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Abstract—State-of-the art selectionmethods fail to identify weak but cumulative effects of features found in many high-dimensional

omics datasets. Nevertheless, these features play an important role in certain diseases. We present Netboost, a three-step dimension

reduction technique. First, a boosting-based filter is combined with the topological overlapmeasure to identify the essential edges of the

network. Second, sparse hierarchical clustering is applied on the selected edges to identify modules and finally module information is

aggregated by the first principal components.We demonstrate the application of the newly developed Netboost in combination with

CoxBoost for survival prediction of DNAmethylation and gene expression data from 180 acutemyeloid leukemia (AML) patients and

show, based on cross-validated prediction error curve estimates, its prediction superiority over variable selection on the full dataset as

well as over an alternative clustering approach. The identified signature related to chromatin modifying enzymeswas replicated in an

independent dataset, the phase II AMLSG12-09 study. In a second application we combine Netboost with RandomForest classification

and improve the disease classification error in RNA-sequencing data of Huntington’s diseasemice. Netboost is a freely available

Bioconductor R package for dimension reduction and hypothesis generation in high-dimensional omics applications.

Index Terms—Acute myeloid leukemia, boosting, cox proportional hazards model, dimension reduction, DNA methylation, feature selection,

gene expression, hierarchical clustering, huntington’s disease, random forest, survival
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1 INTRODUCTION

MICROARRAY, sequencing and other high-throughput
functional genomics technologies are developing

rapidly, incorporating more and more features. A major
challenge in biomedical research is the contrast of these
high-dimensional datasets and the related investigation of
potentially hundreds of thousands of features with only a
limited sample population in the range of tens to a few hun-
dreds. This gives rise to dimension reduction techniques
with the aim of identifying the subspace with minimal
dimensions and the best characterization of the outcome var-
iable simultaneously [1].

Many times, methods which were originally developed
for the selection of tens of clinical variables are now faced
with the challenge of selecting from hundreds of thousands
or even from millions of variables. In cases where it is not
expected that a singular feature dominates the effect but
rather that a larger group of features works cumulatively,
the challenge becomes even greater.

In acute myeloid leukemia (AML) part of the epigeno-
type of the disease is a global increase in DNA methylation
in regulatory regions [2]. Furthermore, for elderly patients
the only effective drugs that counteract this effect are hypo-
methylating agents [3], [4], [5]. From this it is known that
the state of methylation fulfills an important role in this
disease. Nevertheless it has been difficult to incorporate
DNA methylation markers in patient relevant statistics
like survival prediction [3], [6]. Predictive methylation sites
in AML patients treated with chemotherapeutics [7] and
predictive sites from chronic myelomonocytic leukemia
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patients treated with hypomethylating drugs [8] could not be
replicated for AML patients treated with hypomethylating
drugs.

Weighted Gene Co-expression Network Analysis
(WGCNA) [9] is a versatile framework to extract networks
from high-dimensional data. It is able to identify biologi-
cally functional subgroups, called modules, under many
differing settings [10], [11], [12]. When relating this struc-
tured information to the outcome of interest, additional
challenges are faced. We are interested in the subgroups of
features which are most central to the function of the mod-
ules. The method has to be even more selective in differenti-
ating background noise from true connections to be used to
explain the interplay of differing molecular levels, like gene
expression and DNAmethylation.

With Netboost, we propose a procedure to reduce dimen-
sions within high-dimensional datasets. We put a specific
emphasis on large subgroups of features that show a shared
effect. For this we aggregate subgroup information before
applying the primary analysis strategy. In public domain
exampleswe show that we are able to extract patient relevant
information from multiple high-dimensional measurement
types.

The paper is organized as follows. Section 2 outlines the
newly developed Netboost and describes the implementa-
tion. In Section 3 Netboost is applied in two public domain
datasets and its performance is compared with two other
approaches for each application. Section 4 outlines the limi-
tations and the potential future direction of the proposed
method to conclude the paper.

2 METHODS

Netboost is a three-step procedure. As shown in Fig. 1, in the
first step we calculate the boosting-based filter and a sparse
distance matrix between features (Sections 2.1.1 and 2.1.2).
From this combinationwe can reduce the network to its essen-
tial edges and remove spurious connections, originating from
noise. We still retain the interconnectedness and stability of
complex network structures including indirect connections
that occur in many omics datasets reflecting biological path-
way structures.

The second step consists of sparse hierarchical clustering
and the dynamic tree cut procedure to determine modules
from the dendrogram (Section 2.1.3) to transfer the network
into a clustering.

Subsequently in step three, we aggregate the information
in the modules by their first principal components (PCs)
(Section 2.2) to achieve a low-dimensional representation of
the original data.

In this network-based dimension reduction method we
modify the WGCNA by the addition of a multivariate filter
and by the application of sparse hierarchical clustering. Net-
boost is then followed by the primary analysis approach
with the aggregatedmodule information instead of the origi-
nal omics data. Here we present two applications, CoxBoost
[13] to fit a Cox proportional hazards model integrated with
a variable selection (Section 3.1) and a classification analysis
by Random Forests [14] (Section 3.2).

2.1 Module Detection

Let X be a n� p-dimensional data-matrix, where n� p
with n being the number of samples and p the number of
features. We assumeX to be continuous in each feature.

2.1.1 Boosting-Based Filter

To first identify a general structure of our network we
aggregate a filter of important network edges by boosting.
Letm 2 IN index samples, i; j 2 IN index features and

Xi :¼ Xm�n;i and X�i :¼ Xm�n;j6¼i:

We fit

Xi ¼ X�ibj�p�1;

with b 2 IRðp�1Þ. Here, we perform component-wise likeli-
hood-based boosting to fit a linear approximation of the out-
come variable. In each iteration we fit the linear base
learners using Fisher scoring with respect to the overall like-
lihood function one-by-one while keeping all other base
learners fixed [15], [16]. Boosting is stopped after a given
fixed number of steps. For all bj 6¼ 0 we then add the tuple
ði; jÞ to the filter. We estimate an undirected network, there-
fore the order of ði; jÞ is irrelevant. We define the filter by

F :¼ fði; jÞ; ðj; iÞj9i; j 2 IN bi 6¼ 0 in Xj ¼ X�jbg:

By pruning the network to F we remove uninformative
edges, reduce computational load and noise in subsequent
steps.

Fig. 1. Netboost concept flow chart.
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2.1.2 Distance Calculation

For tuples in F we define the adjacency of two features anal-
ogous to [9] by the power adjacency function. For all other
tuples the adjacency is set to 0. Hence, we have

aij :¼ jcorðXi;XjÞjb ifði; jÞ 2 F ;
0 else;

�

where b is chosen data-based by the scale free topology
criterion [17] on a random subset of features. Here, the
model fit of the correlation structure with the criterion is
approximated by a linear regression and b is chosen to maxi-
mize this fit. cor denotes the Pearson correlation.

We combine the topological overlap measure (TOM) [18]
with F and define

TOMij :¼
1 ifi ¼ j;P

u6¼i;j aiuaujþaij
minð

P
u6¼i aiu;

P
u 6¼j aujÞþ1�aij

ifði; jÞ 2 F ;
0 else:

8><
>: (1)

As aij 2 ½0; 1� it follows that TOMij 2 ½0; 1�. These similar-
ities are inverted to distances by

DistTOMij :¼ 1� TOMij: (2)

2.1.3 Hierarchical Clustering and Decomposition

into Modules

We apply the unweighted pair group method with arithme-
tic mean (UPGMA) [19] to DistTOM. Parts of the network
where no path exists in F are clustered independently. A
path between Xi andXj exists exactly then when there is an
l 2 IN such that there are t1...l 2 F with i ¼ t11, j ¼ tl2 and
8s : 1 � s � l� 1 ts2 ¼ tðsþ1Þ1. The dendrograms resulting
from these hierarchical clusterings are separated into mod-
ules by the Dynamic Tree Cut procedure [20]. Thus, features
which are topologically close on the filtered edges are
grouped into modules.

2.2 Aggregation of Module Information

By design the first PC explains the variation in one dimen-
sional space to the highest possible degree. Therefore, we
aggregate the information in each module by its first PC, the
so called eigengenes [9]. In a final step modules with highly
correlated first principal components are merged to further
reduce dimensionality. We define Eq as the first principal
component of the qth module and

Xmodules :¼ ðET
1 ; . . . ; E

T
mÞ;

wherem is the number of detected modules.Xmodules has the
dimension n�m where m� p. Due to its definition a sub-
stantial part of variation in X is conserved inXmodules. At the
same time the dimensionality is considerably reduced.

2.3 Module Selection and Evaluation

Variable selection is performed analogous to the primary
analysis approach, but it is done on the set of eigengenes
rather than on the set of features.

2.3.1 CoxBoost

We apply CoxBoost [13] to integrate the potentially still
high-dimensional Xmodules with clinical covariates and sur-
vival data as the primary outcome by likelihood-based
boosting. Analysis is implemented with the CoxBoost R
package [21]. The stopping criterion is chosen by cross-vali-
dation and a Cox proportional hazards model is fitted.

2.3.2 Prediction Errors

To evaluate the performance of CoxBoost models we used
the peperr R package [22] which implements .632+ predic-
tion errors based on subsamples without replacement as
recommended in [23]. These Brier scores allow for interpre-
tation of prediction errors accounting for censoring as well
as the time-dependent nature of survival data [24], [25],
[26]. In high-dimensional data constellations bootstrap sam-
ples with replacement often lead to overly complex models.
Therefore, subsamples without replacement of 63.2 percent
of the samples, which is equal to the expected number of
unique observations in one bootstrap sample drawn with
replacement, are implemented. Variability of prediction
error curves is displayed by the distribution of integrated
prediction error curves of the subsamples.

2.3.3 Random Forests

We apply random forests as described in [14] to classify
samples based on Xmodules to their disease severity classes.
To adequately explore the space of possible trees, also for
the most high-dimensional of the analyses, we grow 10,000
trees in each analysis.

2.4 Implementation

Netboost is built as an R package. It has been tested under
Linux and macOS. A Windows implementation is currently
not planned due to compiler dependencies.

As depicted in Algorithm 1 we first calculate F . Under
the assumption of continuous Xj and after scaling and cen-
tering each we efficiently implement the likelihood based
boosting. The subsequent calculation of the adjacencies and
the TOM are performed exclusively on network edges in F .
Then the sparse distance matrix is exported to Sparse
UPGMA by [27]. Here all empty edges where the nodes are
connected indirectly are assumed to have the maximal dis-
tance in the network and completely unconnected nodes of
the network are processed separately in independent clus-
terings. This agrees with the described method as all con-
nected nodes not in F have the distance of 1. By applying
the filter we therefore reduce the memory load and compu-
tational burden massively as the filter is smaller than the
whole network by orders of magnitudes as demonstrated in
the examples in Section 3.

The algorithm is freely available as a Bioconductor R
package at http://bioconductor.org/packages/release/
bioc/html/netboost.html. All functionality of Netboost is
available from within R whereas substantial parts of the
algorithm are implemented in C++. Sparse UPGMA is part
of the standalone MC-UPGMA software (for details see
[27]). It is distributed with the Netboost R package. For
extraction of modules we applied the WGCNA [9] and
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dynamicTreeCut [20] R packages. As an example for the
computational demand Netboost was run on a dataset with
180 samples and 413,169 features (for details see Section 3.1).
Applying two Xeon E5 2690v3 at 2.6 GHz (2x12cores) and 40
GB of RAM it took Netboost 13.94 hours to compute.

Algorithm 1.Netboost

Input:X, steps, minModuleSize, MEDissThres
Result:Xmodules

F ¼ ;;
for j 1 to p do
fitXj ¼ X�jb;
F ¼ F [ fði; jÞj9i 2 IN bi 6¼ 0g;

end
F ¼ fði; jÞjði; jÞ 2 F _ ðj; iÞ 2 Fg;
randomFeatures = X[,sample(n= min(10,000,ncol(X))];
scaleFreeTopologyCriterion(randomFeatures)! b;
for ði; jÞ 2 F do
aij ¼ jcorðXi;XjÞjb;
end
for ði; jÞ 2 F do
compute DistTOMij := Equation (2);

end
sparseUPGMA(DistTOM)! dendrogram;
cutreeDynamic(dendrogram, minModuleSize)!modules;
for q 2 modules do
compute first principal component Eq;

end
while 9q; q0 with cor(Eq;Eq0 ) > ð1�MEDissThresÞ do
merge(q, q0);
compute first principal component of merged module;

end

3 RESULTS

We applyNetboost to two datasets. In Section 3.1 it is applied
to DNA methylation and gene expression data from The
Cancer Genome Atlas (TCGA) AML cohort to predict sur-
vival (see Section 2.3.1). In Section 3.2 it is applied to RNA
sequencing data to classify (see Section 2.3.3) Huntington’s
disease severity inmice.

3.1 TCGA AML: Methylation and Gene Expression
Predictive of Overall Survival

We selected the 180 AML patients in the public domain
TCGA database for which overall survival data, methylome
and gene expression measurements were available. TCGA
data was already preprocessed and normalized. Methylation
was quantified with Illumina Infinium HumanMethyla-
tion450 BeadChip arrays and gene expression by Affymetrix
HG U133 Plus 2.0 arrays. Thereby 396,065 methylation and
17,104 gene expression measurements were incorporated.
We compared the following three schemes each with and
without a clinical score. The clinical score is a dichotomized
version of the linear predictor of a Cox proportional hazards
regressionmodel [28] of age at diagnosis and cytogenetic risk
group, assessed as low, intermediate or high. Baseline haz-
ards were estimated in separate strata according to sex. The
scorewas solely used to evaluate Netboosts performance.

In the models with the clinical score it was set as manda-
tory and thereby unpenalized in CoxBoost. Thereby, DNA

methylation and gene expression information was only
added in these models if they could improve the prediction
on top of the clinical score.

1) Direct application: Application of CoxBoost on the
full datasetX.

2) Blockwise modules: The same approach as in Net-
boost but with the module detection done by block-
wise WGCNA.

3) Netboost: Module PCs are calculated as described in
Section 2. CoxBoost is applied to these.

The blockwise modules approach was the initial inspira-
tion for the Netboost method. They coincide with one
another apart from Netboosts added boosting-based filter
and that X has to be separated into feature subsets for
WGCNA so that the whole correlation matrix on the indi-
vidual subsets can be computed. This is accomplished with
k-means clustering and later aggregation via correlated
eigengenes [9].

CoxBoost was implemented in all analyses in R with the
peperr package [22]. We used 10-fold cross validation to
estimate the optimal stopping criterion on the interval from
0 to 100. We applied 200 resampling steps to estimate the
632+ prediction errors.

Inmodels 1.-3. we integrated the analysiswithout the clin-
ical score. The direct application on the full dataset, X,
selected two features and the 632+ prediction error curve,
depicted in Fig. 2, shows no improvement over the null
model. The estimated .632+ prediction errors for days since
diagnosis are given in blue for the null model and dashed
blue for the clinical model. Prediction error curves based
solely on DNA methylation and gene expression are pre-
sented in black: The solid line for the direct application of
CoxBoost, the dotted line for the combination with weighted
gene co-expression network analysis and the dashed line for
the combination with Netboost. The corresponding predic-
tion error curves additionally based on unpenalized clinical
data are presented in red.

Blockwise modules identified 568 modules with a mean
module size of 671 in the range of 10 to 57,548. Ten was set
as the minimum module size. Henceforth, 92 percent of the
features were assigned to modules. The proportion of vari-
ance explained by eigengenes ranged from 23.9 to 94.6 per-
cent (median = 50.5 percent). In the WGCNA aggregated
XWGCNAmodules two modules were selected by CoxBoost
summarizing 26 features.

For Netboost the multivariate filter was stopped after 20
steps and resulted in a filter of 4,956,518 network edges. This
represents approximately 0.003 percent of the edges. Based
on this Netboost identified 739 modules with an average
module size of 52 in the range of 10 to 4,251. Accordingly 9
percent of the features were assigned to modules. The den-
drogram based on the sparse network is depicted in Fig. 3.
Netboost eigengenes generally explained a higher propor-
tion of variance (median = 66.5%, range = [45.7%, 97.3%]).
CoxBoost selected six modules from the Netboost aggre-
gated XNetboostmodules, summarizing 278 features. The mini-
mum p-value of individual tests regarding a violation of the
proportional hazards assumption is 0.13 and the mean is
0.46. The global p-value is 0.53 [29]. For situations were the
proportional hazards assumption can not be made, we refer
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to [30], where an integration of landmarking and CoxBoost is
proposed. None of the features are shared by the selected
Netboost modules and the selectedWGCNAmodules.

As shown in Fig. 2 the higher complexity indeed corre-
sponds to a better prediction performance in the 632+ pre-
diction errors. The blockwise modules approach was able to
extract some information but was outperformed by Net-
boost. This also holds true when incorporating the variabil-
ity of the individual 632+ resampling steps in Fig. 4.

As depicted in Figs. 2 and 4, once we added the clinical
score as a mandatory covariate, none of the three approaches
was able to extract substantial additional information from
the molecular data. Overall, when comparing integrated pre-
diction errors all analyses but the direct application of Cox-
Boost showed significant improvements over the null model
(one-samples Student’s t-test, p-value< 0:05). Netboost

including the clinical score had the lowest p-value (p-value =
1.3e-27). When comparing analyses with each other the inte-
gration with WGCNA and the Netboost significantly
improved CoxBoost (p-value = 0.0437 and p-value = 0.0002,
respectively) andNetboost improved the accuracy of survival
prediction on top of WGCNA (p-value = 0.0413). Further-
more, all analyses including the clinical score significantly
improved predictionwhen comparedwith any analysis with-
out the clinical score. In between analyses including the clini-
cal score no significant differences were observed (two-
sample Student’s t-test, p-value< 0:05).

To investigate the possibility of the molecular informa-
tion extracted by Netboost being a surrogate for the clinical
score, we fitted logistic regression models for the module
eigengenes to the clinical score. We compared random
selections of features out of all DNA methylation and gene

Fig. 2. .632+ prediction error estimates for AML survival models.

Fig. 3. Dendrogram of the TCGA AML data. Dendrogram of the DNA methylation and gene expression features in the TCGA AML data. The two rows
below show the separation into modules by blockwise Weighted Gene Co-expression Network Analysis (WGCNA) and Netboost.
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expression features and modules, WGCNA and Netboost
respectively, of similar size to the modules selected by
WGCNA and Netboost and the modules selected for sur-
vival prediction. We fitted 500 models on subsamples of size
100 and evaluated the misclassification-rate on the remain-
ing samples. For the random selections, features were rese-
lected with each fit. As shown in Fig. 5, the selected Netboost
modules approximated the clinical score best.

To further comprehend the differences in the clustering
we took random subsets of size 100 and compared the result-
ing Netboost and WGCNA clusterings using pairwise
adjusted Rand Indices and Jaccard Indices [31], [32]. Addi-
tionally, we calculated kmeans clusterings with the number
of clusters fixed to the median number of clusters in Net-
boost clusterings (646) and WGCNA clusterings (533) and
generated random clusterings with the respective number of
clusters. The Rand Index is defined as the proportion of con-
sistently clustered features between the two clusterings so
tuples of features that are in both clusterings either in a com-
mon cluster or in both clusterings in differing clusters. The
adjusted Rand Index corrects this for the expected number of
consistent tuples given that the number of features and the
number of clusters such that E½adjusted Rand Index� ¼ 0.
The Jaccard Index is similar to the Rand Index, however it
disregards tuples for features that are in different clusters for
both clusterings. Both indices are less than or equal 1 and
exactly 1 for identical clusterings. As seen in Fig. 6 both ran-
dom clusterings had consistently pairwise indices of 0 and
both kmeans clusterings were outperformed by WGCNA
and Netboost with respect to both metrics. With respect to
the adjusted Rand Index Netboosts median was below
WGCNAsmedian while the order of minima was vice versa.

When comparing the Jaccard Indices, Netboost outperforms
WGCNA and shows a higher similarity for all pairwise com-
parisons with respect to this measure.

Netboost modules reflected known biology. 206 of the
739 Netboost modules consist of CpGs within 1,000 base
pairs demonstrating the strength of local dependency in
DNA methylation data. Netboost re-identified data-driven
the association of CpGs in close proximity and cis associa-
tion of gene methylation and expression. In total, six differ-
ent modules were selected that were variable in size and
composition: 4 of the 6 modules consisted only of CpGs,
one predominantly of CpGs and, in addition, 2 RNAs, one
module only of 14 RNAs. The total number of CpGs varied
from 10 to 88. The largest module (88 CpGs) contained
numerous genes associated with hematopoiesis, such as
WT1 and CXCL2. The 2nd largest module (80 CpGs, 2
RNAs) represented several genes encoding chromatin-mod-
ifying enzymes such as the H3K9 histone methyltransferase
EHMT1 and the DNA demethylase TET3. To illustrate the
strong association of this chromatin associated module
alone we plotted stratified Kaplan-Meier curves according
to its bimodal distribution (Fig. 7 A,B). The p-value of the
likelihood ratio test of the dichotomised module levels (p-
value = 7.0e-7) surpassed the one of the continuous module
levels (p-value = 4.0e-6); indicating that there might indeed
be two states of these genes. Several of these have already
been implicated in AML pathogenesis and appear very
promising for future predictive scores. Specifically, 4 CpGs
mapped to the gene encoding EHMT1, also represented in
the 4-gene methylation signature described by [7].

To validate the Netboost signature, we transferred it to
DNA methylation data generated on pre-treatment patient
samples from the phase II AMLSG 12-09 study [33]. In this

Fig. 4. Variability of the .632+ prediction error estimates in AML survival
models. Integrated prediction error curve estimates from single subsam-
ples for CoxBoost on the full dataset, CoxBoost on XWGCNA and Cox-
Boost on XNetboost. The Kaplan-Meier benchmark value is indicated by a
horizontal line. Red lines indicate the integrated .632+ prediction error
estimates with the line for the Clinical + Netboost model (lowest error)
being extended by a dashed line.

Fig. 5. Mis-classification rate for logistic regression models of the clinical
score in AML. We compare randomly selected features of the raw data
with randomly selected modules and the modules selected for survival
prediction performance. The complexity of models is fixed to two and six
to match the final survival models for Netboost and WGCNA respec-
tively. The horizontal line indicates the expected mis-classification rate at
random. Asterisks indicate significance of unpaired two-samples
Student’s t-test (*** p <0.001, ** p <0.01, * p <0.05, NS. p �0.05).
Only neighbouring columns were tested.

2640 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 18, NO. 6, NOVEMBER/DECEMBER 2021



study, DNA methylation based on the same Illumina Infin-
ium 450k array and overall survival was available for 55
AML patients. For processing and quality control of the raw
methylation data, a customized version of the CPACORpipe-
line [34] was used for data normalization and calculation of
beta values. The complete preprocessing pipeline is available
on Github (https://github.com/genepi-freiburg/Infinium-
preprocessing). As no data on gene expression was available
one of the six modules could not be studied at all, while 2
were partially available (79 of 82 and 64 of 67 features) and 3
modules were available with all features. While the Cox pro-
portional hazardsmodel of these fivemoduleswas not signif-
icant in this smaller dataset (p-value = 0.4) the above
mentioned chromatin associated module alone did replicate
(p-value = 0.04). Furthermore, thismodule exhibited a similar
bimodal pattern as in TCGA and again, dichotomization led
to a smaller p-value (p-value = 0.01, Fig. 7 C,D).

After the detailed analysis of the TCGA-AMLDNAmeth-
ylation and gene expression dataset we downloaded three
more TCGA datasets; DNA methylation data of 774 breast
invasive carcinoma (TCGA-BRCA) and 315 kidney renal
clear cell carcinoma (TCGA-KIRC) patients andmiRNAdata
of 464 ovarian serous cystadenocarcinoma (TCGA-OV)
patients with available overall survival information. The
1,422 TCGA-OVmiRNAs without missing observations and
the 20,000 CpG sites with the largest variance for TCGA-
BRCA and TCGA-KIRC respectively were selected for analy-
sis. From a descriptive perspective the KIRC dataset differed
from the BRCA dataset as there was a group of highly corre-
lated features being consistently grouped into the largest
module by WGCNA, Netboost and k-means, respectively,
whereas the BRCA dataset exhibited overall lower pairwise
correlations and more even module sizes. The OV dataset
exhibited an even simpler network structure across methods
with the lower dimensionality co-occuring with approxi-
mately a dozen modules with one of them subsuming more
than half the variable. For each dataset we performed the
same three analyses as for AML and calculated the 632+ pre-
diction error estimates. Boxplots of the integrated prediction
errors on the test set of the individual subsamplings are
depicted in Fig. 8. For clear cell carcinoma we observed

similar performance as in AML. The integration with
WGCNA significantly improved CoxBoost (p-value =
0.0013) and integration with Netboost improved the accu-
racy of survival prediction on top of WGCNA (p-value =
0.0006). For the other two datasets none of the three
approaches was able to improve overall survival prediction.

3.2 Huntington’s Disease: Gene Expression and
CAG Repeats

Huntington’s Disease (HD) is driven by the number of CAG
repeats in the huntingtin gene. In [12] WGCNA revealed 13
striatal gene expression modules that correlated with CAG
length and age in a HD knock-in mouse model. Further it
was shown that several of these effects translate to other HD
models and patients. Recently, the analysis was extended to
miRNA from the samemice in [35].

To evaluate the performance of Netboost we used the
mRNA dataset in an inverse setup and determined the pre-
diction errors in a classification task. We selected the 48
mRNA-sequencing samples frommouse striatum consisting
of six genetically engineered disease severities (20, 80, 92,
111, 140 and 175 CAG repeats) with four female and four
male mice all harvested at 6 months. We downloaded the
preprocessed mRNA-sequences from the Gene Expression
Omnibus. After removal of invariant transcripts, data con-
sisted of 28,010 transcripts.

We compared three setups:

1) Direct application: Random forest (RF) on the full
datasetX.

2) Blockwise modules: Blockwise WGCNA + RF on
module PCs

3) Netboost: RF on module PCs determined by
Netboost

RF was implemented in all analyses in R with the ran-
domForest package [14]. We used 200 iterations of leave-
one-out cross-validation.

The direct application on the full dataset, X, resulted in a
mean prediction error of 30.8 percent.

Blockwise modules identified 61 modules with a mean
module size of 423 in the range of 11 to 6221. Ten was set as

Fig. 6. Clustering indices of the TCGA AML data. Histogram of cluster indices of 100 clusterings on random subsets of 100 samples applying Net-
boost, WGCNA, kmeans with n classes and random selection of n labels, where n was set to the median number of modules in the Netboost runs
(646) and WGCNA runs (533) . A) shows the adjusted Rand Index and B) the Jaccard Index.
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Fig. 7. Chromatin modifying module eigengene distribution and Kaplan Meier plot in discovery and replication data. A) shows the bimodal eigengene
distribution of the TCGA AML DNA methylation and gene expression module associated with chromatin modifying enzymes. The vertical line indi-
cates at which point patients were stratified. B) depicts the Kaplan Meier curves stratified by the modules eigengene for TCGA patients. C) shows
the bimodal eigengene distribution of the transferred module in AMLSG 12-09 DNA methylation data. The vertical line indicates at which point
patients were stratified. D) depicts the Kaplan Meier curves stratified by the modules eigengene for AMLSG 12-09 patients.

Fig. 8. Variability of the .632+ prediction error estimates in TCGA Kidney Renal Clear Cell Carcinoma (KIRC), Breast Invasive Carcinoma (BRCA)
and Ovarian Serous Cystadenocarcinoma (OV) survival models. Integrated prediction error curve estimates from single subsamples for CoxBoost
on the full dataset, CoxBoost on XWGCNA and CoxBoost on XNetboost. The Kaplan-Meier benchmark value is indicated by a horizontal line. Red lines
show the integrated .632+ prediction error estimates. Asterisks indicate significance of unpaired two-samples Student’s t-test (*** p < 0.001, **
p <0.01, * p < 0.05, NS. p �0.05).
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the minimum module size. Henceforth, 92 percent of the
features were assigned to modules. In the HD application
the proportion of variance explained by eigengenes was
lower than in the AML data (median = 42.1%, range =
[29.3%, 63.4%]). On the WGCNA aggregated XWGCNAmodules

the mean prediction error was 37.1 percent.
For Netboost the multivariate filter was stopped after 20

steps, resulting in a filter of 247,497 network edges. This
represents approximately 0.06 percent of the edges. Based
on this Netboost identified 106 modules with an average
module size of 46 in the range of 10 to 561. Accordingly 17
percent of the features were assigned to modules. Eigen-
genes of the Netboost modules explained a higher propor-
tion of variance (median = 66.2%, range = [52.3%, 84.9%]).
On the Netboost aggregated XNetboostmodules the mean predic-
tion error was 28.2 percent. The dendrogram based on the
sparse network is depicted in Fig. 9 and illustrates that
many Netboost modules correspond to the central parts of
WGCNA modules. As shown for 25, 20 and 15 steps the
clustering is stable under the choice of boosting steps.

Two-sample tests for equality of proportions with conti-
nuity correction showed significant differences in means of
prediction errors with Netboost errors being smaller than
direct application (p-value = 0.019) and WGCNA (p-value
< 2.2e-16) and direct application errors being smaller than
WGCNA (p-value < 2.2e-16).

4 DISCUSSION

Netboost is designed in an unsupervised manner. While a
supervised approach tomodule detectionwould possibly fur-
ther improve accuracy, these approaches are complementary.

In [36] another approach for data with correlated features
is proposed. The first step is to cluster the features, and then
choose a cluster representative based on prediction perfor-
mance. The second step is to apply either lasso or marginal
significance testing on these representatives. Apart from dif-
ferences in the applied clustering technique as with other
supervised clustering techniques this might lead to improved
predictive performance but hinder the interpretation of the
selected clusters. Here, the primary aim is to maximize pre-
dictive power and thereby optimize the algorithm for bio-
marker detection. This is done at the cost of potentially

introducing some form of bias. Dependent on size and
connectivity of the module the supervised selection might
pick up peripheral features - voiding their function as a
representative.

Thereby, we are hindered if we are interested in the bio-
logical interpretation of identified biomarkers in context of
the network. Keeping outcome and network detection sepa-
rate allows for unbiased interpretation of any potential con-
nections between subsequently in the primary analysis
selected modules and the outcome.

In [37] two extensions to sparse canonical correlation anal-
ysis (CCA) [38] are introduced. First they propose a super-
vised form of sparse CCA and second they generalize the
framework from two tomultiple datasets.With this they offer
a framework for identification of sparse linear combinations
of the multiple sets of features that are highly correlated with
each other and associated with the outcome. While Netboost
can also identify cross-omics correlations associated with the
outcome, [37] omitwithin datatype connections and optimize
their algorithm solely for cross-dataset combinations.

Starting with the WGCNA methodology our original
design is the introduction of the filtering step before con-
structing the correlation-based network. Here, we chose a
boosting based edge detection to allow for efficient selection
of essential edges. By introduction of this sparsity to the net-
work we modified the TOM based distance and replaced
UPGMAwith the sparse UPGMA by Loewenstein et al. [27].
As Netboost is still based on the Pearson correlation coeffi-
cient and PCA based dimension reduction Netboost and
WGCNA share many of the same advantages and draw-
backs due to their similarity in design.

Having a single representative for each cluster might be an
advantage for biomarker identification. Another approach to
consider for this purpose are hub genes replacing the eigen-
genes we applied, as discussed in [39] and [40]. A hub gene is
the most central node with the highest connectivity of the
module as opposed to a summary measure and therefore
allows cost efficient replication and application as a bio-
marker [41]. Eigengenes might be superior in mechanistic
studies, exploratory studies and the identification of previ-
ously unknown biological features.

In general for dimension reduction ofmodules, eigengenes
optimize explained variance with respect to the predefined

Fig. 9. Dendrogram of Huntington’s disease data. Dendrogram of the gene expression features in the Huntington’s disease data. A) shows the sepa-
ration into modules by blockwise Weighted Gene Co-expression Network Analysis (WGCNA) and B), C) and D) show Netboost modules with 25, 20
and 15 boosting steps respectively.
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dimensionality. In our applications we fixed this to one to
achieve comparability to WGCNA. However, our R package
is more flexible than WGCNA and allows for the optional
export of the first i PCs with a fixed i or for each module the
first j PCs which cumulatively explain at least xy% of vari-
ance. Principal component based dimension reduction works
particularly well if features have linear relationships. If fea-
tures in modules would have non-linear relationships other
more flexible dimension reduction techniques such as autoen-
coders [42], [43]might bemore suited for calculation of aggre-
gate measures. As the proposed module detection is
ultimately based on the Pearson correlation coefficient which
measures the strength of the linear relationship PCA based
aggregation of modules is well defined as is observed by the
high proportion of variance explained. If non-linear relation-
ships between the features are of interest a complementary
method would be required. A first step towards higher flexi-
bility of dependencies is implemented in the R package, a
non-parametric adaptation of Netboost using Spearman’s r

or Kendall’s t as the underlying correlation coefficient, the
respective tests of independence to define the filter and robust
principal components [44] as aggregatemeasures.

In Netboost feature-wise distances are defined based on
Pearson correlation coefficients, e.g., [39] constructs net-
works based on partial correlations. In the form of Gaussian
graphical models (GGM) partial correlations are frequently
applied for network construction [45], [46]. In [47] GGMs
are combined with a filtering step to exclude insignificant
edges from the network much like Netboost. Partial correla-
tions adjust for other variables in the network and identify
the independent connections between features. In contrast,
in Netboost we integrate indirect connections even further
by the TOM. This is done to identify interacting subgroups
irrespective of whether this interaction is direct or indirect.
The focus lies on modules rather than on the individual
edges, and the incorporation of indirect connections further
stabilizes module detection.

As with GGMs a prime area of application beyond gene
expression and DNA methylation is metabolome and prote-
ome data. Due to their inherent co-regulation structures
they offer themself to a network based analysis as was
recently successfully demonstrated by combination of
WGCNA on proteome data and subsequent genome-wide
association studies in [48] and by combination of Netboost
on metabolome data and subsequent genome-wide associa-
tion studies in [49].

Datatype specific features, like dependency of CpG sites
in close proximity, are not incorporated as a-priori informa-
tion in Netboost. While this could inform the network, we
prefer a universal design for omics data in general. There-
fore, a known biological nexus can be used for module eval-
uation as was done in Section 3.1.

In [50] the authors introduce Net-Cox which also introdu-
ces network theory to improve survival prediction in a high-
dimensional context. In contrast to our combination of Net-
boost and Coxboost, they introduce the estimated gene co-
expression structure directly to the penalty term of the Cox
model. Net-Cox is thereby inherently designed for survival
analysis, whereasNetboost is more flexible in its application.

In Section 3.2 WGCNA might be improved by tailoring
parameters to this applications. We choose this dataset as

WGCNA was already successfully applied to it [12] and
applied both, Netboost and WGCNA, with its standard set-
tings as recommended by the authors [9] to achieve a fair
comparison. While we know from [12] that WGCNA
extracts relevant information of this dataset, for the task of
subtype classification the WGCNA clustering superimposes
the signals and Netboost kept a more compartmentalized
and detailed network with the standard setting due to the
applied filtering step.

In the shown applications we prefer specificity over sensi-
tivitywith respect to the clusterings.While itmight be accept-
able to miss an additional feature being part of a module we
want to be confident regarding the selected features. Consis-
tent with this, we deem the Jaccard Index asmoremeaningful
to our applications as most features are unrelated. As shown
in Fig. 6 Netboost is more robust than any of the competing
clustering algorithms, when compared to WGCNA by the
adjusted Rand Index and the Jaccard Index. To an extent it
trades some sensitivity for specificity as expected by the con-
cept of integrating a filter on the network edges. With the
adjusted Rand Index and Jaccard Index we chose basic meas-
ures of stability, which are especially reliable as they are used
in a comparative fashion in identical resampling setting with
different methodologies. When trying to assess stability of
multi-level clustering structures [51] or specific modules [52]
othermeasuresmight bemore suitable.

The applied clustering technique on the dendrogram in
WGCNA and Netboost was introduced and compared to
other methods in [20]. We kept the same cutting method to
improve comparability. Primary applications of WGCNA
are related to identification of the network structure itself.
With respect to this we regard Netboost as a complementary
approach designed to improve analysis including feature
selection.

Netboost introduces the number of boosting steps as a
parameter. This number can be chosen high as overfitting in
filter estimation would only result in a less stringent filter
rather than bias. Possible extensions include a probing
based stopping criterion in the boosting step. Boosting
could be stopped by inserting uninformative features with-
out the need to perform cross validation or a fixed number
of boosting steps during generation of the filter. This would
automate the choice of boosting steps, while circumventing
the often extensive additional computational load of cross-
validation. Another direction to extend Netboost is inclu-
sion of unclustered features which are currently ignored in
the primary analysis. This implies that isolated singular fea-
tures can not achieve a significant impact on the outcome.
This is not true for all settings. In the primary analysis
Xmodules could be combined with a filtering method on the
unclustered features.

5 CONCLUSION

With Netboost we present an efficient dimension reduction
technique based on boosting and weighted gene co-expres-
sion networks distributed as a Bioconductor R package. By
introducing the boosting-based filter integrated with the
TOM and sparse hierarchical clustering combined with the
dynamic tree cut procedurewewere able to extend efficiency
and predictive performance simultaneously. Additionally,
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in contrast to black-box algorithms the extracted network
structures in form of modules compress biological interac-
tions to relative small and homogenous groups of features
that exhibit a comprehendible complexity.

In the gene expression and DNA methylation examples
this resulted in a 559- (TCGAAML) and 264-fold (HD) reduc-
tion of features for the primary analyses. Choosing eigen-
genes as summary measures we maximized the explained
variance within each modules without an assumptions-based
extension to keep Netboost applicable to a diverse set of bio-
logical experiments and primary analysis strategies. Here, we
displayed applications to in vivo DNA methylation array,
RNA array and RNA-seq measurements from patient and
mouse samples. Paired with the clustering reflecting biologi-
cal structures this leads to improvements in highdimensional
survival analysis aswell as in highdimensional classification.

In the Section 3.1 the molecular prediction was improved
by identification of a surrogate for clinical information
within the molecular data and by the identification of
hematopoietic genes and genes encoding chromatin-modify-
ing enzymes. In this applicationwewere able to first abstract
new features from the highdimensional data (modules),
demonstrate a higher robustness than state-of-the-art alter-
native methods (cross-validation prediction errors) and vali-
date the discovered correlates in an independent dataset
(phase II AMLSG 12-09 study). Numerous of these genes
have been suspected to play a role in AML pathogenesis
before [7], [53]. Overall, the identified signature is promising
for future research regarding AML pathogenesis and as a
prognostic/predictive marker. Furthermore, the association
with chromatin-modifying enzymes could be replicated in
an independent DNAmethylation data set from the phase II
AMLSG 12-09 clinical trial [33] despite no available gene
expression measurements. In the AMLSG 12-09 study, the
effect of substituting cytarabine by the DNAmethyltransfer-
ase inhibitor 5-azacitidine in AML induction therapy was
studied. This trial tested the hypothesis that 5-azacytidine
might reduce failure rates of intensive induction therapy
particularly in AML patients with unfavorable genetic fea-
tures. It is of interest that validation of the chromatin associ-
ated module was successful in this independent AML
patient DNA methylation data set although the distribution
of genetic aberrations in patients treated within the AMLSG
12-09 trial differed considerably from AML patients of the
TCGA data set. Particularly, patients with core-binding fac-
tor AML, AML with mutated NPM1, and AML with FLT3
internal tandemduplicationwere excluded in this trial.

In the Section 3.2 Netboost outperformed the two other
approaches and achieved the lowest prediction error. In
direct comparison to WGCNA, Netboost kept more com-
partmentalized networks with eigengenes better reflecting
their respective module and these eigengenes exhibiting
stronger associations with variables of interest. Addition-
ally, separation between, network detection and association
with the trait of interest, allows for unbiased analysis and
interpretation of the obtained structural information. Due to
this, our biological understanding of these complex diseases
and experimentsmight benefit from the increase in prediction
accuracy and added information via the extracted network.

Netboost offers a versatile statistical modeling strategy for
high-dimensional data. Due to its unsupervised design the

returned lower-dimensional data matrix can effortlessly be
integrated with a wide variety of analyses as shown for time-
to-event analyses, classification and genetic associations
studies [49] and across a wide variety of data types, from
DNAmethylation over transcriptomics tometabolomics.

List of Abbreviations

AML: Acute Myeloid Leukemia
CAG: Trinucleotide of Cytosine, Adenine and Guanine
CpG: 5’—Cytosine—phosphate—Guanine—3’
DNA: Deoxyribonucleic Acid
GGM: Gaussian Graphical Models
HD: Huntington’s Disease
miRNA: micro RNA
mRNA: messenger RNA
PC: Principal Component
RF: Random Forest
RNA: Ribonucleic Acid
TCGA: The Cancer Genome Atlas
TOM: Topological overlap measure
UPGMA: Unweighted Pair Group Method with Arithmetic

Mean
WGCNA: Weighted Gene Co-expression Network Analysis

ACKNOWLEDGMENTS

The authors thank all members of the German-Austrian
AML Study Group (AMLSG) for their participation in this
study and for providing patient samples. The results pub-
lished here are in part based upon data generated by the
TCGA Research Network: https://www.cancer.gov/tcga.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work has been supported by the Deutsche Forschungsge-
meinschaft (German Research Foundation) [SPP1463: LU 429/7-
1, LU 429/8-1 to ML; FOR 2674: LU 429/16-1 (A05)] and by the
German Consortium for Translational Cancer Research (DKTK)
[L637 to ML] and by the Deutsche Krebshilfe [DKH110530 to LB
andRC].

Authors’ Contributions

PS, RC,MLwrote themanuscript, PS, MaS, CP, RC,ML analyzed
data, PS, HB, MS developed the method, PS, JK developed the R
package, PS, RC, ML, MS interpreted results, KD, LB supervised
the AMLSG 12-09 study, MS supervised the research project, and
all authors read and approved the finalmanuscript.

Availability of Data and Materials

The datasets supporting the conclusions of this article are avail-
able in the GDC Data Portal repository, TCGA-LAML data
[https://portal.gdc.cancer.gov/projects/TCGA-LAML] and
the Gene Expression Omnibus [GSE65776].

REFERENCES

[1] Y. Saeys, I. Inza, and P. Larranaga, “A review of feature selection
techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19,
pp. 2507–2517, 2007. [Online]. Available: http://dx.doi.org/
10.1093/bioinformatics/btm344">+http://dx.doi.org/10.1093/
bioinformatics/btm344

SCHLOSSER ETAL.: NETBOOST: BOOSTING-SUPPORTED NETWORK ANALYSIS IMPROVES HIGH-DIMENSIONALOMICS PREDICTION IN ACUTE... 2645

https://www.cancer.gov/tcga
https://portal.gdc.cancer.gov/projects/TCGA-LAML
http://dx.doi.org/10.1093/bioinformatics/btm344
http://dx.doi.org/10.1093/bioinformatics/btm344
http://dx.doi.org/10.1093/bioinformatics/btm344


[2] D. Sobieszkoda et al., “MGMT promoter methylation as a potential
prognostic marker for acute leukemia,” Archives Med. Sci., vol. 13,
no. 6, pp. 1433–1441, Oct. 2017. [Online]. Available: http://www.
ncbi.nlm.nih.gov/pmc/articles/PMC5701700/

[3] C. Gardin and H. Dombret, “Hypomethylating agents as a
therapy for AML,” Curr. Hematol. Malignancy Rep., vol. 12, no. 1,
pp. 1–10, Feb. 2017. [Online]. Available: https://doi.org/10.1007/
s11899–017-0363-4

[4] X. Thomas and C. Le Jeune, “Treatment of elderly patients with
acute myeloid leukemia,” Curr. Treatment Options Oncol., vol. 18,
no. 1, Jan. 2017, Art. no. 2. [Online]. Available: https://doi.org/
10.1007/s11864–017-0445-5

[5] E. Papaemmanuil et al.,“Genomic classification and prognosis in
acute myeloid leukemia,” N. Engl. J. Med., vol. 374, no. 23,
pp. 2209–2221, Jun. 2016.

[6] J. Prada-Arismendy, J. C. Arroyave, and S. R€othlisberger,
“Molecular biomarkers in acute myeloid leukemia,” Blood Rev.,
vol. 31, no. 1, pp. 63–76, 2017. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0268960X16300601

[7] J. Yamazaki et al., “Hypomethylation of TET2 target genes identi-
fies a curable subset of acute myeloid leukemia,” J. Nat. Cancer
Inst., vol. 108, no. 2, Feb. 2016, Art. no. djv323.

[8] K. Meldi et al., “Specific molecular signatures predict decitabine
response in chronic myelomonocytic leukemia,” J. Clin. Invest.,
vol. 125, no. 5, pp. 1857–1872, May 2015.

[9] P. Langfelder and S. Horvath, “WGCNA: An R package for
weighted correlation network analysis,” BMC Bioinformatics,
vol. 9, 2008, Art. no. 559.

[10] K. R. van Eijk et al., “Genetic analysis of DNA methylation and
gene expression levels in whole blood of healthy human subjects,”
BMC Genomics, vol. 13, 2012, Art. no. 636.

[11] S. Horvath et al., “Aging effects on DNA methylation modules in
human brain and blood tissue,” Genome Biol., vol. 13, no. 10, 2012,
Art. no. R97.

[12] P. Langfelder et al., “Integrated genomics and proteomics define
huntingtin CAG length-dependent networks in mice,” Nat. Neuro-
sci., vol. 19, no. 4, pp. 623–633, Apr. 2016.

[13] H. Binder and M. Schumacher, “Allowing for mandatory covari-
ates in boosting estimation of sparse high-dimensional survival
models,” BMC Bioinformatics, vol. 9, 2008, Art. no. 14.

[14] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1,
pp. 5–32, Oct. 2001. [Online]. Available: https://doi.org/10.1023/
A:1010933404324

[15] G. Tutz and H. Binder, “Generalized additive modeling with
implicit variable selection by likelihood-based boosting,” Biomet-
rics, vol. 62, no. 4, pp. 961–971, Dec. 2006.

[16] T. Hastie and R. Tibshirani, Generalized Additive Models. New York,
NY, USA: Taylor & Francis, 1990. [Online]. Available: https://
books.google.de/books?id=qa29r1Ze1coC

[17] B. Zhang and S. Horvath, “A general framework for weighted
gene co-expression network analysis,” Statist. Appl. Genetics Mol.
Biol., vol. 4, 2005, Art. no. 17.

[18] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and
A. L. Barabasi, “Hierarchical organization of modularity in meta-
bolic networks,” Science, vol. 297, no. 5586, pp. 1551–1555, Aug. 2002.

[19] R. Sokal, C. Michener, and U. of Kansas, A Statistical Method for
Evaluating Systematic Relationships. Lawrence, KS, USA: Univ.
Kansas, 1958. [Online]. Available: https://books.google.de/
books?id=o1BlHAAACAAJ

[20] P. Langfelder, B. Zhang, and S. Horvath, “Defining clusters from a
hierarchical cluster tree: The dynamic tree cut package for R,” Bio-
informatics, vol. 24, pp. 719–720, 2008.

[21] H. Binder, “CoxBoost: Cox models by likelihood based boosting
for a single survival endpoint or competing risks,” 2013. [Online].
Available: https://CRAN.R-project.org/package=CoxBoost

[22] C. Porzelius, H. Binder, and M. Schumacher, “Parallelized predic-
tion error estimation for evaluation of high-dimensional models,”
Bioinformatics, vol. 25, no. 6, pp. 827–829, Mar. 2009.

[23] H. Binder and M. Schumacher, “Adapting prediction error esti-
mates for biased complexity selection in high-dimensional boot-
strap samples,” Statist. Appl. Genetics Mol. Biol., vol. 7, no. 1, Jan.
2008, Art. no. 12.

[24] M. Schumacher, H. Binder, and T. Gerds, “Assessment of survival
predictionmodels based onmicroarray data,” Bioinformatics, vol. 23,
no. 14, pp. 1768–1774, Jul. 2007.

[25] T. A. Gerds, T. Cai, and M. Schumacher, “The performance of risk
prediction models,” Biometrical J., vol. 50, no. 4, pp. 457–479,
Aug. 2008.

[26] T. A. Gerds, M. W. Kattan, M. Schumacher, and C. Yu,
“Estimating a time-dependent concordance index for survival
prediction models with covariate dependent censoring,” Statist.
Med., vol. 32, no. 13, pp. 2173–2184, Jun. 2013.

[27] Y. Loewenstein, E. Portugaly, M. Fromer, and M. Linial, “Efficient
algorithms for accurate hierarchical clustering of huge datasets:
Tackling the entire protein space,” Bioinformatics, vol. 24, no. 13,
pp. 41–49, 2008. [Online]. Available: http://bioinformatics.
oxfordjournals.org/content/24/13/i41.abstract

[28] T. Therneau and P. Grambsch, Modeling Survival Data: Extending
the Cox Model. Berlin, Germany: Springer, 2000. [Online]. Avail-
able: https://books.google.de/books?id=9kY4XRuUMUsC

[29] P. M. Grambsch and T. M. Therneau, “Proportional hazards tests
and diagnostics based on weighted residuals,” Biometrika, vol. 81,
no. 3, pp. 515–526, Sep. 1994. [Online]. Available: https://doi.
org/10.1093/biomet/81.3.515

[30] S. B. Brant, “Dynamic survival prediction for high-dimensional
data,” Master’s thesis, Dept. Math., Univ. Oslo, Oslo, Norway,
2018. [Online]. Available: https://www.duo.uio.no/bitstream/
handle/10852/63417/simon_boge_brant_thesis.pdf

[31] S. Wagner and D. Wagner, “Comparing clusterings - An over-
view,” Karlsruhe, Tech. Rep. 4, 2007. [Online]. Available: https://
publikationen.bibliothek.kit.edu/1000011477

[32] U. von Luxburg, “Clustering stability: An overview,” Found.
Trends Mach. Learn., vol. 2, no. 3, pp. 235–274, 2010. [Online].
Available: http://dx.doi.org/10.1561/2200000008

[33] R. F. Schlenk et al.., “Randomized phase-II trial evaluating induc-
tion therapy with idarubicin and etoposide plus sequential or con-
current azacitidine and maintenance therapy with azacitidine,”
Leukemia, vol. 33, pp. 1923–1933, Feb. 2019.

[34] B. Lehne et al., “A coherent approach for analysis of the Illumina
HumanMethylation450 BeadChip improves data quality and per-
formance in epigenome-wide association studies,” Genome Biol.,
vol. 16, Feb. 2015, Art. no. 37.

[35] P. Langfelder et al., “MicroRNA signatures of endogenous hun-
tingtin CAG repeat expansion in mice,” PLoS One, vol. 13, no. 1,
pp. 1–20, Jan. 2018. [Online]. Available: https://doi.org/10.1371/
journal.pone.0190550

[36] S. Reid and R. Tibshirani, “Sparse regression and marginal testing
using cluster prototypes,” Biostatistics, vol. 17, no. 2, pp. 364–376,
2016. [Online]. Available: http://dx.doi.org/10.1093/biostatistics/
kxv049

[37] D. M. Witten and R. J. Tibshirani, “Extensions of sparse canonical
correlation analysis with applications to genomic data,” Statist.
Appl. Genetics Mol. Biol., vol. 8, 2009, Art. no. 28.

[38] D. M. Witten, R. Tibshirani, and T. Hastie, “A penalized matrix
decomposition, with applications to sparse principal components
and canonical correlation analysis,” Biostatistics, vol. 10, no. 3,
pp. 515–534, Jul. 2009.

[39] D. Yu, J. Lim, X. Wang, F. Liang, and G. Xiao, “Enhanced construc-
tion of gene regulatory networks using hub gene information,”
BMC Bioinformatics, vol. 18, no. 1, p. 186, Mar. 2017. [Online]. Avail-
able: https://doi.org/10.1186/s12859–017-1576-1

[40] S. Das, P. K. Meher, A. Rai, L. M. Bhar, and B. N. Mandal,
“Statistical approaches for gene selection, hub gene identification
and module interaction in gene co-expression network analysis:
An application to aluminum stress in soybean (Glycine max L.),”
PLoS One, vol. 12, no. 1, pp. 1–24, Jan. 2017. [Online]. Available:
https://doi.org/10.1371/journal.pone.0169605

[41] S. Horvath and J. Dong, “Geometric interpretation of gene coex-
pression network analysis,” PLoS Comput. Biol., vol. 4, no. 8,
pp. 1–27, Aug. 2008. [Online]. Available: https://doi.org/
10.1371/journal.pcbi.1000117

[42] H. Bourlard and Y. Kamp, “Auto-association by multilayer per-
ceptrons and singular value decomposition,” Biol. Cybern., vol. 59,
no. 4/5, pp. 291–294, 1988.

[43] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2013, arXiv:1312.6114. [Online]. Available: 00tlt00-tran-2989333

[44] I. Jolliffe, Principal Component Analysis. Berlin, Germany:
Springer, 2011, pp. 1094–1096. [Online]. Available: https://doi.
org/10.1007/978–3-642-04898-2_455

2646 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 18, NO. 6, NOVEMBER/DECEMBER 2021

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701700/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701700/
https://doi.org/10.1007/s11899--017-0363-4
https://doi.org/10.1007/s11899--017-0363-4
https://doi.org/10.1007/s11864--017-0445-5
https://doi.org/10.1007/s11864--017-0445-5
http://www.sciencedirect.com/science/article/pii/S0268960X16300601
http://www.sciencedirect.com/science/article/pii/S0268960X16300601
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://books.google.de/books?id=qa29r1Ze1coC
https://books.google.de/books?id=qa29r1Ze1coC
https://books.google.de/books?id=o1BlHAAACAAJ
https://books.google.de/books?id=o1BlHAAACAAJ
https://CRAN.R-project.org/package=CoxBoost
http://bioinformatics.oxfordjournals.org/content/24/13/i41.abstract
http://bioinformatics.oxfordjournals.org/content/24/13/i41.abstract
https://books.google.de/books?id=9kY4XRuUMUsC
https://doi.org/10.1093/biomet/81.3.515
https://doi.org/10.1093/biomet/81.3.515
https://www.duo.uio.no/bitstream/handle/10852/63417/simon_boge_brant_thesis.pdf
https://www.duo.uio.no/bitstream/handle/10852/63417/simon_boge_brant_thesis.pdf
https://publikationen.bibliothek.kit.edu/1000011477
https://publikationen.bibliothek.kit.edu/1000011477
http://dx.doi.org/10.1561/2200000008
https://doi.org/10.1371/journal.pone.0190550
https://doi.org/10.1371/journal.pone.0190550
http://dx.doi.org/10.1093/biostatistics/kxv049
http://dx.doi.org/10.1093/biostatistics/kxv049
https://doi.org/10.1186/s12859--017-1576-1
https://doi.org/10.1371/journal.pone.0169605
https://doi.org/10.1371/journal.pcbi.1000117
https://doi.org/10.1371/journal.pcbi.1000117
00tlt00-tran-2989333
https://doi.org/10.1007/978--3-642-04898-2_455
https://doi.org/10.1007/978--3-642-04898-2_455


[45] J. Krumsiek, K. Suhre, T. Illig, J. Adamski, and F. J. Theis,
“Gaussian graphical modeling reconstructs pathway reactions
from high-throughput metabolomics data,” BMC Syst. Biol., vol. 5,
no. 1, Jan. 2011, Art. no. 21. [Online]. Available: https://doi.org/
10.1186/1752–0509-5-21

[46] Y. Xie, Y. Liu, and W. Valdar, “Joint estimation of multiple depen-
dent Gaussian graphical models with applications to mouse
genomics,” Biometrika, vol. 103, no. 3, pp. 493–511, 2016. [Online].
Available: http://dx.doi.org/10.1093/biomet/asw035

[47] S. Lee, F. Liang, L. Cai, and G. Xiao, “Integrative analysis of
gene networks and their application to lung adenocarcinoma
studies,” Cancer Informat., vol. 16, 2017, Art, no. 1176935117690778.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5392014/

[48] V. Emilsson et al.,“Co-regulatory networks of human serum
proteins link genetics to disease,” Science, vol. 361, no. 6404,
pp. 769–773, Aug. 2018.

[49] P. Schlosser et al., “Genetic studies of urinary metabolites illumi-
nate mechanisms of detoxification and excretion in humans,” Nat.
Genetics, vol. 52, pp. 167–176, Jan. 2020. [Online]. Available:
https://www.nature.com/articles/s41588–019-0567-8

[50] W. Zhang, T. Ota, V. Shridhar, J. Chien, B. Wu, and R. Kuang,
“Network-based survival analysis reveals subnetwork signatures
for predicting outcomes of ovarian cancer treatment,” PLoS Com-
put. Biol., vol. 9, no. 3, pp. 1–16, Mar. 2013. [Online]. Available:
https://doi.org/10.1371/journal.pcbi.1002975

[51] A. Bertoni and G. Valentini, “Discovering multi-level structures in
bio-molecular data through the Bernstein inequality,” BMC Bioin-
formatics, vol. 9 Suppl 2, Mar. 2008, Art. no. S4.

[52] P. Langfelder, R. Luo, M. C. Oldham, and S. Horvath, “Is my net-
work module preserved and reproducible?” PLoS Comput. Biol.,
vol. 7, no. 1, Jan. 2011, Art. no. e1001057.

[53] R. Rampal et al., “DNA hydroxymethylation profiling reveals that
WT1 mutations result in loss of TET2 function in acute myeloid
leukemia,” Cell Rep., vol. 9, no. 5, pp. 1841–1855, Dec. 2014.

Pascal Schlosser received the BSc and MSc
degrees inmathematics from the University of Frei-
burg, Germany, in 2011 and 2014, respectively,
and the PhD degree from the Institute of Medical
Biometry and Statistics, Freiburg, Germany, in
2019. For extraordinary achievements during his
studies he was awarded a scholarship by the Ger-
man Academic Scholarship Foundation and the
Young Statisticians Award by the German Region
of the International Biometrical Society, in 2010
and 2015, respectively. At present, he is a postdoc-

toral fellowat the Institute of Genetic Epidemiology, Freiburg, Germany and
his research interests include large-scale network analysis, survival analy-
sis, variable selection, and the statistical modeling and analysis of complex
medical systems.

Jochen Knaus received the Dipl degree in the
history of modern German literature, computer
science and psychology, in 2003 and worked as
research assistant at the University of Freiburg,
Germany until 2006. Currently, he is working as a
computer scientist at the Institute of Medical
Biometry and Statistics, Freiburg, Germany and
as the head of research data management of the
Faculty of Medicine - University of Freiburg, Ger-
many, since 2006 and 2019, respectively.

Maximilian Schmutz received the MD degree in
medicine from the University of Heidelberg, Ger-
many, in 2014. He received training in academic
research at the German Cancer Research Cen-
ter, Heidelberg, Germany, from 2011 to 2012 and
was awarded the Heinrich F.C. Behr research
scholarship. At present, he is a physician at the
Department of Hematology and Oncology, Augs-
burg University Medical Center, Germany. His
research interests include epigenetics and clonal
evolution in leukemogenesis, development of epi-

genomic biomarkers in hematologic neoplasms, liquid biopsy as tool for
therapy monitoring in solid neoplasias and development of personalized
therapy strategies in oncology.

Konstanze D€ohner received the MD degree in
medicine at the University Medical School in Hei-
delberg, Germany, in 1992. From 1995 to 1997
she spent a postdoctoral fellowship at the Ger-
man Cancer Research Center in Heidelberg, Ger-
many, and the Hospital for Sick Children, the
Department of Genetics Toronto, Canada. In
2000 she moved to the Department of Hematol-
ogy/Oncology at the University Hospital Ulm,
Germany. She became head of the laboratory for
Cytogenetic and Molecular Diagnostics in mye-

loid leukemias. In 2003 she received her board certification as Hematol-
ogist and Oncologist and in 2005 she became professor. In 2018 she
was elected as a board member of the European Hematology Associa-
tion (EHA); in 2019 as a member of the EHA Education committee, and
as chair of the EHA Scientific Working Group for AML. In addition, she is
member of the European LeukemiaNet MRD working party. Beside AML
she has clinical and scientific interest in myeloproliferative neoplasms
and cofounded the German Study Group on Myeloproliferative Neo-
plasms (GSG-MPN). She is involved in a number of national and interna-
tional scientific cooperations which is also reflected by numerous highly
ranked publications. Her main scientific interest is the molecular charac-
terization of AML and the translation of her findings into clinical studies.

Christoph Plass received the PhD degree in
biology from the Institut f€ur Biologie der Medizini-
schen Universit€at, L€ubeck, Germany, in 1993. He
was a postdoctoral researcher and cancer
research scientist with the Roswell Park Cancer
Institute, Buffalo, New York from 1993 to 1997,
and an assistant, associate and full professor
with the Ohio State University, Columbus, Ohio
from 1997 until 2007. Currently, he is division
head of the Department of Cancer Epigenomics,
German Cancer Research Center (DKFZ), Hei-

delberg, Germany. His main research interests include the area of epige-
netics, genetics, prostate cancer, CLL, and AML.

SCHLOSSER ETAL.: NETBOOST: BOOSTING-SUPPORTED NETWORK ANALYSIS IMPROVES HIGH-DIMENSIONALOMICS PREDICTION IN ACUTE... 2647

https://doi.org/10.1186/1752--0509-5-21
https://doi.org/10.1186/1752--0509-5-21
http://dx.doi.org/10.1093/biomet/asw035
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392014/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392014/
https://www.nature.com/articles/s41588--019-0567-8
https://doi.org/10.1371/journal.pcbi.1002975


Lars Bullinger received the MD degree from the
Heidelberg Medical School, Germany, in 1999. He
was appointed as professor in Ulm and Berlin, in
2011, and 2017, respectively. During his resi-
dency/fellowship within the Department of Internal
Medicine, University of Heidelberg, Heidelberg,
Germany and the University Hospital Ulm, Ulm,
Germany, he stayed at the Stanford University,
Stanford, California, and the Dana Farber Cancer
Institute, Harvard Medical School, Boston, Mas-
sachusetts for a postdoctoral fellowship and a

sabbatical, respectively. He returned to the University Hospital Ulm, Ulm,
Germany, in 2011, where he continued his physician scientist career as
an attending physician, principal investigator of clinical trials and group
leader of a translational molecular genomic research group. He received
different awards and honors including the Franziska Kolb Award for leuke-
mia research and the Heisenberg scholarship, in 2005 and 2011, respec-
tively. Currently, he is holding a position as the director of the Department
of Hematology, Oncology, and Tumor- immunology (CVK), Charit�eUniver-
sityMedicine, Berlin, Germany. His research interests include themolecu-
lar mechanisms underlying leukemia biology and the delineation of
genetic and epigenetic alterations of prognostic and predictive relevance
for leukemiamanagement.

Rainer Claus received the MD degree from the
Medical Center - University of Freiburg, Germany,
in 2003. After his residency within the Department
of Hematology and Oncology, Medical Center -
University of Freiburg, Germany, he stayed at The
Ohio State University, Columbus, Ohio and the
German Cancer Research Center (DKFZ), Hei-
delberg, Germany for a postdoctoral fellowship
(DFG scholarship) until 2012. He completed his
board certification for internal medicine and
hematology/oncology, in 2015. He coauthored

more than 80 scientific publications in peer-reviewed journals with a
research focus on epigenomics in leukemogenesis and CLL pathogene-
sis, specifically. He received different awards and honors including the
Artur-Pappenheim-Award of the DGHO, in 2012. Currently, he is holding
a position as attending physician and research group leader at the
Department of Hematology/Oncology, Augsburg University Medical Cen-
ter, Germany. His research interests include epigenetic mechanisms of
gene (dys-)regulation in leukemogenesis and the implementation of com-
prehensive genomic/epigenomic profiling in tumor specimens and body
fluids aiming at improvement of molecularly guided precision medicine.

Harald Binder received the Dipl degree from the
University of Regensburg, Germany, the MA
degree from the University of California, Irvine,
and the PhD degree from the Ludwig Maximilian
University of Munich, Germany, in 2000, 2001,
and 2006, respectively. He was appointed as pro-
fessor in Mainz and Freiburg, in 2011 and 2017,
respectively. He coauthored more than 150 scien-
tific publications. He currently is incoming
president of the German Association for Medical
Informatics, Biometry, and Epidemiology (GMDS

e.V.). At present, he is director of the Institute of Medical Biometry and
Statistics, Freiburg, Germany and his research interests include integra-
tive modeling of molecular and clinical data, and machine learning tech-
niques in particular deep learning with limited sample sizes.

Michael L€ubbert received theMD degree from the
University of Hamburg, Germany, in 1985, then
joined the group of professor H. Phillip Koeffler, the
UCLA School of Medicine, Division of Hematology/
Oncology, Los Angeles, from 1986 to 1988. He
received the venia legendi, in 1995, his Board Cer-
tifications for Internal Medicine and Hematology/
Oncology, in 1996 and 1998, respectively, was
appointed attending physician, in 1996 and
applied professor, in 2003 at the Medical Center -
University of Freiburg, Germany. He has coordi-

nated investigator-initiated clinical trials with epigenetically active agents in
AML and myelodysplastic syndromes since 2003. He served as secretary
from 2006-2012, and chairman since 2018, of the EORTCLeukemiaCoop-
erative Group, and since 2008 as coordinator, together with Prof. C. Plass,
of two German Research Foundation-funded multicenter Consortia with a
focus on epigenetics and myeloid neoplasias. He has coauthored almost
300 scientific publications and is editor of several books including
”Epigenetic Therapy of Cancer” (Springer, 2014). His research interests
include mechanisms of myeloid differentiation, genetic and epigenetic
alterations in leukemias and lung cancer, and in vitro and in vivo mecha-
nisms of action of chromatin-modifying agents.

Martin Schumacher received the Dipl and PhD
degrees from the University of Dortmund, Ger-
many, in 1974 and 1977, respectively. He was
appointed as professor in Dortmund, Seattle and
Freiburg, in 1983, 1984 and 1986, respectively.
From 1986 until 2017 he was head of the Institute
of Medical Biometry and Statistics, Freiburg,
Germany and cofounded the Freiburg Center for
Data Analysis, in 1994 and one of the first coordi-
nation centers for clinical studies in Germany, in
1999. He coauthored more than 250 scientific

publications. Among the many honors he received are the Bradford Hill
Memorial Lecture, the honorary membership of the German Region of
the International Biometrical Society and the honorary membership of
the International Society for Clinical Biostatistics, in 2012, 2014, and
2015, respectively. At present, he is a professor emeritus in Medical
Biometry and Statistics at the Institute of Medical Biometry and Statis-
tics, Freiburg, Germany and his research interests include survival anal-
ysis, statistical modeling of clinical and epidemiological studies, non-
parametric methodology and statistical classification.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2648 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGYAND BIOINFORMATICS, VOL. 18, NO. 6, NOVEMBER/DECEMBER 2021



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


