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Supplementary materials and methods 

FAIRE-STARR-seq 

To asses enhancer activity, E14 cells were transfected with this plasmid library using a NucleofectorTM 
2b device using the Mouse ES Cell Nucleofector Kit (Lonza, VAPH-1001). For each of the three f 
replicates, four individual transfections, each with 5 µg plasmid library and 5x106 cells, were 
performed. The medium was changed 12 h after transfection and to half of the cells either LIF or 1 µM 
RA was added. After an additional 4 h of incubation, samples were pooled and RNA was isolated using 
the RNeasy Midi kit (Qiagen). Poly adenylated RNA was enriched using DynabeadsTM Oligo(dT)25 
(Invitrogen), residual DNA was digested using Turbo DNase (Invitrogen), and finally RNA was cleaned-
up with Agencourt® RNAClean® XP beads (Beckman Coulter). cDNA was synthesized using 
SuperScriptTM III Reverse Transcriptase (Invitrogen) according to the manufacturer’s protocol, applying 
a reporter transcript-specific primer. This primer contains the sequence of the Illumina PCR Primer 2.0 
as overhang as well as eight random nucleotides that serve as unique-molecular identifiers (UMI) for 
each cDNA molecule 
(CAAGCAGAAGACGGCATACGAGAT[N]8GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT).  cDNA was 
further amplified as described in Arnold et al. (1), using adjusted reporter-specific primers based on 
Illumina’s TruSeq dual index system (universal: CAAGCAGAAGACGGCATACGA, sample specific: 
AATGATACGGCGACCACCGAGATCTACAC[barcode, n=6]ACACTCTTTCCCTACACGACGCTC). 

As input control for FAIRE-STARR-seq, the input plasmid library was sequenced as well. To this end, 
the plasmid library was used for a pseudo “cDNA synthesis”, using the random-UMI primer and the 
KAPA HiFi HotStart ReadyMix (Roche) for 4 cycles with a prolonged synthesis step (70 sec) to 
individually label input fragments. In a second step, this input library was amplified with Illumina’s 
TruSeq dual index based universal and barcoded primers, as done for the FAIRE-STARR-seq libraries, 
using the KAPA HiFi HotStart ReadyMix (Roche) for 12 PCR cycles. 

Library validation 

To determine the complexity of the FAIRE fragments, we sequenced the plasmid input library (Fig. 1A) 
resulting in the identification of 4.4 million individual fragments, which cover about 186,000 
significantly enriched open regions. As expected, the enrichment of our input regions resembles 
chromatin accessibility determined by DNaseI- or ATAC-seq at these sites (Fig. 1B, S1E). Accordingly, 
correlation analyses of genome-wide read distribution further confirmed a high correlation of our 
input library with DNaseI- and ATAC-seq profiles (Fig. 1C and S1F), validating that our library captured 
open regions, which are enriched for regulatory elements (2), on a genome-wide scale.  

This plasmid input control we used for normalization does not undergo the exact same procedure 
as a plasmid extraction control after transfection and therefore may not be completely equivalent. 
However, we frequently observed very high correlation between input and recovered input libraries 
(3). 

Assessment of interferon response upon transfection of mESCs with the FAIRE-STARR library 

Upregulation of interferon genes in response to transfection with plasmids can also distort STARR-seq 
reporter activation (4). To test if this is a potential problem in the mESCs used in our study, we 
analyzed the expression levels of selected interferon response associated genes. However, for each 
of the genes analyzed, the levels were below the qPCR detection limit regardless of whether the cells 
were transfected or not (data not shown) indicating that the interferon response is not activated upon 
transfection and thus should not influence the STARR activity read-out in our assays. This is in line with 
published reports of a lacking type I interferon response in mESCs (5). 
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ChIP-seq 

For ChIP experiments, E14 cells were washed once with PBS, treated with trypsin (Sigma, T4049) for 5 
min and gently but thoroughly resuspended in ES medium to generate single cell suspensions. Cells 
were diluted to 20x106 cells/20 ml medium and crosslinked by adding formaldehyde (1% v/v) for 5 
min under gentle rotation. The reaction was quenched by adding 125 mM Glycine for an additional 5 
min, then cells were washed three times with PBS, snap frozen in liquid nitrogen, and stored at -80°C.  

HM ChIP experiments were preformed according to the standard BLUEPRINT protocol 
(www.blueprint-epigenome.eu): Cells were resuspended in shearing buffer (20 mM Tris pH 7.5, 150 
mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS) supplemented with Complete Protease Inhibitor 
Cocktail (PIC) EDTA-free (Roche, 11873580001) and sheared on a Bioruptor Pico device for 25-35 
cycles. For each ChIP, 1 µg antibody (listed in Table S2) was used. Automatic ChIP was performed using 
the SX-8G Compact IP-Star liquid handler (Diagenode) in combination with Auto Histone ChIP kits 
(Diagenode, C01010022). Using the pre-programmed method ‘indirect ChIP’, ChIP reactions were 
carried out in a final volume of 200 μl for 10 h followed by 5 h incubation with protein A magnetic 
beads and 5 min washes at 4°C. After the ChIP, eluates were recovered, RNase A-treated, de-
crosslinked overnight at 65°C and treated with Proteinase K for 4 h at 55°C. The recovered DNA was 
purified using the ChIP DNA Clean & Concentrator Kit (Zymo research, D5205). Sequencing libraries 
were prepared using the NEBNext Ultra DNA Library Prep kit (NEB, E7370) according to manufacturer’s 
instructions and submitted for paired-end Illumina sequencing on the HiSeq 2500. 

The RARa ChIP was performed as described elsewhere (6), with the following modifications: Cells 
were cross-linked for 5 min with 1% formaldehyde and a mild sonication buffer was used (20 mM Tris-
HCl pH 8.0, 2 mM EDTA pH 8.0, 1% Triton X-100, 150 mM NaCl, 0.1% SDS, 1x PIC). Prior to sonication, 
nuclei were incubated for 20 min on ice and homogenized ten times by a 27G needle. Per ChIP 4 µl 
RARa antibody (serum, Diagenode C15310155) or 2 µg IgG control (Diagenode C15410296) was used. 
Sequencing libraries for RARa ChIP and Input fragments were prepared using the KAPA Hyper Prep Kit 
(Roche) and submitted for paired-end Illumina sequencing on the NovaSeq 6000 generating 50 bp 
reads. 

NGS data analyses 

FAIRE-STARR-seq data analyses 

FAIRE-STARR-seq libraries were sequenced with a HiSeq 2500 (Illumina) to generate 50 bp paired-end 
reads. Sequencing reads were aligned to the mouse genome (mm9) using Bowtie2 (7)(-X 800 --fr --
very-sensitive). UMI-tools (8) was used for UMI-aware removal of PCR duplicates. SAMtools (9) was 
used to filter reads for proper pairs, alignment and quality scores (-h -b -f 3 -F 780 -q 5), to select reads 
mapping only to regular chromosomes (chr1-19, chrX and chrY), and to remove reads mapping to 
blacklisted regions (ENCFF547MET). UMI-aware deduplication of reads removed about 90% of 
obtained reads (Fig. S1B) and is aimed at retaining only true independent transcript replicates of one 
enhancer resulting in an overall decrease in read-counts for individual fragments (Fig. S1C). Genome-
wide correlation analyses of read distributions of individual FAIRE-STARR-seq samples showed higher 
correlation coefficients when UMI-aware removal of read duplicates was omitted since overamplified 
fragments with very high read counts in two compared samples result in overestimation of correlation 
of read distributions. Fragments with extremely high read counts in only one replicate are prevalent 
without UMI-aware removal of duplicates, whereas these regions are absent after UMI-aware 
deduplication analysis (Fig. S1D) indicating that such regions are PCR amplification artefacts. 
Accessible regions covered by the input library were identified using MACS2 (10)(-q 0.05 --keep-dup 
all --call-summits -bw 200). Significantly active enhancers, using the input library as control, were 
called using MACS2 (10). The analysis was performed for each biological STARR-seq replicate 
individually as well as for the merged reads from all replicates. Finally, peaks were only counted as 
active STARR-seq enhancers when they were called for the merged reads and for at least two of three 
biological replicates and are covered by at least three individual fragments. Normalized STARR-seq 
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signal for data visualization was generated using bamCoverage of the deepTools package (11) for the 
replicate-merged STARR-seq reads or the input library to normalize for genomic coverage and 
sequencing depth (-of bigwig -bs 10 -e --normalizeUsing RPGC --effectiveGenomeSize 2304947926 --
pseudocount 1). Next, signal tracks were normalized to input library coverage using bigwigCompare (-
of bigwig -bs 10 --operation subtract --pseudocount 1). Genome browser snapshots depict FAIRE-
STARR signal normalized to RPGC only, unless indicated otherwise. Heatmaps which show STARR-seq 
signal (RPGC and input normalized) distribution at selected regions were generated using 
computeMatrix (reference-point mode) and plotHeatmap tools of the deepTools package (11). 
Genomic distribution of FAIRE-STARR with respect to RefSeq genes was annotated with ChIPSeeker 
(12). 

In order to score the FAIRE-STARR-seq enhancers, the computeMatrix tool of the deepTools 
package (11) was used, this time to obtain the average enhancer activity signal (input and read depth 
normalized tracks by bigwigCompare, see above (--operation log2)) over the size-scaled regions (scale-
regions mode). Thus, the STARR score corresponds to log2((RNA from STARR-seq)/(DNA from input 
library)) per enhancer element. Clustering of FAIRE-STARR enhancers by enrichment of HMs was 
performed using the computeMatrix tool (scale-region mode to average HM enrichment per region) 
and k-means clustering (k was estimated by the elbow method (total within-cluster sum of square)). 
Subsequently, distributions of HMs, TFs, accessibility by ATAC, promoter annotation (RefSeq), 
transcription (RNA-seq), and enhancer prediction probability by CRUP (13) were plotted for the 
clustered regions with computeMatrix (reference-point mode on summit of the clustered regions) and 
plotHeatmap (11). 

Correlation analyses 

Genome-wide correlation analyses for read distributions were performed using multiBamSummary 
(deepTools (11)) and filtered reads. The genome was binned into 100 bp bins, fragments per bin were 
counted (bins -e -bs 100), the resulting table was analyzed in R (14) and pair-wise Pearson correlation 
coefficients and coefficients of determination were calculated.  

ChIP-seq analyses 

Paired-end ChIP-seq reads were mapped to the reference genome (mm9) using Bowtie2 (7)(--
sensitive), and if applicable, mapped reads from the same experiment but different sequencing runs 
were merged. SAMtools (9) was used to filter for proper pairs, alignment and quality scores (-h -b -f 3 
-F 780 -q 10), to select reads mapping only to regular chromosomes (chr1-19, chrX and chrY), and to 
remove reads mapping to blacklisted regions (ENCFF547MET). Input and sequencing depth 
normalized signal tracks were computed with bamCompare (-of bigwig --operation subtract -bs 25 --
smoothLength 50 -e --normalizeUsing RPKM --ignoreDuplicates) (11). Significant RARa binding sites 
over input sample were identified using MACS2 (10). For RARa enhancer inducibility analysis, only 
RARa binding sites which overlap with the FAIRE-STARR input library (6,528 of 11,366 RARa sites) 
were included. 

Reprocessing of deposited NGS data 

If signal tracks were not available, NGS data for experiments listed in Table S2 were downloaded via 
fastq-dump, mapped to mm9 reference genome using Bowtie2 (7)(--sensitive), and if applicable, 
mapped reads from the same experiments but different sequencing runs were first merged and then 
filtered (-h -b -f 3 -F 780 -q 3) with SAMtools (9). Signal tracks were computed with bamCoverage or 
bamCompare (-of bigwig (--operation subtract) -bs 25 --smoothLength 50 -e --normalizeUsing RPKM -
-ignoreDuplicates) (11) depending on the availability of a control sample (indicated in Table S2). Reads 
mapping to blacklisted regions (15) were excluded. For deposited signal tracks mapped to mm10 
reference genome, lift-over to mm9 was performed using CrossMap (16).  
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RNA-seq analysis 

50 bp paired-end sequencing reads were aligned to the mouse genome (mm9) using STAR (17)(version 
2.5.3a) and ENSEMBL genes (NCBIM37) as annotation reference. SAMtools (9) was used to filter reads 
for proper pairs, alignment and quality scores (-h -b -f 3 -F 780 -q 10), to select reads mapping only to 
regular chromosomes (chr1-19, chrX and chrY), and to remove reads mapping to blacklisted regions 
(ENCFF547MET). Fragments per gene were assessed using featureCounts (18) and ENSEMBL gene 
annotation. To compare expression between different groups of genes of the same treatment, 
transcripts per million reads (TPM) were calculated and compared. Normalization of read coverage 
and differential gene expression analysis for different treatments were performed using DESeq2 and 
LCF shrinkage (19). To compare and plot mean expression of genes between different treatments, 
TMM-normalized counts (20) were calculated with the edgeR package (21). To generate signal tracks 
for plotting RPKM normalized read coverage at example loci or heatmaps, bamCoverage was used (-
of bigwig -bs 10 -e --normalizeUsing RPKM)(11). 

ATAC-seq analysis 

50 bp paired-end sequencing reads were aligned to the mouse genome (mm9) and filtered as 
described for ChIP-seq analysis. Signal tracks for plotting normalized read coverage at example loci or 
heatmaps were generated applying bamCoverage (-of bigwig -bs 25 --smoothLength 50 -e --
normalizeUsing RPGC --effectiveGenomeSize 2304947926 --ignoreDuplicates)(11). 

Motif enrichment analyses 

To identify TF motifs enriched in sequences of interest, AME (22) was applied (--scoring avg --method 
fisher --hit-lo-fraction 0.25 --evalue-report-threshold 79 --control --shuffle--) using the JASPAR 2018 
clustered vertebrate motif database (23) as input motifs. Results were analyzed in R (14), filtered by 
E-value thresholds as indicated, and plotted with the ggplot2 package (24). The JASPAR 2018 
vertebrate core motifs and their corresponding clusters are listed in Table S4. To investigate the 
enrichment of RARa::RXRa motifs with different spacer lengths and half-site orientations, the 
corresponding scoring matrices were created by combining the monomers of the RARa::RXRa 
consensus motif (MA0159.1) into direct, inverted, and everted repeats with zero to eight nucleotides 
spacing. For the spacers, a uniform nucleotide frequency distribution was inserted to generate 
maximal degeneracy. 
Counting of enriched motifs per fragment was performed using the matrix-scan function of the 
pattern matching program from RSAT software suite (25) with a first-order Markov model estimated 
from the input sequences as a background model and applying a p-value cut-off (0.002) to the 
predicted binding sites.  

Heatmaps and anchor plots 

Heatmaps and anchorplots depicting ChIP-, DNase-, ATAC-, or RNA-seq distribution or mean 
enrichment at selected genomic regions respectively, were generated using computeMatrix 
(reference-point mode) and subsequently plotHeatmap or plotProfile tools of the deepTools package 
(11). Sequencing depth and, if applicable and available, input normalized signal tracks were used. 

Assignment of genes to enhancers and gene ontology analysis  

To assign putative target genes to STARR enhancers we applied GREAT version 3.0.0 (26) using the 
whole genome (mm9) as background regions and for association setting “basal plus extension” with 
proximal: 5 kb upstream and 1 kb downstream,  plus distal: up to 100 kb. The expression levels of 
assigned genes per enhancer group or cluster was plotted as TPM derived from RNA-seq. Additionally, 
GREAT performs a gene ontology analysis per analyzed enhancer group and provides enriched GO-
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terms and significance levels, which were analyzed and cutoffs determined in R (14) and subsequently 
plotted with the ggplot2 package (24).  

Classifier for enhancer and E-promoter prediction 

Pre-processing and motif enrichment: As outlined in Fig. 4A, the 186,959 significantly enriched regions 
of the FAIRE-STARR input library were first divided into regions which do (16,769) or do not (170,190) 
overlap with ENSEMBL (NCBIM37) promoters, which were defined as regions of -500 bp to the TSS, 
and subsequently used to train an E-promoter and enhancer classifier, respectively. For each group, 
regions were ranked for their STARR activity (Fig. 4B and S4A) and the sequences of the highest and 
lowest ranking 10 or 1% for E-promoters or enhancers, respectively, were used for training of the 
classifier. The motifcounter tool (27) was used with default options to calculate sequence-wise motif 
enrichment of the 79 clustered motifs from JASPAR matrix clustering 2018 (23) using the union from 
both sets as background model. Since the width of highest and lowest STARR-scoring regions was 
significantly different (Wilcoxon p < 1e-50), region-width was included as a feature of the classifier. 
Negative log-transformed p-values of motif enrichment were generated and all variables were scaled 
such that they have the same mean and standard deviation, in order to allow for inferences about 
feature importance directly from regression model coefficients. 

Fitting and evaluation of classifier: To differentiate between the highest and lowest ranking 
enhancers based on enrichment of the clustered TF motifs and motif width, a logistic regression model 
with elastic net regularization was built. The model combines ridge and lasso penalties to obtain 
shrunken and grouped coefficients, that prevent the regression model from overfitting (28). For 
training and evaluation of the model, a nested cross-validation approach was performed, where the 
inner loop is used for the optimization of hyperparameter λ (regularization penalty) and the outer 
loop to assess the predictive performance on unseen data. Additionally, the second hyperparameter 
α was tested over a grid of various values to find the optimal mixing percentage of lasso and ridge 
regression. Since only marginal differences in performance were observed, a value of α = 0 
corresponding to ridge regression was chosen to include enrichment of each of the clustered motifs 
in the classifier. Model performance for each of the outer cross-validation folds was assessed via the 
receiver operating characteristic (ROC) curve to derive a mean and standard deviation of the AU-ROC 
(area under the ROC curve). Preprocessing, training, and testing of the model were performed with R 
using the glmnet package (29) for elastic-net regularized models.  
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Figure S1. FAIRE-STARR-seq in mouse embryonic stem cells.
A) Schematic depiction of the FAIRE-STARR sequencing library preparation steps and final amplicon structure. Rd1/2 SP = Illumina
Read1/2 Sequencing Primer, i5 = p5 index, UMI = unique molecular identifier (8 nucleotides).  B) Read counts of the input
compared to the FAIRE-STARR-seq libraries. Absolute read numbers were counted after sequencing, after UMI-aware
deduplication, and after subsequent filtering for the input and the LIF or RA treated FAIRE-STARR libraries individually. The mean
of three biological FAIRE-STARR-seq replicates (bars) as well as the counts of the individual replicates (points) are shown. C)
Depiction of library complexities of the input library (Inp), LIF treated, and RA treated FAIRE-STARR libraries. Data with or without
UMI-aware deduplication of reads is shown for the three individual FAIRE-STARR libraries (rep1-3). D) Correlation analysis of
genome-wide read distribution, comparing the three individual biological replicates for FAIRE-STARR-seq after LIF or RA
treatment after (left panels) or prior to (right panels) UMI-aware read deduplication. The genome was binned into 100 bp bins
and log-transformed reads per bin are plotted. Pearson correlation (r) coefficient and r-square (r2) of the log-transformed data
for each comparison are shown. E) Heatmaps depicting normalized read distribution of DNase-seq, FAIRE-STARR input library,
and ATAC-seq at the accessible regions based on the DNase-seq data. F) Analogous to Fig. 1C, correlation analysis of genome-
wide read distribution comparing the input library to ATAC-seq data of LIF- or RA-treated mESCs. Normalized and log1p
transformed reads per 10 kb genomic bin are shown. G) Mean expression (RPKM normalized) for all mESC genes in pluripotency.
TF genes belonging to motif clusters 8, 28, and 48 are highlighted. H) IGV browser view of exemplary genomic regions illustrating
the STARR activity from three individual biological replicates (rep1-3) and the merged signal. RPGC normalized signals for FAIRE-
STARR replicates and input are shown.
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Figure S3. Functional mESC enhancers reside in different epigenomic environments.
A) Distribution of TFs as indicated, p300, and PolII at active FAIRE-STARR enhancers, clustered as depicted in Fig. 3A. B) TSSs
(ENSEMBL annotation mm9) were filtered for redundancy and coverage in the FAIRE-STARR library and subsequently divided into
those which do (E-promoters, Eprom) or do not (regular promoters, Prom) overlap with active FAIRE-STARR enhancers. The two
groups were ranked by their STARR signal and PolII and RNA enrichment at these regions was plotted. C) Anchor plots showing the
mean enrichment of signals as indicated at E-promoters and regular promoters (grouped as in B). D) Comparison of TF enrichment
at E-promoters and promoters (-/+ 250 bp from TSSs). Boxplots depict the distribution of RPKM normalized ChIP signal (log1p
transformed data) and p-values for unpaired Wilcoxon tests comparing enrichment for E-promoters and promoters. E) TF motif
enrichment for E-promoters and (6327 randomly selected) promoters was performed with AME using the JASPAR 2018 clustered
vertebrate motif database. Significance of enrichment (-log10E <= 1e-4) for differentially enriched (-log ratio >= 5) motifs are shown.
F) Intersection of FAIRE-STARR enhancer clusters with elements from RepeatMasker (29) for the mm9 genome. The bar plot shows
the absolute count for repeat elements per enhancer group and the percentage of all repeats per group are indicated. The lower
panel shows the proportion of individual repeats, color-coded by repeat family, for each cluster. Only repeats which make up at le-
ast 3% of all repeats per cluster are shown. G) Mean enrichment (upper panels, anchor plots) and distribution (heatmaps) of STARR-
, ATAC-, RNA-, selected HM ChIP-seq signals, as well as enhancer probability by CRUP prediction for enhancers identified only by
FAIRE-STARR, only by CRUP or by both. H) Distribution of selected HMs at ENSEMBL promoters (95,882), which were grouped by
overlap with significant enrichment (by peak calling) of H3K4me3, H3K27me3, and H3K122ac. +++: H3K4me3, K3K27me3, and
H3K122ac positive. ++-: H3K4me3, K3K27me3, but no H3K122ac. +-+: H3K4me3 and H3K122ac positive, but no K3K27me3. +--:
H3K4me3 positive, but no K3K27me3 or H3K122ac. No H3K4me3: Promoters without significant H3K4me3 enrichment. H3K27ac
enrichment was plotted for the promoters grouped as described above.
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Figure S4: Sequence-based prediction of enhancers and E-promoters.
A) ENSEMBL promoters overlapping with FAIRE-STARR library regions (Fig. 4A) were ranked for their STARR score and the 10%
highest and lowest ranking promoters were used for model building. B) Receiver operating characteristic (ROC) curve for E-
promoter prediction model performance for each of the outer cross-validation folds and mean and standard deviation of the area
under the ROC curve are shown. C) The 30 most predictive variables for the optimal model of E-promoter prediction and their
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coefficients are associated with low-scoring elements. Comparison of CG content of high- and low-ranking D) enhancers and E) E-
promoters. P-values for Wilcoxon test are depicted.
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Figure S5: Differentiation-associated changes in enhancer activity.
A) Genomic distribution of active enhancers in mESCs, of LIF-dependent and RA-inducible enhancers with respect to annotated
Refseq genes. Promoters were defined as the regions 1 kb upstream of a TSS. B) Differential gene expression comparing E14 cells
treated for 4 h with either LIF or RA using DESeq2. Significantly up- (blue) and down-regulated (orange) genes and cut-offs are
indicated. C) Genes were paired with enhancers by distance using GREAT and TMM-normalized gene expression counts per
enhancer group and treatment are shown. P-values from paired Wilcoxon tests are shown. D) Correlation of STARR score at all
active enhancers (union of active enhancers identified from LIF and RA treated cells) comparing LIF and RA treatment. Colored dots
display significant differentially active enhancers called by our analysis pipeline (orange: LIF-dependent, blue: RA-induced
enhancers). Pearson correlation coefficient (R) and coefficient of determination (R2) are indicated. E) Mean normalized enrichment
of TFs as indicated at LIF-dependent, RA-inducible, and active mESC STARR enhancers. F) Genotyping of E14 enhancer deletion
CRISPR/Cas9 clones. Upper panels depict the targeted genomic regions (mm9) and FAIRE-STARR-seq signals (LIF or RA treated).
Genomic locations of regions cloned into pSTARR for RT-qPCR (blue, Fig. 5E and F), guide RNAs for targeting Cas9 (sgRNAs, purple),
primers (green) used for genotyping PCRs, and detected deletions (red) of the individual clones are depicted. Lower panels show
genotyping PCR results for genomic DNA recovered from individual clones or parental line (E14 wt) using primer pairs as indicated
(locations shown in the upper panel). Asterix mark unspecific PCR bands. Expected PCR amplicon sizes for deletion (del) or wild type
(wt) clones are indicated. 11
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Figure S6: Identification of enhancer activity-associated features of RAR binding sites.
A) Intersection of FAIRE-STARR-seq input library and RAR-occupied sites. 6,528 RAR sites covered by our FAIRE-STARR-seq input
library were used for further analysis. B) Frequencies of the RAR::RXR consensus motif (MA0159.1) repeat half-sites (M1 and M2,
upper panel) at repressed, non-responsive, and induced RAR-occupied sites. C) Absolute FAIRE-STARR activity at repressed, non-
responsive, and induced RAR-occupied sites in LIF or RA treated cells. D) CG content distribution at repressed, non-responsive, and
induced RAR-occupied sites. P-values were derived from Wilcoxon tests. E) Heatmap representing distribution of FAIRE-STARR
signal, RAR and H3K27ac enrichment at RAR-occupied sites which were ranked by their logSTARR score (RA/LIF). F) Average
enrichment of selected TFs at induced (blue), non-responding (gray), or repressed (orange) RAR-occupied sites. All ChIP-seq data
were derived from pluripotent mESCs without RA treatment.
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