinal development across the disease course by a

double-differential time series. This is depicted as an Alluvial
plot with distinct color-coded trajectory groups, each character-
ized by a common temporal regulation – either enriched in
pneumonic or non-pneumonic patients compared to controls
(Fig. 3a). Timepoints were given as time point (TP) 0 for healthy
controls followed by the longitudinal sampling time points of the
infected patients. In monocytes, the number of upregulated ISGs
at TP1 was more frequent in non-pneumonic patients and
included LY6E, IFI44L, ISG15, or MX1 (Fig. 3a). These ISG
trajectories showed a similar subsequent course with steady
higher expression in non-pneumonic patients at TP2 compared
to controls (Fig. 3a).

When directly resolving ISG expression, we confirmed key
interferon signaling-related genes across different immune cell
subsets to be most prominently and abundantly expressed at the
earliest time point of disease course in non-pneumonic patients

Fig. 2 Enhanced interferon response across immune cell populations defines protective immunity in SARS-CoV-2 infection. a Tempora based analysis
of longitudinally alternating gene pathways across cell clusters of pneumonic and non-pneumonic patients yielding “Type I Interferon signaling pathway” as
a temporally significantly regulated pathway, non-pneumonic clusters are depicted in green, pneumonic clusters are in red, timepoints are chronologically
set throughout the inferred time axis and depicted in the cluster names, statistical test conducted using the Tempora method. b, c Volcano plots of
differentially regulated genes in CD4+ T cells and NK cells of pneumonic compared to non-pneumonic samples. Genes enriched in pneumonic samples
have negative log(FC), genes enriched in non-pneumonic samples have positive log(FC). The color scale underneath emphasizes this (red pneumonic,
green non-pneumonic) d Violin plots of expression of IFI44L and IFITM1 in CD4+ T cells and NK cells for pneumonic and non-pneumonic samples. e
Volcano plot of differentially regulated genes in B cells of pneumonic compared to non-pneumonic samples. f Violin plots of expression of MX1, XAF1, and
IFI44L in B cells for pneumonic and non-pneumonic samples. g Volcano plot of differentially regulated genes in monocytes of pneumonic compared to non-
pneumonic samples. h Violin plots of expression of IFI44L, IFI44, LY6E, ISG15, and IFI6 in monocytes for pneumonic and non-pneumonic samples. b, c, e, g
Red annotations are significantly upregulated (adj p val < 0.05), yellow ones are non-significantly differentially expressed. Positive fold change signifies
higher expression in the non-pneumonic group. Line denotes adj p val < 0.05. Statistical testing for volcano plots described in methods. b–h Longitudinal
samples are pooled if not otherwise indicated.
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(Fig. 3b and Suppl. Fig. 4c). This underscores the notion that ISGs
play an early and potentially deterministic role in shaping
COVID-19 disease course34. Most of the displayed genes possess
antiviral activity: MX1, MX2, IFI44, IFI 44L, and ISG15 inhibit
viral replication33,35,36, IFITM1 inhibits viral fusion37 and LY6E
impairs coronavirus fusion38. In vitro studies on SARS-CoV-2
have revealed a suppressed or delayed interferon response by

infected cells, mediated by multiple viral proteins inhibiting the
physiological antiviral response39,40. We therefore asked if the
observed differences simply indicated a downregulation of the
interferon response in severe COVID-19. However, when
comparing non-pneumonic SARS-CoV-2 infected patients with
uninfected control patients, we found persistent differential
expression, pointing towards an active enhancement of ISG
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signaling in peripheral immune cells as a key immunological
feature correlating with non-pneumonic SARS-CoV-2 infection
(Suppl. Fig. 4d, f–h).

To further validate these findings, we computed an ISG-score
for each cell population using a modified score, based on Hadjadj
et al.12 and Combes et al.12,41. The strong increase in ISGs in
non-pneumonic compared to pneumonic COVID-19 patients
was reflected by an elevated ISG-score across CD4+ T cells, NK
cells and was particularly prominent in monocytes (Fig. 3c). For
further validation, we used a larger ISG set to compute a broader
ISG score (including 57 ISGs, see Methods section), which yielded
similar results (Suppl. Fig. 4i).

Finally, gene ontology (GO) term analysis of biological
processes revealed an enrichment of “defense response to virus”,
“response to virus”, “response to interferon-alpha” “response to
type I interferon”, “negative regulation of viral genome replica-
tion”, and several other interferon-related pathways in CD4+

T cells and monocytes (Fig. 3d, e and Suppl. Fig. 4e).
To better understand if the identified ISG responses represent

jointly regulated gene modules on the single-cell level, we
employed a framework allowing an unbiased identification of
coordinated transcriptional changes across single cells and their
deconvolution over the disease course. Weighted gene correlation
network analysis (WGCNA), previously described to identify
coordinative cellular responses in HIV infection26, was used for
non-pneumonic SARS-CoV-2 infection and compared to pneu-
monic COVID-19. In brief, gene modules (GMs), depicting
mutually regulated genes, were identified for the main cell clusters
in non-pneumonic and in pneumonic patients (respectively
pooled with healthy clusters) in an unbiased manner. Interest-
ingly, across multiple cell subsets a distinct interferon stimulated
gene (ISG) enriched GM was present. These GMs, termed ISG-
GMs, were comprised of genes such as Ly6E, XAF1, IFI6, IFI44L,
MX1, or ISG15 (Fig. 3f). The broadest ISG-GM could be detected
in monocytes, comprising more than 30 genes (Fig. 3f and Suppl
Fig. 4j). Longitudinal analysis revealed these ISG-GMs to be
enriched early in the non-pneumonic disease course during peak
viral load, particularly in monocyte, B cell, and CD4+ T cell
clusters (Fig. 3g, h and Suppl. Fig. 4k, l).

Together, these data point towards an early, global induction of
coordinated interferon I gene modules in peripheral immune
cells, correlating with the ability to successfully contain SARS-
CoV-2 infection.

Decreased cytotoxic potential of lymphocytes in non-
pulmonary SARS-CoV-2 infection. To explore additional pro-
tective immune cell trajectories, we analyzed the transcriptome of
lymphocytes in greater detail. Cytotoxic lymphocytes are key to

both the adaptive and innate immune response to viral infections,
with cytotoxic T cells and NK cells representing adaptive and
innate antiviral branches respectively42. Prior work has high-
lighted upregulation of cytotoxic pathways in severe COVID-19,
which could mediate harmful tissue damage43,44.

NK cells of infected pneumonic patients exhibited an increase
in markers of activation and cytolysis, such as granzyme B
(GZMB)28, granzyme H (GZMH)45 as well as galectin-1 and
galectin-3 (LGALS1, LGALS3)46 (Fig. 4a, b and Suppl. Fig. 5a),
compared to cases without lung involvement. NK cell activation
markers and neutrophil chemoattractants S100A9 and S100A847

were also less abundantly expressed in non-pneumonic infected
patients. In line, NK cells from pneumonic patients showed an
upregulation of GO terms such as “cytolysis”, “granulocyte
chemotaxis”, and “granulocyte migration” (Fig. 4c and Suppl.
Fig. 5b). Flow cytometry-based surface profiling revealed five NK
cell subpopulations among pneumonic and non-pneumonic
patient groups characterized by differential surface expression
(Suppl. Fig. 5c–g). Subpopulation NK2, characterized by
increased expression levels of CD18, which is necessary for
cytotoxic activity48, and CD9, a tetraspanin implicated in innate
immune cell activation and diapedesis49, was detected at high
levels throughout pneumonic disease (Suppl. Fig. 5d, f).

Similarly, infected patients without lung injury showed a less
cytotoxic CD8+ T cell transcriptomic phenotype with decreased
expression levels of cytotoxic genes such as CTSW45,50, PRF151,
NKG747, GZMB52,53, GZMH45, or GNLY54 (Fig. 4d). This
reduced cytotoxic potential was not only observed in comparison
to pneumonic COVID-19 but partially also in comparison to
control subjects, indicative of a mild downregulation of
cytotoxicity genes (Fig. 4d, e). Accordingly, GO enrichment
analysis for biological processes revealed a relative downregula-
tion of the cytolysis pathway in CD8+ T cells from patients
without pulmonary injury (Fig. 4f and Suppl. Fig. 5h). Temporal
resolution revealed the respective cytotoxicity genes in CD8+

T cells and NK cells to be expressed early in pneumonic COVID-
19 patients, with a high expression throughout the disease course
(Fig. 4g).

Plasma proteomic analyses were in line with decreased
cytotoxic features of NK and T cells in non-pneumonic infection.
S100A8, S100A9, and LGALS3 were enriched in pneumonic
plasma, especially during the first time point, whereas non-
pneumonic patients did not have an enrichment of these markers
(Fig. 4h and Suppl. Fig. 5i). These markers have previously been
shown to be upregulated in severe COVID-19 and are associated
with a severe disease outcome55. Other indicators of the increased
cytotoxicity, cathepsin G and D, and defensin alpha 1, which is
not only expressed by neutrophils, but also NK cells, were

Fig. 3 Differentially regulated interferon response across time points. a Double-differential time series plot of monocytes depicting which patient group
shows increased expression of predefined ISGs, always in comparison to non-infected controls at baseline, binned by the 0.25 and 0.75 quantiles of all
(absolute) double-differential fold changes into PNEU, pneu, No Reg, non-pneu, and NON-PNEU, which display different magnitudes of differential
regulation. b Dot-plot of the scaled average expression and percent expressing cells of selected interferon-stimulated genes in CD4+ T-cells and B cells by
sampling time point in non-pneumonic and pneumonic patients. c Box plots of ISG-scores (see methods) of CD4+ T cells (n= 725 pneumonic n= 388
non- pneumonic and n= 162 control cells), NK cells (n= 2550 pneumonic n= 888 non- pneumonic and n= 903 control cells) and monocytes (n= 1713
pneumonic n= 380 non- pneumonic and n= 1303 control cells). P values are shown above, non-pneumonic with pneumonic and control with pneumonic
are compared. Box-and-whiskers plot (median, IQR, and 1.5IQR), two-sided t-tests. d, e Top 10 Gene Ontology - Biological Processes (GO-BPs) terms from
upregulated genes of non-pneumonic vs pneumonic samples. Pathways of interest are marked, line shows adj p val < 0.05. Statistical testing described in
methods. c–e Longitudinal samples are pooled if not otherwise indicated. f Number of identical occurrence of genes of ISG GMs of non-pneumonic patients
in four immune cell subsets. g Box-plots showing temporal development of the specific ISG-GMs in non-pneumonic patients. Box-and-whiskers plot
(median, IQR, and 1.5IQR). h Dot plots displaying the median score of respective ISG-modules of NK-cells, Monocytes, CD4 T cells, B cells throughout time
in non-pneumonic patients and in control patients. CD4 T cells n= 162,155,185 and 48 per TP respectively, monocytes n= 1303,131,208 and 41 per TP
respectively, NK cells n= 903,314,495 and 79 per TP respectively and B cells n= 440,264,279 and 103 per TP respectively. Source data are provided as a
Source Data file.
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upregulated at multiple sampling timepoints in pneumonic
patients (Fig. 4h and Suppl. Fig. 5i)56,57. Pathway analyses of
differentially expressed plasma proteins also revealed upregulated
inflammation, acute response, and oxygen species pathways, with

the most pronounced upregulating at the first sampling point
(Fig. 4i and Suppl. Fig. 5j). Indeed, cytotoxic T lymphocytes and
NK cells have been shown to mediate cytotoxicity by release of
reactive oxygen species58.
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In summary, reduced upregulation of circulating lymphocyte
cytotoxicity markers associate with a non-pneumonic disease
course.

Abundant naïve and immune-modulatory T-cells and antiviral
NK-cells in non-pneumonic SARS-CoV-2 infection. In-depth
analysis of CD4+ T cells revealed higher counts of antigen
inexperienced CD45RA+ CD4+ T cells in non-pneumonic
patients, most pronounced at late stages (Fig. 5a). In line, anti-
gen experienced CD45RO+ CD4+ T cells diverged significantly
during the disease course in non-pneumonic compared to
pneumonic patients (Suppl. Fig. 6a).

tSNE analysis with subsequent FlowSOM subclustering of T
cell panel 1 revealed a distinct CD4+ CD45RA+ CCR10int naïve
subpopulation (TN_1) to be significantly enriched in non-
pneumonic patients, with an increased divergence over the
disease course (Suppl. Fig. 6b–f and Suppl. Table 4). TN_1 was
further characterized by particularly low expression of surface
activation and exhaustion markers, including CXCR3, PD-1, and
CTLA-459 (Suppl. Fig. 6c). Interestingly, CXCR3, which is rapidly
induced upon activation of naïve T cells, was expressed only at
low levels in TN_160 (Suppl. Fig. 6c). Further characterization by
T cell panel 2 revealed a CD4+ CD45RA+ antigen inexperienced
T cell population (TN_2) specific to non-pneumonic patients,
corresponding to TN_1 in T-cell panel 1 (Suppl. Table 5). CD197
(CCR7) and CD27 levels in this population were intermediate,
underlining a naïve phenotype61,62 (Suppl. Fig. 6g–k). In line with
these distinct changes in surface expression, our scRNA-seq data
highlighted a more immune-modulatory phenotype of T cells in
non-pneumonic infected patients: JUNB and FOS -both enhanced
in T cells from non-pneumonic patients- are subunits of the
activating protein-1 (AP-1)63,64, implicated in T-cell differentia-
tion into effector Th265. GATA3, a master transcription factor for
the differentiation of Th2 cells, was similarly upregulated
(Fig. 5b)66. This underlines a potentially immunomodulatory or
anti-inflammatory phenotype of T cells in non-pneumonic
infection67. In line, and similar to CD8+ T cells, CD4+ T-cells
from non-pneumonic SARS-CoV-2 infected patients showed
downregulation of “cell killing”, “chronic inflammatory response”
and “cytolysis” GO terms (Fig. 5c, d).

Corresponding to the expression profiles of T cells, the antiviral
transcription factors JUNB, FOS, and FOSB were increasingly
expressed in NK cells of non-pneumonic patients (Fig. 5e).
Subcluster NK3, characterized by high L-selectin (CD62L)
expression and reminiscent of an antiviral CD56dim NK cell
subset68, showed a significant increase among non-pneumonic
SARS-CoV-2-infected individuals in flow cytometry (Suppl.
Fig. 5d–g). This subset can produce significant amounts of IFNy
and is involved in multiple antiviral tasks after restimulation and
terminal differentiation68. Temporal analysis showed that the
increased prevalence of these immunomodulatory/anti-inflam-
matory pathways was constant across acute disease (TP1 and

TP2) (Suppl. Fig. 7a), lacking the striking early expression peak
identified for ISGs (compare Fig. 3b). Comparison of non-
pneumonic patients to uninfected control patients mainly
recapitulated the observed differences to pneumonic patients
(Suppl. Fig. 7b).

In summary, there are significantly enhanced frequencies of
naïve and immune-modulatory T cells and antiviral NK cells
associated with non-pneumonic SARS-CoV-2 infection.

Monocytes with immune-modulatory potential in non-
pneumonic COVID-19. As severe COVID-19 immunopathol-
ogy precedes effective adaptive immune cell function, research
has highlighted an innate immune axis, particularly monocytes,
in COVID-19 immunopathology8,55,69.

What are the features defining monocytes in patients able to
contain the virus in the upper airways? Flow cytometry revealed a
population of non-classical monocytes characterized by surface
marker expression of CD16 and CD88, as well as HLA-DR
particularly early in disease (IM), (Fig. 5f, g, Suppl. Fig. 7c–f, and
Suppl. Table 3). Non-classical monocytes have been implicated as
crucial immune modulatory and possibly antigen-presenting cells
in inflammation and infection70. Along these lines, CD83, which
limits cytotoxic T cell effector function, was elevated on the
transcriptional level in monocytes derived from non-pneumonic
patients (Fig. 5h)69,71. Moreover, anti-inflammatory genes like
TMEM176B, known to inhibit the inflammasome and therefore
IL1-beta production, as well as Interleukin 1 receptor antagonist
(IL1RN), showed enhanced transcription in monocytes of non-
pneumonic infection (Fig. 5h)72.

Finally, epidermal growth factor receptor (EGFR) ligands,
which control tissue repair and regeneration, as well as mucosal
immunity, were found to be significantly enhanced in non-
pneumonic cases (Fig. 5h)73. In particular, Ampheregulin
(AREG), Epiregulin (EREG), Early growth response protein 3
(EGR3), and Heparin Binding EGF Like Growth Factor (HBEGF)
showed significant upregulation (Fig. 5h). AREG has been shown
to modulate T reg and Th2 function74,75, while EREG is crucial
for epithelial integrity and resolution of inflammation76. Long-
itudinal analysis revealed that the identified pathways were most
prominently upregulated at TP2, pointing to a pro-resolving and
immune-modulatory monocyte phenotype developing later over
the disease course (Fig. 5i). When comparing non-pneumonic
patients to uninfected control patients the observed differences to
pneumonic patients could essentially be recapitulated (Suppl.
Fig. 7g).

In contrast, in patients developing COVID-19 pneumonia,
TNFRSF1B and IL6R, genes encoding IL-6 receptor and TNF
receptor, were upregulated. In addition, effector proteins like
lysosomal cysteine protease Cathepsin B were significantly
enhanced (Fig. 5h). Monocytes have also been implicated in
contributing to immunothrombosis in COVID-1917. Indeed, in
addition to complement factors upregulated in the plasma

Fig. 4 Downregulation of cytotoxic potential in lymphocytes in non-pneumonic SARS-CoV-2 infection. a Volcano plot of differentially regulated genes in
NK cells of pneumonic compared to non-pneumonic samples. b Violin plots of expression of GZMB, S100A8, LGALS1, and S100A9 in NK cells for
pneumonic, control, and non-pneumonic samples. c Top 10 GO-BPs from upregulated genes of non-pneumonic vs pneumonic samples in NK cells.
Pathways of interest are marked, line shows adj p val < 0.05. d Volcano plot of differentially regulated genes in CD8+ T cells of pneumonic compared to
non-pneumonic samples. a, d Red annotations are significantly differentially regulated (adj p val < 0.05. Positive fold change signifies higher expression in
the non-pneumonic group. Line denotes adj p val < 0.05. e Violin plots of expression of CTSW, PRF1, NKG7, and GZMB in CD8+ T cells for pneumonic,
control, and non-pneumonic samples. f Top 10 upregulated GP-BPs of non-pneumonic vs pneumonic samples in CD8+ T cells. Pathways of interest are
marked, line shows adj p val < 0.05. g Violin plots of expression of CTSW, PRF1, NKG7, and GZMB in CD8+ T cells per sampling time point. h Volcano plot
of differentially expressed plasma proteins at TP1 of pneumonic samples compared to control samples. Line denotes adj p val < 0.05. i Top significantly
enriched GO-BPs for pneumonic plasma proteins compared to non-pneumonic plasma proteins. Pathways of interest to lymphocyte cytotoxicity are
marked. Statistical testing for GO-BPs and volcanos described in methods. Source data are provided as a Source Data file.
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(Fig. 1i), complement factor D and platelet binding PSGL-1 were
upregulated in monocytes of pneumonic patients (Fig. 5h).
Plasma proteomics showed increased pro-inflammatory CCL18,
as well as Cathepsin G (Fig. 5j)77.

In summary, these data highlight an overall pro-inflammatory
and potentially tissue-damaging phenotype of peripheral blood
monocytes in COVID-19 pneumonia. In contrast, alternative
monocytes with an immune-modulatory and pro-resolving

phenotype emerge in non-pneumonic patients over the course
of disease.

Robust early upregulation of ISG signatures in a large ambu-
latory SARS-CoV-2 infected cohort. Using a cohort of high-risk
patients, we detected a distinct immune profile in non-
pneumonic SARS-CoV-2 infection. This was most prominently
characterized by a global ISG response across peripheral immune
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cell subsets, a lymphocyte shift from cytotoxic to immune-reg-
ulatory, and an anti-inflammatory monocyte signature. Long-
itudinal analysis highlighted an early global ISG response to be
decisive for a non-pneumonic disease course, whereas the other
identified immune trajectories developed over time. Because of
the crucial patho-mechanistic and potentially therapeutic impli-
cations, we sought to verify our findings by focusing on ISG
expression at an early time point after infection.

We chose a prospective cohort of ambulatory patients, which
prospectively enrolled SARS-CoV 2 PCR-positive individuals,
who were not hospitalized due to paucity of symptoms
(confirmation cohort: KoCo19-Immu, see Methods)78,79. We
included n= 39 PBMC samples early after RT-PCR-positivity,
during acute SARS-CoV-2 infection with high nasopharyngeal
viral loads (day 4), and after virus eradication and convalescence
(day 60) (Suppl. Fig. 8a). Two additional cross-sectional cohorts
of age-matched SARS-CoV-2 negative patients (n= 9) and a
second hospitalized cohort with COVID-19 pneumonia (n= 7)
were also analyzed for reference. We performed subset bulk
RNA-sequencing of sorted major immune cell subsets to allow for
a deep transcriptomic coverage (see Methods section).

In line with the exploratory cohort, ambulatory SARS-CoV-2
infected patients with oligo- to asymptomatic disease showed an
early upregulated ISG signature across major PBMC subsets at
day 4 compared to after convalescence at day 60 after infection
(Fig. 6a). Early in the disease course, 33 ISGs in monocytes were
upregulated and 6 downregulated in comparison to convalescent
patients from the same cohort. (Fig. 6a). In line with our
exploratory cohort, IFI44, IFITM3, IFI44L, MX1, and other ISGs
were significantly upregulated in monocytes in ambulatory cases
(Fig. 6b). Similarly, CD4+ T cells showed increased transcription
of IFI44, IFI44L, Ly6E, and MX1, with overall 44 up- and 11
downregulated ISGs in CD4+ T cells (Fig. 6c). Transcriptional
analysis of NK cells revealed upregulation of XAF1, Ly6E, IFI6,
and IFITM3, with 36 ISGs up- and 15 downregulated altogether
in NK cells (Suppl. Fig. 8b–c). Finally, the ISG score of early
disease ambulatory patients was significantly increased compared
to convalescent patients as reported for the exploratory scRNA
Seq cohort (Fig. 6d, compare Fig. 3c). We confirmed this
signature also in comparison to day 4 samples with SARS-CoV-2
negative, age-matched controls (Suppl. Fig. 8d). Furthermore,
using the expanded ISG score of 57 ISGs, we further validated a
significantly enhanced ISG response in early disease ambulatory
patients compared to convalescent patients (Suppl. Fig. 8e).

Indeed, some ISGs were also downregulated in non-pneumonic
patients compared to pneumonic patients. A more detailed insight
into the downregulated genes in non-pneumonic patients, revealed a
notably high number of pseudogenes (i.e. IFITM3P4, IFITM3P3,
IFITM4P, IFIT1P1 etc.) to be among the most strongly

downregulated genes especially in CD4+ T cells and NK cells.
The role of pseudogenes in the literature, and particularly ISG
related pseudogenes, has not yet been conclusively resolved.
Pseudogenes are largely considered not to pursue the canonical
functions of their parent-gene, however some have recently been
proposed to play important roles in gene regulation and silencing or
functional roles unrelated to the parent-gene80,81. In monocytes, the
downregulated genes were mostly IRFs (IRF3, 8, 9), which might
indicate a negative feedback, resulting from an early ISG burst,
inhibiting further IRF-mediated ISG induction. However, the
downregulation of these IRFs during acute infection was very subtle
as indicated in the heatmap (Fig. 6b) and presumably of minor
biological relevance.

We further compared ambulatory SARS-CoV-2 infection with
a cohort of hospitalized COVID-19 patients. ISG transcription in
monocytes and NK-cells of day 4 ambulatory SARS-CoV-2
infected individuals was elevated compared to hospitalized
patients with severe symptoms and consistent lung involvementd
(Suppl. Fig. 8f, g).

For our confirmation cohort, we also reassembled the bulk
immune cell data as clusters of single samples (Suppl. Fig. 8h, see
Methods section). Interestingly, in comparison to ambulatory
patients, immune subsets, particularly monocytes from hospita-
lized patients, clustered in a distinct manner (Suppl. Fig. 8h, i).
Tempora27 analysis allows conclusions on cell type similarities in
longitudinally sampled datasets and thereby enables the depiction
of possible cell trajectories. Hence, we performed an unsupervised
Tempora based trajectory analysis of monocyte phenotypes
throughout the disease course. We set healthy patients as an
early baseline throughout the inferred time and included either
hospitalized or ambulatory monocytes. This allowed a better
understanding of the correlation between the monocytic immune
responses of both patient groups. In an unbiased manner,
Tempora identified ambulatory monocyte evolution as a distinct
consistent trajectory separate from hospitalized monocytes
(Fig. 6e). In summary, a large, prospective, ambulatory cohort
of SARS-CoV-2 infected patients validated a strong, early
interferon response in peripheral blood immune cells character-
izing a disease course without substantial lung involvement.

ISG responses of the upper airway barrier surfaces do not
correlate with systemic antiviral state. Finally, we asked how the
observed systemic antiviral state is induced in patients containing
the infection locally. We hypothesized that a strong, early interferon
response in the upper airway might prime circulating immune cells
and mediate protective immunity. To investigate this further we
performed RNA sequencing of nasopharyngeal swabs which allows
analysis of predominantly non-immune cells such as squamous cells,
secretory cells and goblet cells that are targeted by SARS-Cov-282,83.

Fig. 5 Abundant unexperienced and immune-modulatory T-cells and antiviral NK-cells and anti-inflammatory and anti-thrombotic monocytes in non-
pneumonic SARS-CoV-2 infection. a Percentage of CD45RA+ CD4+ T cells of live PBMCs measured by flow cytometry per sampling time point. Two-
sided t-test, n= 4 per time point for non-pneumonic, n= 7,4 and 7 per time point respectively for pneumonic. p= 0.0170. b Volcano plot of differentially
regulated genes in all T cells of pneumonic compared to non-pneumonic samples. c, d GO-BP network analysis and Top10 downregulated GP-BPs of non-
pneumonic vs pneumonic samples in CD4+ T cells. Pathways of interest are marked, line shows adj p val < 0.05. e Volcano plot of differentially regulated
genes in NK cells of non-pneumonic compared to pneumonic samples. f Heat map of surface marker expression by FlowSOM group of flow cytometric
measurement of monocytes. g Violin plot of Mono0 FlowSOM cluster per time point. Mixed-effects model analysis. Post-hoc Sidak’s multiple comparisons
test for individual significant differences between pneumonic and non-pneumonic samples per time point. n= 3,4 and 4 per time point respectively for non-
pneumonic, n= 7,7 and 3 per time point respectively for pneumonic. p= 0.0426. h Volcano plot of differentially up- and downregulated genes in
monocytes of non-pneumonic compared to pneumonic samples. i Expression of selected genes from h in monocytes by disease condition and sampling
time point. j Volcano plot of differentially expressed plasma proteins of pneumonic samples (all time points pooled) compared to control samples (one-
sample moderated t-test). Line denotes adj p val < 0.05. b, e, h Red annotations are significantly upregulated adj p val < 0.05. Positive fold change signifies
higher expression in the non-pneumonic group. Statistical testing for GO-BPs and volcanos described in methods. Source data are provided as a Source
Data file. Line denotes adj p val < 0.05. All error bars are mean ± s.e.m. *p < 0.05.
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We included uninfected control patients (n= 10), longitudinally
sampled ambulatory SARS-CoV-2 positive individuals(n= 41) and
hospitalized patients (n= 18 patients in total). Nasal swabs showed
high viral loads in hospitalized patients as well as ambulatory
patients, where the viral load gradually decreased over time, con-
firming adequate sampling time points (Fig. 7a). To capture the ISG
response in the nasal epithelium, we used a specific ISG score
derived from in vitro interferon stimulation of nasal epithelial cells
for these analyses (see Methods section)84. Seminal work by Ziegler
et al.82 showed abrogated upper airway ISG responses in severe
hospitalized COVID-19 compared to non-severe patients, a finding

that we were able to reproduce in our hospitalized cohort when we
subdivided hospitalized patients based on disease severity (Fig. 7b
and Suppl. Fig. 9a). We also found a positive correlation between
SARS-CoV-2 viral load and ISG score, as reported in the literature
(Fig. 7c)85.

More generally, mucosal ISG responses differentiated home-
isolated SARS-CoV-2 infected individuals from hospitalized non-
ICU COVID-19 cases, as UMAP showed separate clustering of
hospitalized swabs (Fig. 7d).

Interestingly, early local ISG responses in ambulatory patients
were not as prominently enhanced compared to time points after

Fig. 6 Robust early upregulation of ISGs in a large ambulatory SARS-CoV-2 infected cohort. a Heat maps of differentially expressed interferon
stimulated genes in leukocyte subsets (monocytes, NK cells, CD4+ T cells) of day 4 ambulatory compared to day 60 (convalescent) COVID-19.
Monocytes: n= 33 upregulated, n= 6 downregulated. NK cells: n= 26 upregulated, n= 15 downregulated CD4+ T cells: n= 44 upregulated, n= 7
downregulated. b, c Heat maps and violin plots of differentially expressed interferon stimulated genes in monocytes and CD4+ T cells of day 4 ambulatory
compared to day 60 (convalescent) COVID-19. Individual ISG expressions of exemplary ISGs. Monocytes IFI44 p= 0.0005 IFITM3 p= 0.0004 IFI44L
p= 0.0005 MX1 p= 0.013. CD4 T cells IFI44 p= 0.0066 LY6E p= 0.106 IFI44L p= 0.0070 MX1 p= 0.101. d Computed ISG scores for monocytes
p= 0.0004, NK cells p= 0.0087 and CD4+ T cells p= 0.0066. b–d Unpaired two-sided t-test with Welch’s correction. n= 29 d4, n= 13 d60. e Tempora
based analysis of monocyte trajectories from hospitalized and ambulatory patients in a longitudinal fashion. Source data are provided as a Source Data file.
Mean ± sem is shown unless otherwise specified. *p < 0.05, **p < 0.01, ***p < 0.001.
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recovery as observed in circulating immune cells (Fig. 7e,
compare Fig. 6b).

Indeed, relating local ISG responses of our ambulatory cohort
to non-ICU hospitalized pneumonic COVID-19 patients revealed

no positive correlation of mucosal ISG response with disease
containment (Fig. 7f)82. On the contrary, sampling time point
matched comparisons between non-ICU hospitalized COVID-19
patients and ambulatory subjects showed similar IFN type I

Fig. 7 Distinct antiviral immune responses at a local vs. systemic level. a Longitudinal viral load course ambulatory nasal swab patients and hospitalized
patients used RNA-sequencing of nasopharyngeal swab material. Log10(Viral Load (copies/ml) is depicted at sampling time points day 0–6 (n= 20), 7–14
(n= 29) and 60–95 (n= 27) post positive SARS-CoV-2 PCR (last day of sampling range used in graph). mean±sem. Hospitalized and severe hospitalized
patient viral load, n= 12 and n= 5 respectively. b Nasal swab ISG score of nasopharyngeal swabs of hospitalized (n= 13) and severe hospitalized non-ICU
patients (n= 5, see methods). Unpaired two-sided t-test with Welch’s correction, p= 0.0415. c Correlation between ambulatory d0-14 patient viral load
and nasal swab ISG score. r and p value shown. n= 47 patients. p-value denotes slope non-zero. d UMAP clustering of patient samples. e Heat map of
differentially expressed interferon-stimulated genes used for nasal swab ISG score. f Computed nasal swab ISG scores. Unpaired two-sided t-test with
Welch’s correction. p= 0.0408 (d–f): d0-6 n= 20, d7-14 n= 29, d60-d95 n= 28, controls n= 10, hospitalized n= 14. g Pearson correlation between
nasal swab ISG score and IFN I computed scores and systemic ISG scores of CD4 T cells, NK cells, and monocytes for ambulatory patients that had both
early nasal swab and early blood sampling. P value is shown in center of each field (none <0.05). Pie charts show Pearson’s r from maximum 1 (clockwise
and blue) to −1 (anticlockwise and red). n= 22 ambulatory patients. h, i Measurements of IFN-λ1 (p= 0.0003), IFN-λ2/3 (p= 0.0249), IFN-γ
(p= 0.0001) (h), IFN-α2 (p= 0.8638), IFN-β (p= 0.0091) (i) in plasma samples. d4, 11 and 60 longitudinal ambulatory COVID-19 samples. n= 9
controls, n= 40 d4, n= 18 d11, n= 14 d60, n= 7 hospitalized COVID-19. Unpaired, two-sided Mann–Whitney U tests between d4 and all other groups.
Non-significant results not shown, besides for hospitalized. Source data are provided as a Source Data file. Line denotes median. Mean ± sem is shown
unless otherwise specified. *p < 0.05, **p < 0.01, ***p < 0.001.
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transcription and significantly increased ISG induction in
hospitalized non-ICU COVID-19 (Fig. 7f and Suppl. Fig. 9b–d).
Lastly, we correlated nasal swab ISG response and IFN I score
with the systemic immune cell ISG score for individuals for
whom we had performed both analyses. We did not detect
significant correlation between the two scores (Fig. 7g).

In summary, we conclude that the local antiviral response of
the (infected) upper airway mucosa cells, in contrast to systemic
ISG responses, does not positively correlate with disease
containment in the upper respiratory tract.

Cytokine profiling reveals differences in type II and III inter-
feron plasma levels. Next, we asked whether the observed ISG
signature in circulating immune cells of SARS-CoV-2 infected
ambulatory patients (confirmation cohort) was due to elevated
systemic interferon levels. We deployed multiplex cytokine pro-
filing to longitudinally map circulating plasma interferons at day
4, 11 and convalescence (day 60) of ambulatory compared to
hospitalized COVID-19 and non-COVID-19 control patients.

Interestingly, in contrast to identified systemic cellular ISG
responses, non-hospitalized mild cases had a significantly lower
levels of interferon type II and type III (IFN-λ1, IFN-λ2/3 and
IFN-γ) at early timepoints of infection (d4) compared to
hospitalized COVID-19 patients (Fig. 7h). However, there was
no clear difference between early mild and hospitalized SARS-
CoV-2 infection for interferon type I plasma levels, with no
difference in circulating IFN-α2 and only slightly higher IFN-β in
hospitalized patients (Fig. 7i). There was no difference between d4
and any other timepoints as well as to healthy controls. In
summary, despite overt differences in ISGs, cytokine profiling
provided no evidence for differences in circulating IFN levels as
an explanation for the observed ISG signature across immune cell
subsets in non-pneumonic SARS-CoV-2 infected patients.
Indeed, the ISG scores of immune cells of hospitalized and day
4 ambulatory patients and their respective plasma interferon
levels did not correlate, with no significant correlations across any
cell or interferon type (Suppl. Fig. 9e).

This might indicate either a local ISG induction, for example in
secondary lymphoid organs, independent of plasma-interferons, a
very early transient interferon response not captured in our
cohort, or interferon-independent regulation of ISG expression86.
Plasma-interferon independent induction of cellular ISGs might
explain the conflicting data currently existing on interferon
responses in SARS-CoV-2 infection13,18,19,87.

Discussion
The heterogeneity of responses to SARS-CoV-2 infection, ranging
from non-pneumonic courses to acute respiratory distress syn-
drome (ARDS), holds promise for immune system modulation as
a therapeutic approach. Even the majority of patients with high-
risk characteristics are able to control the virus in the upper
airways88. Here, we specifically analyzed immune responses that
enable early viral containment without triggering organ damage
by focusing on non-pneumonic compared to pneumonic SARS-
CoV-2 infection. We utilized an at-risk cohort analyzed with
state-of-the-art multi-omics assays to generate hypotheses, which
we then validated in a larger prospective confirmation cohort of
ambulatory infected patients55,69.

We observe a distinct ISG signature across multiple circulating
immune cell subsets as a hallmark of early containment of SARS-
CoV2 infection without the development of further complications
and disease-associated hospitalization. On the single-cell level,
we detect coordinately regulated ISG gene modules in peripheral
blood immune cell populations early after infection by using
unbiased weighted gene correlation network analysis (WGCNA)26.

This points towards a critical role of ISG pathways in determining
disease course (see Fig. 8). In addition, we recapitulate our findings
in a large, prospective ambulatory confirmation study (confirmation
cohort) using cell-sorted PRIME-seq technology.

In addition, we found that non-pneumonic SARS-CoV-2
infection was associated with immunomodulatory TH2 like T cell
function without upregulation of cytotoxicity and a pro-resolving
EGFR signature in monocytes. In combination, these trajectories
could limit uncontrolled cytokine release and inflammation73,89.
However, more research, including functional studies and
assessment of Th2 associated chemokines IL-4 and IL-13, are
needed to particularly address the effect of a Th2 differentiation
skewing in non-pneumonic SARS-CoV-2 infection: Published
data has highlighted that Th2 cells could also lead to enhanced
immunopathology90.

In contrast, pneumonic patients showed a reduced early ISG
response, but displayed an upregulation of monocyte IL6R,
S100A8/A9, and an increased cytotoxicity of T cells and NK cells,
which is in line with previous reports in NK cells and CD8 T cells,
showing that Granzyme B expression is heightened in moderate/
severe pneumonic cases91,92. This shift to a proinflammatory
phenotype after a failed ISG response might represent a com-
pensatory response, triggering tissue damage and explaining
immunopathology and cytokine release associated with poor
outcome93.

Conflicting data exist on systemic IFN signaling in COVID-19
depending on (1) patient collective, (2) sampling time points, and
(3) disease state13,18,19,87,94. Very recent work even identified
increased circulating type-I interferon levels in severe compared
to moderate disease in addition to elevated ISG-signaling in
NK cells94. It remains unclear which role plasma interferons and
interferon-stimulated intracellular pathways play for a non-
pneumonic disease course41,82,95,96. Our work strongly supports
the hypothesis of an early pronounced, systemic ISG response as
key for limiting viral spread.

So how is the observed systemic antiviral state initiated in
successful viral containment? One hypothesis is an increased local
innate immune response, which in turn leads to elevated IFN
levels and a systemic ISG induction in immune cells. In children,
increased mucosal ISG levels at baseline prior to infection med-
iate defense/prevention of infection in the first place97. Similarly,
in vitro experiments show promising results for upper airway
interferon priming to prevent SARS-CoV-2 infection85.

Interestingly, in our cohort, cytokine profiling excluded con-
comitant increases in circulating IFN I and III levels in oligo- and
asymptomatic individuals. On the same note, we did not detect
increased ISG induction in the nasal swabs of mild/asymptomatic
ambulatory patients compared to pneumonic hospitalized
patients. Upper airway mucosal ISGs and IFN I response did not
directly correlate with systemic ISGs in our ambulatory cohort.
This is in line with insights showing distinct local versus systemic
immune responses during acute SARS-CoV-2 infection95.

Sposito et al. show low type I-IFN expression but enhanced
ISGs in nasal swabs of a small cohort (n= 5) of home-isolated
patients96. However, several studies investigating ISG responses
in the upper airways show correlations between viral loads and
ISG responses but no correlation with disease severity in non-
severe patient cohorts85,98. An exception is severe COVID-19 –
here, upper airway ISG responses are suppressed82, a finding that
we confirm in severe, hospitalized patients. These divergent
findings between ambulatory, pneumonic/hospitalized, and
severe/critical disease course indicate that different mechanisms
might be involved in (1) disease containment, (2) manifest spread
to the lung, and (3) progression to severe disease/ARDS.

Along these lines, the fact that mild COVID-19 infection in
adults is characterized by similar upper airway viral loads and
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infectivity compared to pneumonic patients points towards
additional mechanisms beyond the first-tier immune response at
the mucosal barrier surface responsible for secondary viral con-
tainment early after infection99,100.

By specifically investigating non-pneumonic and non-hospitalized
patients, our data bridge the gap to recent insights into deranged
IFN responses between different severities of hospitalized pneu-
monic COVID-19 patients, which are at least in part caused by
inborn or acquired defects in interferon signaling. This might hold
important therapeutic and diagnostic implications. Measuring sys-
temic ISG response in early disease might help to differentiate
favorable outcomes from severe disease courses, but this needs
further evaluation in prospective studies.

Limitations of our study include a comparably small explora-
tory patient cohort. However, we confirmed our major findings in
a second, independent patient cohort. Also, we only had nasal
swabs of hospitalized patients available at a rather late timepoint
(median day 11) without the opportunity for longitudinal ana-
lysis. Additional studies performing longitudinal sampling of
respiratory tract specimens in prospective, community-based
studies are necessary to further pin down the interplay of mucosal
immunity with systemic immune responses.

In summary, we provide a large-scale, integrative, and long-
itudinal multi-omics-based analysis of immune responses

focusing on ambulatory/non-pneumonic patients with successful
upper airway containment. We reveal early, prominent ISG sig-
natures cooperatively expressed on the single-cell level across
circulating immune cell subsets, without correlation with local
mucosal tissue responses, as the defining immune feature of
uncomplicated, non-pneumonic SARS-CoV2 infection.

Methods
Ethics. In accordance with the Declaration of Helsinki and with the approval of the
Ethics Committee of Ludwig-Maximilian-University Munich, informed consent of
the patients or their guardians was obtained. COVID-19 patients are part of the
COVID-19 Registry of the LMU University Hospital Munich (CORKUM, WHO
trial ID DRKS00021225). Pseudonymized data was used for analysis, the COR-
KUM and KocoImmu studies were approved by the ethics committee of LMU
Munich (No: 20-245 & No: 20-371 respectively). There was no participant
compensation.

Cohorts. We analyzed n= 97 PBMC samples, n= 124 plasma samples, and
n= 105 swabs from a total of 104 individual patients.

Two independent cohorts were used for PBMC/plasma analyses, an exploratory
cohort (scRNA-Seq, flow cytometry, plasma proteomics) and a confirmation
cohort (leukocyte subset in-depth RNA-Seq, cytokine assay). The exploratory
cohort was included for hypothesis generation. This was subsequently validated by
the confirmation cohort, consisting of PBMC/plasma analyses from independent
patients.

In addition, we included nasal swab analyses from both hospitalized and
ambulatory patients that were either already included in the two independent
cohorts mentioned above (n= 37) or were additionally recruited (n= 32).

Fig. 8 Graphical abstract. Upper left: schematic of the combined patient cohorts used. Upper right: Schematic of experimental setup. The study was
divided into an exploratory cohort using scRNA-Seq, multidimensional flow cytometry of PBMCs, and shotgun plasma proteomics. The confirmation cohort
was used to validate findings from the exploratory cohort, using in-depth RNA-Seq of FACS-sorted PBMCs and multiplex plasma cytokine profiling. Nasal
swabs were included from both hospitalized and ambulatory patients that were either already included in the two independent cohorts mentioned above or
were additionally recruited. Exact numbers for every cohort and method are depicted in Fig. 1a, b and in methods. Bottom: explanation of findings. After
infection with SARS-CoV-2, the virus is either contained in the upper airway tract (“non-pneumonic SARS-CoV-2 infection”) or it disseminates into the
lung (“pneumonic COVID-19”). Our study shows that non-pneumonic SARS-CoV-2 infection is characterized by an early strong interferon-stimulated-gene
(ISG) signature, as well as an immune regulatory lymphocyte signature and pro-resolving monocytes in the peripheral blood. In contrast, in case of viral
dissemination, pneumonic COVID-19 is characterized by lymphocyte cytotoxicity and a proinflammatory marker profile in the peripheral blood.
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Exploratory cohort. In total, 14 subjects were included in our exploratory cohort
(n= 11 patients with positive SARS-CoV-2 RT-PCR and n= 3 non-COVID-19
control subjects). COVID-19 patients were sampled longitudinally, and three time
points were included: median day 3.0 [IQR 2.5,6.5] first sampling, median day 8.0
[IQR 8,11] second sampling, and median day 17 [IQR 14,35] third sampling. 14
patients were included for flow cytometric analysis, 12 patients were included into
single-cell RNA-Seq assays. Patients with severe pre-existing kidney or liver dys-
function, severe autoimmune diseases, chronic infection, patients requiring ECMO
therapy, with a known coinfection with Influenza or Respiratory Syncytial Virus
(RSV) were excluded. COVID-19 patients were divided into patients without any
pulmonary symptoms or radiological infiltrates and patients with confirmed
COVID-19 associated pneumonia. Furthermore, control subjects without COVID-
19 were included. Average number of risk factors was calculated based on indi-
vidual risk factor sum. Risk factors were medical or physiological conditions
associated with severe COVID-19: Age > 60 years, arterial hypertension, cardio-
vascular disease, chronic respiratory disease, diabetes mellitus, and male gender.

Confirmation cohort. The confirmation cohort consisted of a total of 58 subjects
included for circulating blood leukocyte subset and cytokine assays. Of these,
n= 42 were SARS-CoV-2 positive, non-hospitalized individuals. These patients
participated in the longitudinal KoCo19-Immu cohort, which enrolled SARS CoV-
2 infected individuals shortly after PCR confirmation. Comprehensive longitudinal
blood sampling as well as nasopharyngeal swabs were performed by household
visits of field teams. Additionally, PBMC samples from n= 7 hospitalized COVID-
19 patients on normal wards were used, as well as PBMC samples from n= 9
control patients without COVID-19.

For leukocyte subset RNA Seq and cytokine profiling, the ambulatory SARS
CoV-2 infected individuals were analyzed at three time points after initial RT-PCR
confirmed COVID-19 infection: first at day 4 after RT-PCR, second at day 11 and
third at day 60 after positive RT-PCR. The median day for the first timepoint was
on day 6 after symptom onset [IQR: 5 to 9.75 days], the median for the second was
on day 15 [IQR: 11.75–17.25] and for the last visit on day 68 [IQR: 63.25–83.25]
after symptom onset. The hospitalized COVID-19 patients in this sub-cohort were
analyzed at median day 5 after positive RT-PCR or symptom onset [IQR: 3.0–15.0].
A subset of n= 40 longitudinally sampled, ambulatory patients were used for
plasma cytokine analysis, with n= 40 d4, n= 18 d11, n= 14 d60 samples
measured. Another subset of n= 39 ambulatory patients were used for subset RNA
sequencing, with n= 39 d4, n= 13 d60 samples used. In addition to these 42 total
ambulatory patients, a reference cohort of SARS-CoV-2 (n= 9) negative
individuals (female: 78%, median age: 27) and hospitalized COVID-19 (n= 7) were
recruited for the subset RNA seq and cytokine assays (female: 29%, median age:
82). The confirmation cohort was sampled and processed completely
independently from the exploratory cohort to reduce any systemic bias. The
KoCo19-Immu-study is conducted under the framework of the prospective
population-based Koco19 cohort72,73. The upper respiratory tract viral load of the
ambulatory cohort at day 4 was median 5.3 [IQR: 3.2, 7.0] log10(Viral load (copies/
ml)), and of hospitalized patients median 5.7 [IQR: 3.1, 7.0]. A viral load time
course of the ambulatory patients is depicted in Supplementary Fig. 8a.

Nasal swab samples. For nasal swab analysis the cohort included a total of 69
patients. Nasal swabs were included from both hospitalized and ambulatory
patients that were either already included in the two independent cohorts men-
tioned above (n= 37) or were additionally recruited (n= 32). n= 18 were hos-
pitalized patients with COVID-19 on normal wards (female: 39%, median age: 61),
n= 41 were ambulatory patients (female: 54%, median age: 36) and n= 10 were
SARS-CoV-2 negative controls (female: 20%, median age: 25, age of 2 subjects was
unknown). The hospitalized patients were sampled at median day 11 [IQR: 6.5, 12]
(hosp_sev 12.0 [IQR:11.0,13.0], hosp_normal 10.0 [IQR: 5.0, 12.0]) after symptom
onset or positive RT-PCR and were hence similar to the 7–14 timepoint of
ambulatory patients, which also were sampled at median day 11. The ambulatory
patients were sampled at days 0–6, 7–14, as well as 60–95. The upper respiratory
tract viral load of the ambulatory cohort for nasal swabs at day 0–6 was median 8.3
[IQR: 5.3, 8.9] log10(Viral load (copies/ml)), and of hospitalized patients median
5.1 [IQR: 3.8, 6.6]. A viral load time course of the ambulatory nasal swab patients is
depicted in Fig. 7a.

To further subdivide hospitalized nasal swab patients on non-ICU wards, a
clinical COVID-19 severity score was used24,101–106. Cut offs (D-Dimer > 1000 ng/
ml, CRP > 100 mg/L, LDH > 245 U/L, Troponin > 18 ng/L, Ferritin > 500 µg/L,
CPK > 350 U/L, IL-6 > 30 pg/ml, lymphocytes < 800/µl) were used to stratify
patients according to disease severity. Patients with a score of ≥5 were classified as
severe hospitalized patients on non-ICU wards.

Peripheral blood mononuclear cell, plasma collection, and storage. For plasma
isolation, heparin anticoagulated blood was centrifuged for 10 min at 650×g and
the plasma layer was collected. Red and white blood cells were diluted at a ratio of
~1:2–1:3 with PBS. 35 ml of PBS-Blood suspension was slowly transferred on top of
a 15 ml Pancoll (PAN Biotech; Cat.: P04-60500) solution to create a blood layer
and subsequently centrifuged for 40 min at 700 x g with the slowest acceleration
and deceleration program. The buffy coat was isolated and washed twice with PBS
(at 600×g for 7:30 min), resuspended in RPMI, counted, washed again with PBS

and then frozen at a concentration of 1 × 107 cells/ml in freezing medium (90%
FCS+ 10% DMSO). For the confirmation cohort CPDA (Citrat-Phosphat-Dex-
trose-Adenin) blood was centrifuged at 1285×g for 10 min. Plasma was removed
and stored subsequently and twice the amount of PBS was added to the cell pellet.
PBS/Blood suspension was added to Leucosept tubes (Greiner) with a Ficoll-Paque
at a 1:2 ratio and centrifuged at 800×g, the PBMC fraction was isolated subse-
quently. Cells were slowly frozen in a Mister Frosty for 24 h at −80 °C, and then
transferred to a liquid nitrogen tank.

PBMC processing and preparation for flow cytometry and FACS/Sorting.
PBMC vials were thawed at room-temperature for 10 min and transferred to 5 ml
PBS with 1% bovine serum albumin (BSA). Cell suspension was centrifuged at
400×g for 15 min at 4 °C. Hereafter, cells were resuspended in PBS with 1% BSA
and stained on ice with respective antibody master-mix panels for subsequent flow
cytometry analysis and FACS-sorting.

FACS/Sorting for single-cell RNA-seq. Cells were stained with SYTOX™ Red
(Cat No. 1936399, Invitrogen) prior to sort. CD45+ living singlets were FACS/
sorted and centrifuged at 400×g for 10 min at 4 °C. The cell concentration was
adjusted to 800 cells/μl in PBS.

Single-cell RNA-seq. The Chromium Next GEM Single Cell 3’ Reagent Kit with
Feature Barcoding technology (CG000206 Rev D) was used. For feature Barcoding,
patient samples were tagged by TotalSeq™ anti-human Hashtag Antibodies (B0251,
A0252, A0253). Hashtag antibodies were included into the antibody panel for
FACS/Sorting. Three patient samples from one timepoint and group were pooled
per library. In all, 5 × 103 cells per sample and 15 × 103 cells in total were loaded per
channel. In brief, according to the manufacturer’s instructions, first Gel Beads-in-
emulsion (GEMs) were generated, reverse transcribed, cleaned up and cDNA was
amplified. After cDNA generation and amplification, cDNA was quality controlled
and quantified. Subsequently, the 3′ gene expression library and the cell surface
protein library was constructed. Sequencing was performed with Illumina NovaSeq
(library preparation and sequencing was performed by IMGM laboratories).

Single-cell RNA-seq data processing. The raw reads were obtained from the
sequencing facility. A total of 12 samples were processed using cellranger 4.0.0 with
the 10X human reference data GRCh38 2020A.

The resulting filtered count matrices were loaded using Seurat 3.2.1107, filtered
(nFeature_RNA > 200, nFeature_RNA < 6000, nCount_RNA > 1000, percent.rp <
40, percent.mt < 15) to exclude doublets and dead cells, normalized
(SCTransform108) and integrated (according to Seurat’s SCTransform integration
vignette) into one combined Seurat object. On the combined Seurat object PCA was
performed with default parameters and subsequent calculation of the UMAP
embedding (using the first 30 PCs). FindNeighbors was called with default
parameters. Seurat’s FindClusters was called with a resolution of 0.5. Gene
expression was quantified for each cluster’s marker genes, which were determined
by Seurat’s FindMarkers function using the t-test. Using the cluster marker genes
and gene expression results cell types were predicted using the scRNA-seq cell type
prediction109 on PanglaoDB’s marker genes110 and restricted to an ‘Immune system’
context. After manual curation of the predictions by the experimentalists, a cell type
was assigned to each cluster. It should be noted that for all these manual curations,
the finally selected cell type was the second highest scoring prediction. Disease states
were split by libraries, Hashtags were not required for further disease state
identification. Gene set enrichment analysis (overrepresentation analysis) on Gene
Ontology (Biological Process aspect)111 was performed using clusterProfiler112. The
interferon score was calculated as mean over the normalized expression values of the
interferon genes shown below for each cell. For the interferon score, we first used a
score that was based on Hadjadj et al.12 and Combes et al.41 using a selection of their
interferon stimulated genes. To confirm this score, we used a larger set of interferon-
stimulated genes including 57 interferon-stimulated genes (see lists below). In order
to fully capture the ISG signature of nasal epithelia, all comparisons regarding nasal
swabs were made with a new ISG score derived from a data-set of IFN stimulated
nasal epithelial cells84. The score was formed of all genes that could be detected in
the dataset and that had a >3.5 logFC upregulation after IFNα stimulation according
to Giovannini-Chami et al.. Significance between groups is calculated using the t-test
with ‘ggpubr’ (https://CRAN.R-project.org/package=ggpubr) stat_compare_means
function. The full analysis script is available from GitHub at https://github.com/
mjoppich/covidSC in the analysis_final_analysis.Rmd script. This repository also
contains all scripts used for set enrichment. Functions for custom plots are included
in the main analysis script.

Included genes for the interferon score: IFI27, IFITM3, IFI44, ISG15, IFI44L,
LY6E, IFIT1, MT2A, IFIT2, MX1, IFIT3, RSAD2, IFITM1, and SIGLEC1.

For the large ISG set score, we included MX1, IFITM3P2, ISG20L2, MX2,
IFITM3P9, ISG20, MT2A, IFI27L2, XAF1, RSAD2, IFIT5, LY6E, SIGLEC1, IFITM1,
IFITM2, IFIT1, IFIH1, IFITM3P6, IFI44, IFI16, IFITM3P3, IFI27, IFI35, IFIT6P,
IFITM10, IFI27L1, IRF2BP1, IFIT3, IRF6, IRF5P1, IFI6, IRF7, IRF2, IFIT1P1, IRF9,
IRF1, IFIT2, IRF5, IRF8, IFITM9P, IRF4, IFITM3P7, IFI30, IRF2BP2, IFITM4P,
IFITM3, IRF2BPL, IFITM3P1, IFI44L, IRF3, IFITM3P8, IFIT1B, IRF1-AS1,
IFITM5, and ISG15.
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Detectable IFN I genes for the IFN I score for nasal swabs included IFNA6,
IFNA10, IFNA13, IFNA14, IFNA21, IFNK, and IFNA6.

Nasal swab ISG score derived from Giovannini-Chami et al. included CXCL10,
IFIT1, RSAD2, MX2, IFI44L, IFIT2, HERC5, OASL, CXCL11, IFIT3, IFI44, EPSTI1,
DDX58, GBP4, MX1, SAMD9L, OAS2, IFI6, ISG15, USP18, and XAF1.

Peripheral blood mononuclear cell processing for subset RNA-seq. PBMCs
were thawed at 37 °C for 5 min, added to 5 ml PBS with 1% BSA, centrifuged at
350×g for 10 min at 4 °C. The supernatant was removed and resuspended in 150 μl
PBS with 0.5% BSA. 50 μl was added to 50 μl of panel 1 and panel 2 respectively
and incubated on ice for 15 min. Probes were filtered through a 50-μm mesh and
0.1 μl of Sytox Red (Cat No. 1936399, Invitrogen) was added to the probe prior to
Sort. CD4+, CD8+ T cells, NK cells and monocytes were sorted. 500–1000 cells
were sorted into 100 μl Buffer RLT Plus (+1% Mercapto-Ethanol). To sort NK cells
and monocytes, we used PE CD3 and CD20 (BioLegend #300308, #302306), FITC
CD14 (BD Biosciences #557153), PE-Cy7 CD16 (BD Biosciences #557744), and
APC-Cy7 CD56 (BioLegend #362512). To sort T cells, we used PE CD3 (BioLegend
#300308), PE-Cy7 CD4 (BioLegend #357410), AF488 CD8a (BioLegend #301024),
and APC-Cy7 CD19 (BioLegend #363010).

Nasal swab preparation. For nasal swabs, upon arrival in the laboratory, a part of
each nasal swab sample was aliquoted and stored at –80 °C in temperature-
controlled biobank freezers until further analysis. RNA isolation from nasal swab
samples was performed with the automatic extraction system TANBead® Nucleic
Acid Extraction Kit OptiPure Viral Bulk Plate (W665A10, TanBead) in a Mael-
strom Extractor robot (TanBead) following the manufacturer’s recommendations.
Real Time RT-PCR was performed using Allplex™ SARS-CoV-2/FluA/FluB/RSV
Assay (RV10259X, Seegene) in a STARlet IVD Workstation (Seegene), which
allows the simultaneous detection of SARS-CoV-2 (N gene), SARS-CoV-2 (RdRP
gene) and SARS-CoV-2 (S gene) together with an endogenous and exogenous
control, providing further controls including human cell content of the swab.

Library preparation and subset RNA-seq. RNA-sequencing was performed using
prime-seq. A step-by step protocol can be found on protocols.io (https://doi.org/
10.17504/protocols.io.s9veh66).

Briefly, of the 1000 cells that were sorted in the lysis buffer, 50 µL (500 cells)
were used to prepare RNA-seq libraries. The lysate was treated with Proteinase K
(AM2548, Life Technologies), isolated with cleanup beads (GE65152105050250,
Sigma-Aldrich) (2:1 beads/sample ratio), and then DNase I (EN0521, Thermo
Fisher) digested. The RNA was then reverse transcribed with 30 units of Maxima
H- enzyme (EP0753, Thermo Fisher), 1x Maxima H- Buffer (EP0753, Thermo
Fisher), 1 mM each dNTPs (R0186, Thermo Fisher), 1 µM template-switching oligo
(IDT), 1 µM barcoded oligo-dT primers (IDT) in a 10 µL reaction volume at 42 °C
for 90 min. The samples belonging to the same tissue were then pooled and cleaned
using cleanup beads (1:1 beads/sample ratio), resulting in 4 pools, one for
monocytes, NK cells, CD4 T cells, and CD8 T cells. Following cleanup, remaining
primers were digested with Exonuclease I (M0293L, NEB) at 37 °C for 20 min
followed by 80 °C for 10 min. The Exonuclease I digested samples were then again
cleaned using cleanup beads (1:1 beads/sample ratio).

Second strand synthesis and pre-amplification was performed using 1X KAPA
HS Ready Mix (07958935001, Roche) and 0.6 µM SINGV6 primer (IDT) in a 50 µL
reaction. The PCR was cycled as follows: 98 °C for 3 min; 12 cycles of 98 °C for 15 s,
65 °C for 30 s, 72 °C for 4 min; and 72 °C for 10 min. The samples were then
cleaned using cleanup beads (0.8:1 beads/sample ratio) and then eluted in 10 µL of
DNase/RNase-Free Distilled Water (10977-049, ThermoFisher). The Quant-iT
PicoGreen dsDNA Assay Kit (P7581, Thermo Fisher) was used to quantify the
amount of cDNA present, and the High-Sensitivity DNA Kit (5067-4627, Agilent)
was used to qualify the size distribution.

Following QC, 2.5 µL of cDNA (2.25–5.75 ng) from each sample was used to
make libraries with the NEBNext Ultra II FS Library Preparation Kit (E6177S,
NEB), primarily following manufacturer’s instructions but with a five-fold lower
reaction volume. Fragmentation was carried out using the supplied Enzyme Mix
and Reaction buffer in a 6 µL reaction. The adapters were ligated using the supplied
Ligation Master Mix, Ligation Enhancer, and a custom prime-seq Adapter (1.5 µM,
IDT) in a reaction volume of 12.7 µL. Following ligation, the samples were double-
size selected using SPRI-select Beads (B23317, Beckman Coulter), with 0.5 and 0.7
ratios. The samples were then amplified using a library PCR using Q5 Master Mix
(M0544L, NEB), 1 µL i7 Index primer (Sigma-Aldrich), and 1 µL i5 Index primer
(IDT) using the following setup: 98 °C for 30 s; 13 cycles of 98 °C for 10 s, 65 °C for
1 m 15 s, 65 °C for 5 m; and 65 °C for 4 m. A final double-size selection was
performed as before using SPRI-select Beads.

After checking the concentration and quality using a high-sensitivity DNA chip
(Agilent Bioanalyzer), the libraries were 150 bp paired-end sequenced on a S4 or a
S1 flow cell of a NovaSeq (Ilumina). On average, ~1 × 107 reads were acquired per
sample for the immune cell subsets and 5 × 106 for the nasal swabs.

The data was initially checked using fastqc (version 0.11.8113). Cutadapt
(version 1.12114) was then used to remove any regions on the 3′ end of the read
where the sequence read into the polyA tail. Following processing of the data, the
zUMIs pipeline (version 2.9.4d, Parekh et al., 2018) was used to filter the data,

using a phred threshold of 20 for 4 bases for both the UMI and BC, map the reads
to the human genome (GRCh38) with the Gencode annotation (v35) using STAR
(version 2.7.3a), and count the reads using RSubread (version 1.32.4)115,116.

Subset RNA-seq data analysis/nasal swab RNA-seq data analysis. Count
matrices for each cell type and two counting methods were received. The count
matrices with exon counts (exon) and combined intron+exon counts (inex) were
extracted for each cell type using the ‘all’ slot (non-downsampled) from zUMI’s
data object. The samples and conditions were annotated with the sample names.
Both count matrices were processed analogously and differentially expressed genes
were determined with DESeq2 (v1.30)117. For the subsequent data analysis, the
exon-count results are used with an adjusted (Benjamini-Hochberg) p-value cut off
at 0.05. Gene set enrichment analysis (overrepresentation analysis) on Gene
Ontology (Biological Process aspect) was performed using clusterProfiler
(v3.18.1)111,112. The nasal swab samples were processed additionally using edgeR
(v3.32.1) and limma (v3.46.0)118,119.

Tempora analysis. For a longitudinal analysis of the scRNA-seq data we employed
Tempora version 0.1.027 (https://github.com/BaderLab/Tempora). The analysis
was performed on the June_01_2021 release of the Human GOBP AllPathways
which is made available by the Tempora authors via the Bader Lab pathway gene
set database. We added our ISG gene signature consisting of MT2A, ISG15, LY6E,
IFIT1, IFIT2, IFIT3, IFITM1, IFITM3, IFI44L, IFI6, MX1, IFI27, RSAD2, SIGLEC1
to this database. We slightly adapted the plotting routines of Tempora to include
the actual cluster names in the plots instead of the (required) cluster indices in both
the temporal trajectories and the varying pathway plots.

We ran Tempora on the RNA assay of the integrated scRNA-seq object.
Timepoints were given as timepoint 0 for control and timepoints 1, 2, and 3 as
given by the samples.

Likewise, we imported the subset RNA-seq samples into Seurat (see single
sample analysis (subset/nasal swab RNA-seq data) section below) and processed
these using Tempora as well on a per cell type basis. Cells were grouped by cell type
and timepoint. The timepoint order was given as Ctrl, Day 4, Hosp., Day 11 and
Day 60.

Time series plots (scRNA-seq data). In a more explicit driven analysis, we
calculated the differential genes between the control cells and each of the time-
points for each cell type and all cells (TPx/TP0 for x in 1,2,3). We then binned the
resulting DE genes according to their logFC into 5 bins (DOWN, down, No Reg,
up, UP). The borders of the bins are defined by the 0.25 and 0.75 quantiles of all
absolute fold changes. Genes with an adjusted p-value > 0.05 or an absolute
logFC < 0.25-quantile of all absolute fold changes are classified as “No Reg”.

Genes were grouped by their distinct path through the bins at the three
timepoints, resulting in the different groups of genes. The plot can be restricted to
groups with a minimum of contained genes (e.g. 10). Furthermore, selected genes
can be highlighted (black lines) in order to understand their behavior. The gene
count threshold is not applied to such genes.

TP0 (non-infected controls as baseline) shows no regulation by definition. The
bin change between two timepoints can be seen as the change in differential
expression between the two timepoints.

In order to display the differences between two conditions (e.g. pneumonic and
non-pneumonic) a double-differential analysis was performed. The log-fold
changes (in comparison to the TP0 defined baseline control patients) of the
pneumonic time series were subtracted by those of the non-pneumonic time series.
Again, the resulting double-differential fold changes were binned by the 0.25 and
0.75 quantiles of all (absolute) double-differential fold changes into PNEU, pneu,
No Reg, non-pneu and NON-PNEU, depicting different magnitudes of
upregulation either in pneumonic or non-pneumonic patients. The double-
differential fold change was calculated for all genes which appear at least once
significantly regulated in the time series, no further significances were considered.

Single sample analysis (subset/nasal swab RNA-seq data). The exonic UMI-
counts from zUMIs pipeline were extracted and used as input for Seurat (4.0.2).
After loading all sample counts, the Seurat object was log-normalized, and 2000
variable features were detected. After scaling and calculating 30 principal com-
ponents, the UMAP algorithm was applied to these. From the PCA, first neighbors
were calculated, which are subsequently used to cluster the samples at a resolution
of 0.5.

Temporal gene module detection. We performed temporal gene module detec-
tion using the method and script provided by Kazer et al.26. In brief, this method
takes the gene expression values of the genes represented by the first few principal
components of the scRNA-seq object as input for WGCNA (v1.69) functions.
Here, we chose the maximal 500 genes reported by the PCASigGenes function of
Seurat for each of the first eight PCs. The resulting adjacency matrix (created with
soft power 7 and minimal module size 3) is transformed into a TOM and hier-
archically clustered. These clusters are merged if not too dissimilar. After testing
the modules for their significance (p-Value threshold of 0.05, 10 bins and 100
permutations), the remaining modules are tested regarding the temporal variation
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(sample size is minimum of module size and 150, 1000 tests, order of time points
0 < 1 < 2 < 3, p-Value threshold of 0.05). The remaining modules are added to the
Seurat object using the AddModuleScore function (ctrl set to 5) and are reported
for further visualization and discussion.

Flow cytometry. After sample preparations for scRNA-seq and flow cytometry,
5 0µl of the cell suspension was incubated for 20 min on ice with 50 µl of the
respective antibody panel, at 1:100 dilution for each antibody. After centrifugation
at 400 g for 7min and resuspension in 200 µl 1% BSA with PBS, 0.2 µl of SYTOX™
Blue (Cat No. 2192317, Invitrogen) was added for live/dead staining. To avoid
batch effects all samples were measured during one experimental run.

Measurements were done on a BD LSRFortessa Flow Cytometer with BD
FACSDiva v9.0 software. Analysis was done using FlowJo Software (FlowJo v.
10.6.1, BD). The gating strategy used is shown in Suppl. Fig. 1d. After a common
gating strategy, each cell population/antibody panel was gated separately. n= 7
pneumonic, n= 4 non-pneumonic COVID-19 and n= 3 control patients were
used. All three different time points for the COVID samples were measured. For
t-SNE and FlowSOM analysis, cell populations were downsampled using the
downsample v3 plugin for FlowJo to 2000 cells per time point and sample where
possible and subsequently concatenated. FlowSOM clustering with the FlowSOM
v2.5 plugin120 was performed on the concatenated file with n= 5 clusters for the
NK cell panel and n= 8 clusters for both T cell panels and the monocyte panel.
The FlowSOM output used is the minimum spanning tree, heatmap of surface
maker expression by FlowSOM cluster and the the percentage of cells in each
cluster per group and time point. For tSNE and FlowSOM only surface markers
that were not previously used for positive cell identification were used. Cell clusters
were manually assigned to know sub-populations for Monocytes and T cells.
Monocytes were labeled intermediate (IM, CD16hiCD14hi), classical monocytes
(CM1-5, CD14hiCD16low) and alternative monocytes (AM1-2, CD16hiCD14low)
(see also Supplementary Table 3). T cells were labeled CD4 T cells, CD8 T cells,
double positive (DP) or double negative (DN) cells. For panel 1, Th2 (CCR4hi),
TH1/17 (CCR6 hi) naïve (CD45RA hi) T cells cells were defined. For panel 2, naïve
(CCR7hi CD45RAhi), central (CCR7 hi CD45RA low) and effector memory
(CD45RAlow CCR7low) and TEMRA (CCR7 low CD45RA hi) cells were defined
(see also Supplementary Tables 4 and 5). All antibodies used for flow cytometry are
shown in Supplementary Tables 6–9.

Plasma sample preparation for mass spectrometry and analysis. Samples were
boiled in SDS-buffer and subjected to SP3-based cleanup and tryptic digest as
described121. The method was adapted in-house to work on an AssayMAP Bravo
Protein Sample Prep Platform (Agilent). A spectral library was generated by measuring
52 fractions of a high-pH fractionation using a uniform peptide mix of all samples in
data-dependent mode on a Q Exactive HF-X orbitrap mass spectrometer (Thermo
Fisher Scientific). For data-independent acquisition, each individual sample was injected
in at least technical duplicates and measured in data-independent mode with variable
isolation window sizes. Spectral library generation as well as DIA analysis was per-
formed in Spectronaut (version 14.3) using the Q value sparse setting with a q-value of
0.01 in at least one raw-file using the top3 precursors for quantitation without applying
imputation122. Further downstream analysis was performed in R. Technical replicates
were collapsed into samples by using the average Quantity value. For significance calling
on protein level, ratios to the average no-COVID control were calculated, scaled by
median-MAD normalization and a one-sample moderated t-test (limma package123)
was applied among experimental groups. Proteins with a Benjamini-Hochberg adjusted
p-value of 0.05 (5% FDR) were considered as significant. Top abundant proteins were
subjected to STRING analysis using experiments and databases as interaction
sources124. For single-sample gene-set enrichment analysis (ssGSEA;125), median-MAD
scaled log-fold change values of group-wise comparisons were calculated using the
mean protein intensity values among each group. Significance calling of pathways was
applied on the adjusted p-values from the ssGSEA results. Due to one time-point
missing from patient 11, this patient was not included in the proteomic analysis for
volcano plots and pathway analysis.

Interferon plasma assay. For longitudinal assessment of type 1/2/3 interferons
plasma levels, plasma samples of control (n= 9), non-pneumonic SARS-CoV-2
infected patients (day 4 n= 40, day 11 n= 18, day 60 n= 14) and hospitalized
patients suffering from COVID-19 pneumonia (n= 7) were analyzed using a
commercial multiplex bead-based assay (LEGENDplex™ Human Type 1/2/3
Interferon Panel, V-bottom plate, Biolegend #740396) according to the manu-
facturer’s instructions. In brief, frozen plasma samples were thawed to room
temperature (RT) and centrifuged (1000×g, 1 min). Samples were incubated with
assay reagents in the dark for 2 h on a plate shaker (RT, 600 rpm). After addition of
the detection antibody mix, samples were incubated for another hour (RT, 600
rpm), followed by addition of Streptavidin-PE (30 min, RT, 600 rpm) and an on-
plate washing step. Finally, samples were measured in technical duplicates using a
BD LSRFortessa flow cytometer. Interferon plasma levels were calculated using
LEGENDplex™ Data Analysis Software Suite QOGNIT.

Statistics and reproducibility. No statistical method was used to predetermine
sample size. No data were excluded from the analyses. The experiments were not

randomized. The Investigators were not blinded to allocation during experiments
and outcome assessment.

Data analysis and statistics. Excel (Microsoft), Prism (GraphPad) and R with
package corrplot were used for data analysis. Adobe Illustrator CC was used to
assemble the graphical illustrations. Results are shown and mentioned in the text as
mean ± s.e.m., unless otherwise indicated. For direct comparisons between two
groups, unpaired, two-tailed Student’s t tests or Mann–Whitney U tests were used.
For changes across clusters in flow cytometric measurements mixed-effects model
analysis was used. If the mixed-effects model analysis was significant, a line denotes
the significance. Post-hoc Sidak’s multiple comparisons test was used for individual
significant differences. P values of ≤0.05 are considered significant and denoted
with *, ≤0.01 with **, and ≤0.001 with ***. Individual patients or samples are
represented as dots, unless otherwise indicated. Error bars are standard error of the
mean (s.e.m.) unless otherwise indicated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
RNAseq data generated by this study have been deposited in the Gene Expression
Omnibus (GEO) archive with accession number: GSE193708, accessible via. The mass
spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the
dataset identifier PXD030785126. The processed scRNA-seq data and subset and nasal
swab RNA-seq data are available from our Zenodo dataset with https://doi.org/10.5281/
zenodo.5792004 (https://doi.org/10.5281/zenodo.5792004). Data points in figures are
included in the published source data file. All other data is available upon request from
the authors. Source data are provided with this paper.

Code availability
Custom scripts are available at: https://github.com/mjoppich/covidSC.
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