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Upon transition from health to cardiometabolic disease (CMD), patients are heavily medicated, 

leading to increasingly aberrant gut microbiome and serum metabolome and complicating quests 

for biomarkers1–5. Through integrated multi-omics analyses of 2,173 European residents 

(MetaCardis cohort), we show that the explanatory power of drugs for variability of both host 

and gut microbiome features exceeds that of disease. We quantify inferred effects of single and 

combinatorial medications as well as additive effects, shifting metabolome and microbiome 

towards a healthier state, such as synergistic reduction of serum atherogenic lipoproteins by 

statins combined with aspirin, or enrichment of intestinal Roseburia by diuretics combined with 

beta-blockers. Several antibiotics exhibit quantitative relationship between number of courses 

prescribed and progression towards a microbiome state associated with CMD severity. We further 

report a relationship between cardiometabolic drug dosage, improvement in clinical markers, and 

microbiome composition, supporting direct drug effects. Taken together, our computational 

framework and resulting resources allow disentangling drug from disease effects on host and 

microbiome features in multi-medicated subjects. Furthermore, the robust signatures identified 

with our framework provide new hypotheses for drug-host-microbiome interactions in 

cardiometabolic disease. 

 

Identifying robust gut microbiota contributions to health and disease requires complex technical and 

statistical frameworks1,2 and remains challenging due to many covariates affecting both microbial 

composition3–5 and disease. Common covariates are therapeutic drugs4,6–10, such as broadly prescribed 

proton pump inhibitors (PPIs)6 and type 2 diabetes (T2D) drug metformin7, which impact the gut 

microbiota and modulate inflammation11. Furthermore, direct drug-microbial interactions have been 

demonstrated in vitro8. For several drugs in a mostly healthy population, their usage explained more 

variance in microbiota composition than other covariates tested, albeit with small individual effect 

sizes12. However, studies in healthy populations12,13 are inadequate for investigating the secondary 

impacts of drugs in the context of chronic diseases. To robustly disentangle drug-microbiome 

associations from host and disease factors, large sample sizes and high resolution of clinical phenotypes 

and medication are required, while accounting for known variables affecting the gut microbiome. 



 

   

Finally, drug effects are often dose-dependent, yet dosage is rarely considered in microbiome studies.  

To overcome these limitations, we propose a general framework for separating disease from treatment 

associations in multi-omics cross-sectional studies and apply it to gut metagenomic, host clinical and 

metabolomic measurements of 2,173 European residents from the multi-centre MetaCardis cohort. 

MetaCardis includes patients with metabolic syndrome (MetS), severe and morbid obesity, T2D, acute 

and chronic coronary artery disease (CAD), and heart failure (HF), and healthy controls. Considering 

CMD- and other frequently prescribed medications, we investigated drug-host-microbiome associations 

for eight major indications (antidiabetic, antihypertensive, antidyslipidemic, antithrombotic, 

antiarrhythmic agents, gout medication, PPIs, and antibiotics. The most commonly prescribed CMD 

drugs were statins (n = 772, 35.5%), beta-blockers (n = 656, 30.2%), metformin (n = 607, 27.9%), 

aspirin (n = 532, 24.5%), angiotensin converting enzyme (ACE) inhibitors (n = 470, 21.6%) and 

angiotensin II receptor blockers (ARB) (n = 470, 21.6%), often taken in combination (Supplementary 

Tables 1-4). We therefore studied individual drug effects, and their synergistic and additive interactions 

in the context of available phenotypic, dietary, and demographic variables, molecular readouts including 

serum concentrations of lipoproteins, cytokines and metabolites, and taxonomic and functional profiles 

of the gut microbiome. 

To quantify the overall impact of medications, we performed multivariate regression of explained 

variance of host and microbiome data onto total influence of medications, clinical and environmental 

factors, and disease status. All drugs together explain more variation in the microbiome composition 

than disease group alone, or any other factor considered under a conservative estimate. However, in line 

with previously reported high individual variability14, only 1.7 - 9% of variation between subjects is 

explainable by factors included in the model, of which 1 - 2.5% are attributable to drug intake, 

comparable to disease status, diet and smoking combined (Figure 1a, Supplementary Table 5). 

To quantify individual drug effects, we implemented a univariate statistical approach to disentangle 

drugs from disease associations with the gut microbiome and host features. Thus, features distinguishing 

patient groups from healthy controls are divided into i) confidently deconfounded features of CMD, ii) 

ambiguously deconfounded (where both treatment and disease strongly correlate), and iii) confounded 

(unambiguous drug associations) (Extended Data Figure 1). A major fraction of naïve associations (e.g. 



 

   

45% for T2D) between drugs and microbiome or metabolome is attributable to drug intake (Figure 1b, 

Supplementary Table 5). Nonetheless, we recover previously described metabolic disease signatures 

and show that these cannot be reduced to treatment effects (Extended Data Figure 2, Supplementary 

Results). We thus conclude that a drug-conscious approach uncovers true disease associations and is 

crucial to circumvent highly inflated treatment-confounded false positives in biomarker discovery. 

Next, we disentangled potential direct effects of the medication (where treatment association direction 

opposes the disease association) from potential severity markers (concordant direction of the treatment 

and disease association). Of 28 cardiometabolic drugs taken by at least 10 individuals within at least one 

patient group, the strongest effects on serum metabolome were found for antidiabetic drugs, statins, 

beta-blockers, antithrombotic drugs and aspirin. While drugs with the same indication (i.e. antidiabetic, 

antihypertensive) had concordant associations with host features, the impact on the gut microbiome was 

more diverse in effect size and direction between these drugs (Figure 1c, Supplementary Tables 6, 7). 

Our approach recaptured previously reported findings on the impact of antibiotics15, PPIs16,17, statins11, 

beta-blockers and metformin7,18 (Extended Data Figure 3). More importantly, we identified novel 

associations for these as well as for other highly prevalent drugs (Supplementary Results). For example, 

we identified aspirin-associated changes in microbial species abundances, and shifts in serum lipidome 

and metabolome associated with improved cardiometabolic health (e.g. depletion of Ruminococcus 

gnavus, Clostridium glycyrrhizinilyticum and Parvimonas micra, reduction of plasma concentrations of 

inflammatory markers (CRP and IL6), decreased levels of pyruvate, glutamate and succinate at 

comparable significance to that of the aspirin levels detected in serum of medicated subjects; Figure 1d). 

In addition, γ-butyrobetaine, a recently identified proatherogenic intermediate of microbial 

metabolism19, is lower in subjects taking aspirin, revealing a potential complex antiatherogenic effect of 

the drug beyond its known platelet-inhibitory functions20. For metformin, we deduce novel antidiabetic 

effects possibly related to lowered glutamate levels21 (d = -0.17, FDR = 0.02), due to reduced microbial 

glutamate transport (d = -0.2, FDR = 0.006), along with increased microbial vitamin B12 uptake (d = 

0.32, FDR=3.65e-6), potentially causing vitamin B12 deficiency in the host, a known metformin side 

effect (Supplementary Results, Supplementary Table 6). PPIs had the most associations with the gut 

microbiome features (Figure 1c, Supplementary Table 7) including higher prevalence of presumably 



 

   

oral bacteria, supporting the hypothesized PPI-caused transfer of oral bacteria into the gut upon 

decreased stomach acidity17. Single nucleotide variation (SNV) analysis based on large reference cohorts 

revealed increased abundance of oral-based strains of Rothia, Haemophilus and Streptococcus species 

in the gut of subjects taking PPIs, implying that the patient’s own oral strains colonize the intestine as 

gastric acidity weakens22 (Extended Data Figure 4, Supplementary Results).  

Beyond single drugs, MetaCardis enables analysis of combinatorial (polypharmacy) effects, since 1,300 

individuals were prescribed more than one drug (average intake of 3 drugs with some receiving up to 

13 distinct drugs per day) (Figure 2a, b, Supplementary Tables 2, 3). Polypharmacy in CMD mostly 

reflects concurrence of metabolic diseases, risk factors, or treatments preventing the recurrence of an 

atherosclerotic event, but also includes medications co-prescribed to reduce side effects, such as PPIs 

with aspirin to prevent gastric ulcers and bleeding. Multi-medicated patients often exhibit a more 

pronounced improvement in disease markers than those receiving either drug alone, consistent with 

synergistic interactions between drugs. In the T2D group, the most pronounced synergistic effects on 

the microbiome features were observed for loop diuretics, especially in combination with aspirin, ACE-

inhibitors and beta-blockers, whereas the most pronounced synergistic effects on host features were 

observed for statins (Figure 2c). For example, loop diuretics combined with aspirin, ACE-inhibitors or 

beta-blockers more strongly enrich microbiome-related health markers23 including Roseburia 

abundance11 (combination: d = 0.46, d = 0.51, d = 0.36, correspondingly, single drugs: diuretics d = 

0.27). Taken with metformin or aspirin, statins are associated with lower intermediate-, low-, and very 

low-density lipoprotein (IDL, LDL and vLDL) levels in serum and total body fat mass, while increasing 

microbiome richness and abundance of Firmicutes and methanogenic bacteria depleted in the T2D group 

(Figure 2d, Supplementary Tables 8, 9). These shifts in the microbiome might mediate some of the 

synergistic drug effects on the host (Figure 2e, Supplementary Table 10, Supplementary Results).  

Next, we investigated additive drug associations. The strongest of those we observed for antibiotics 

using five-year retrospective exposure (total number of courses). Antibiotics are frequently prescribed 

in CMD due to an increased prevalence of infections24. Yet, epidemiological studies link antibiotics with 

an increased risk for obesity, T2D, metabolic and inflammatory diseases25. Previous antibiotic exposure 

is significantly (i) associated with lower gut gene richness within the same subject groups (Figure 3a, 



 

   

Spearman rho = -0.25, P = 3.7e-5) and, (ii) correlated with total abundance of antimicrobial resistance 

genes (AMR) in the gut (controls: Spearman rho = 0.30, P = 9e-7; T2D subjects: Spearman rho = 0.20, 

P = 2e-5) (Figure 3b). These findings imply cumulative, additive shifts upon repeated antibiotic exposure 

towards a more resistant but less diverse microbiota, which is a hallmark of microbiome signature in 

obesity, insulin resistance and low-grade inflammation26. The same properties distinguish antibiotics-

naïve CMD patients from healthy controls confirming an impact of repeated antibiotic exposures 

(antibiotics-naïve healthy vs T2D richness two-sided MWU test P = 7.9e-21; AMR gene abundance P 

= 2e-2). Using principal component analysis (PCA, Supplementary Table 11), we show that the first PC 

of microbiome composition, explaining 45% of variation and correlating with gene richness, is 

associated both with an additive effect of antibiotics and metabolic impairment following antibiotics 

exposure (antibiotic effect: controls: Spearman rho = 0.27, P = 1.7e-5; T2D subjects: Spearman rho = 

0.16, P = 7e-4; antibiotics-naïve vs antibiotics treated healthy (two-sided MWU test P = 1e-3) and T2D 

subjects (P = 1e-3)) (Figure 3c). Multivariate breakdown of these shifts reveals reduced abundance of 

Prevotella copri and Faecalibacterium prausnitzii, and an increase in Bacteroides vulgatus and 

Bacteroides dorei, abundant genera constituting hallmarks of enterotypes27,28. Further, we show that 

shifts in gut microbial metabolic functions link additive effects of specific antibiotics groups to CMD 

susceptibility (Extended Data Figures 5-7, Supplementary Table 12, Supplementary Results). 

Furthermore, the detailed medication tracking in MetaCardis allows to investigate the effect of dosage 

on the host and microbiota. For the 20 drugs with sufficient dosage information, we distinguished 

between dosage-confirmed effects, i.e., features significantly associated both with drug intake and with 

its dosage; and dosage-unique effects, where dosage analysis revealed associations not captured by other 

analyses. The drugs with the most features confirmed by dosage analysis were metformin, sulfonylurea, 

insulin, PPI, gout medications, and statins; whereas the most dosage-unique associations were reported 

for metformin and statins (Figure 3d). Statin dosage was negatively associated with atherogenic vLDL 

levels, highlighting the intended dose-dependent lipid lowering effects, and positively associated with 

health-promoting Roseburia species in the gut11. Metformin dosage was negatively associated with 

cytokine levels (SDF1 and MIF), consistent with previous reports of its anti-inflammatory effects29,30. 

Furthermore, we observed a shift between Bact1 and Bact2 enterotypes in patients taking higher dosages 



 

   

of metformin, the latter also associated with disease, proposing Bact2 enterotype as a severity marker in 

T2D (Figure 3e, f, Supplementary Tables 13, 14). For statins, dosage analysis strengthens the reported 

observation of microbiome shifts towards a heathier state away from Bact2 enterotype11. Moreover, 

dosage analysis uniquely identified Bact2 and Prev enterotypes as severity markers for beta-blocker 

usage in individuals with severe and morbid obesity (Figure 3e, f, Supplementary Table 14). 

With stringent analytical approaches, we show that not only medication intake, but also dosage, drug 

combinations and previous exposure to antibiotics should be captured in human studies to disentangle 

the drug-host-microbiome interactions in complex diseases. For several drugs, our results identify 

microbiome shifts associated with medication intake, which might mediate the improvement in clinical 

markers. Given the observational study design, our analysis enables the identification of associative (and 

not necessarily causative) effects of drugs on variations in the microbiome and clinical phenotypes. 

Thus, experimental validation in animal models (e.g. multimodal effect of low-dose aspirin or 

synergistic effects of statin and aspirin or metformin in high-fat fed LDL-receptor–deficient mice) is 

required to substantiate these findings, since controlled clinical trials can be challenging in a population 

with multimorbidity. Disentangling medication effects on the gut microbiome and serum metabolome, 

as illustrated here, is the first step towards understanding the systemic effects of drugs at the molecular 

level, while pre-clinical tests should be performed to assess their significance in terms of health 

outcomes for CMD. To improve treatment in the context of genetic and microbiome variability and 

complex drug regimens, robust molecular markers are needed to identify the transition from health to 

chronic diseases. Subsequently, the gut modulation potential of drugs could be harnessed to reverse 

disease progression in a personalized manner.  



 

   

Figures 

Figure 1. 

 

Figure 1. Associations between CMD drugs, host and microbiome.  
a. Stacked bar charts show variance explained (R squared) by variable group and feature type.  

b. Confounder analysis of features differentially abundant between T2D and control subjects; violins 

represent distribution of effect size, number of features per category listed. “Naïve associations” (yellow, 

two-sided MWU FDR < 0.1) are either confounded or ambiguously/confidently deconfounded (blue, 

purple and red violins). Green violins show breakdown of confounders by drug category.  

c. Hierarchical clustering of host (left) and microbiome (right) features associated with each drug in at 

least one patient group. Features separate into potential drug effects (discordant with disease 

associations) and severity markers (concordant with disease associations).  



 

   

d. Scatterplot (left) shows effect sizes (Cliff's delta) of confidently deconfounded associations between 

aspirin usage and features versus disease effect size within each clinical group. A subset of features is 

highlighted for interpretation (right). 

 

Figure 2. 

Figure 2. Combinatorial impacts of CMD drugs. 

a. Number of CMD patients receiving each drug in combination with a specified number of other drugs.  

b. The thirty most common drug combinations represented as a graph. Node size is proportional to the 

number of combinations; edge width is proportional to the number of users per combination; color 

corresponds to the number of significant drug associations. Solid lines: drug pairs; dotted/dashed lines: 

drug triplets. 

c. Heatmap shows number of features (host (bottom, green) and microbiome (top, brown)) affected by 

each drug combination more strongly than by single drugs among T2D patients. Diagonal values show 

number of features affected by each drug alone.   



 

   

d. Effect size (Cliff’s delta) of disease associations (red), drug combinations (black), and single drugs 

(other colors) among T2D patients for the combination of statin and metformin, aspirin, or calcium 

antagonist. Each item on the horizontal axis corresponds to a drug combination-feature association. 

e. Drug-feature graph showing potential mediation between host and microbiome features. Solid line 

color represents direction of drug effect. Dashed line color represents the sign of Pearson’s correlation 

coefficient (P < 0.1) between potentially mediated features (Supplementary Tables 8, 10). 

 
Figure 3. 

  

Figure 3. Additive and dose-dependent drug associations with host and microbiome.  

Scatterplots show microbiome features (a. Gene richness; b. Total abundance of AMR; c. The first 

principal component of gut species composition) significantly associated with the number of antibiotics 

courses in the last 5 years in control (N = 256) and T2D (N = 456) subjects (gray area: 95% CI for linear 

regression). Boxplots (box showing median and quartiles, whiskers 1.5 interquartile range, dots outliers) 



 

   

show the comparisons in antibiotics-naïve (N = 148 CTRL, N = 274 T2D) and antibiotics-exposed (N 

= 108 CTRL, N = 182 T2D) controls and T2D subjects, respectively, with pairwise significances (two-

sided MWU tests, FDR-adjusted) shown in figure. 

d. Heatmaps show the number of drug-feature associations confirmed by dosage analysis (left), or 

uniquely revealed by dosage analysis (right). Features are separated by potential drug effects (discordant 

with the disease effect) or severity markers (concordant with the disease effect). 

e. Scatterplot shows relationship between drug intake effect size (Cliff’s delta) and drug dosage effect 

size (Spearman’s rho) on enterotype distribution within each patient group. Features significantly 

affected in either analysis (two-sided, MWU FDR < 0.1) are shown in green (potential drug effects) or 

purple (potential severity markers). Black circles highlight associations that are depicted in panel f.  

Bact1, 2: Bacteroides 1, 2, Prev: Prevotella, Rum: Ruminococcus.  

f. Colored areas represent the stacked enterotype prevalence along the drug dosage axis. Each dot 

represents a patient taking specific drug dose and classified into one of the four enterotypes. Random 

noise was added for better visualization (Supplementary Tables 11-14). 

 

Methods 

Study cohort and sample acquisition 

The prospective cross-sectional multi-center study MetaCardis covered a wide range of metabolic and 

cardiac phenotypes. For the purpose of the study a total of 2,173 subjects including healthy as well as 

subjects with increasingly severe metabolic and cardiac disease were recruited into eight study groups 

in Denmark, Germany and France (Supplementary Table 1). Subjects were evaluated for suitability 

according to standardized inclusion and exclusion criteria across the three sites. Exclusion criteria 

included past history of abdominal malignancy / intestinal resection / radiation, chronic or acute 

inflammatory disease, autoimmune disease, history of organ transplantation with immunosuppressive 

drug intake, severe kidney disease as defined by eGFR < 50 ml/min.1.73m², specific exclusion criteria 

allowed for a group-dependent specific phenotype acquisition. The study complied with all relevant 



 

   

international and respective local regulations and aligned with the declaration of Helsinki. The study 

protocol was approved by the Ethics Committee at the Medical Faculty at the University of Leipzig 

(application number: 047-13-28012013), the ethical committees of the Capital Region of Denmark (H-

3-2013-145) and the ethics committee ‘Comite de Protection des Personnes’ (CPP) Ile de France III n° 

IDRCB2013-A00189-36. The study protocol was registered at clinicaltrial.gov (NCT02059538). All 

participants provided written informed consent. 

Groups were defined along international definitions of disease, with obesity defined according to the 

WHO criteria33, metabolic syndrome according to the International Diabetes Federation34, T2D by the 

American Diabetes Association35 and hypertension according to the American College of Cardiology 

and American Heart Association36. For obesity specifically, subjects were recruited into two groups: 

group 2a consisting of subjects with mostly severe obesity (referred to in text as 2a: severe obesity), 

none of whom had T2D or prior cardiovascular conditions, whereas group 2b consisted of mostly 

subjects with morbid obesity, who were eligible for bariatric surgery (referred to in text as 2b: morbid 

obesity). T2D was not an exclusion criterion for this particular group (as compared to group 2a) and 

patients had overall more severe metabolic impairment (Supplementary Table 1). Subjects with heart 

failure were defined according to the American College of Cardiology, American Heart Association and 

the Heart Failure Society of America37. 

Phenotyping was performed according to standardized operational procedures between countries and 

included biological samples acquisition and anthropometrics such as weight, height, body mass index 

calculation (BMI), blood pressure measurement, and body composition analyses using bioimpedance 

analysis as well as waist and hip circumference measurements. 

Participants answered questionnaires related to medical and family history, physical activity, quality of 

life, eating behavior as well as food intake using a customized validated food frequency questionnaire38. 

Medication/drug intake was assessed either by direct recall or by medication list when provided, and 

subjects were questioned on adherence to medication plan by an experienced clinician. Five-year 

antibiotics intake was assessed by recall in France and Denmark, whereas participants in Germany were 

requested to provide medication anamnesis from their general practitioners or physicians they were 

prescribed medications by in the last 5 years. 



 

   

Cardiometabolic drugs were classified according to indication/category and further subdivided by drug 

class (Supplementary Table 4), aiming to resolve major mechanisms of action at a granularity allowing 

for statistical testing. All medication data was curated jointly by the study physicians at each center so 

as to harmonize representation. 

Blood samples were collected via standard venipuncture after an overnight fast and were used to assess 

metabolic markers in local routine laboratories. Analyses of adipokines, measures of insulin and C-

peptide, inflammatory markers, free fatty acids and metabolomics were centralized at Pitié-Salpêtrière 

hospital. Plasma and serum samples were stored at the respective clinical centers at –80 °C until 

shipment to central measuring facility. Stool samples were obtained by each subject at home and were 

immediately frozen. Frozen samples were then delivered to the respective study centers within 48 h on 

dry ice and were stored immediately at −80 °C until analysis. Fasting plasma glucose, total and HDL 

cholesterol, triglycerides, creatinine and HbA1c levels were measured using enzymatic methods in local 

laboratories in each center according to benchmarked standardized methods. LDL-Cholesterol 

concentrations were measured enzymatically for German participants, and values for French and Danish 

participants were calculated based on the Friedwald equation. Kinetic assays based on coupled enzyme 

systems were used to measure alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), 

and γ-glutamyltransferase (GGT) levels. Ultrasensitive C-reactive protein (usCRP) was measured using 

an Image Automatic Immunoassay System (Beckman Coulter). High-sensitivity IL-6 was measured 

using the Human IL-6 Quantikine HD ELISA Kit (R&D Systems). IFN-g–induced protein 10 (IP-10) 

and C-X-X motif chemokine ligand 5 (CXCL5), CCL2, Eotaxin, IL7, MIF, MIP1b, SDF1 and VEGFa 

were measured using a Luminex assay (ProcartaPlex Mix&Match Human 13-plex; eBioscience, San 

Diego, CA, USA). 

Data acquisition and pre-processing 

Total faecal DNA from 1,901 subjects was extracted following the International Human Microbiome 

Standards (IHMS) guidelines (SOP 07 V2 H) and sequenced using ion-proton technology 

(ThermoFisher Scientific) resulting in 23.3 ± 4.0 million (mean ± SD) 150-bp single-end reads per 

sample on average. Reads were cleaned using Alien Trimmer (v0.2.4)39 in order to remove resilient 



 

   

sequencing adapters and to trim low-quality nucleotides at the 3’ side (quality and length cut-off of 20 

and 45 bp, respectively). Cleaned reads were subsequently filtered from human and potential food 

contaminant DNA (using human genome RCh37-p10, Bos taurus and Arabidopsis thaliana with an 

identity score threshold of 97%). 

Gene abundance profiling was performed using the 9.9 million gene integrated reference catalogue of 

the human microbiome40. Filtered high-quality reads were mapped with an identity threshold of 95% to 

the 9.9 million-gene catalogue using Bowtie (v2.2.6) included in the METEOR (v3.2) software41. A 

gene abundance table was generated by means of a two-step procedure using METEOR. First, the 

uniquely mapping reads (reads mapping to a single gene in the catalogue) were attributed to their 

corresponding genes. Second, shared reads (reads that mapped with the same alignment score to multiple 

genes) were attributed according to the ratio of their unique mapping counts. The gene abundance table 

was processed for rarefaction and normalization and further analysis using the MetaOMineR42 (v1.2) R 

package. To decrease technical bias due to different sequencing depth and avoid any artefacts of sample 

size on low abundance genes, read counts were rarefied. The gene abundance table was rarefied to 10 

million reads per sample by random sampling of 10 million mapped reads without replacement. The 

resulting rarefied gene abundance table was normalized according to the FPKM strategy (normalization 

by the gene size and the number of total mapped reads reported in frequency) to give the gene abundance 

profile table. Metagenomic species (MGS; co-abundant gene groups with more than 500 genes 

corresponding to microbial species; n=1,436) were clustered from 1,267 human gut metagenomes used 

to construct the 9.9 million-gene catalogue43. MGS abundances were estimated as the mean abundance 

of the 50 genes defining a robust centroid of the cluster (if more than 10% of these genes gave positive 

signals). MGS taxonomical annotation was performed using all genes by sequence similarity using 

NCBI blastN; a species-level assignment was given if > 50% of the genes matched the same reference 

genome of the NCBI database (November 2016 version) at a threshold of 95% of identity and 90% of 

gene length coverage. Remaining MGS were assigned to a given taxonomical level from genus to 

superkingdom if more than 50% of their genes had the same level of assignment. Microbial gene 

richness (gene count) was calculated by counting the number of genes that were detected at least once 

in a given sample, using the average number of genes counted in ten independent rarefaction 



 

   

experiments. Moreover, a second approach was used to quantify microbial taxa based on the mOTU 

approach44. The quantification of mOTU abundance per metagenome was performed following the 

original methodology: (1) short reads were mapped to the database of single-copy marker genes44; (2) 

gene-level abundance tables were computed, normalizing by the size of each gene and the number of 

input reads, emulating the scaled mode in MOCAT245; (3) within each metagenome, the abundance of 

all reads mapping to genes within the same mOTU cluster and the same orthologous group (COG), was 

added together to obtain a mOTU-COG abundance table, emulating the functional mapping of 

MOCAT245 (which could not be used directly as the file formats were not appropriate); (4) this 

abundance table was then run through the final step in the NGLess interface46 (v1.3.0) to the mOTU tool 

to obtain the mOTU abundance table (briefly, the abundance of a mOTU is defined as the mean of its 

constituent COGs, while ignoring non-detected COGs, provided that at least two COGs have been 

detected, as in the original publication). For quantification of functional modules, metagenome reads 

mapped to the IGC gene catalog after rarefaction to 10 million reads per sample were binned by 

functional category, as per the annotations of the previously carried out analysis within the MOCAT2 

framework45. Functional potentials at each class of annotations (e.g., KEGG modules) were summed 

within each annotation term.  

Determination of faecal microbial load 

Microbial loads of faecal samples were determined as described previously53. Briefly, 0.2 g frozen (-80° 

C) aliquots were dissolved in physiological solution (9 g/L NaCl; Baxter S.A., Belgium) to a total 

volume of 100 mL (8.5 g/L NaCl; VWR International, Germany). Subsequently, the slurry was diluted 

1,000 times. Samples were filtered using a sterile syringe filter (pore size of 5 µm; Sartorius Stedim 

Biotech GmbH, Germany). Next, 1 mL of the microbial cell suspension obtained was stained with 1 µL 

SYBR Green I (1:100 dilution in DMSO; shaded 15 min incubation at 37° C; 10,000 concentrate, 

Thermo Fisher Scientific, Massachusetts, USA). The flow cytometry analysis was performed using a 

C6 Accuri flow cytometer (BD Biosciences, New Jersey, USA)54. Fluorescence events were monitored 

using the FL1 533/30 nm and FL3 > 670 nm optical detectors. In addition, also forward and sideward-

scattered light was collected. The BD Accuri CFlow (v1.0.264.21) software was used to gate and 



 

   

separate the microbial fluorescence events on the FL1/FL3 density plot from the faecal sample 

background. A threshold value of 2,000 was applied on the FL1 channel. The gated fluorescence events 

were evaluated on the forward/sideward density plot, as to exclude remaining background events. 

Instrument and gating settings were kept identical for all samples (fixed staining/gating strategy32; 

Extended Data Figure 8). Based on the exact weight of the aliquots analyzed, cell counts were converted 

to microbial loads per gram of faecal material. 

Quantitative microbiome profiling (QMP) 

Phylogenetic quantitative microbiome profiles were built using a modified version of the pipeline 

described in Vandeputte et al47 (https://github.com/raeslab/QMP/). In short, sample abundance profiles 

were downsized to even sampling depth, defined as the ratio between the sample's sampling size 

(microbial cells sequenced) and microbial load (total microbial cell count). While in 16S amplicon 

sequencing, sampling size is defined as total sequencing depth, for shotgun metagenomics, it is defined 

as the average mOTU marker genes coverage45. For both, microbial load is determined by flow 

cytometry as the average total cell count per gram of frozen faecal material. The sequencing depth of 

each sample was rarefied to the level necessary to equate the minimum observed sampling depth in the 

cohort. The rarefied mOTU abundance matrix was converted into numbers of cells per gram and 

quantitative microbiome profiling matrices created for phylum to species levels. Functional quantitative 

microbiome profiles and quantitative coabundance gene groups43 profiles were constructed by 

multiplication of relative proportions to an indexing factor proportional to the microbial cell densities 

of the samples (load), defined as the sample load divided by the median load over the entire MetaCardis 

cohort. 

Multivariate effects of antibiotics and non-antibiotic drugs 

The multivariate effects of antibiotics and non-antibiotic drugs on microbiome and host metabolite 

features were tested. Only patients and healthy individuals with complete microbiome and host 

metabolomic features were considered. Variables with less than 10 nonzero occurrences were excluded. 

In addition, variables were checked for high association using Kendall’s Tau correlation for correlations 



 

   

between pairs of numerical variables, intraclass correlation coefficient (ICC) for pairs of numerical 

versus categorical variables, and Cramer's V for pairs of categorical variables. The variables "PPI and 

related drugs" and "TRIMETHOPRIM" were removed from downstream analysis due to their high 

association (> 0.8 correlation) with other variables. The threshold of 0.8 was chosen as standard in the 

field12,48. Finally, non-antibiotic drugs and antibiotics to be tested were selected for each microbiome 

feature set as well as for the set of host phenotype measurements. This was achieved by automatic 

stepwise model building in both directions based on the Akaike information criterion (AIC), using the 

function ordistep in vegan package (v2.4-5). The function chooses a model by permutation tests under 

constrained ordination, in this case, distance-based redundancy analysis (dbRDA) constructed on Bray-

Curtis dissimilarities of square-root transformed values from each feature set. The variables selected 

were added to the set of control variables to compose the full models for each feature set. The control 

variables were selected based on their potential confounding effects. Those were BMI, sex, age, country 

of recruitment, stool consistency (Bristol scale), alternative healthy eating index (aHEI; as a measure of 

diet quality), smoking status, and patient group (i.e., disease categories or control status). 

The unique effect of a given variable was assessed considering all other variables present in the model 

specific to each feature set. As in the model selection stage, dbRDA was constructed on Bray-Curtis 

dissimilarities of square-root transformed values from each feature set. The proportion of variation 

explained by a given variable independent of the other variables was obtained using the Condition 

function of the dbRDA implementation in the vegan R package (v2.4-5). For each variable of interest, 

a new model was constructed by including all other variables within the Condition function. Type III 

ANOVA was used to test significance of models with 999 permutations. P-values were corrected for 

multiple testing using the Benjamini-Hochberg procedure. Adjusted P-values below 0.05 were 

considered significant. Adjusted R-squared was recovered from the function using the vegan R function 

RsquareAdj. Adjusted R-squared was also obtained from the full model, i.e., the model constructed 

without the Condition function. All calculations were performed in the R environment v3.4.3 using the 

vegan package v 2.4-5. The code for multivariate analysis is documented and available under 

https://doi.org/10.5281/zenodo.4719526.  

https://doi.org/10.5281/zenodo.4719526


 

   

Univariate effects of antibiotics and non-antibiotic drugs 

To assess relative roles of drugs versus disease influence on each microbiome or host measurement 

separately, a software pipeline was established following the approach outlined in Extended Data Figure 

1. The approach followed hinges on filtering each naïve association by the outcomes of post-hoc tests 

for the influence of each salient covariate. In a first step, all tested features (separately by feature space, 

e.g. serum metabolites or gut microbial species) are checked for associations both for all group 

comparisons (i.e., controls versus each patient group for a case-control study like MetaCardis) and for 

each potential covariate, e.g. medicated versus unmedicated subjects for each drug or drug combination. 

This test is a two-sided Mann-Whitney U test for binary variables, Kruskal-Wallis test for other 

categorical variables, or a Spearman test for continuous variables. These tests are adjusted for multiple 

testing using Benjamini-Hochberg correction, with standardized effect sizes computed for binary 

variables using the Cliff’s Delta metric (as implemented in the orddom R package (v3.1)) and 

Spearman’s Rho for continuous variables. These tests are conducted stratified for patient groups, 

separate for each, for every continuous non-constant variable and every binary variable where at least 

10 subjects in a patient group fall within each level of the variable. For the variable "study center", which 

is the one nonbinary categorical variable tested, we performed the tests in every case. For each 

(continuous) feature, if a covariate is significant (FDR < 0.1) and relevant (absolute standardized effect 

size > 0.1, requirement omitted for study center) in at least one patient group, then it is tested for in the 

post-hoc test for all patient groups. The post-hoc test is a nested linear model comparison test, where the 

feature, rank-transformed, is modeled using either both the tested variable (e.g., drug or disease group 

comparison) and each other covariate in turn, versus a model containing only the covariate. The inverse 

test is also performed, comparing the more complex model to the one containing only the tested variable. 

P-values for these models are computed using a likelihood ratio test for the models using the R lmtest 

package (v0.9-38). If the model for the tested variable always retains significantly (post-hoc P < 0.05) 

better fit than covariate-only model omitting it, or if no salient covariates exist, the feature is considered 

associated under confident deconfounding with regards to the tested variable. If one or more covariates 

exist for which including the tested variable in the model does not significantly improve the model fit, 

but that the same condition holds inversely for all such covariates, then the tested feature co-occurs so 



 

   

strongly with each salient covariate that it is not possible to assess whether the observed effect stems 

from the tested feature or the covariate; such a feature is considered ambiguously associated both with 

the tested variable and the covariates. Note also that it is possible for a feature to be associated even 

under confident deconfounding with several tested variables/covariates. If for a given feature, its 

dependence on a tested variable is reducible to at least one covariate that in turn cannot be reduced to 

the influence of the tested variable, the effect of the tested variable on the feature is considered 

confounded by all such features. This classification thus results in a set of feature-variable associations 

either confidently or ambiguously deconfounded, and in a similar map of the deconfounded associations 

of each possible covariate, tested separately in each patient group in MetaCardis where a naïve effect 

can be observed and tested. Note that “confidently deconfounded” can only be stated within the scope 

of available metadata. 

Hierarchical clustering of drug associations with the host and microbiome features: Number of features 

of specific type affected by each drug falling into each category was used to cluster the drug effects. 

Pearson’s correlation was used as a distance metric for clustering. 

Enrichment of oral strain populations in faecal samples 

To quantify the differential fecal enrichment of oral strain populations, we relied on the multi-site 

metagenomic dataset provided by the Human Microbiome Project (HMP) to define predominantly oral 

microbial single nucleotide variants (SNV). Raw sequence reads for 399 stool and 945 oral HMP 

samples (from 9 distinct sub-sites) were downloaded from the European Nucleotide Archive (ENA: 

PRJNA48479, PRJNA275349), quality trimmed and mapped to reference genomes of 1,753 specI 

clusters44 using NGlessR46 (v1.3.0). Uniquely mapping reads for all oral sub-sites were then combined 

per subject and time point into a total of 375 oral samples, using the ‘samtools merge’ command. Faecal 

samples for the present cohort were likewise processed and mapped to the same set of specI reference 

genomes. 

For the resulting combined dataset, microbial SNVs were called using metaSNV49 (v1), requiring a 

minimum of 4 non-reference reads at a prevalence of ≥ 5% of total samples to define an SNV. From the 

resulting set, all SNVs observed in at least half of oral HMP samples and at least 10 HMP fecal samples 



 

   

were defined as predominantly oral and used as proxies to quantify oral microbial strain populations in 

MetaCardis faecal samples. By using the threshold on the lowest number of fecal samples (at least 10), 

we selected strains that are predominantly linked to the oral cavity, but which at least sometimes can be 

observed in the gut as well, which allowed us to make the test more conservative and ensure robustness 

to noise. 

Medication intake and co-prescription frequency 

To infer association rules for drug co-prescription rules, the Equivalence Class Transformation 

(ECLAT) algorithm implemented in the R library arules50 (v 1.6-2) was used. Drug effects against 

disease were calculated as per the univariate tests described above; effects having the opposite direction 

to that found comparing patients versus controls were considered as putative drug effects, whereas 

effects having the same sign as the disease signature were putatively labeled as severity markers or 

indications for receiving a drug for purposes of visualization. Plots were generated using ggptlot2, 

ggpubr and igraph R libraries, using R version 3.5.3. 

 

Mediation analysis 

To assess whether drug effects on the host features were mediated by changes in the microbiome features 

or vice versa, we performed general mediation analysis51 implemented in the Python (v3.7.7) library 

statsmodels52 (v0.11.0). For each drug or drug combination, we included only host and microbiome 

features that were associated with the treatment with the single drug, drug dosage or the drug 

combination, correspondingly. The thresholds for association were 1) MWU FDR < 0.1, 2) passing all 

confounder filters, 3) disease association is opposite in direction to that of the drug combination and 4) 

in case of dosage and combination, significance in a nested linear model comparison test (likelihood 

ratio post-hoc P < 0.05). The basic mediation analysis was performed using the formulas “feature ~ drug 

+ mediator” for the outcome model (defined with the function sm.GLM.from_formula) and “mediator 

~ drug” for the mediator model (defined with a function sm.OLS.from_formula). The effect size and 

significance of mediation was calculated with the function statsmodels.stats.mediation.Mediation.fit() 



 

   

using “drug” and “mediator” as parameters. In addition to mediation analysis, we also calculated 

Pearson’s correlation between each feature and each mediator included in the analysis for each effector.  
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Extended Data Figures 

ED Figure 1. 

 

ED Figure 1. A post-hoc testing approach for deconfounding univariate biomarker analysis for 

multiple medications and risk factors. The schematic highlights our covariate control approach. All 

significant associations between putative drivers (e.g., disease D) and covariates (C1...Cn) to each 

measured feature (Y1...Ym) are taken. The outcome of the test is denoted with ai for a positive outcome 

(“yes”) and āi for a negative outcome (“no”). A significant predictor is called “confounded” and is 

filtered out in a post-hoc test if there is at least one covariate (e.g., drug treatment or combination) such 

that the predictor does not add significant predictive capacity beyond the covariate (“confounded”). If 

no such covariate itself passes the same test (i.e., covariates cannot in turn be shown to have predictive 

capacity beyond tested predictor), the predictor is considered ambiguous (“ambiguously 

deconfounded”). Otherwise, the predictor is considered “confidently deconfounded” (we note that 

“confidently deconfounded” is defined as no confounders were found among all covariates measured in 

our study).  

 

  



 

   

ED Figure 2. 

 



 

   

ED Figure 2. Previously reported metabolic disease associations are replicated in the MetaCardis 

cohort under drug deconfounding, highlighting systemic inflammation, short-chain fatty acid and 

branched-chain amino acid mechanisms underlying insulin resistance. Cuneiform plot marker hues 

and direction show sign of effect size (Cliff’s delta), intensity and size show amplitude of effect size, 

comparing metabolic diseased proband subsets (horizontal axis) with healthy control subject in the 

MetaCardis population for different microbiome, metabolome and host features (vertical axis). Bold and 

opaque markers show significant associations (two-sided MWU FDR < 0.1) not reducible to any 

significant drug or demographic confounder. Full associations are found in Supplementary Table 9; here 

a preselected subset is displayed reflecting previously reported risk and protective factors, validated in 

MetaCardis. 1H NMR features are shown with retention time in parentheses, functional modules with 

GMM or KEGG identifier in parenthesis, analogous for metagenomic species and mOTUs.  

 

  



 

   

ED Figure 3. 

 

ED Figure 3. Previously reported drug-microbiome associations are replicated in the MetaCardis 

cohort for metformin and PPI. Bar plots show the magnitude and direction of effect size (Cliff’s delta) 

of metformin treatment (left) and PPI treatment (right) on microbiome features. These effects are 

compared to the previously published data from two independent patient cohorts10. Only features with 

direct match on the taxonomic level were included in the comparison. Full list of associations is provided 

in Supplementary Table 6. 

 

 

  



 

   

ED Figure 4. 

 

ED Figure 4. Single nucleotide variation analysis of strains in the gut of subjects taking PPIs. 

Cuneiform plot shows change in abundance of bacterial species in the gut in subjects taking/not taking 

PPIs (controlling for other drugs and demographic factors) in each clinical group separately, and for all 

subjects pooled together. Rows marked “SNV” show whether oral strain single nucleotide markers are 

significantly (two-sided MWU FDR < 0.1) enriched over gut strain markers in subjects taking PPIs, 

controlling for abundance of each species. Marker direction, color and size denote the sign and value of 

Cliff’s delta standardized effect size; opaque markers are significantly altered (two-sided MWU FDR < 

0.1; passing all confounder checks). Bacteria are shown if their abundance is significantly altered under 

PPI consumption, and there are SNPs distinguishing oral from gut strains in HMP samples. (See 

Supplementary Tables 5-7). 

 

  



 

   

ED Figure 5. 

 



 

   

ED Figure 5. Breakdown of antibiotics association into individual features, selected features 

shown. Left cuneiform plot (markers show Spearman correlation direction by shape and color, scope by 

size and color, significance (two-sided MWU FDR < 0.1, deconfounded for other drug and demographic 

features) by edge opacity) shows association between each feature and total number of antibiotics 

courses in CMD groups as well as in healthy controls. Right cuneiform shows whether the same features 

are significantly different (two-sided MWU FDR < 0.1) between healthy controls and CMD subjects 

following drug deconfounding (markers show Cliff’s delta effect size), requiring significant and 

deconfounded correlation with number of antibiotic courses demonstrable in at least one proband group 

and at least one group showing significant and deconfounded alteration compared to healthy controls. 

Core features include increased carriage of possible disease-associated Ruminococcus gnavus and 

various Clostridia species, alongside decreased carriage of commensals such as Faecalibacterium 

species. Full list of associations is provided in Supplementary Table 12. 

 

  



 

   

ED Figure 6. 

 

ED Figure 6. Taxonomic changes are validated in a recent intervention cohort. For bacterial species 

where an effect on abundance of total antibiotics courses in MetaCardis could be demonstrated 

(significant at Spearman FDR < 0.1 and deconfounded), where effect of antibiotic intervention could 

also be tested in a recent antibiotic intervention study31, effect sizes are shown here (MetaCardis 

correlation on vertical axis, intervention log-transformed fold change on horizontal axis). Separate 

markers are shown for each MetaCardis patient group within which antibiotic effect can be 

demonstrated. Bold markers achieve significance (FDR < 0.1) in the intervention study as well. For the 

majority of taxa overlapping between studies, direction of changes matches, consistent with a causal 

impact of antibiotics on the microbiota in MetaCardis. 

 

  



 

   

ED Figure 7. 

 

ED Figure 7. Enterotype likelihood is altered by antibiotics. Cuneiform shows normalized regression 

coefficients of logistic models for each 4-class enterotype as a function of antibiotics courses in the last 

5 years, separately for controls and metabolic disease patient groups. All significant (two-sided Wald 

FDR < 0.1) models show depletion of Ruminococcus and Prevotella enterotypes, and enrichment for 

Bacteroides enterotypes; in the case of metabolic disease patients, this is strongest for the low cell count 

Bacteroides 2 enterotype.  

 

  



 

   

ED Figure 8. 

 

ED Figure 8. Illustration of flow cytometry gating strategy. A fixed gating/staining approach was 

applied32. Both blank and sample solutions were stained with SYBR Green I.  

a. FL1-A/FL3-A acquisition plot of a blank sample (0.85% w/v physiological solution) with gate 

boundaries indicated. A threshold value of 2000 was applied on the FL1 channel.  

b. Secondary gating was performed on the FSC-A/SSC-A channels to further discriminate between 

debris/background and microbial events.  

c, d./ FL1-A/FL3-A count acquisition of a faecal sample with secondary gating on FSC-A/SSC-A 

channels based on blank analyses. Total counts were defined as events registered in the FL1-A/FL3-A 

gating area excluding debris/background events observed in the FSC-A/SSC-A R1 gate. The flow rate 

was set at 14 microliters per minute and the acquisition rate did not exceed 10,000 events per second. 

Each panel reflects the events registered during a 30 seconds acquisition period. Cell counts were 

determined in duplicate starting from a single biological sample. 
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