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SUMMARY
Blood endothelial cells display remarkable plasticity depending on the demands of a malignant microenvi-
ronment. While studies in solid tumors focus on their role in metabolic adaptations, formation of high endo-
thelial venules (HEVs) in lymph nodes extends their role to the organization of immune cell interactions. As a
response to lymphoma growth, blood vessel density increases; however, the fate of HEVs remains elusive.
Here, we report that lymphoma causes severe HEV regression inmousemodels that phenocopies aggressive
human B cell lymphomas. HEV dedifferentiation occurrs as a consequence of a disrupted lymph-carrying
conduit system. Mechanosensitive fibroblastic reticular cells then deregulate CCL21 migration paths,
followed by deterioration of dendritic cell proximity to HEVs. Loss of this crosstalk deprives HEVs of lympho-
toxin-b-receptor (LTbR) signaling, which is indispensable for their differentiation and lymphocyte transmigra-
tion. Collectively, this study reveals a remodeling cascade of the lymph node microenvironment that is
detrimental for immune cell trafficking in lymphoma.
INTRODUCTION

Lymph nodes (LNs) integrate two vascular systems to maintain

homeostasis, comprising blood and lymphatic vessels (Drayton

et al., 2006; Liao and Ruddle, 2006). Not only do blood vessels

provide the local environmentwith import of nutrientsand removal

of metabolites, but vessel-forming blood endothelial cells (BECs)

also differentiate into high endothelial venules (HEVs) and endow

LNs with immunocompetence. Only if lymphocyte import is syn-

chronized with lymphatic vessel-dependent transport of antigen

and antigen-presenting cells can a spatial proximity of these cell

types ensure proper priming of immune cells (Bajénoff et al.,

2003).

HEVs are postcapillary venules, which furnish lymphocyte

transmigration routes. To fulfill their pivotal role in lymphocyte
Cell Reports 37, 109878, October 26, 2021 ª 2021 Max-Delbr
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homing, mature HEVs must be equipped with peripheral node

addressin (PNAd), which engages with lymphocyte-expressed

L-selectin, followed by a process referred to as tethering and roll-

ing (Girard et al., 2012). The homeostatic chemokine CCL21 ex-

pressed and immobilized on HEVs recruits naive and central

memory T cells via the CCR7 receptor. This leads to integrin

aLb2 (LFA-1) affinity enhancement, lymphocyte arrest, and

transendothelial migration (Girard et al., 2012). The importance

of this dynamic system has been elucidated under homeostatic

conditions, and further insights into the remodeling and molecu-

lar factors involved were obtained from infectionmodels (Guarda

et al., 2007; Veerman et al., 2019).

HEVs show a high degree of plasticity, as they undergo rapid

phenotypical changes in response tomicroenvironmental stimuli,

including growth, regression, and restoration during inflammation
ück-Center for Molecular Medicine in the Helmholtz Association. 1
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(Liao and Ruddle, 2006; Kumar et al., 2010; Mondor et al., 2016).

Lymphotoxin-b-receptor (LTbR) signaling via the non-canonical

nuclear factor kB (NFkB) pathway is a prerequisite for the forma-

tion and maintenance of HEVs (Drayton et al., 2004; Onder et al.,

2013). Mature HEVs rapidly dedifferentiate during pharmacolog-

ical inhibition of the LTbR (Browning et al., 2005; Onder et al.,

2013) or as a consequence of in vivo dendritic cell (DC) depletion,

which provides the ligands lymphotoxin-a1b2 (LTa1b2) and LIGHT

(lymphotoxin-like, exhibits inducible expression, and competes

with herpes simplex virus glycoprotein D (gD) for HVEM, a recep-

tor expressed by T lymphocytes) (Moussion andGirard, 2011). As

ahint to theirmechanosensitiveproperties, the integrity ofHEVs is

strongly compromised during solid stress in metastatic LNs

(Jones et al., 2021) and in LNs after surgical or pharmacological

deprivation of the afferent lymph flow (Hendriks and Eestermans,

1983; Mebius et al., 1991; Chang et al., 2019). Lymph flow is car-

ried from the lymphatic sinus through the LN parenchyma and

transferred to the HEV lumen by a reticular conduit system

embedded within the fibroblastic reticular cell (FRC) network

(Gretz et al., 2000; Reynoso et al., 2019). FRCs serve as a scaffold

in this network, but they are also sensitive to changesof the lymph

flow, respondingwith transcriptional deregulation of homeostatic

chemokines and breakdown of the HEV support (Tomei et al.,

2009; Chang et al., 2019).

Despite their origin as autochthonous LN tumors, very little is

known about the fate of HEVs in the context of B cell lymphoma

(BCL). An important blood vessel pathology is the angiogenic in-

crease of the microvessel density (MVD) (Cardesa-Salzmann

et al., 2011; Gloger et al., 2020; Menzel et al., 2020), which is

prognostically unfavorable in diffuse large BCL (DLBCL). A pre-

vious immunohistology study found reduced numbers of HEVs

with a damaged appearance in high-grade B cell non-Hodgkin

lymphoma (B-NHL), while in low-grade tumors, HEVs were pre-

served (Pajor et al., 1990). Considering that emerging immuno-

therapies are dependent on adequate trafficking routes for naive

or engineered T cells to combat lymphoma (Ansell and Lin,

2020), we sought to interrogate themolecular and cellular factors

that contribute to the loss of functional HEV structures. Here, we

report a severe loss of HEVs in two independent aggressive lym-

phoma mouse models, a phenotype that we validated in human

DLBCL. While it seems clear that mouse models can not exactly

phenocopy B cell origin, phenotype, and genetics of defined hu-

man lymphoma entities, they are suitable to mimic features like
Figure 1. Lymphoma induces LN expansion and increased density of c

(A) Quantification of LN volume using light sheet microscopy (LSM). n = 3 mice p

(B) Blood vessel surface quantification in sections of Cdh5dTomato reporter mice.

(C) Representative segmentation of LN sections of Cdh5dTomato reporter mice st

(D) Diameter distribution of vessel segments in LNs from Cdh5dTomato reporter m

(E) 3D reconstruction of the whole-LN vascular tree, recorded by LSM. Color sca

(F) t-distributed stochastic neighbor embedding (t-SNE) dimensional reduction plot

seq and segregated by unsupervised clustering in arterial (art), venoular (vn), capil

(G) Expression of BEC subset signature genes displayed as mean gene express

(H) Proportions of BEC subsets from unsupervised clusters; numbers indicate th

(I) Frequencies in percent of BECs annotated to subsets along known markers: (

(J and K) UMAP dimensional reduction plots of BECs from tumor LNs depicted in

represent predicted trajectories based on RNA-velocity computation.

Expression intensities indicated by color scale (G and K). Scale bars, 100 mm (C

Mann-Whitney U-test (B). **p < 0.01.
growth kinetics, homing, migration, and dependency on a non-

malignant LN infrastructure (O’Connor et al., 2019; Menzel

et al., 2020). Furthermore, they provide insight into processes

at tumor onset in an in vivo setting, whereas human specimens

are usually obtained from established and progressed lym-

phoma with a severely disturbed LN microanatomy.

In the lymphoma-induced LN remodeling cascade, HEV dedif-

ferentiation and loss of functionality emerged as a consequence

of disturbed conduit channeled lymph flow, aberrant extracel-

lular matrix (ECM) deposition, and the subsequent deregulation

of CCL21 intranodal DC migration routes. Functionally impaired

HEVs failed to support efficient T lymphocyte endothelial trans-

migration and, thus, compromise the capacity to support effec-

tive immune cell cooperation. We not only provide mechanistical

insights into a lymphoma-related loss of HEV integrity, but also

address therapeutic solutions for improved immunotherapies.

RESULTS

Lymphoma-induced LN expansion relies on differential
induction of BEC subsets
The mechanisms and kinetics of inflammation-induced LN

expansion are well described, whereas lymphoma-associated

LN expansion correlating with tumor progression remains to be

elucidated. We modeled aggressive human BCL using trans-

plantable Em-Myc murine lymphoma cells (Reimann et al.,

2010; Rehm et al., 2011). Control cells were obtained from tu-

mor-naive mice. We defined an early-stage tumor (low tumor,

5%–15% Em-Myc of CD45+ cells) and a progressed tumor stage

(30%–50% Em-Myc cells, referred to as medium tumor or solely

‘‘tumor’’) (Figures 1A, S1A, and S1B). Assessment of the vascu-

lature revealed a multi-fold expansion with an overrepresenta-

tion of capillary-like vessels (Figures 1B and 1C). Larger vessels

occurred in lower frequencies in tumor LNs (Gloger et al., 2020)

(Figures 1D and 1E).

To elaborate cellular subsets of vessel-forming endothelia, we

performed single-cell mRNA sequencing (scRNA-seq) analysis

of isolated BECs (Figure S1C), covering 1,545 (control) and

3,915 cells from LNs with medium tumor. Unsupervised clus-

tering defined five BEC subsets with distinct gene expression

in control LNs, including three capillary (cap, cap_vn, cap_art),

venous (vn), and arterial (art) subsets; in tumor-challenged

LNs, six subsets were defined as proliferative (prol), art, cap,
apillary-like blood vessels

er group.

n = 5–6 mice per group.

ained for PNAd.

ice.

le depicts mean diameter of segments.

s of control (n = 1,545) and medium tumor (n = 3,915) BECs analyzed by scRNA-

lary (cap), angiogenic (angio), G1 phase (G1), and proliferation (proli) clusters.

ion per subset.

e percentages of subsets among all BECs.

left) scRNA-seq datasets and (right) analyzed by flow cytometry (FCM).

unsupervised clusters (J) or depicting indicated gene expression (K). Vectors

and E). Mean and SEM are indicated. Significances calculated by t test (A) or
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Figure 2. Lymphoma growth causes progressive regression of HEVs

(A) Representative LN section from Cdh5dTomato mice with Em-Myc tumor cellsCFP (low tumor) and LYVE-1 staining.

(B) PNAd expression relative to tumor cell distance; mean fluorescence intensity (MFI), n = 3 mice per group.

(C) PNAd expression in HEVs (top) and PNAd+ surface rendering in LNs with medium tumor load (bottom).

(D) Whole-LN PNAd+ expression, visualized by i.v. administered MECA-79 antibody, recorded by LSM.

(E) Quantification of PNAd+ surface area and vessel length in LSM datasets. n = 3 mice per group.

(F) FCM quantification of PNAd+ HECs relative to all BECs. Expression levels grouped as minimal, min.; regular, reg.; and high. Ctrl n = 9, low n = 6, and medium

tumor n = 5 mice.

(G and H) Histograms of HEC markers in FCM analysis (G) and gMFI values as percentage relative to controls (H). n = 6–8 mice per group. As positive controls,

MRCs and FRCs (blue line) are included.

(I) Immunhistochemical detection of PNAd expression in LNs from control and diseased transgenic (tg.) Em-Myc or tg. Cd19-TAg mice.

(J) Left: count per whole LN section of PNAd+ structures. Right: pie charts indicate cases grouped by count of PNAd+ vessels per section (# > 20, # % 20, w/o).

Sections w/o or PNAd+ vessel count <20 were considered ‘‘abnormal.’’ Controls n = 5, tg. Em-Myc n = 11, tg. Cd19-TAg n = 9 mice per group.

(legend continued on next page)
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vn, cells in G1 phase (G1), and angiogenic (angio) (Figures 1F,

1G, and S1D). For comparison of both groups, single-cell affilia-

tions were identified with respect to known subset markers (arte-

rial [art]: Sox17, Gja4, Rbp7; arterial capillaries [cap_art]: Rgcc,

Ly6c1, Ramp3; venous capillaries [cap_vn]: Enpp2, Col4a1,

Aplnr; venous [vn]: Lrg1, Vwf, Il6st, Chst4neg; HEV: Glycam1,

Chst4) (Brulois et al., 2020; Kalucka et al., 2020) (Figure S1E).

The proportion of cap_vn was strongly increased in tumor-chal-

lenged LNs, while BECs from controls included a similar

frequency of cap_art and cap_vn (Figure 1H).We further differen-

tiated cell clusters applying key genes associated with angio-

genesis-related subsets (Zhao et al., 2018) (tip [tip]: Esm1,

Cxcr4; stalk [stalk]: Jag1, Hey1; quiescent [quiescent]: Cd36,

Flt1, Mki67neg, Cdk1neg; and HEV cells [HECs]: Glycam1,

Chst4). Very few tip and stalk cells were found in control LNs,

while the majority of cells remained quiescent or could not be

conclusively attributed (NA). Tumors induced tip and stalk cell

differentiation and a decrease of endothelial quiescence (Fig-

ure 1I). Flow cytometry (FCM) analysis confirmed BEC subset

proportions along surface marker expression of tip (CXCR4),

stalk (JAG-1), HEV (PNAd) and quiescent (CD36) cells (Figures

1I, S1C, and S1F). Trajectories based on RNA velocity analysis

revealed that cap_vn cells constituted a proliferative progenitor

subset, with potential to differentiate into the aforementioned

subsets (Figures 1J and 1K). Furthermore, a fluorescent fate-

mapping mouse model (Cdh5Ubow) conditionally labels mature

ECs with different fluorophores in a stochastic manner. Equally

dividing endothelial cells (ECs) during LN angiogenesis appear

in small multi-colored segments, whereas proliferation of a few

highly proliferative cells generates large monocolored vessels

(Mondor et al., 2016). We found larger clonally related segments

of vasculature composed of monocolored cells within tumor

HEVs, whereas classical BEC (cBEC) clusters were only doubled

in size compared to controls (Figure S1G). Taken together, these

results indicate a strong proliferative capacity of rather undiffer-

entiated capillary venous ECs, whereas few cells in HEVs act as

local progenitors during expansion.

Lymphoma progression in LNs causes severe
regression of HEVs
HEV-forming HECs responded to lymphoma-induced angio-

genic and proliferative stimuli; however, vessels with larger di-

ameters, a phenotypical feature of HEVs, were decreased.

Consistent with a leading function of CCR7 in lymphoma cell

homing (Rehm et al., 2011), Em-Myc cells were preferentially

located within proximity to HEVs, at the border of the paracortex

and in the cortical ridge (Figures 2A and S2A–S2C). We observed

a gradual decrease of PNAd expression depending on the prox-

imity of vessels to tumor cells (Figure 2B). In controls, PNAd

expression was evenly distributed at the luminal side of HEVs,

whereas tumor (medium tumor)-challenged LNs exhibited a

heterogenous distribution (Figure 2C). Whole-LN assessment
(K) Immunhistochemical detection of PNAd expression in benign human LNs or

(L) PNA+ vessels per section, as in (J). Benign LNs n = 7, cHL n = 51, DLBCL n =

Scale bars, 100 mm (A, D, I, and K), 20 mm (B), and 10 mm (C). Mean and SEMare ind

(L). Statistics were calculated using Mann-Whitney U-test (B, F, J, and L), Wilcox
of HEVs, labeled by intravenously (i.v.) infused anti-PNAd

(MECA-79) antibodies, revealed a severely reduced and inco-

herent HEV network (Figure 2D). The intraluminal PNAd surface

coverage and overall HEV network length was reduced (Fig-

ure 2E). The proportion of high endothelial cells (HECs) (PNAd+

BECs) decreased depending on the disease stage, with a more

severe reduction in advanced tumors. Although in lymphoma a

few BECs still exhibited high PNAd expression, the vast majority

expressed low or no PNAd on their surfaces; therefore, HECs

lost an essential feature of their phenotype, resulting in a greater

heterogeneity of the remaining HECs (Figure 2F). In support of

HEV dedifferentiation, we found not only a decrease of PNAd an-

tigen defined byMECA-79 and HECA-452 recognition, but also a

downregulation of ICAM-1 andCCL21.MadCAM-1 and VCAM-1

were not detected in BECs (Figures 2G and 2H). Consistent with

the lymphoma transplantation model, a severe loss (57%) or

abnormally low numbers (29%, count % 20 per section) of

HEVs was apparent in diseased transgenic Em-Myc mice (tg.

Em-Myc; [abnormal HEV count in 86% of cases, 6/7]). Likewise,

transgenic mice that spontaneously develop BCLs driven by

the SV40 large T oncogene (referred to as tg. Cd19-TAg) (Hoser

et al., 2018) developed a similar HEV phenotype (abnormal HEV

count in 91% of cases, 10/11), suggesting that vascular alter-

ations were not caused by Myc oncogene activity. Notably,

spontaneously developed tumors were typically more advanced

compared to the transfer model (>80% tumor cells) (Figures 2I

and 2J). To investigate whether human lymphomas phenocopy

these HEV alterations, we chose two different aggressive lym-

phoma entities—DLBCL and Burkitt’s lymphoma(BL)—and,

additionally, classical Hodgkin’s lymphoma (cHL), which is a

striking example of the predominance of benign immune cells

and a regulatory role of the stroma. A total loss or abnormally

low numbers of PNAd+ structures were observed in 81% of

DLBCL specimens (64/79) and in both BL cases investigated.

Contrarily, HEVs were much better preserved in cHL (w/o or

low count 47%; 24/51) (Figures 2K, 2L, and S2D).

Taken together, loss of phenotypic HEV markers in the murine

lymphoma models mimics essential features of vascular alter-

ations in aggressive human B-NHLs.

Gradual loss of HEC-specific gene expression pattern in
lymphoma
HEVs are composed of heterogeneous HECs (Veerman et al.,

2019), and the state of HEC maturity and differentiation is criti-

cally dependent on the continuous interaction with their micro-

environment (Lacorre et al., 2004; Moussion and Girard, 2011).

We used scRNA-seq of BECs to resolve the processes that led

to the loss of HEVs during high-grade lymphoma.

The vn clusters included HECs and non-HEC venous cBECs.

HECs were selected according to Glycam1 and Chst4 expres-

sion (Lee et al., 2014) in the integrated dataset of both condi-

tions (Figures 3A, S3A, and S3B). Dimensional reduction
with DLBCL or cHL.

79.

icated. Data points represent individual HEVs (B), mice (D, F, H, and J) or cases

on rank sum-test (H), and t test (D). *p < 0.05, **p < 0.01, ***p < 0.005.
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Figure 3. Gradual loss of the phenotypic

HEV transcriptome program during tumor

growth

(A) t-SNE plots depicting gene expression of HEV-

specific genes, illustrating integration of control

and tumor scRNA-seq datasets and selection of

HECs (Glycam+ and Chst4+) for further analysis.

(B) Uniform manifold approximation and projection

(UMAP) dimensional reduction of (top) HECs (color

depicts affiliation to the condition group) and (bot-

tom) populations from unsupervised clustering.

(C) Violin plots of lymphocyte transmigration-

associated gene expression in the HEC sub-

populations.

(D) UMAP dimensional reduction of (top) HECs

(color scaled for relative gene expression) or (bot-

tom) pseudotime expression of Glycam1.

(E) Dot plots depict selected genes indicative of

venous (vn) or capillary (cap) identity.

Expression differences are depicted according to

color scale, and percentage of expressing cells is

represented by the dot diameter. Significance

calculated with Wilcoxon rank sum test (C). **p <

0.005.
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demonstrated a minor overlap of HECs from both groups (Fig-

ure 3B, top), with several genes differentially expressed (Fig-

ure S3C). Using unsupervised clustering to account for the

heterogeneity of HEC transcriptomes independent of the condi-

tional affiliation, three HEC clusters (HEC1-3) were identified

(Figures 3B, bottom, and S3D). The HEC1 subset included

most of the cells from control LNs, whereas the majority of

HEC2 and HEC3 were derived from tumor LNs (Figure S3E). In

keeping with the phenotypic loss of HEVs in tumor LNs, the

expression levels of Glycam1, Chst4, Icam1, and Ccl21a were

progressively reduced in HEC1 to HEC3 (Figure 3C), similar to

the reduction of gene expression of PNAd producing glycan-

generating enzymes (Lee et al., 2014) (Figures S3F and S3G).

Genes associated with an activated inflammatory endothelium

(Guarda et al., 2007; Veerman et al., 2019) like CXCL9,

Vcam1, Sele (CD62E), and Selp (CD62P) were not detected or

were weakly expressed (Figure S3H).
6 Cell Reports 37, 109878, October 26, 2021
Pseudotime trajectory analysis along

Glycam1 expression depicted HEC1 as

the starting point of the dedifferentiation

(Figure 3D). In support of HEC2 as an inter-

mediate differentiation state, a ternary

plot, which depicts cluster-associated re-

striction or enrichment of genes, showed

that HEC1 and HEC3 had only a few genes

in common, while HEC2 filled a transition

state (Figure S3I). Gene set enrichment

analysis revealed differentially regulated

pathways associated with transendothe-

lial migration, cell adhesion, and NFkB

signaling as enriched in HEC1. HEC3 was

characterized by enrichment of gene sets

associated with a loss of cellular quies-

cence, Burkitt’s lymphoma, and DLBCL
(FigureS3I). Thedifferential expressionof several genes signifying

venous or capillary cell affiliation suggested a dedifferentiation

of prior venous HECs toward an immature capillary-like

phenotype (Figure 3E). Alternatively, newly attracted precursor

ECs with a low-grade HEC differentiation might account for

the loss of phenotypic HEV structures. Collectively, differential

gene representation in HEC clusters suggested that HEVs

exposed to aggressive lymphoma exhibited a remarkable plas-

ticity, which resulted in a gradual loss of phenotypic HEC gene

expression.

Lymphoma induces a non-permissive HEV condition for
lymphocyte immigration
Lymphoma-induced effects on lymphocyte recirculation are

elusive. However, a prerequisite for immunosurveillance is an

intact system of lymphocyte attraction and LN immigration.

To determine the functional consequences of the reduced



Article
ll

OPEN ACCESS
functional HEV markers, we adoptively transferred lymphocytes

(GFP+) into control mice and recipients with tumor. Homing of T

and B lymphocytes to peripheral LN parenchymawith tumor was

severely impaired, whereas immigration to the spleen remained

unchanged, indicating an HEV-associated transmigration defect

(Figures 4A, 4B, and S4A). Activated T cells transiently downre-

gulated the expression of the LN homing receptors CCR7 and

CD62L and are therefore excluded from LN infiltration via the

HEV route during physiological conditions (Figure S4B). Reactive

HEVs express inflammation-related receptors and chemokines

(e.g., CXCL9, CD62E/Sele, CD62P/Selp) (Guarda et al., 2007;

Veerman et al., 2019). Here, the exclusion of transplanted acti-

vated T cells from LNs in mice with tumor supported our findings

that blood vessels during lymphoma are different from those of

reactive LNs (Figure S4C). To dissect the transmigration route

of lymphocytes accessing the HEV environment, we analyzed

their numbers and localization. Positions were defined as (1)

HEV lumen, (2) attached to luminal side, (3) HEV pockets, (4)

abluminal side, and (5) parenchyma (Wendland et al., 2011).

Adoptively transferred lymphocytes in tumor-bearing mice

were predominantly restrained to HEV pockets, whereas in con-

trols, the vast majority of lymphocytes entered the parenchyma

(Figure 4C).

Extended lymphocyte residencywithinHEV pockets correlated

with a reduced expression of Enpp2 in HEC3, a gene encoding for

the ectoenzyme autotaxin (ATX) (Figure 4D). ATX produces the

lipid second messenger lysophosphatidic acid (LPA) from lyso-

phosphatidylcholine (LPC) and is crucial for the constitutive

lymphocyte migration from pockets across the basal lamina of

HEVs (Kanda et al., 2008; Bai et al., 2013). HEVs in control LNs

consistently expressed ATX, in contrast to a reduced and highly

variable expression in tumors andHEC subsets, respectively (Fig-

ures 4E–4G and S4D). To validate the functional role of ATX, treat-

ment of lymphocytes with LPA during cell transfer partly compen-

sated the lymphoma-induced homing impairment of T cells

(Figure 4H). In line, LPA treatment substantially reduced lympho-

cyte retention within HEV pockets (Figure 4I). Adoptively trans-

ferred naive CD4+ OT-II T cells (CD44low) showed T cell receptor

(TCR)-specific activation in control and tumor LNs after immuni-

zationwith ovalbumin; however, the strongly impaired T cell hom-

ing to LNswith tumor was also associatedwith a decreased num-

ber of activated CD4+OT-II+CD44high cells (Figure S4E and S4F).

Taken together, the molecular definition of HEV dedifferentia-

tion corresponded to a functional loss of competence, since

tumor-exposed LNs failed to support efficient lymphocyte

transmigration.

Tumor-associated spatial separation between DCs and
HEVs prevents LTbR signaling
The maintenance of the HEC maturity requires constant LTbR

signaling via recognition of membrane-bound LTa1b2 or LIGHT

on dendritic cells (DCs) (Browning et al., 2005;Moussion andGir-

ard, 2011). Conditional knockout of the LTbR in ECs

(Cdh5CreERT2xLtbrfl/fl referred to as Ltbrfl/fl) caused a reduction

of PNAd, CCL21, and ICAM1 expression in BECs (Figures 5A

and S5A), similar to the dedifferentiation observed in HECs dur-

ing lymphoma challenge. Treatment with a LTbR-stimulating

antibody partially restored the occurrence of HECs (PNAd+
BECs) in tumor-bearing LNs and substantially improved immi-

gration of naive T cells to a level similar as observed during con-

trol conditions (Figures 4B, 5B, and 5C).

LTa1b2 and LIGHT are differentially expressed in DCs, exhibit-

ing a stronger expression in CD11chighMHC-IImedium classic DCs

(cDCs), compared to CD11cmediumMHC-IIhigh migratory DCs

(mDCs) (Moussion and Girard, 2011). The proportion of both

DC subsets relative to all CD45+ cells (including tumor cells) (Fig-

ure S5B) was reduced in tumor LNs compared to control condi-

tions; however, the total numbers of cDCs and mDCs remained

unchanged (Figure 5D). This indicated that DC persistence

within, and immigration into, LNs was not affected by the tumor.

The expression of the LTbR in BECs and its ligands Lta, Ltb,

and Tnfsf14 (LIGHT) in DCs remained unchanged in lymphoma

(Figures S5C and S5D). DCs usually reside within the paracortex

and the cortical ridge in the vicinity of HEVs, where they can

encounter immigrating naive lymphocytes to facilitate effective

T cell priming (Bajénoff et al., 2003; Mionnet et al., 2011). To

our knowledge, a direct cell-cell contact of DCs and HEVs in

situ has not yet been shown. We found DCs located in close

proximity to HEVs and their appendages penetrating the vessel

ensheathing FRC/pericyte (podoplanin, PDPN+) layer, enabling

direct contact to HEVs. In tumor-challenged LNs, HEVs ap-

peared to engage with lower numbers of DCs (Figure 5E). The

DC network, which extended over the whole paracortex in con-

trol LNs, was markedly retracted during tumor conditions. The

relocation resulted in an apparent increase of the distance be-

tween DCs and HEVs (Figure 5F). DC-occupied areas appeared

condensed and exhibited a higher cell density; in contrast, in

control LNs, DCs formed a widespread network (Figure 5G).

Quantitatively, coverage of the LN area by the DC network was

severely reduced in the tumor context. In contrast to published

data (Simmons et al., 2019), positioning of DCs in LNs from

Ltbrfl/fl animals remained unchanged, indicating that the loss of

HEV-derived CCL21 is dispensable for the migration of DCs

within LNs. Systemic treatment with the LTbR-stimulating anti-

body failed to restore DC distribution (Figures 5H and S5E).

Collectively, these data reveal that signaling via the LTbR is

required for HEC differentiation, while spatial separation be-

tween DCs and HEVs deprives HECs of such stimulation.

Lymphoma growth disturbs CCL21migration cues along
the FRC network
Guided by CCR7, DCs constitutively migrate along CCL21 gradi-

ents expressed by and presented on the surfaces of fibroblastic

reticular cells (FRCs) (Schumann et al., 2010). In LNs, DCs are

essential for HEV integrity and lymphocyte homeostasis (Wend-

land et al., 2011). The B-cell-derived LTa1b2-FRC LTbR signaling

axis regulates CCL21 expression in SLOs (Rehm et al., 2011;

Chai et al., 2013). However, sensing lymph flow within the

conduit system is an LN-specific prerequisite for CCL21 expres-

sion in FRCs (Tomei et al., 2009).

In lymphoma-challenged LNs, the FRC network remained

intact but featured a stretching of the network with larger and

less spheroidic FRCs (Figures 6A and S6A). Although FRCs

proliferated, their growth was less dynamic than those of Em-

Myc tumor cells (Figure S6B) and resulted in a reduction of

the FRC density within the paracortex (Figure 6B). Since Ccr7
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Figure 4. HEVs are functionally impaired in supporting lymphocyte transmigration

(A) LN sections from Cdh5dTomato reporter mice after adoptive transfer of lymphocytes. Boxes indicate magnified areas.

(B) Quantification of LN and spleen infiltrating lymphocytes by FCM. Gating strategy is given in Figure S4A. N = 5 mice per group.

(C) Transmigration phase of transferred lymphocytes. Positions at HEVs were defined as (1) lumen, (2) attached to surface, (3) pockets, (4) at basal lamina, and (5)

in parenchyma. N = 5 mice per group. Bottom: representative images depicting positions.

(D) Dot plot representing the expression of genes associated with lymphocyte immigration from HEV pockets over the basal lamina.

(E) Violin plots depicting Enpp2 (ATX) gene expression in single cells of HEC clusters.

(F) LN sections from Cdh5dTomato reporter mice stained for autotaxin (ATX) and PNAd.

(G) MFI of ATX staining in Cdh5dTomato vessels. n = 3 mice per group.

(H) FCM analysis of LN and spleen infiltrating T cells. Before T cell transfer, cells were pretreated with lysophosphatidic acid (LPA) or vehicle. N = 5–6 mice per

group.

(I) Microscopic analysis was applied to assess the transmigration phase of transferred lymphocytes supplemented with LPA or vehicle (as in C). N = 3 mice per

group.

Scale bars, 100 mm (A) and 10 mm (C and F). Mean and SEM are indicated. Data points represent individual mice (B, H, and K) or vessels (C, G, and I). Statistics

were calculated with Mann-Whitney U-test (B, C, and G–I) or Wilcoxon rank sum test (E). *p < 0.05; **p < 0.01; ***p < 0.005; n.s., not significant.
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Figure 5. Loss of spatial vicinity of DCs and HEVs prohibits LTbR signaling

(A) FCM analysis of surface molecules in HECs from LNs of Ltbr+/+ and Cdh5CreERT2-Ltbrfl/fl mice (Ltbrfl/fl). Gating strategy given in Figure S5B.

(B) Lymphoma-bearing mice treated with either isotype antibody or stimulatory anti-LTbR antibody. Quantitation of PNAd+ cells among BECs and ICAM-1

expression intensity in these cells as percentage of controls. n = 8 mice per group.

(C) Quantification of LN infiltrating adoptively transferred lymphocytes by FCM.

(D) Analysis of migratory DCs (mDCs) and classic DCs (cDCs). Left: proportion of DCs among all CD45+ cells. Right: total DC numbers per LN. Control n = 10,

tumor n = 6 mice.

(E) Top: confocal microscopy images of DCs in LNs of Cd11cGFP mice with and without tumor. Bottom: segmented images to highlight cell-cell contacts.

(F) Representative images of DC distribution in LN sections of Cd11cGFP mice. Boxes indicate magnified and segmented areas.

(G) Density of DCs (Cd11cGFP) among the FRC scaffold (PDPN).

(H) Quantification of the proportion of the DC network area (determined by Cd11cGFP/MHC-II expression) relative to the area of the whole LN section in percent.

n = 5–6 mice per group.

Scale bars, 10 mm (E and G) and 100 mm (F). Mean and SEM are indicated. All data points represent individual animals. Statistics were calculated with Mann-

Whitney U-test. *p < 0.05; **p < 0.01; ***p < 0.005; n.s., not significant.
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Figure 6. Lymphoma growth disrupts CCL21 migration cues on FRCs

(A) Microscopic analysis of the FRC network (Ccl19RFP) in LN sections. Bottom: examples of FRC sphericity (Ccl19RFP segmentation).

(B) Quantification of the FRC density in LN sections of Ccl19RFP mice. n = 7–10 mice per group.

(C) Representative images of CCL21 expression in LNs sections of Ccl19RFP mice and gradients of the fluorescence intensity over the distance.

(D) CCL21 distribution around and within HEVs (PNAd+) and FRCs (Ccl19RFP).

(E) Microscopic analysis of CCL21 (MFI) within masked Ccl19RFP (FRCs) and PNAd+ (HEVs). Control n = 5, tumor n = 7.

(F) Immunohistochemistry of CCL21 expression in controls and LNs from diseased tg. Em-Myc (n = 7) and Cd19-TAg mice (n = 11); box indicates magnified area.

Bar graph depicts percentage of LNs with preserved (pos.) or lost (neg.) CCL21 expression.

(G) Proportions of mesenchymal cell subsets (all Ccl19RFP), CD21/CD35+ follicular DCs (FDCs); MadCAM-1+ marginal reticular cells (MRCs); SCA-1+ pericytic

reticular cells (PRCs); and T-zone reticular cells (TRCs). n = 4 mice per group.

(H and I) FCM quantification of CCL21+ (n = 6–7 mice per group) (H) and PDPN+ expression (n = 7–8 mice per group) (I) in LNs of Ccl19RFP mice.

(legend continued on next page)
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expression in DCs was preserved in tumors (Figure S6C), we

examined FRC-derived CCL21, which formed a gradient from

the deep paracortex toward the border and the cortical ridge

in control LNs. This pattern disappeared in tumor-bearing LNs

(Figures 6C and 6D). The CCL21 expression was strongly

decreased in FRCs (Ccl19RFP) and HEVs (PNAd+) (Figure 6E).

In controls, CCL21 was expressed in HEVs and throughout

the paracortex but was largely absent in most LNs of diseased

transgenic Em-Myc (70% of cases) and Cd19-TAg mice (90% of

cases) (Figures 6F and S6E). To further analyze the functional

consequences of deregulated CCL21 expression (Woolf et al.,

2007), we employed intravital imaging of lymphocyte migration

in popliteal LNs. The migration behavior of lymphocytes was

significantly decreased in tumor-bearing LNs, indicating a

disturbance of chemokine-controlled motility (Figure S6D). We

also investigated different mesenchymal cell types with scaf-

folding and immunoregulatory functions to determine changes

of the subset composition in tumors (Cheng et al., 2019; Krish-

namurty and Turley, 2020) (Figures 6F and S6F). The propor-

tions of follicular DCs (FDCs) and marginal zone reticular cells

(MRCs) remained unchanged. T-zone reticular cells (TRCs)

comprised the majority of FRCs in control LNs, but perivascular

reticular cells (PRCs) were increased in tumor-bearing LNs (Fig-

ure 6G). TRCs and PRCs exhibited similar expression levels for

CCL21 (Figure S6G), but it appeared that both subsets lost pro-

portions of CCL21+ cells during tumor conditions (Figure 6H).

The development of myofibroblasts into fully mature FRCs,

including typical expression of PDPN and CCL21, requires

LTbR signaling (Chai et al., 2013). In keeping with the results

from Em-Myc B cells in mice, analysis of human B-NHL cell lines

and DLBCL patient-derived xenograft (PDX) samples revealed

modest gene expression of LTb, compared with primary B cells

(Figure S6H). We therefore asked if expanding lymphoma B

cells act competitively to LTa1b2
high-expressing normal B cells

and, thus, cause insufficient LTbR stimulation in FRCs. Surpris-

ingly, PDPN expression levels in FRCs under tumor conditions

were, in fact, higher than in controls (Figure 6I). Moreover, over-

expression of Ltb in Em-Myc cells elicited higher levels of PDPN

but failed to rescue FRC-derived CCL21 expression (Figure S6I).

These data indicated a LTa1b2-LTbR signaling independent

regulation of CCL21 in FRCs during tumor growth. On the other

hand, a previous study showed that in vivo deprivation of

afferent lymphatics resulted in a rapid ablation of Ccl21 expres-

sion in FRCs (Tomei et al., 2009). Along this line, exposing a mu-

rine LN FRC line to shear stress as mediated by a laminar me-

dium flow readily restored a more mature aSMAlowPDPNhigh

phenotype and modest CCL21 expression (Figures 6J, 6K,

and S6J).

Together, lymphoma-associated remodeling of the FRC

network abrogated the CCL21 guidance track for immune cell

trafficking within the LN parenchyma. This could likely be a result

of deregulated CCL21 expression in FRCs or a secondary effect

due to the physical disruption of the lymph architecture in rapidly

expanding LNs during lymphoma progression.
(J and K) Exemplary images (J) and analysis (K) of aSMA (MFI) and CCL21 (integra

Scale bars, 20 mm (A, D, and J) and 100 mm (C and F). Mean and SEM are indica

Whitney U-test was applied. *p < 0.05; **p < 0.01; ***p < 0.005.
Tumor-induced LN expansion disrupts the conduit
network
The differentiation state of FRCs and HEVs in LNs is critically

dependent on afferent lymph flow as channeled by conduits

within the reticular network of FRCs (Mebius et al., 1991; Tomei

et al., 2009). B-cell-induced formation of follicles during develop-

ment and LN expansion during immune responses disrupt

conduit structures and abrogate lymph flow (Bajénoff and Ger-

main, 2009; Martinez et al., 2019).

We observed during early lymphoma progression that tumor

cells relocated in the cortical ridge and at the border of the para-

cortex around HEVs, which are highly interconnected with the

reticular conduit system (Figure 7A). We examined the integrity

of the conduits and the afferent lymph flow by subcutaneous in-

jection of fluorescently labeled dextrans (10 kDa). The transport

of small molecules into the draining LNs was maintained; howev-

er, the molecules were not restricted to the conduit system but

leaked into the parenchyma, indicating a loss of conduit integrity

(Figures 7B and 7C). Moreover, a profound proportion of dextran-

filled conduitswas lost in LNs during tumor conditions (Figure 7D).

Collagen-1 (COL-1) bundles as the main components of the

conduit core, and collagen-IV (COL-IV) in the basal lamina of con-

duits (Sixt et al., 2005), appeared to be disrupted into discontin-

uous small fragments in LNs with tumor (Figure 7E). Using the

FRC network (Ccl19RFP) as a mask (Figure S7A), we found a

strong reduction of COL-IV andCOL-I structures (Figure 7F), indi-

cating a deregulation of FRC-derived extracellular matrix (ECM)

components. Alternatively, tumor cells might actively degrade

collagen fibrils. Although Em-Myc tumor cells expressed higher

levels of the collagen-degrading matrix metallopeptidase

(Mmp)-14 than benign B cells, while FRCs upregulated Mmp9

(Figure S7B), the application of broad spectrum MMP inhibitors

did not impede the tumor-induced remodeling, as determined

by the frequencies of PNAd+ BECs and CCL21+ FRCs in tumor-

exposed LNs (Figure S7C). Several genes pivotal for the assembly

of conduits, including collagens, laminins, and other ECM com-

ponents, were downregulated in FRCs during tumor conditions

(Figure S7D). GeneOntology pathway analysis confirmed a nega-

tive enrichment of pathways associated with collagen formation,

cancer fibrosis, and ECM organization (Figure 7G).

In line with our findings in the mouse model, negative enrich-

ment of ECM and collagen-related genes (e.g., COL3A,

COL1A, COL5A, COL12A) was significantly overrepresented

(p = 1.9 3 10�14, hypergeometric test) within a signature of

strong systematic heterogeneity that was discovered by unsu-

pervised signal dissection (SDCM) of gene expression in human

DLBCL (Grau et al., 2019) (Figure 7H). Association of this signa-

ture’s average expression with patient outcome showed that

reduced collagen expression is significantly associated with a

progressive course of the disease (p = 9.6 3 10�4) (Figure S7E).

Collectively, we here not only linked a restricted conduit chan-

neled lymph flow in aggressive BCL with a deteriorated ECM

deposition, but also revealed the consequences for the differen-

tiation and functional capacity of HEVs.
ted density) in a FRC line cultured under static conditions or with laminar flow.

ted. Data points represent individual cells (K) or mice (B, E, and G–I). A Mann-
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Figure 7. Lymphoma progression is accompanied by degeneration of the reticular conduit system

(A) Representative LN section with low tumor (Em-Myc cellsCFP), stained for PNAd and the basal lamina of the conduit system (COL-IV).

(B) Representative images of FITC-dextran (10 kDa, sc injected) in draining LNs.

(C) Quantification of FITC-dextranMFI in whole-LN sections and LN parenchyma (excluding template volume of theCcl19RFP FRC network). n = 5mice per group.

(D) Left: representative images of FITC-dextran (10 kDa, sc injected) within conduits (masked by theCcl19RFP FRC network). Right: quantification of FITC-dextran

area within masked Ccl19RFP FRC network. n = 6 mice per group.

(E) Representative images of COL-IV and COL-I within the FRC network (Ccl19RFP template).

(F) Quantification of COL-IV and COL-I MFI within FRC network (Ccl19RFP template). n = 5 mice per group.

(G) Heatmap depicts enrichment scores (ESs) and p value (p) of the indicated Gene Ontology (GO) pathways.

(H) DLBCL gene expression heterogeneity discovered by unsupervised signal dissection (SDCM). ECM and collagen-related genes are overrepresented, and

signature expression is associated with patient’s outcome. All significantly correlated probe sets are depicted (462 correlated probe sets corresponding to 299

genes and 2 anti-correlated probe sets/genes from 54,675 measured in total). Right, outcome is depicted as progressive course (progr.) and non-progressive

course (censored) for n = 498 cases.

Boxes indicate magnified areas (A, B, and D). Scale bars, 100 mm (A and B) and 20 mm (D and E). Mean and SEM are indicated. All data points represent individual

mice (C–F). All statistics were calculated with Mann-Whitney U-test. *p < 0.05; **p < 0.01.
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DISCUSSION

In this study,wedissect the dichotomyof angiogenesis in aggres-

sive BCL, characterized by an increase in microvessel density on

the one hand and loss of mature HEVs on the other. We provide
12 Cell Reports 37, 109878, October 26, 2021
functional evidence that not only is the multistep dedifferentiation

program of HEVs tightly synchronized with the conduit-mediated

lymph flow, but LN remodeling in lymphoma also leads to

impaired T lymphocyte transmigration. These processes shape

a disturbed LN microarchitecture in which spatially organized
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interactions among patrolling T lymphocytes, FRC guidance

cues, and antigen-presenting DCs required for mounting produc-

tive anti-tumor immune responses are diminished.

Diseased Em-Myc, Cd19-Tag, and lymphoma-transplanted

mice phenocopy vascular alterations of human aggressive B-

NHL. In addition to enhanced MVD (Gloger et al., 2020), both

feature a severe loss of HEV structures. Hallmarks of a gradual

dedifferentiation of HECs correlating with tumor progression

included reduced expression of PNAd, ICAM-1, CCL21, and

the ectoenzyme ATX. Loss of these HEV-associated factors

severely impaired the transendothelial migration of naive lym-

phocytes in vivo, which is consistent with studies where HEVs

were experimentally deprived of LTbR signaling (Browning

et al., 2005; Onder et al., 2013) or exposed to pharmacological

ATX inhibition (Kanda et al., 2008; Bai et al., 2013).

Here, we report that the coadministration of T cells and the

ATX product, LPA, enhanced T cell transendothelial migration

into the LN parenchyma through residual HEVs, but LPA could

not fully compensate for the loss of adhesion molecule and che-

mokine expression that is crucial for the rolling and adhesion of

lymphocytes (Girard et al., 2012). In lymphoma-challenged LNs,

antibody-mediated LTbR stimulation was sufficient to restore

HECs and their functional surface molecule repertoire. An effort

to restore CCL21 expression in FRCs, asmediated by LTbR anti-

body stimulation or overexpression of LTbR ligands in lymphoma

cells, was unsuccessful, indicating that FRCs require mechano-

sensitive signaling to gain a mature myofibroblastic state.

In addition, a severedisturbanceof theECMcomponentsCOL-

I and IV, which bind and locally arrangeCCL21 (Yang et al., 2007),

could cause the decay of the intranodal chemokine gradient,

visible as an altered lymphocyte motility. Lower CCL21 expres-

sion in FRCs was closely linked to an aberrantly contracted DC

network distant from HEV structures, similar to LNs of CCL21

knockout mice (Link et al., 2007). Functionally, loss of a DC-HEV

contact zone (Bajénoff et al., 2003; Moussion and Girard, 2011)

may impair anti-tumor priming facilitated by a naive T lympho-

cyte-DC encounter. In support of this view,wepreviously showed

that in Em-Myc lymphoma-bearing mice, DCs failed to efficiently

prime and activate T cells (Rehm et al., 2014); however, a role of

the FRCs and conduit system was not explored in that study.

FRC differentiation is regulated by LTbR signaling as well; they

are crucially involved in the zonal organization of LNs and control

of immune cell interactions therein (Chai et al., 2013). In lym-

phoma, such a signal is missing, as conduit deconstruction

hinders lymph flow within the reticular system. In contrast to

infection models (Liao and Ruddle, 2006; Tzeng et al., 2010; Da-

soveanu et al., 2016), lymphoma did not allow a recovery of

HEVs, FRC-derived CCL21 expression, or the conduit network,

although lymphoma B cells potentially can activate LTbR

signaling (Rehm et al., 2011; Gloger et al., 2020). Notably, LN

FRCs are different from splenic FRCs, as they require for their

differentiation a dual stimulation of the LTbR and a cooperative

mechanical stimulus provided by the lymph flow within the retic-

ular conduit system (Tomei et al., 2009). Hence, we suggest that

a cooperation of LTbR signaling and a mechanical stimulus is

necessary for stroma reconstruction.

Microscopic examination revealed a damaged HEV

morphology in high-grade lymphomas, while in low-grade lym-
phomas,HEVswerepreserved (Pajor et al., 1990). In line,we found

a strong reduction and even entire loss of HEVs in DLBCL and BL,

a finding that was in strong contrast to largely intact HEVs in cHL.

Different fromthe twoaggressiveB-NHLentities, cHLharborsonly

aminority of tumor-definingHodgkin-Reed-Sternberg (HRS) cells,

surrounded by a predominant benign immune cell infiltrate (Men-

zel et al., 2020). Data showed that HRS-derived LTa activates

ECs to enhance naive T cell recruitment by upregulating adhesion

molecules and the ECM component hyaluronan (Fhu et al., 2014).

The capacity to recruit naive and central memory T lymphocytes

via theCCR7-CCL21signalingaxiscan likelybeattributed to intact

HEVs, which, we envision, serve as a prerequisite for the clinical

benefit of immune checkpoint blockade (ICB) in cHL (Alencar

and Moskowitz, 2019). Apart from HEV-unrelated differences be-

tween cHL and DLBCL pathology, it is tempting to correlate a po-

tential role ofmatureHEVs in efficient ICB because clinical trials of

programmedcell deathprotein1 (PD-1) inhibition inDLBCLdidnot

show clinical efficacy (Ansell et al., 2019; Kline et al., 2020).

In sum, our data suggest that HEV dedifferentiation is caused

by a lymphoma-induced cascade that begins with an abrogation

of lymph flow in conduits and a downregulation of FRC-derived

CCL21 expression. Disordered CCL21 distribution in the context

of a disturbed ECM causes a disturbance of lymphocyte and DC

migration cues, causing a loss of spatial proximity between

HEVs and DCs, which impairs homeostatic signaling of the

LTbR in HEVs. Functionally, the failure of dedifferentiated HEVs

to bind T lymphocytes results in a transmigration deficit and, ul-

timately, establishes a lymphoma survival niche not monitored

by patrolling T lymphocytes.

Limitations of the study
The present study describes a complex regulatory and functional

interaction of LN stromal cells, malignant B cells, and LN-resi-

dent immune cells. Experimental results were generated in the

Em-Myc mouse lymphoma model and further confirmed in

an SV40 large T-antigen-driven aggressive lymphoma model.

Although mouse models cannot exactly phenocopy B cell origin,

phenotype, and genetics of defined human lymphoma entities,

they are suitable to mimic features like growth kinetics, homing,

migration, and dependency on a non-malignant LN infrastruc-

ture. For example, Em-Myc tumor cells arise from pre-B cells in

the bone marrow, in contrast to the human germinal center

(GC) and post-GC lymphomas used in this study for comparison.

Furthermore, the Em-Myc model can provide insight into pro-

cesses at tumor onset in an in vivo setting, whereas human spec-

imens are usually obtained from established and progressed

lymphomas. The Myc-driven aggressive mouse lymphoma

model provided conclusive data on the interpretation of lym-

phoma pathology in a microenvironmental context. For valida-

tion in human specimens, the lymphoma entities DLBCL and

Burkitt’s lymphoma were chosen, which share an aggressive

growth kinetics with the Em-Myc mouse model. Although HEV

dedifferentiation was identified as a major cause of insufficient

T lymphocyte immigration and, thus, loss of immunosurveillance

in lymphoma, the study could not fully solve a repair mechanism

suitable for a putative translational approach in immunotherapy.

Potentially, immature endothelial precursors could contribute to

the loss of HEV structures.
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Considering the limitations of mousemodels, future dissection

of the lymphoma-stroma interface will profit from high-resolution

scRNA-seq analysis in patients. Functional and even local inter-

actions between tumor and stromal cells can be inferred from

this type of analysis. However, we suggest that for deeper kinetic

and mechanistic validation of scRNA-seq-derived datasets,

mouse models remain essential.
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Experimental models: Cell lines
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London, UK
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Germany
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CNRS, Marseille, France
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Materials availability
Key resources including details of key reagents and cell lines used are available in the Key resources table. All unique/stable reagents

generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.

Data and code availability

d Single-cell data have been deposited in the ArrayExpress data base: E-MTAB-10389 and are publicly accessible as of the date

of publication. All original data reported in this paper is available from the Lead Contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this work is available from the Lead Contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
C57BL/6N (Charles River), Cdh5-CreERT2 (Tg(Cdh5-Cre/ERT2)1Rha (Wang et al., 2013), Ubow (Ghigo et al., 2013; Mondor et al.,

2016); Ccl19-Cre (kindly provided by B. Ludewig)(Ludewig et al., 2012; Chai et al., 2013), Cd11c-Cre (Jackson Laboratories),

Ubc-GFP (Jackson Laboratories), OT-II (Jackson Laboratories), Ltbr-fl/fl (Ltbrtm1.1thhe, kindly provided by T. Hehlgans)(Wimmer

et al., 2012). Transgenic mice were all backcrossed onto a C57BL/6N background. All mice were bred and maintained in a path-

ogen-free environment at the animal core facility of the Max-Delbr€uck-Center for Molecular Medicine Berlin, Germany. Light cycles

were at 12 hr intervals, temperaturewas kept at 22�C, and humidity at 55%, in compliancewith the institutional rules.Male and female

mice between the age of 8-12 weeks were used in all experiments. Experimental groups were sex-matched according to the origin of

the donor Em-Myc clone. All experiments were conducted in compliance with the institutional guidelines of the Max-Delbr€uck-Center

for Molecular Medicine and approved by the Landesamt f€ur Gesundheit und Soziales Berlin, Germany (G0104/16; G0052/12; G0373/

13; G0058/19; G0044/16).

Human and murine cell lines and primary cells from normal tissue
The human B-NHL cell lines DOHH-2 (ACC 47, follicular lymphoma), SU-DHL-4 (ACC 495) and OCI-Ly7 (ACC 688; both diffuse large

B cell lymphoma, DLBCL), JeKo-1 (ACC553; mantle cell lymphoma, MCL), Raji (ACC 319; Burkitt lymphoma, BL), and the Jurkat cell

line (ACC 282, acute lymphoblastic leukemia, T-ALL) were purchased from DSMZ (Braunschweig, Germany). Upon receipt, cell lines

were expanded and stored as early passage frozen aliquots. Patient-derived xenograft (PDX) samples from DLBCL cases that were

passaged via NSG mice were obtained from Dana-Farber Cancer Institute (PRoXe Depository, Boston, MA). All cell lines and PDX
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samples were authenticated by the commercial providers. Flow cytometry was used to verify human origin and B- or T cell lineage

derivation, according to the phenotypes provided by the repository. The sex of the cell lines is given by the repository (DSMZ).

Primary B cells (7AAD-CD45+CD69-CD4-CD8-CD14-CD19+) and primary T cells (7AAD-CD45+CD69-CD19-CD14-CD3+) from healthy

male and female donors were purified from PBMCs via a Ficoll gradient and further sorted by flow cytometry.

A murine LN FRC cell line (mFRC) was generated as previously described (Acton et al., 2014). These cells were maintained in

DMEMmediumwith high glucose, 10% fetal calf serum, 1%penicillin/streptomycin, and 1% insulin-transferrin-selenium (all Thermo-

Fisher Scientific) at 37�C, and 5% CO2. For static conditions, mFRCs were cultured on poly-L-lysine coated (0.01% in H2O) glass

slides at a density of 4x105 cells/ml for 24 hours. Under conditions of laminar flow,mFRCs were cultured on Luer channel slides (Ibidi)

with 4x105 cells/ml, and laminar flow with culture medium was applied using a micro-pump (flow rate 0.5 ml/min) for 24 hours, as

described previously (Tomei et al., 2009).

Human tissue specimen
Multiple tissue arrays (MTA, all from US Biomax) contained various specimens of DLBCL (Nr. OD-CT-LyMly02-001; core diameter

2 mm; 30 cases) or classical Hodgkin’s lymphoma (Nr. HL481b; core diameter 1.5 mm, 46 cases) or different lymphoma entities

e.g., DLBCL (49 cases), Burkitt’s lymphoma (2 cases), and follicular lymphoma (3 cases), (Nr. LY2081a, core diameter 1mm). All sam-

ples were not further diagnosed according to cytogenetic rearrangements. MTAs contained tissue specimen from male and female

patients, according to the information provided by the vendor. IHC was performed as described below. The study involving primary

human tissues was conducted according to the declaration of Helsinki and in accordance with ethical guidelines and votes provided

by the manufacturer.

METHOD DETAILS

Retroviral transduction of Em-Myc tumor cells
Retroviral particles were generated by transient co-transfection of Platinum-E cells with the MP71 vector, containing either a mTur-

quoise2 (referred to as CFP) or Ltb-P2A-mScarlet transgene cassette. Viral transduction was performed in non-tissue-culture treated

plates coated with 12,5 mg/ml RetroNectin (TaKaRa). To ensure efficient transduction Em-Myc B cells were thawed 24 hours pre-

transduction and activated using 10 mg/ml lipopolysaccharide. 53 105 Em-Myc cells (one clone per construct) per ml of virus super-

natant supplemented with protamine sulfate were spinoculated at 800 3 g for 90 min at 32 �C. Fluorescent reporterhigh transduced
cells were enriched by FACSAria Fusion cell sorter (BD), expanded and stored in liquid nitrogen. For Ltb-P2A-mScarlet Em-Myc cells,

reporternegative cells were sorted, expanded and stored concomitantly with the reporterhigh cells to enable tumor transfer experiments

with a similarly processed clone.

Tumor cell transfer
3x105 Em-Myc tumor B cells were transferred intravenously (i.v.) in RPMI-1640medium into recipient mice; at least 2 to 6 independent

lymphoma clones derived from Em-Mycmice were tested for each animal experiment. Tumor load in LNs of recipient mice was deter-

mined by flow cytometric analysis (CD45+B220medFSC-Ahigh).

Spontaneous tumors in trangenic mice
Transgenic Em-Mycmice (B6.Cg-Tg (IghMyc)22Bri/J) and Cd19CrexTAg mice (Hoser et al., 2018) (all C57BL/6 background) sporad-

ically developed tumors with nodal involvement. All mice with palpable LNs or other signs of distress were sacrificed to dissect LNs.

Tissue samples were formalin-fixed and embedded in paraffin (Hoser et al., 2018).

Tamoxifen treatment
Tamoxifen was dissolved in corn oil and applied by gavage. Cdh5CreERT2xUbow mice were treated with Tamoxifen on 2 consecutive

days ending 14 days before tumor transfer. Reporter mouse strains were treated on 4 consecutive days ending 3 days before anal-

ysis. Cdh5CreERT2xLtbrfl/fl mice were treated with Tamoxifen on 4 consecutive days until 7 days prior to analysis.

Adoptive lymphocyte transfer
Lymphocytes were isolated from LNs and spleen of Ubc-GFP mice. For LPA treatment, 20 mg LPA (Sigma, 0.1% BSA in PBS) was

added to the cell suspension immediately before transfer. For transfer of activated T cells, 23 106 cells/ml in RPMI-1640, 10% FCS,

1% Penicillin/Streptomycin, 1% Glutamax, 1% essential amino acids, 50 ng/ml IL-15 and 10 ng/ml IL-7 (both Peprotech) were acti-

vated with plate bound 1 mg/ml anti-CD3 mAb, 0.1 mg/ml anti-CD28 mAb (both BioLegend) and expanded for 7 days until transfer.

3 3 107 cells (in RPMI-1640) were injected i.v. into recipient mice. 90 minutes after cell transfer, mice were sacrificed, LNs were

excised, and cells were analyzed by flow cytometry and immunohistochemistry.

Antigen-specific T cell activation in vivo

CD4+ cells from spleen and LNs of OT-II transgenic mice were enriched by negative selection applyingmagnetic cell sorting as to the

manufacturer’s instructions (Miltenyi). 1x106 CD4+ were transferred (i.v.) into control or Em-Myc tumor challenged mice at day 9 of
Cell Reports 37, 109878, October 26, 2021 e5



Article
ll

OPEN ACCESS
tumor challenge. Mice were immunized with ovalbumin (Sigma-Aldrich; 100 mg) and CpG-ODN1668 (BioTez Berlin; 25 mg) five hours

after CD4+ OT-II cell transfer. Cell count and activation status were determined in draining lymph nodes by flow cytometry.

In vivo proliferation assay
Mice were i.p. injected with EdU solution (1 mg in 0.9% NaCl) on 3 consecutive days, starting 4 days prior to analysis. LN stroma cell

suspensions were prepared and analyzed by flow cytometry using a Click-iT EdU assay according to the manufacturer’s instructions

(Thermo Fisher).

Antibody and pharmacological treatment
Matrix metalloproteinase (MMP) inhibitors Marimastat, Ilomastat, and NSC405020 (150 mg/kg/b.w. in PBS, (all Selleckchem) and

LTbR-stimulating antibody (15 mg, clone 5G11, BioLegend) or IgG1 isotype control antibody (clone: RTK2758) were intraperitoneally

injected on 4 consecutive days prior to analysis.

In vivo conduit-filling
Nine to ten days after tumor cell transfer,Ccl19RFP reportermicewere treated by footpad injectionwith 10 mL of FITC-dextran solution

(10 kDa, 100 mg/ml, Sigma Aldrich). Mice were sacrificed after 3 min, popliteal LNs were collected, fixed in 4% paraformaldehyde

(PFA) solution (Carl Roth) overnight (ON) and processed for microscopic analysis.

Isolation of BECs from murine lymph nodes
Cervical, axillary, brachial and inguinal LNs were dissected and enzymatically digested in RPMI-1640 medium containing 0.8 mg/ml

Dispase-II, 0.2 mg/ml Collagenase-P (both Roche) and 0.1 mg/ml DNase1 (ThermoFisher) for a maximum of 40 min at 37�C under

frequent tissue disruption by pipetting and transfer of detached cells to ice cold FBS (30% in PBS). The stromal cell fraction was en-

riched by leukocyte depletion using anti-CD45 magnetic cell sorting (Miltenyi), essentially as described (Gloger et al., 2020).

Flow cytometry and fluorescence associated cell sorting
Erythrocytes in cell suspensions were depleted using erythrocyte lysis buffer (9 mg/ml NH4Cl, 1 mg/ml KHCO3, 10 mM EDTA in

ddH2O) for 5 min on ice. Cells were blocked with anti-CD16/CD32 antibody, followed by antibody staining in flow cytometry buffer

(5% FBS, 2 mM EDTA in PBS) for 15 min at 4�C. Intracellular staining was performed with the Fix & Perm Cell Permeabilization Kit

(ThermoFisher Scientific). Dead cells were detected with 7AAD (BioLegend). All cells were analyzed on an Aurora spectral cytometer

(Cytek), or a FACSCanto II instrument (BD Bioscience). Data were further analyzed with FlowJo software (v.10, TreeStar).

For single-cell RNA sequencing, �6x104 BECs (7AAD-CD45-TER119-PDPN-CD31+) were sorted into HBSS buffer (4�C) using a

FACS Aria Fusion instrument (100 mm nozzle; �8x103 events/s flow rate). Freshly sorted cells were centrifuged at 400 g for 5 min

and resuspended in 30 ml of HBSS. The cell count was determined using a Neubauer chamber and adjusted to 500 viable cells

per ml.

Single-cell RNA sequencing
The cell suspensions containing sortedBECswere processed for single-cell RNA sequencing (scRNA-seq) using theChromiumSingle

Cell 30 library andGel BeadKit v2 (10XGenomics) according to themanufacturer’s guidelines. Librarieswere sequenced on an Illumina

NextSeq 500 using 150 cycles high output V2 kit. The Cell Ranger package (v.3.0.2) was used to align high quality reads to the mm10

transcriptome. Single cells from tumor and control sampleswere integrated using the FindIntegrationAnchors function from the Seurat

packagewith thedefault parameters, as implemented in theCellRanger (v2.1.0) pipeline.Dataanalysis andgenerationof representative

plots was performedwith the Seurat (v.2.1) package in R (Stuart et al., 2019). Supervised cell selection of scRNA-seq data was used to

remove non-BECs according to subpopulation specific marker genes: BECs (Cdh5+, Pecam1+), leukocytes (Ptprc-, Cd52-), lymphatic

endothelial cells (Prox1-, Lyve1-, Pdpn-),mesenchymal cells (Acta2-, Pdpn-, Pdgfb-). Cellswere attributed to blood endothelial subpop-

ulations based on canonical marker expression: all (Pecam1+), art (Sox17+, Gja4+, Rbp7+), vn (Lrg1+, Vwf+, Il6st+, Chst4-), HECs

(Glycam1+, Chst4+), cap_vn (Enpp2+, Col4a1+, Aplnr+), cap_art (Rgcc+, Ly6c1+, Ramp3+), tip cells (Esm1+, Cxcr4+), stalk cells

(Jag1+, Sdpr+), quiescent cells (Cd36+, Flt1+, Mki67-, Cdk1-)(Zhao et al., 2018; Brulois et al., 2020; Kalucka et al., 2020). For Single-

cell trajectories,RNA forpseudotimeanalysiswerecomputedusing theMonoclepackage (v.2). ForRNAvelocity, splicedandunspliced

reads were quantified using STARsolo (v.2.7.3) and analysis was performed using mapped reads with scevelo 10.1038/s41587-020-

0591-3 (v.0.2.3).GSEAwasperformedon the results of pairwise comparisonbetweenHECclusterHEC1 andHEC3.Briefly, geneswere

ranked according to their significance and cluster association by multiplying the log value of the adjusted p value from Seurat’s Find-

Markers function by the sign of the associated fold change for that gene. Gene sets from TheMolecular Signatures Database hallmark

gene set collection (curated gene sets and hallmark gene sets: HUMMEL-BURKITTS_LYMPHOMA_UP, SHIPP_DLBCL_VS_FOL

LICULAR_LYMPHOMA_UP, KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION, KEGG_CELL_ ADHESION_MOLECULES_

CAMS, SCHOEN_NFKB_SIGNALING, GRAHAM_CML_ DIVIDING_VS_NORMAL_QUIESCENT_UP) were assessed for enrichment

in our clusters. GSEA was run with the R package fgsea with a minimum pathway size of 15, a maximum pathway size of 500 and

100 permutations. A significance threshold of padj < 0.05 was applied to resultant pathway enrichments. scRNA-seq datasets were

deposited at the ArrayExpress depository (ID:E-MTAB-10389).
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Immunofluorescence staining of mouse tissue specimen
Organs were fixed overnight at 4�C in 4%PFA under permanent agitation. For immunofluorescence staining, LNs were embedded in

5% ultrapure low melting point agarose (Carl-Roth) in PBS and cut in 50-200 mm thick slices using a vibratome (VT-1200, Leica). LN

sections from Ubow mice were treated using the CUBIC tissue clearing protocol (Nojima et al., 2017).

All sections were blocked and permeabilized in blocking buffer (10% normal goat or donkey serum, 0.1%Triton X-100 in PBS) for 1

hour at room temperature (RT). Primary antibodies were diluted in blocking buffer and incubated on tissue slides at 4�CON. Second-

ary Alexa Fluor-conjugated antibodies were added and incubated for another 2 hours at RT. Microscopic recordings were performed

using a LSM-710 laser scanning confocal microscope and a LSM-980 airyscan microscope with the ZEN blue edition software (all

Carl Zeiss). Fiji image processing software and Imaris (v.9.7.2, Bitplane) were used for rendering, reconstruction, morphometric and

volumetric analysis of image z-stacks and tile scans. No irregular nonlinear adjustments were performed and adjustments were only

applied to whole images.

Immunohistochemistry of paraffin-embedded lymph nodes
For staining of murine PFA-fixed (ON at 4% PFA) LNs sections, tissues were dehydrated stepwise with 30%, 50%, 70%, 80%, 90%,

and pure ethanol solution for 1 hour, respectively. After subsequent incubation in toluol, dehydrated LNs were embedded in paraffin

and sectioned into 6 mm thick slices (HM355S Microtom, Microm).

Murine sections and human MTAs were heat treated at 60�C for 60 min. Prior to the staining procedure, paraffin was removed in

xylol and acetone, and sections were rehydrated and treated with 10 mM citrate buffer for 5 min in a pressure cooker for antigen

retrieval. All sections were blocked with avidin/biotin blocking solution (DAKO), incubated with the primary antibody overnight at

4�C and subsequently incubated with alkaline phosphatase (AP) or horse radish peroxidase (HRP) -conjugated secondary antibodies

for 1 hour at RT. Fuchsin or 3-amino-9-ethylcarbazole (ACE) staining of sections was performed with the Fuchsin Substrate-Chro-

mogen System or ACE substate (both DAKO) according to the manufacturer’s instructions. All sections were counterstained with

Hematoxylin (ThermoFisher) andmounted with Kaiser’s glycerol gelatin (MerckMillipore). Bright field microscopy was performed us-

ing an Axio Imager 2 microscope and Axio Vision 4.8.2 Software (both Carl Zeiss).

Light sheet microscopy and whole organ analysis
Blood vessels were visualized using Cdh5CreERT2-R26dTomato reporter mice. HEVs were detected by intravenous injection of Alexa-

Fluor647 conjugated MECA-79 antibody (10 mg in 0.9% NaCl) 10 min prior to LN excision. Tissue clearing was performed according

to the manufacturers guidelines (LifeCanvas technologies). In brief, mice were cardially perfused with PBS and SHIELD fixation so-

lution (including 4% PFA, LifeCanvas technologies), followed by post-fixation in SHIELD fixation solution at 4�C overnight. Subse-

quent tissue processing and clearing was performed following the manufacturer’s instructions with Smart Clear Pro II (LifeCanvas

technologies). Cleared LNs were imaged in Easy Index solution (refraction index 1.45, LifeCanvas technologies) using a Z.1 light

sheet imager (Zeiss) with a 25x objective (immerged in Easy Index solution). Z-stacks were acquired in the multi-view tile scan

mode with dual side illumination. Stitching, 3D reconstruction and resampling was performed using arivis Vision4D software

(v.2.12). Visualization and quantification of the vessel network and HEVs was performed using the filament tracer module in Imaris

(v.9.7.2, Bitplain).

Image analysis
FRC and conduit components

The fluorescence signal of Ccl19RFP reporter mice was used to define the FRC network in LN vibratome sections. Ccl19RFP network

was segmentedwith the local background subtractionmethod in Imaris to remove background and compensate intensity differences

between cell bodies and the branching extensions in the FRC network. The FRC network segmentation was used as template

(masked) for the corresponding channels of the component of interest to analyze FRC associated mean fluorescence intensities

(MFI). Collagen-I and CCL21 were analyzed in tile-stack scans of whole LN sections (50 mm in z-dimension). Collagen-IV and

FITC-dextran were analyzed in regions (approximately 250x250 mm) at the border of the paracortex with minimal presence of blood

vessels.

FITC-dextran in LN parenchyma
FITC-dextran in LNs was determined in tile-stack scans of whole LN sections (50 mm in z-dimension) as MFI of sum intensity projec-

tions using ImageJ (v2.1.0). FITC-dextran in the LN parenchymawas determined asMFI in regions (approximately 250x250 mm) at the

border of the paracortex with minimal presence of blood vessels. Parenchyma was defined as volume outside of the FRC network

(Ccl19RFP segmentation and masking as described before) (Figure S7D).

Localization analysis of transmigrating lymphocytes
Lymphocytes fromUBCGFP donormicewere analyzed in recipientCdh5dTomato reporter mice to delineate blood vessels. Five random

and GFP+ Lymphocyte-containing vessels were analyzed per mouse. Cell positions relative to the blood vessel were calculated as

proportion of all GFP+ lymphocytes.
Cell Reports 37, 109878, October 26, 2021 e7



Article
ll

OPEN ACCESS
HEV associated expression analysis
HEVs segmentation (PNAd+) was used as template (mask channel option) to the corresponding channel to determine the MFI of the

CCL21 staining in tile-stack scans of whole LN sections (50 mm in z-dimension). Autotaxin analysis was performed in Cdh5dTomato

reporter mice to identify blood vessels. Autotaxin expression was determined with line scans of the corresponding channel at the

vessel lining.

Cdh5-Ubow reporter mouse analysis
YFP and CFP double positive voxels were combined to a new channel (YFP+CFP+) using the co-localization module in Imaris (v9.7

Bitplain). All channels were individually segmented and analyzed for the mean volumes of mono-colored clusters in capillary-like

smaller vessels and HEV-like larger vessels.

HEVs in human tissue and spontaneous mouse lymphomas
HEVs were quantified by two independent investigators as count of PNAd+ vessels per biopsy core section in human MTAs or per

whole LN section in mouse tumors (sp. Em-Myc and sp. Cd19xTAg).

Intravital 2-Photon microscopy
3x107 freshly isolated lymphocytes from LNs and spleen of UBC-GFP mice were adoptively transferred (i.v.) into Cdh5dTomato recip-

ients. After 16 hours, the popliteal LN was exposed for two-photon-imaging as described before (Ulbricht et al., 2017). Mice and area

of the exposed LNs were constantly monitored and heated to 37�C. Consecutive z-stacks were acquired over time periods of

30-50 min. Tracking of cells was performed using the spots module in Imaris (v.9.7.2, Bitplain).

Quantitative RT-PCR
Cells were lysed and homogenized using QIAGEN RLT buffer and Shredder columns before mRNA was extracted with the RNeasy

Mini or Micro Kit (all QIAGEN). The cDNA was synthetized using the SuperScript VILO cDNA Synthesis kit (ThermoFisher), and

gene expressionwas analyzedwith theStepONEPlus PCRSystemby using pre-manufactured TaqManprimer togetherwith the Taq-

Man Gene Expression Master Mix (all Applied Biosystems). The following TaqMan primer specificities were used (mouse Ltb:

Mm00434774_g1, mouseActb: Mm00607939_s1, human LTB: Hs00242739_m1, humanB2M: Hs00187842_m1). Datawere normal-

ized to the housekeeping genes Actb or B2M.

Gene expression profiling and gene expression arrays
Microarray data are available at the Gene Expression Omnibus database under the accession numbers GSE126033 in Gloger et al.

(2020), and GSE123593 in Scholz et al. (2020).

The DLBCL heterogeneity signature was generated based onmicroarray data from publically available datasets of DLBCL patients

(Grau et al., 2019). Accession number of DLBCL microarray datasets GSE31312.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical data were evaluated using GraphPad Prism (v.6) software. The confidence level was 95%, with a significance level of 5%

(a = 0.05). Results are expressed as the arithmetic means ± SEM. Data comparison with P values of % 0.05 was considered statis-

tically significant. P values were calculated by Wilcoxon signed-rank test, unpaired Students t test or Mann–Whitney U-test. Statis-

tical details of the assays applied can be found in Figure legends.
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