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Simple Summary: Magnetic resonance fingerprinting (MRF) is a framework for acquiring co-
registered multiparametric magnetic resonance mapping with increased scan efficiency. Many
studies have explored the use of MRF for cancer management. A review on the current developments
in this area has not yet been written but is needed to keep both clinicians and researchers updated.
This review summarises recent studies detecting and characterising tumours using MRF, with a focus
on brain tumours, prostate cancers, and abdominal/pelvic cancers. Advances in MRF for radio-
therapy planning are also mentioned. The principles and limitations of MRF have been simplified
to increase accessibility to clinicians with minimal radiological backgrounds. Future oncological
applications of MRF are explored, including integrating MRF and deep learning, as well as the use of
MRF in assessing disease heterogeneity. We propose further research that needs to take place before
MRF can provide a credible means for assessing tumour biomarkers or be accepted by clinicians.

Abstract: Magnetic resonance imaging (MRI) has enabled non-invasive cancer diagnosis, monitoring,
and management in common clinical settings. However, inadequate quantitative analyses in MRI
continue to limit its full potential and these often have an impact on clinicians’ judgments. Magnetic
resonance fingerprinting (MRF) has recently been introduced to acquire multiple quantitative param-
eters simultaneously in a reasonable timeframe. Initial retrospective studies have demonstrated the
feasibility of using MRF for various cancer characterizations. Further trials with larger cohorts are still
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needed to explore the repeatability and reproducibility of the data acquired by MRF. At the moment,
technical difficulties such as undesirable processing time or lack of motion robustness are limiting
further implementations of MRF in clinical oncology. This review summarises the latest findings and
technology developments for the use of MRF in cancer management and suggests possible future
implications of MRF in characterizing tumour heterogeneity and response assessment.

Keywords: magnetic resonance imaging; multiparametric magnetic resonance imaging; prostatic
neoplasms; brain neoplasms; abdominal neoplasms; radiotherapy; image-guided; deep learning

1. Introduction

Magnetic resonance imaging (MRI) is a rapidly developing imaging modality with
an established and expanding role in the detection and characterisation of many malig-
nancies. A major strength of MRI is the image contrast generated in soft tissues that
can be used to provide structural information on patients’ anatomy in a non-invasive
way without the risk of ionizing radiation. Specific MRI sequences can detect not only
macrostructural information but also characterize tumour cellularity, microstructure and
tissue oxygenation [1]

In recent years, there has been a focus on the development of quantitative MRI to
improve the objectivity in diagnosis. Different quantitative imaging biomarkers (QIBs)
reflect multiple pathological manifestations of disease and thus have the potential to
provide more comprehensive non-invasive tumour characterisation. For instance, apparent
diffusion coefficient (ADC) may enhance molecular subtyping of breast cancer [2] or
increases in tumour T1 relaxation time may indicate better response to anti-angiogenic
therapy in ovarian cancer [3]. Post-chemotherapy reductions in T1 relaxation times of
murine fibrosarcoma and melanoma models reflect reductions in tumour cell numbers [4]
while higher renal cell carcinoma T1 relaxation times are associated with higher collagen
volume fractions [5]. Furthermore, higher baseline T2 * values observed in less hypoxic
prostate tumours [6] and perfusion fraction measurements from intra-voxel incoherent
motion (IVIM) MRI both correlate with tissue fibrosis [7]. Acquisition of different QIBs
can be accomplished by a combination of different sequence parameters on MRI protocols.
Typically, MRI protocols include multiple sequences that have the potential to yield multiple
QIBs from a single scanning session. Unfortunately, each additional sequence increases
overall scanning time resulting in protocols that are either too long to be clinically feasible
or that have the potential to increase patient discomfort, induce unwanted motion and
causing misalignment between different QIB maps. Early quantitative MRI methods rely
on exponential fitting routines of signal recovery such as standard inversion recovery
(IR) measurement for T1 mapping (e.g., Inversion-recovery-spin-echo [8]) or multi echo
spin-echo for T2 quantification (e.g., Carr Purcell Meiboom Gill [9,10]) allowing mapping
of various tissue properties. Quantification can also be obtained by analysis of the steady
state signal (e.g., T1 Modified Look-Locker inversion recovery (MOLLI) [11] or driven
equilibrium single pulse observation of T1 and T2 [12]). However, they are relatively time-
consuming and single properties are generated separately as mentioned above. To improve
this situation, other single-sequence approaches can provide more than one tissue property,
such as inversion recovery TrueFISP [13] (for T1 and T2 mapping), or Multi-Pathway Multi-
Echo (MPME) imaging (for T1, T2, T2 *, B0 and B1 + 3D mapping) [14]. TrueFISP however is
susceptible to B0 inhomogeneity artefacts on high field MRI scanners [15], while MPME has
visibly noisy parameter maps in vivo due to propagated noise from successive processing
steps. Another example of simultaneous multiparametric quantitative imaging is MR
Multitasking [16], a continuous-acquisition framework that provides multiparametric
motion resolved images. Scan times of MR multitasking, however, is not clinically feasible
when high resolution (≤1.0 mm slice resolution) is required [16]. Due to the lack of large
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multicentre studies or readily implementable imaging protocols/sequences, none of the
methods mentioned above has achieved widespread clinical acceptance yet.

Magnetic resonance fingerprinting (MRF) uses a different framework to acquire multi-
parametric maps simultaneously with increased scan efficiency [17]. In contrast to acquiring
full-resolution images like conventional quantitative methods do, MRF maps are generated
from a precalculated database of possible signal evolutions. Several acquisition parameters
are varied during a single MRF scan, leading to a unique temporal signal evolution ‘fin-
gerprint’ because T1, T2, and other sequences are sensitive to the acquisition parameters
that are changing. The fingerprints generated are then matched to a precalculated database
(‘dictionary’), which is based on existing knowledge of how different tissues behave in
a magnetic field. Quantitative parametric maps are then generated by fitting measured
signals with predicted dictionary signals on a voxel-wise basis (Figure 1). MRF was intro-
duced by Ma et al., in 2013 [17], and since then, several advances have been made towards
establishing clinical applications for this technique. The reduced scan time confers a major
advantage relative to other quantitative MRI mapping methods, improving patient comfort
and reducing motion artefact [17].
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Figure 1. Comparison between liver MRF maps and conventional images from two healthy subjects.
The conventional referencing sequences are (top row, left to right for each subject) T1-MOLLI, T2-
GraSE, 8-echo GRE T2 *, T1$-TFE, and 6-echo GRE FF, compared against the proposed inherently
co-registered T1, T2, T2 *, T1$, and FF abdominal MRF maps (bottom row left to right for each
subject) obtained from a single 18 s scan.

Detailed reviews on the technical aspects of MRF, from Mehta et al. [18] and McGivney
et al. [19], covered the physics and engineering principles behind advances made in this
area so far. They looked at different methods for reducing matching time, sequence
optimization, and dictionary size compression. These reviews offered valuable information
for researchers involved in the MRF framework improvement but did not focus on the
application potential of MRF in hospital settings. A review from Hsieh et al. [20] discussed
the future of MRF in clinical adoption. It summarised some published trials in real patients
as supporting evidence and raised important questions about issues such as professional
acceptance and lack of standardisation in MRF protocols. While this review covered many
potential uses of MRF, its implications on cancer detection and characterization were not
mentioned in detail and can easily be dismissed by oncologists. The significance of MRF in
oncology should be reviewed in detail and serve as an opportunity to raise more awareness.
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There are already reviews as such, for instance, looking at cardiac MRF current clinical
evidence and a number of challenges to clinical adoption [21,22] (Table 1).

Table 1. Existing reviews on MRF with their areas of focus compared.

Title First
Author Journal Year of

Publication

Focused on:
Technical/

Clinical/Both

Focused on:
Cancer/Non-
Cancer/Both

Cardiac magnetic resonance
fingerprinting: technical
developments and initial

clinical validation [21]

Gastao
Cruz

Current Cardiology
Reports 2019 both non-cancer

Cardiac magnetic resonance
fingerprinting: technical overview

and initial results [22]
Yuchi Liu

JACC:
Cardiovascular

Imaging
2018 technical non-cancer

Cardiac magnetic resonance
fingerprinting: trends in

technical development and
potential clinical applications [23]

Brendan L
Eck

Progress in Nuclear
Magnetic Resonance

Spectroscopy
2021 both non-cancer

Magnetic resonance fingerprinting
Part 1: Potential uses, current

challenges, and
recommendations [24]

Megan E
Poorman

Journal of Magnetic
Resonance Imaging 2019 both both

Magnetic resonance fingerprinting
review Part 2:

Technique and directions [19]

Debra F
McGivney

Journal of Magnetic
Resonance Imaging 2019 technical non-cancer

Magnetic resonance fingerprinting:
a technical review [18]

Bhairav B
Mehta

Magnetic Resonance
in Medicine 2018 technical non-cancer

Magnetic resonance fingerprinting:
an overview [25]

Ananya
Panda

Current Opinion
in Biomedical
Engineering

2017 both both

Magnetic resonance fingerprinting:
from evolution

to clinical applications [20]

Jean J L
Hsieh

Journal of Medical
Radiation Sciences 2020 both non-cancer

This review summarises recent studies detecting and characterising tumours using
MRF, with a specific detailed focus on brain tumours, prostate cancers, and abdomi-
nal/pelvic cancers. Literature searches were performed on Medline, Embase, and the
Cochrane Library electronic databases for articles published in English from inception until
1 July 2021. References of included studies and reviews were also screened for relevant
articles. The following search terms were used (including synonyms and related words):
‘magnetic resonance fingerprinting’ and ‘tumour’, ‘tumor’ or ‘cancer’ or ‘oncology’. Ad-
vances in MRF for radiotherapy (RT) planning are also mentioned. The basic principles
and limitations of MRF have been simplified to increase the accessibility to clinicians
with a minimal radiological background. Future oncological applications of MRF are also
explored, including the integration of MRF and deep learning and the use of MRF in
assessing disease heterogeneity. We also propose further research that needs to take place
before MRF can provide a credible means for assessing tumour biomarkers or be accepted
by clinicians.

2. The Principles of Magnetic Resonance Fingerprinting

MRF is based on the assumption that different tissues generate unique MR signal
evolution when appropriate pulse sequences are applied. This makes its acquisition process
fundamentally different from conventional MRI methods (Figure 2). In MRF, the acquisition
parameters (such as flip angle, echo time, and repetition time) do not stay the same but are
pseudo-randomly varied throughout the acquisition to generate a temporally and spatially
incoherent signal output [17] (Figure 2A). The temporal evolution of the signal measured
in each voxel (Figure 2B) is then compared with a set of pre-calculated signal evolutions
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(a dictionary, Figure 2C) that predicts the signal behaviour for the particular acquisition
sequence. The dictionary covers a wide range of tissue parameters (e.g., T1 relaxometry,
T2 relaxometry, T2 *, etc.) combinations. The best match, for every voxel, between the
measured image intensity and all the possible fingerprints in the dictionary (Figure 2D) is
then used to generate the quantitative maps (Figure 2E). In the case of the MRF framework
proposed by Ma et al., Bloch equations were used to calculate the temporal evolution
of the signal [17]. However, this is not the only option, and other approaches, such as
the extended phase graph (EPG) formalism, can be employed to improve computation
efficiency [26].
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Figure 2. An overview of the MRF framework. (A) randomised series of repetition time (TR)
and variable flip angles (FA) used for acquisition. (B) example of undersampled images acquired
(C) example of dictionary entries (D) matching the temporal evolution of the signal measured with
the dictionary (E) Abdominal MRF maps generated from the matching process with the dictionary.

A characteristic feature of MRF is that the images produced for each time point are
usually highly undersampled (Figure 2B). Initial studies suggested that the presence of
undersampling artefacts in these temporal images is not critical as long as they are not
spatially or temporally correlated, because it is their temporal evolution, and not the in-
dividual quality of the images that is used to produce the voxel-wise multiparametric
quantification by dictionary matching [17]. Early approaches attempted to use zero-filled
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reconstruction to produce the images for each time point [17], however subsequent studies
demonstrated that remaining aliasing artefacts can affect the multiparametric quantifi-
cation [27]. Thus, several undersampled reconstruction approaches have been proposed
exploiting the temporal and spatial redundancies in the highly undersampled time series
of images [28–30].

3. Magnetic Resonance Fingerprinting for Imaging Cancer
3.1. Brain Tumours

Early detection of metastatic and malignant brain tumours on imaging helps support
management decisions and can give important prognostic information early on during
treatment [31]. Tumour cell characterisation is important for decision making and can
potentially impact patient outcomes [32]. Conventional MRI with intravenous gadolinium-
based contrast is used as a first-line imaging modality when metastatic lesions are suspected
as this increases sensitivity, but MRI has limited specificity for differentiating between
primary glioblastomas (GBMs), lower grade gliomas (LGGs), and brain metastases, [33]. Al-
though other imaging techniques, such as perfusion imaging or PET, can help differentiate
between brain tumours grades and origins [34,35], quick quantitative imaging modalities
without exposure to ionizing radiation or contrast agents are still desirable. Co-registered
T1 and T2 mappings from MRF can be beneficial for tumour cell characterisation and
treatment management. However, there is still the need for advanced post-processing
methods to surmount computational challenges. The T1 value is known to correlate with
brain water content [36,37]; it can be used in particular in the assessment of perilesional
oedema. Lesional T2 mapping has been associated with the early detection of tumour
progression under anti-angiogenic therapy [38] and the potential to differentiate between
molecular subtypes of grade II and III gliomas [39].

A preliminary study from Badve et al. suggested that MRF-derived T2 relaxation
times from solid lesion components are higher in LGGs than in metastases (Figure 3) [40].
Differences in MRF-derived T1 relaxation times of peritumoral regions of GBMs and LGGs
have also been identified [40]. In a later study, using the same data set, radiomic texture
analysis was applied to further improve the differentiation accuracy [41]. MRF maps
after texture analysis also showed the ability to predict patient survival time in the GBM
cohort [41]. Considering the small sample size (31 patients), more evidence is needed to
prove the diagnostic and prognostic reliability and repeatability of MRF. Similar studies
were also conducted on paediatric and young adult patients [42]. MRF-derived T1 and T2
maps were significantly different for normal-appearing white matter, solid tumour, and
peritumoral regions. MRF in children could help avoid potentially harmful, long-term
retention of gadolinium-based contrast agents. The use of MRF could further avoid the risk
of contrast allergy and minimises the need for sedation in children. The use of MRF has
also been investigated in meningiomas. In a recent study, meningothelial meningiomas
showed significantly higher T1 and T2 values than transitional and fibrous meningiomas
on MRF images [43], whereas conventional MRI imaging and ADC values collected from
the same set of patients detected no statistically significant differences between these
tumour subtypes. Although larger cohorts are needed to validate the findings in these
proof-of-concept studies, MRF is a promising potential QIB for investigating brain tumours.
Repeatability and reproducibility of MRF for healthy brains have been tested under 1.5T
and 3T at two different centres. Excellent repeatability and good reproducibility were
reported [44]. More multicentre studies will be needed to establish the use of MRF more
widely in common clinical settings, and parametric maps acquired by different MR vendors
should also be compared.

Other than detection, MRI is routinely used to define lesion boundaries of various
cancers for RT planning [45]. However, the signal intensity of MRI images is expressed
in arbitrary units and qualitative in nature. Conventional MRI also has low repeatability
and reproducibility for disease monitoring due to the variability in acquisition parame-
ters [46,47]. There is an increasing interest to use quantitative MR data in RT treatment
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decision making, toxicity assessment and response monitoring. Using MRF to produce
reliable relaxometry maps has been previously described [44]. However, the hardware and
configuration of MRI systems in a radiation oncology department are different from those
used for diagnostic imaging. Diagnostic MRI scanners use coils designed to maximise
image quality, whereas MRI scanners for guiding RT use flexible body coils combined
with specific coil frames to allow patient-immobilization devices to be placed and to max-
imize geometric accuracy. Thus, studies on MRF for cancer diagnosis with diagnostic
MRI scanners may not be entirely applicable to MRI scans in RT. Lu et al. have used
fast imaging with the steady-state precession (FISP) MRF to obtain T1/T2 maps using
a scanner setup for intracranial tumour RT treatment planning [48]. A combination of
channel flexible body and head coil was designed, with T1 and T2 mapping data reported
to be reliable and repeatable with intra-/inter-scanner intensity variations (The intra- and
inter-scanner variability of the intensity-normalized MRF T1 was 1.0% ± 0.7% and 2.3%
± 1.0% respectively). Due to the effect of geometric distortion, correct T1 and T2 values
were retrieved using template matching. Despite the promising results from this initial
attempt of guiding RT treatment with MRF, the issue of non-real-time reconstruction after
data acquisition in MRF is a challenge that needs to be resolved.
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Figure 3. A 45-year-old male presenting with severe headaches and altered sensorium was later
diagnosed with glioblastoma. (A,B) are FLAIR- and contrast-enhanced T1-weighted images from
the clinical scan, which demonstrate a left parietal enhancing lesion with peritumoral FLAIR hy-
perintensity. (C) is a post-contrast T1-weighted image with ROI overlay. 1 shows a solid enhancing
tumour region, while 2 shows a peritumoral white matter region. 3 in contralateral hemisphere
denotes the contralateral white matter measurement. (D,E) are MRF-derived quantitative T1 and T2
maps showing a wider extent of disease. Reprinted with permission from ref. [40]. Copyright 2020
American Journal of Neuroradiology.

MRF can also measure additional parameters beyond T1 and T2 relaxivity. Several
studies have also explored the possibility of measuring Chemical Exchange Saturation
Transfer (CEST) with MRF [49–51], as CEST has shown potential in monitoring treatment
response in brain tumours [52–54]. MRF has the potential to greatly reduce CEST scan
time compared to conventional methods, making CEST more suitable for the clinical
setting. Whole brain images using 3D-MRF with high resolution are being developed
which can be helpful for volumetric analysis or microvascular analysis in the future [55].
Lemasson et al. looked at microvascular properties of brain tumours in rats using MR
vascular fingerprinting. Transition to human application might be possible with improving
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algorithm design and mathematical models [56]. A recent study using PET-MR imaging
with MRF showed promising results for separating low-grade and high-grade gliomas [57].
This modality has also been shown in preliminary data to be useful for detecting molecular
changes and genetic mutations in brain tumours. MRF was used in this study in addition
to conventional MR sequences to provide fast quantitative T1, T2, static magnetic field (B0)
inhomogeneity and proton density (M0) mapping.

3.2. Prostate Cancer

MRI is the standard of care imaging modality for diagnosing prostate cancer. Multi-
parametric MRI is recommended by the National Institute for Health and Care Excellence
(NICE) as the first-line investigation method for suspected localised prostate cancer, and
the results are reported using a 5-point Likert scale based on radiologists’ overall interpre-
tation of the scan [58]. Separate assessment of individual sequences is not required, and
this approach arguably lacks reproducibility, especially with less experienced radiologists,
and can undermine overall accuracy [59]. An alternative guideline—the Prostate Imaging
Reporting and Data System, version 2 (PI-RADS™ v2)—assesses T2-weighted imaging,
diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging sepa-
rately and then in combination. However, both guidelines are qualitative, and there is a
growing demand for more objective quantitative data. T1 and T2 mapping from MRF can
provide a fast solution for more accurate assessment. Baur et. al. used MOLLI sequences
to map prostatic lesion T1 values and reported that T1 relaxation time differs significantly
between prostate cancer and benign prostate tissue, with lower T1 in cancerous lesions [60].
In a systematic review by Lee, 11 out of the 17 included studies reported T2 relaxation
times of normal peripheral zone (range 111.6–169.6 ms) being higher than those of prostate
cancer (range 67–109 ms), with benign prostatic hypertrophy likely contributing to the
overlap [61].

An initial retrospective study from Yu et al. [62] showed that a 3.0-T unit MRF com-
bined with standard ADC mapping had high sensitivity for differentiation between pe-
ripheral zone prostate cancer and normal prostate tissue (Figure 4). The acquisition time
of MRF was also shorter than the acquisition time for standard clinical sequences used in
that institution when acquiring T1, T2, and ADC maps (average of 7.5 min versus 21 min).
T1, T2 signal intensities and ADC values reported were all lower in cancers compared
with normal peripheral zones in the prostate, with reported mean cancer T1 of 1628 ms
(±344) and mean T2 of 73 ms (±27), in contrast to 2247 ms (±450) and 169 ms (±61),
respectively, for a normal gland. The T1 value changes detected with MRF had not been
previously reported, possibly due to difficulties in measuring T1 signal intensity changes on
conventional weighted MRI images. These findings were also in agreement with the study
results from Panda et al. in which biopsy was used as the reference standard [63]. Panda
et al. also reported that T2 and ADC values together could separate clinically significant
cancer from low-grade cancer in the peripheral zone. Another retrospective study by Panda
et al. showed that T1/T2 MRF combined with a separately acquired ADC mapping may
improve lesion characterization in the transition zone of the prostate [64]. MRF T1 and
ADC values were found to be complementary for malignant lesion staging, whereas there
was an overlap in MRF T2 values between different lesion types [64]. Han et al. recently
used 3D MRF in phantoms and 90 patients with suspected prostate cancer [65]. Findings
were consistent with the results from 2D MRF trials for prostate cancer, and the image
acquisition protocol provided faster coverage of the entire prostate gland (4 min rather
than 7–8 min). Considering that the studies cited above were from individual institutions,
multi-institutional datasets with bigger sample sizes will improve the generalisability and
repeatability of the findings. However, the consistent results obtained from separate inde-
pendent preliminary trials are encouraging. High inter-scanner reproducibility of MRF T1
relaxometry was reported for assessing healthy prostate recently for both 1.5T and 3T MRI
scanners [66]. Similar studies in patients with suspected prostate cancer have yet to report
their findings. To date, MRF has been used for the characterization of prostate lesions but
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not detection as a higher resolution is required for structural T2-weighted imaging. This
modality may also benefit from the development of simultaneous MRF mapping of T1, T2,
and ADC to eliminate the risk of misalignment. Jiang et al. inserted multiple magnetization
preparation modules in a FISP-based MRF sequence to achieve simultaneous T1, T2, and
ADC mapping in less than 60 s per slice [67]. Prostate imaging may benefit from further
developments of this novel MRF sequence. The feasibility of guiding RT or monitoring
treatment response for prostate cancer using MRF has also yet to be investigated.
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Figure 4. Images in 72-year-old man referred for an elevated prostate-specific antigen of 9.87 ng/mL
with minimal urinary symptoms. Patient underwent limited MR imaging and targeted biopsy of lesion
in left mid prostate. Prostate adenocarcinoma with Gleason score 4 + 3 = 7 was diagnosed at cognitively
targeted biopsy. T2-weighted image (T2W), ADC apparent diffusion coefficient map, MR fingerprinting
(MRF)—T2 map, and MR fingerprinting—T1 map show corresponding hypointense lesion in left mid
prostate (arrow) and NPZ normal-appearing peripheral zone in right hemi-prostate. Reprinted with
permission from ref. [62]. Copyright 2020 The Radiological Society of North America (RSNA).

3.3. Lesions in Abdomen and Pelvis—Liver and Ovaries

Lesion detection and characterisation within abdominal and pelvic organs have the
potential to benefit significantly from a time-efficient, free-breathing, quantitative paramet-
ric mapping offered by MRF. Chen et al. used FISP T1/T2 MRF to acquire fast abdominal
images (19 s for each section) [68]. Six patients with focal liver lesions were imaged and
the longer MRF T1 and T2 relaxation times in metastatic tumours were consistent with
previous non-MRF findings [69,70]. Powered studies with different lesion and tumour
types are needed for investigating the potential of this method in lesion detection and
characterization. Three-dimensional acquisitions of the abdomen are still restricted by
imaging speed and respiratory motion. A combination of MRF abdominal imaging with
parallel imaging and simultaneous multi-slice acquisitions has the potential to increase
coverage within a shorter time frame [55,71]. Huang et al. recently integrated MRF and a
pilot tone navigator with retrospective gating to successfully obtain 3D abdominal MRF
images in free-breathing healthy volunteers [72].

Feasibility MRF studies have also been conducted in the pelvis. Kaggie et al. in-
vestigated simultaneous T1, T2, and relative proton density mapping for ovarian cancer
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using MRF [73]. Ascites is easy to detect, but in large quantities, it can introduce artefacts,
particularly at high field strengths. These artefacts from standing waves are caused when
conductive ascitic fluid attenuates the radiofrequency fields, resulting in signal loss [74,75].
In vivo, the presence of ascites did not pose challenges to MRF (Figure 5g–i) if the T2 detec-
tion range was wide enough. Figure 5a–c shows biological variation on the MRF images,
which might be important for future studies evaluating intratumoral heterogeneity [76].
Further validation studies in larger cohorts are still warranted.

Figure 5. Coronal MRF T1, T2, and PD quantitative maps of the four patients with (a–c) borderline serous and (d–l) high
grade tumours. Images (a,b) show areas of variation in tumoral signal intensities and hence possible disease heterogeneity.
HGSOC tumours with ascites was visible on MRF images, arrowed regions on (g–i). One of the patients who had treatment
response, MRF (j–l), was later confirmed to have no histological evidence of residual disease [76].
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MRF also showed potential for RT motion management and more detailed information
on lesion extent indicates a potential role for RT planning. Li et al. proposed the concept
of time-resolved MRF with repeated acquisitions using an unbalanced FISP and spiral-
in–spiral-out trajectory for dealing with motion [77]. This technology was tested on both
phantom and healthy volunteers and was capable of imaging respiratory motion with
simultaneous T1 and T2 mapping of the abdominal organs. To the best of our knowledge,
no MRF studies evaluating abdominal cancer treatment response have been reported.

4. Potential Future Developments for Cancer Management

As discussed above, MRF can be used to acquire multiple parameters simultaneously
in a shorter acquisition time. Therefore, progress in MRI for cancer characterization and
treatment can potentially be tested on MRF in addition to other techniques/modalities as
illustrated in Figure 6 to improve lesion detection and cancer screening. MRF may also be
integrated with other new technologies. For instance, the possibility of integrating MRF,
super-resolution reconstruction and nanoparticles to diagnose small pancreatic cancer le-
sions is being explored [78]. Current clinical studies for MRF focused more on the feasibility
and reliability of using MRF in tumour detection usually at single centres [40,56,63,64,68,73]
(Table S1) overview of published MRF oncological application studies). It will be inter-
esting to see the comparison between MRF and other established imaging modalities
in future studies as well as reproducibility studies between sites, vendors and patient
cohorts. However, to do so, limitations regarding storage space needed by dictionaries
and post-processing time must be further addressed. For this purpose, the use of artificial
intelligence might be a promising approach.
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4.1. Inter- and Intra-Tumoral Heterogeneity

When using MRI to differentiate malignant from benign tumours, heterogeneity
(as described in Figure 7) is an important feature to evaluate, alongside tumour size or
volume [85]. Within the same bulk of a tumour, different clones of cancer cells behave
differently and acquire a unique set of genetic mutations which perpetuates their sur-
vival [86]. These Darwinian evolutionary changes are often due to adaptive or replicative
pressure and have been linked to the development of treatment failure and resistance [87].
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A promising technique that could characterise changes or differences between metastatic
sites or within a single site without the need for invasive biopsies will be welcome [88,89].
Ability to better characterise tumoral heterogeneity could enable more effective treatment
planning [90]. There has been particular interest in using DWI and DCE MRI which
measure water diffusion, vascular fraction (vp) or tumour permeability. Different values ac-
quired in different regions of the tumour may indirectly reflect variations in the expression
of tissue growth factors and anti-angiogenic factors hence indicate heterogeneity [91,92].
Since the output of MRF is multiparametric, T1 and T2 measurements can potentially be
produced in combination with ADC mapping or vp value to characterise lesion hetero-
geneity. Currently, biopsy remains the gold standard for many types of cancer diagnosis
and characterization [89,93]. As an invasive procedure, tissue biopsy has a clear risk of
complications [88]. Studies have suggested multi-parametric MRI might allow up to 27%
of patients to avoid a biopsy for possible prostate cancer though the specificity of MRI
could still further improve [94]. MRF has the potential of being a validated and repeatable
imaging tool for lesion characterisation and further reduces the burden of biopsy. MRI
is also used in monitoring treatment responses and potential applications of MRF in this
aspect should be explored.
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Figure 7. Within the same tumour, different subclones often exist. These clones may demonstrate
distinct biological properties and hence disease aggressiveness. Even carefully planned biopsies may
fail to target, acquire, and characterize these different cellular or tissue subtypes. Novel imaging
techniques are better able to surmount this challenge, non-invasively. Different sites of disease within
the same patient (intertumoral) and patients with the same histologically tumour type may have very
distinct tumour biological characteristics (interpatient), and hence, this could impact their outcomes.
Novel, next-generation imaging offers a holistic non-invasive anatomical, functional, and biological
evaluation of disease.

4.2. Response Monitoring

Response valuation criteria in solid tumours (RECIST) 1.1 remains the reference stan-
dard for assessing disease response in many malignancies but is fraught with limitations.
For instance, it has been categorically shown not to be useful in bone lesions, except when
there is a measurable extra-osseous soft tissue component [95]. It is also unable to assess
diseases such as inflammatory breast disease, leptomeningeal disease, cystic lesions, and
even nodal or soft tissue lesions smaller than 1 cm [95]. Ability to absolutely quantify
changes in signal characteristics to detect response much earlier than size change will be of
major clinical significance. DWI has been investigated as a biomarker for detecting tumour
response. Compared with standard response criteria, such as the RECIST, it is sensitive
to changes at the cellular level prior to changes in gross tumour size. However, lack of
standardisation and susceptibility to artefacts and image distortion remains problematic.
When analysed in combination with other parameters measured by MRF, a more accurate
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evaluation of tumour progression might be achieved [92,96]. With more quantitative infor-
mation being collected by MRF, personalised medicine and treatment plans can potentially
be developed for individual cancer patients [97]. Study by Bruijnen et al. also explored
the feasibility of gradient spoiled 2D T1/T2 MRF on hybrid MRI-linac systems to assess
tumour response to radiotherapy [98]. However, work in this area is still in the early stages.
MRI-linac systems are now commercially available, and active research is ongoing for
their increased integration into the radiotherapy treatment workflow [99]. Image-guided
radiotherapy is now increasingly used to identify organs at risk and to keep the radiation
dose to them as low as possible [100]. Despite MR-linac availability for clinical use, many
centres still rely on pre-treatment acquired computerised tomography (CT) or synthetic
CT images to get Hounsfield values. The online MRI acquired then needs to be registered
to the treatment planning data and becomes a problem when there is random motion
during treatment as real-time treatment planning is required. MRF has the advantage of
promising full quantitative output, which could potentially be used instead of Hounsfield
values acquired from CT. On-boarding of MRF into MR-guided or MR-linac systems could
radically change the planning of radiotherapy treatment.

5. Current Limitations of MR Fingerprinting

Although the emerging clinical evidence has demonstrated that MRF can provide
more rapid and specific tissue properties for tumour characterization, there are still many
limitations hindering wider implications of this framework. Susceptibility to motion
artefact can impair the accuracy of mapping and image reconstruction times need to be
shortened significantly for the potential use of MRF in hospital settings.

5.1. Motion Robustness

Subject movement during acquisition is one of the main challenges for accurate MRI
quantitative mapping. Ma et al. demonstrated in their original work [17] that the MRF
framework can tolerate non-periodic abrupt motion towards the end of the scan; however,
more subtle or natural motion patterns, such as breathing or cardiac movement, could
hinder MRF quantification, especially in the case of through-plane motion [101]. Yu
et al. [102] showed that T2 value can be systematically underestimated due to through-
plane motion in the middle of the scan when a large flip-angle is applied. Some sources
of motion, such as breathing, may be partially avoided by performing short MRF scans
during a breath-hold; however, bulk motion can be difficult to avoid in patients with
certain neurological diseases. Such challenges are greater by several orders of magnitude
in the abdomen and pelvis. In order to achieve motion compensation or correction in 2D
MRF, many approaches have already been proposed [103–106]. Mehta et al. developed
motion-insensitive MRF reconstruction algorithm that increases sensitivity of MRF to rigid-
body motion through iteratively performing dictionary matching, motion estimation and
correction, and image reconstruction [103]. Cruz et al. used sliding window reconstruction
followed by image registration to estimate motion and correct acquired k-space data. Two-
dimensional images reconstructed with low-rank inversion had fewer in-plane motion
errors [101]. This method was further validated by Xu et al. [104] with both simulated
and in vivo experimental evidence. Three-dimensional MRF, which has a potential for
monitoring brain tumours, is also sensitive to motion artefacts, and effort has been made
to improve motion robustness of MRF in this direction, too. Cao et al. have shown that 3D
MRF, multi-axis spiral projection imaging (maSPI) is more motion-robust compared with
stack-of-spiral (SOS) imaging [107]. Based on this finding, Kurzawski et al. successfully
used random trajectory ordering and separate image reconstruction for each 7 s timescale
segment to obtain less coherent artefacts [108]. Cruz et al. employed respiratory bellows
driven localized autofocus for beat-to-beat translation motion correction when obtaining
3D mapping of the whole heart in a single free-breathing scan [32]. Recently, Huang et al.
integrated MRF with pilot tone navigator to produce 3D abdominal imaging without the
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need for breath holding [72]. More studies still need to be carried out to improve the
motion robustness in 2D and 3D MRF, especially for through-plane motion in 2D MRF.

5.2. Acquisition and Processing Time

One of the advantages of MRF is that the number of parameters quantified from a
single scan can be extended by cleverly designing the acquisition sequence and accurately
predicting signal evolution. Original MRF work showed simultaneous quantification of
T1, T2, M0, and B0, but since then, many other parameters of interest for oncological and
non-oncological applications have been mapped, such as MRF for simultaneous T1, T2,
and T2 *; fat fraction mapping for liver; and T1, T2, and diffusion parameter mapping
for brain, prostate, heart, ovary, and abdomen [109]. Mapping additional parameters in
MRF, however, usually requires adding extra dimensions to the dictionary, which increases
dictionary size exponentially and poses computational challenges, including the need for
increased storage space, especially for cardiac or vascular MRF, where patient-specific
dictionaries must be created taking into account the heart rate measured during the scan.
As an example, in a 4 min abdominal MRF scan by Serrao et al., 4 gigabytes of disk
space were used because of the near continuous data acquisition and the large amount of
coil channels [110]. Dictionary extension also directly increases the post-processing time
needed for fingerprint matching and dictionary development [19]. Therefore, for potential
clinical use, post-processing time should be further reduced to avoid a delay between
patient positioning and imaging review by scanning radiographers and radiologists. To
address this, many ideas have been proposed. One of them is the use of a compressed
dictionary via singular value decomposition (SVD), where the dictionary dimension is
reduced to a low-rank subspace, and most of the information is still retained from the
original dictionary—fewer points are then needed, and hence, the dictionary matching
time is reduced [28]. In the last years, SVD and dictionary compression have helped to
reduce not only matching times and dictionary size, but also reconstruction time and
undersampling artefacts [111–114].

The emerging transition from 2D MRF to 3D MRF with higher spatial resolution
and higher signal-to-noise ratio also faces the problem of long acquisition and processing
times [19]. Approaches have been developed to shorten acquisition time; for example, Ma
et al. undersampled individual time points and shortened the waiting time between groups
to acquire 3D T1, T2, and M0 whole brain maps in less than 5 min [115]. Improved accuracy
with a spatial resolution of 1.2 × 1.2 × 2 mm3 was achieved by Liao et al. with a whole-
brain scan (~19 cm volume) in ~3.5 min [116], when they accelerated the stack of spirals
3D acquisition by using sliding window reconstruction with generalized autocalibrating
partially parallel acquisitions (GRAPPA). However, the reported 20-h reconstruction time
still makes the MRF prohibitive to use in common clinical settings.

Development of neural networks and deep learning algorithms in recent years has
presented the opportunity to reduce post-processing time and storage space needed for
MRF dictionaries. Chen et al. [55] used parallel imaging with deep learning techniques
for producing whole-brain 3D MRF images in a ~7 min scan with a spatial resolution of
1 mm3. The processing time was shortened seven-fold using deep learning as opposed
to standard template matching [55]. Alternatively, work from Oksuz et al. [117] showed
simple recurrent neural networks (RNNs) can predict the T1 and T2 values with high accu-
racy in less than 20 ms once RNNs are trained for an hour. The MRF deep reconstruction
network (DRONE) developed by Cohen et al. improved the reconstruction process consid-
erably [118]. The trained neural network reconstruction function was 20 times smaller than
conventional MRF dictionaries and reconstruction time was ~300–5000-fold shorter than
with conventional methods, while training the network with a dictionary of ~69,000 entries
took approximately 10 to 74 min on an Nvidia K80 GPU with 2 GB of memory.
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5.3. Adoption of MR Fingerprinting by the Imaging and Oncology Community

Large scale multi-centred trials across different vendors are needed to provide the
imaging and oncology communities with enough evidence that MRF can be used for accu-
rate, repeatable, and reproducible diagnosis and tumour characterisation. According to the
imaging biomarker roadmap for cancer studies prepared by O’Connor et al., parameters
measured by MRF still need to cross the first translational gap with more technical and
clinical validation [119]. The evidence for reliable MRF measurements is not yet sufficient
to establish its role as a ‘medical research tool’. For MRF data to be used in ‘clinical decision-
making tools’, their cancer screening, diagnostic, and predictive abilities need to be tested
on patients in different centres. Radiologists, diagnostic, and therapeutic radiographers will
need to be familiar with the new image registration methods and scanning protocols. MRF
packages used in all the studies referenced in this review were provided by the vendors
because investigating the oncological use of MRF is still at a preliminary stage. However,
a vendor-neutral MATLAB-based software MRF package has recently been published on
GitHub [120], and, hopefully, similar resources will be accessible for all researchers and
clinicians in the near future. Reconstruction of MRF can be carried out on a standard
vendor’s computational hardware and some data post-processing can be performed on a
laptop or desktop. However, producing high-resolution mapping within a clinically rele-
vant timeframe is still challenging. Large-scale implementation of MRF requires adequate
post-processing pipelines to be set up in hospitals. Cost and health economic implications
of MRF compared with standard methods will also be important to adoption either as a
replacement or complementary approach alongside current standards [20].

6. Conclusions

We described advances made by conventional MRI and how quantitative MRI pa-
rameters are potential biomarkers for many cancer types. We have introduced the concept
of magnetic resonance fingerprinting and how it has been able to lead to time-efficient
quantification of imaging features seen on MRI, in absolute terms. This has implications
beyond just anatomical or morphological features seen on imaging, but it could advance
radiotherapy treatment planning, tumour response monitoring, and evaluation of dis-
ease heterogeneity. Future use of MRF could also span into imaging genomics, which
involves mapping and matching biological and imaging features with the genomic land-
scape and other tumour characteristics. Furthermore, if the MRF-derived dictionaries
are standardised across scanners/institutions, this will lead to exciting opportunities to
carry out cross-centre or cross-vendor research beyond what is currently achievable. A
multi-speciality collaboration is required in order to make MRF ready for clinical primetime
in cancer in the near future.
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