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Table S1: Phenotype characteristics of study participants 

 
Schizophrenia 

cases 
Dysmetabolic 

controls 
Healthy 
controls PDysmetabolic PHealthy 

N (% women) 132 (55.3%) 132 (55.3%) 132  (56.8%) 1 1 
Age (y) 41 (12) 56 (8) 39.8 (12) <0.001 0.668 
BMI (kg/m2) 35.0 (6.2) 33.7 (4.5) 23.8 (3.8) 0.071 <0.001 
Waist circumference 
(cfm) 116 (14) 110 (12) 82 (11) 0.001 <0.001 

Systolic BP (mmHg) 129 (16) 144 (19) 123 (18) <0.001 0.024 
Diastolic BP (mmHg) 82 (10) 88 (10) 76 (11) <0.001 <0.001 
HbA1c (mmol/mol) 39 (10) 38 (4) 34 (3.) 0.75 <0.001 
P-Cholesterol 
(mmol/L) 5.0 (1.1) 5.5 (0.9) 4.8 (1.1) 0.003 0.200 

P-LDL (mmol/L) 3.0 (1.1) 3.4 (0.8) 3.2 (1.0) 0.001 0.33 
P-HDL (mmol/L) 1.23 (0.37) 1.37 (0.39) 1.45 (0.41) 0.010 <0.001 
P-TG (mmol/L)) 2.09 (1.65) 1.46 (0.68) 1.10 (0.62) <0.001 <0.001 
BACS  235.9 (51.7)     

SAPS 1.8 (1.5)     

SANS 2.2 (1.2)     

GAF 46.0 (7.2)     

Diagnosis (%) 

F.20: 120 
(90.9%), F.25: 

10 (7.5%), 
F.062: 1 

(0.8%), F.22: 1 
(0.8%) 

    

Disease duration (y) 26.3 (8.5)     
Data is presented as mean (SD) or number of individuals (%). P-values are from Wilcoxon rank 
sum tests (continuous variables) or Fisher’s exact tests (categorical variables) comparing 
schizophrenia cases to healthy (PHealthy) and dysmetababolic (PDysmetabolic). BACS: Brief 
Assessment of Cognition Score. GAF: Global Assessment of Functioning. SAPS: Scale for the 
Assessment of Positive Symptoms. SANS: Scale for Assessment of Negative Symptoms. All 
values for mentioned scores are given in arbitrary units. BMI: Body mass index. BP: Blood 
pressure. HbA1c: Haemoglobin A1c. P-HDL: Plasma high-density lipoprotein. P-LDL: Plasma 
low-density lipoprotein. P-TG: Plasma triglyceride.  
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Figure S1: Overview of medication taken by participants. 

 
Figure S1: Number of individuals taking a class of medication. Drugs were grouped 
according to their Anatomical Therapeutic Chemical (ATC) code.  

  



Thirion et al.  Supplement 

3 

Figure S2: Contrast in Shannon index (alpha-diversity) 

 

Figure S2: Difference in Shannon index between patients with SCZ, HCs and MS. P-values 
from Wilcoxon tests are displayed. Boxes represent the median and interquartile ranges 
(IQRs) between the first and third quartiles; whiskers represent the lowest or highest values 
within 1.5 times IQR from the first or third quartiles. HC = Healthy Controls; MS = dys-
metabolic controls with Metabolic Syndrome; SCZ = patients with schizophrenia. 
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Figure S3: MGS-based classification of SCZ patients and controls 

 

Figure S3: ROC curves of the MGS-based elastic net classifications between SCZ patients 
and (A) HC or (B) MS. HC = Healthy Controls; MS = dys-metabolic controls with Metabolic 
Syndrome; SCZ = patients with schizophrenia; MGS = Metagenomic Species. 
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Figure S4: Taxonomic contrast between schizophrenia cases and healthy controls 

 

 

Figure S4: Distribution of contrasted taxonomy at (A) phylum level, (B) family level and (C) 
genus level. Red-labeled and blue-labeled taxonomy are enriched and depleted in 
schizophrenia cases, respectively. HC = Healthy Controls; MS = dys-metabolic controls with 
Metabolic Syndrome; SCZ = patients with schizophrenia; MGS = Metagenomic Species. 
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Figure S5: Beta-diversity and schizophrenia diagnosis.  

 
Figure S5: Principal Coordinates Analysis ordination of the Bray-Curtis dissimilarity matrix 
computed on the MGS abundance from patients with SCZ diagnosed as F.20 or F.25. P-value 
associated with the PERMANOVA analysis between these two groups is displayed. 
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Figure S6: Modelling of Brief Assessment of Cognition Scores (BACS) 
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Figure S6: (A) R² distribution of BACS modelling using two types of explanatory variables: 
metagenome-predicted functional modules or a combination of functional modules and 
bioclinical variables. For each group of explanatory variables, 100 models were run after 
resampling of the training and testing set. Performance (R²) was assessed on the testing set. 
(B-C) Features that were selected for BACS regression at least 50 times out of 100 
resampling of training and testing sets when considering (B) only functional modules or (C) 
functional modules and clinical variables as explanatory variables. %IncMSE: increase in 
mean-squared error. 
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Supplementary Methods 

Clinical examinations and sample collection 
Participants (cases with schizophrenia (SCZ) and normal-weight healthy controls (HC)) were 
examined in the morning following an overnight fast. Body weight was recorded on an 
electronic scale in light indoor clothing or underwear. Height was measured using a wall-
mounted stadiometer. Body-mass index (BMI) was calculated as weight in kg divided by the 
square of height in meters. Waist circumference was measured midway between the iliac crest 
and the lower costal margin using a non-expandable measuring tape. Blood pressure was 
recorded as the mean of triplicate measurements following a 5-minute rest using an automated 
sphygmomanometer.  
Blood samples were taken by puncture of the antecubital vein in the morning after an 
overnight fast.  Plasma triglyceride (TG), total cholesterol (TC), and high-density lipoprotein 
(HDL) were analysed on a Vitros 5600 system (CV 14.6%, 11.6%, and 17.0%, respectively). 
Very-low-density lipoprotein (VLDL) was calculated as 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 0.45 × 𝑇𝑇𝑇𝑇. Low-density 
lipoprotein was calculated as 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑇𝑇𝑇𝑇 − 𝐻𝐻𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉. Non-HDL was calculated as 
𝑁𝑁𝑁𝑁𝑁𝑁 𝐻𝐻𝑉𝑉𝑉𝑉 = 𝑇𝑇𝑇𝑇 − 𝐻𝐻𝑉𝑉𝑉𝑉. Haemoglobin A1c (HbA1c) was analysed by high-performance 
liquid chromatography (HPLC) on a TOSOH G8 system (Tosoh Bioscience, San Francisco, 
CA USA, CV 7.2%). Information about medication taken by cases with schizophrenia was 
obtained from case record prescription and interview (Figure S1). Stool samples were 
collected by the participants at home following standardized procedures (International Human 
Microbiome Standards, IHMS (1)) including immediate freezing at −18°C. Samples were 
transported to the laboratory using an insulating coller bag or styrofoam boxe containing 
cooling elements or dry ice.  At the laboratory, samples were stored at −80°C until DNA 
extraction.  

DNA extraction of stool samples and shotgun sequencing 
DNA extraction from aliquots of fecal samples obtained from cases with SCZ and HC was 
performed following IHMS SOP P7 V2 (1). DNA was quantitated using Qubit Fluorometric 
Quantitation (ThermoFisher Scientific, Waltham, US) and qualified using DNA size profiling 
on a Fragment Analyzer (Agilent Technologies, Santa Clara, US). Three µg of high molecular 
weight DNA (>10 kbp) was used to build the library. Shearing of DNA into fragments of 
approximately 150 bp was performed using an ultrasonicator (Covaris, Woburn, US) and 
DNA fragment library construction was performed using the Ion Plus Fragment Library and 
Ion Xpress Barcode Adapters Kits (ThermoFisher Scientific, Waltham, US). Purified and 
amplified DNA fragment libraries were sequenced using the Ion Proton Sequencer 
(ThermoFisher Scientific, Waltham, US), generating 21.9 million reads ± 2.6 of 150 bp (in 
average) per sample. DNA from fecal samples of controls with the Metabolic Syndrome (MS) 
from the Metahit project was previously extracted and sequenced as described (2). To match 
the single-read sequencing of SCZ and HC, reverse reads from the MS samples were 
removed.  

Microbial gene count table 
To create the gene count table, the METEOR software was used (3): first, reads were filtered 
for low-quality by AlienTrimmer (4). Reads that aligned to the human genome (identity > 
95%) were also discarded. Remaining reads were trimmed to 75 bases and mapped to the 
Integrated Gut Catalogue 2 (5,6) (IGC2), comprising 10.4 million of genes, using Bowtie2 
(7). The unique mapped reads (reads mapped to a unique gene in the catalogue) were 
attributed to their corresponding genes. The shared reads (reads that mapped with the same 
alignment score to multiple genes in the catalogue) were attributed according to the ratio of 
their unique mapping counts of the captured genes. The resulting count table was further 
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processed using the R package MetaOMineR v1.31 (2). It was downsized to 18 million high-
quality reads (considering mapped and unmapped reads) to take into account differences in 
sequencing. Then the downsized matrix was normalized for gene length and transformed into 
a frequency matrix (freads per kilobase and per million reads mapped, FPKM normalization). 
Since SCZ gut microbiota has been found to be enriched in species from the oral cavity (8), 
the same process was repeated on an oral microbiota catalogue of 8.4 million genes (9). 

Metagenomic Species (MGS) profiles 
The IGC2 and the oral catalogues were organized into 1990  and 853 Metagenomic Species 
(MGS, cluster of co-abundant genes), respectively, using MSPminer (6,9,10). After removing 
duplicated MGS (ie, MGS present in both catalogues), we were left with 2,741 MGS. 
Taxonomical annotation of MGS was performed using an in-house pipeline. First, all genes 
were aligned on public databases (ncbi, wgs (11)) using Blast (12). An MGS was annotated 
with the lowest taxonomical rank (from species to superkingdom) that brought consensus in at 
least 50% of its genes. To avoid misleading annotations due to error in databases, for each 
gene the 20 first hits were considered. Relative abundance of an MGS was computed as the 
mean abundance of its 100 ‘marker’ genes (that is, the genes that correlate the most 
altogether). If less than 10% of ‘marker’ genes were seen in a sample, the abundance of the 
MGS was set to 0. Relative abundances at higher taxonomical ranks were computed as the 
sum of the MGS that belong to a given taxa. MGS count was assessed as the number of MGS 
present in a sample (that is, whose abundance is strictly positive). 

Microbiome functional potential 
Three databases were used to estimate gene functional potential: Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (13); eggNOG (14); and TIGRFAM (15). Genes from the IGC2 
and the oral catalogues were mapped with diamond (16) onto KEGG orthologs (KO) from the 
KEGG database (version 8.9). Each gene was assigned to the best-ranked KO among hits with 
e-value < 10-5 and a bit score > 60. The same procedure was used with eggNOG (version 3.0). 
The gene catalogues were searched against TIGRFAM profiles (version 15.0) using HMMER 
3.2.1 (17). Then we assessed presence of KEGG modules, Gut-Metabolic Modules (GMMs) 
(18) and Gut-Brain Modules (GBMs) (19) for each MGS and each sample. A functional 
module consists in an ensemble of KOs (or NOGs, or TIGRFAMs). We considered a 
functional module to be present in a pair MGS/sample if at least 90% of its components were 
present in the genes of the MGS and detected in the sample. Finally, we measured the 
potential of a module in a sample by summing abundances of all MGS found to carry this 
module in the sample. 

Software pipeline for drug-aware univariate biomarker analysis 
To assess to what extent observed differences between SZC and HC subjects in microbiome 
feature abundance are confounded, in the sense of, being consequences of other (treatment or 
risk factor) variables different between the groups more so than characteristic of SZC itself, 
we additionally  employed the post-hoc filtering approach implemented in the R package 
metadeconfoundR (20) that was devised within the MetaCardis consortium (21). It functions 
in two steps. In the first, all associations between -omics features and the set of independent 
variables (disease status, drug treatment status, and risk markers including age, smoking 
status and BMI) are determined under nonparametric statistics (MWU or Spearman tests, 
adjusted for multiple -omics features tested using the Benjamini-Hochberg method). For each 
feature significantly (FDR < 0.1) associated with disease status (SZC vs HC), it is checked 
whether it has significant associations with any potential confounder. If not, it is considered 
trivially unconfounded (NC - Not Confounded). If at least one covariate also has significant 
association with the feature, then for each such covariate a post-hoc test for confounding is 
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applied. This test takes the form of a nested linear model comparisons (likelihood ratio test for 
P-values), where the dependent variable is the feature (X), and the independent variables are 
the disease status (A) and the  tested covariate (B) versus a model containing only the 
covariate (B), thus testing whether disease status (A) adds explanatory power beyond the 
covariate (B). If this holds (LRT P < 0.05) for all covariates (B), then disease status is strictly 
deconfounded (SD) with regards to its effect on feature X; it cannot be reduced to any 
confounding factor. For each covariate (B) where significance is lost, a complementary 
modelling test is performed of the complementary model pairs - predicting X as a function of 
(A) and (B) versus a model containing (A) alone, thus testing whether the covariate (B) in 
turn is equally reducible to (A). If for at least one such covariate (B), (B) has independent 
effect (LRT P < 0.05) on top of (A), then the feature X is considered confounded by (B). 
However, if in none of the pairwise tests, the original significance holds, then (A) and (B) are 
considered so correlated that their relative influence cannot be disentangled. We consider 
these cases laxly deconfounded (LD), in the sense that for these cases clear confounding 
influence cannot be concluded, but also not ruled out. The R package was applied to the 
present dataset considering medication status either as binary variables or as normalized 
dosages.
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