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Homozygous frameshift mutations in FAT1
cause a syndrome characterized by
colobomatous-microphthalmia, ptosis,
nephropathy and syndactyly
Najim Lahrouchi1

A failure in optic fissure fusion during development can lead to blinding malformations of

the eye. Here, we report a syndrome characterized by facial dysmorphism, colobomatous

microphthalmia, ptosis and syndactyly with or without nephropathy, associated with

homozygous frameshift mutations in FAT1. We show that Fat1 knockout mice and zebrafish

embryos homozygous for truncating fat1a mutations exhibit completely penetrant coloboma,

recapitulating the most consistent developmental defect observed in affected individuals.

In human retinal pigment epithelium (RPE) cells, the primary site for the fusion of optic

fissure margins, FAT1 is localized at earliest cell-cell junctions, consistent with a role in

facilitating optic fissure fusion during vertebrate eye development. Our findings establish

FAT1 as a gene with pleiotropic effects in human, in that frameshift mutations cause a severe

multi-system disorder whereas recessive missense mutations had been previously associated

with isolated glomerulotubular nephropathy.
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The eye develops as an evagination of the neural plate, which
subsequently invaginates to form a dual-layered optic cup.
This invagination is asymmetric, and a ventral opening

(optic fissure) forms around the 5th week of human gestation1.
For the eye to develop normally, the two edges of the fissure must
approximate and fuse. If the optic fissure fails to fuse, uveal
coloboma, a potentially blinding congenital malformation, results.
Uveal coloboma accounts for up to 10% of childhood blindness
worldwide, affecting between 0.5 and 2.6 per 10,000 births1.
Mutations in several developmentally regulated genes, including
CHD7, CHX10/VSX2, GDF3, GDF6, MAF, OTX2, PAX2, PAX6,
RAX, SHH, SIX3, SOX2, FOXE3, STRA6, BCOR, BMP4, YAP1,
and MITF, have been reported in patients with uveal coloboma2.
To our knowledge the FAT1 gene has not been previously asso-
ciated with microphthalmia and coloboma.

The FAT cadherins are involved in fundamental developmental
processes including cell–cell contact3, planar cell polarity4, cell
migration5, and maintenance of apical–basal polarity6 in epithe-
lial cells. Loss of FAT1 function causes decreased epithelial cell
adhesion and podocyte foot process effacement, resulting in
abnormal glomerular filtration and nephropathy in humans and
mouse, and cystic kidney in zebrafish7,8. Fat1−/− mice also dis-
play partially penetrant anterior neural tube closure defects due to
reduced actin accumulation, leading to apical constriction defects
in the neural epithelium9. These developmental observations in
epithelial cell types suggest that FAT1 plays an important role in
epithelial cell–cell adhesion and/or sheet fusion. Epithelial sheet
fusion is one of the most critical morphogenetic events occurring
during embryonic development, failure of which causes clinically
well-characterized congenital defects including, neural tube clo-
sure defects (e.g. spina bifida), secondary palatal epithelial fusion
defects (e.g. cleft palate), defective fusion of bilateral urogenital
primordia (e.g. hypospadias), and optic fissure closure defects
(e.g. coloboma)10.

We here report five unrelated families exhibiting a syndromic
form of coloboma associated with homozygous frame-shift
mutations in the FAT1 gene. We demonstrate that Fat1 knock-
out mice and zebrafish homozygous for truncating fat1a muta-
tions exhibit coloboma, supporting the causality of these muta-
tions and pointing to an evolutionary conserved role of Fat1 in
eye development and optic fissure closure. Furthermore, studies
conducted in human primary retinal pigment epithelium (RPE)
cells point to a defect in optic fissure margin fusion likely caused
by loss of FAT1 at the earliest cell–cell contacts that mediate optic
fissure fusion.

Results
FAT1 mutations cause a syndromic form of colobomatous
microphthalmia. We identified homozygous frameshift variants
in the atypical protocadherin FAT1 by whole exome sequencing
(WES) and Sanger sequencing confirmation in 10 affected indi-
viduals from five unrelated consanguineous families of Middle-
Eastern, Turkish, Pakistani, and North-African descent (Fig. 1a,
b, Table 1). Patients presented with a previously undescribed
syndrome including ocular abnormalities, nephropathy, syndac-
tyly of the toes, and facial dysmorphism (Fig. 1c–i, Table 1).
Seven patients presented with bilateral ptosis and two patients
had unilateral ptosis (9/10, Fig. 1c). Ocular abnormalities inclu-
ded amongst others microphthalmia (4/10, Fig. 1d) iris coloboma
(3/10, Fig. 1e), retinal coloboma (6/10, Fig. 1f, g), and severe
amblyopia (5/10). The size of the eye was determined by mea-
suring the axial length of the eye with an echo-biometer. Optical
coherence tomography (OCT) images of individual F2-IV-1 are
provided in Supplementary Fig. 1. Syndactyly of the toes was seen
in 8 out of 10 patients and affected predominantly the 3rd and

4th digits (Fig. 1h). X-ray of the feet demonstrated cutaneous
syndactyly (Fig. 1i) in patient F2-IV-1. Patients F3-IV-1 and F3-
IV-3 presented with bone fusion of phalanges 3–4 on the right
foot and hypotrophy of phalanx 2 of the left foot (Fig. 1h).
Dysmorphic facial features included high arched eyebrows, a long
philtrum, long nose, and elongated appearance of the face
(Fig. 1c). Affected individuals from families 1 and 2 had normal
intellectual development corresponding to their age whereas
patients F3-IV-3, F4-II-3, and F5-II-1 presented with intellectual
disability. Patient F3-IV-1 presented with stage 5 chronic kidney
disease at the age of 20 and a biopsy showed focal segmental
glomerulosclerosis. His brother, patient F3-IV-3, developed
intermittent proteinuria with normal kidney function at the age
of 20 years. Patient F5-II-1 was hospitalized at the age of 15 years
with proteinuria and hematuria and renal biopsy displayed glo-
merulotubular nephropathy (Supplementary Fig. 2)8. Clinical
follow-up of the other patients revealed asymptomatic proteinuria
in two siblings from family 1 (patients IV-1 and IV-5).

In all five families mutated alleles were inherited recessively
from each of the unaffected consanguineous parents (Fig. 1a).
Identified variants were absent in 123,136 exomes and 15,496
genomes from the Genome Aggregation Database (gnomAD,
accessed November 2017)11 and 2497 individuals from the
Greater Middle East (GME, accessed November 2017) Variome
Project12. Furthermore, variant c.2207dupT (p.I737NfsX7) found
in Moroccan families 1 and 2 was absent in 400 alleles of
individuals of Moroccan descent. All four variants are predicted
to results in a premature truncation of the FAT1 protein at amino
acids 744, 871, 1043, and 3270, respectively (Fig. 1b). The
gnomAD database contains only 46 LoF variants (expected
number of LoF variants: 144) and none of them in homozygous
condition, in comparison to 2601 missense variants (expected
number of missense variants: 2585). We performed two-point
linkage analysis for the FAT1 variants using genotype and
pedigree information (Fig. 1). Assuming an autosomal recessive
inheritance and a penetrance of 0.99, we obtained a combined
maximal LOD score of 5.3 for the FAT1 variants. Patients F5-II:1
and F4-II-3 had been previously published, of whom the latter
was diagnosed with Dubowitz syndrome (OMIM: 223370),
although sequencing of NSUN2 was negative13.

Deletion of Fat1 leads to coloboma in mouse and zebrafish.
Given the important role of FAT1 in forming the earliest cell–cell
contacts in epithelia3 and in maintaining epithelial junctional
integrity3,7,8, we hypothesized that FAT1 is involved in optic
fissure fusion via epithelial cell-mediated fusion and thereby
underlies the coloboma observed in patients. We analyzed the
spatio-temporal mRNA expression of Fat1 in the developing wild
type (WT) mouse eye at E10.5, E11.5, and E12.5, approximately
corresponding to “before”, “during”, and “after” optic fissure
closure. Fat1 had a dynamic expression at the mouse optic fissure
margins, periocular mesenchyme, and optic cup with specific
spatio-temporal patterns during optic fissure closure (Fig. 2). Fat1
was expressed in the optic cup, including apposing edges of the
optic fissure, in the lens vesicle, and periocular mesenchyme
(POM) (Fig. 2a–c). Fat1 was more highly expressed in the nasal
than in the temporal portion of presumptive neural retina
(Fig. 2b). Expression of Fat1 in POM was elevated in the ven-
tral compartment as compared to the dorsal compartment
(Fig. 2d–f). The spatio-temporal pattern of Fat1 expression sup-
ports the hypothesis of Fat1 involvement in optic fissure closure.
Next, we performed morphological and histological analysis of
Fat1−/− mouse embryos at embryonic day (E) 14.5 which
demonstrated completely penetrant coloboma (n > 20), recapitu-
lating the prominent developmental eye defect observed in
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Fig. 1 Recessive frameshift mutations in FAT1 cause a new clinical syndrome. Pedigree of family 1–5 (a). A schematic of human FAT1 start/stop
codon, exons, location of mutations previous published and identified in this study (top panel). The FAT1 protein is 4588 amino acids long and contains
34 cadherin repeats (CA), followed by five epidermal growth factor (EGF)-like repeat domains (E), a laminin G domain (LamG), a transmembrane
domain (green), and an intracellular domain (bottom panel). Family 1 and 2 were found to carry the same homozygous frameshift variant c.2207dupT
(p.I737NfsX7) in FAT1 (NM_005245). In Families 3–5 we identified, respectively, the following homozygous frameshift FAT1 variants: c.2600_2601delCA
(p.T867IfsX4), c.9729del p.(V3245LfsX25), and c.3093_3096del (p.P1032CgsX11). H homozygous, h heterozygous (b). Ophthalmic features observed
in patients included ptosis; bilateral in patients F1-IV-1, F1-IV-3, F1-IV-5, F2-III-3, F2-IV-3, F3-IV-1 and unilateral in F2-IV-1, F4-II-3 (c), microphthalmia (d),
iris coloboma (e), large chorioretinal coloboma containing the papilla/optic nerve with two other smaller circumscribed chorioretinal colobomas
localized above the papilla (f), and retinal coloboma (g). Skeletal abnormalities included syndactyly in the majority of patients and bone fusion of
phalanges 3–4 on the right foot and hypotrophy of phalanx 2 of the left foot in patient F3-II-2 (h). X-ray of the feet demonstrating cutaneous syndactyly in
patient F2-IV-1 (i)
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affected individuals. At E14.5, when the optic fissure is completely
fused in WT (Fig. 2g–i), Fat1−/− mice showed unfused margins
(Fig. 2n, o) and/or persistence of POM—including early hyaloid
vessel precursors (Fig. 2k, l, arrow) interposing between the
closing edges of the fissure. Compared to wild-type (WT)
embryos (Fig. 2g) FAT1−/− mouse exhibited microphthalmia
(Fig. 2j, m). The coloboma phenotype was observed to be

completely penetrant in the homozygous mutant mice and was
never observed in heterozygous mutant mice. Occurrence of
unfused optic fissure margins apposed to each other and presence
of POM tissue in the choroid fissure obstructing the fusion of
optic fissure margins, suggests multiple mechanisms like fusion
and morphogenetic defects contributing towards the coloboma
phenotype.

Table 1 Clinical characteristics of homozygous FAT1 mutations carriers

Family 1 Family 2 Family 3 Family 4 Family 5

IV:1 IV:3 IV:5 III:2 IV:1 IV:3 IV:1 IV:3 II:3 II:1

FAT1 mutation
(All
homozygous)

c.2207dupT (p.I737NfsX7) c.2207dupT (p.I737NfsX7) c.2600_2601delCA (p.T867IfsX4) c.9729del (p.
V3245LfsX25)

c.3093_3096del
(p.P1032CfsX11)

Ethnicity Morocco Morocco Middle-East Pakistan Turkey
Consanguinity + + + + +
Sex F M M F F M M M M M
Age (years) 39 34 18 36 8 2 27 24 8 8
Intellectual
disability

− − − − − − − + + +

Ocular features
Iris coloboma − − B U − B − − − −
Retinal

coloboma
B − B B B B − U − −

Ptosis B B B B U B − B U B
Microphtalmia − − B − U U − U – −

Feet abnormalities
Syndactyly − 3rd−4th RF,

3rd−4th LF
3rd−4th
RF, 3rd-5th
LF

3rd
−4th
RF

2nd–3rd
RF

1st–2nd LF,
3rd–4th RF

3rd–4th RF;
Bone fusion

3rd–4th RF; Bone
fusion; phalanx
hypotrophy

4th−5th
bilaterally

−

Renal manifestations
Nephropathy + − + − − − + + − +
Biopsy (at age) n/a n/a n/a n/a n/a n/a FSGS (20

years of
age)

n/a n/a TIN, MS, thin
GBM (12 years)

For a more detailed phenotype description see Supplementary Table 2
B bilateral, F female, FSGS focal segmental glomerulosclerosis, GBM glomerular basement membrane, LF left foot,M male,MS mesangial sclerosis, n/a not assessed, U unilateral, RF right foot, TIN tubular
interstitial nephritis; + phenotype present, − phenotype absent

WT FAT1–/– FAT1–/–
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Fig. 2 FAT1-/- mouse exhibit microphthalmia and completely penetrant coloboma. FAT1mRNA expression pattern in sagittal (a–c) and coronal (d–f) mouse
optic cup sections at E10.5 (a, d), E11.5 (b, e), and E12.5 (c, f). Compared to wild-type (WT) embryos (g–i, E14.5) FAT1−/− mouse exhibited microphthalmia
(j, m). Fused optic fissure margins of WT mouse embryos (E14.5, h, i; sagittal section) and unfused margins were seen in Fat1−/− mice (n, o) and/or
persistence of POM—including early hyaloid vessel precursors (k, l, arrow) interposing between the closing edges of the fissure (E14.5). D dorsal,
V ventral, T temporal, N nasal
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In zebrafish, fat1a expression was observed to be restricted to
the rostral end of the embryo (Supplementary Fig. 3a–d) during
the time of optic fissure closure (24-h post-fertilization), as has
been reported previously7. Morpholino-mediated knockdown of
the zebrafish fat1a using two different concentrations, consis-
tently resulted in coloboma (Supplementary Fig. 4a–d), which
was further confirmed by detailed histological analysis of day 3
post-fertilization larvae (Supplementary Fig. 4e–h). At lower
doses of morpholino the coloboma phenotype observed was
similar to that observed for mouse, where the two optic fissure
margins were very close to each other but failed to fuse. The
variability in morphant phenotype observed at high doses of
morpholino are depicted in Supplementary Fig. 5.

FAT1 is required for junctional integrity in human RPE cells.
To further investigate the role of FAT1 in optic fissure closure, we
studied human primary RPE, the cell type present at the leading
edge of optic fissure margins that mediates fissure closure14. The
fusion of optic fissure margins is initiated by cellular processes
emanating from the apposing edges of optic fissure margins,
observed using transmission electron microscopy (TEM) (Sup-
plementary Fig. 6a), and forming “simple appositional type,”
contacts15. The failure to fuse optic fissure margins represents a

classical epithelial fusion defect during eye development10. Using
confocal microscopy, we observed FAT1 immunostaining with F-
ACTIN fibers at the leading edges and filipodia of isolated RPE
cells (Supplementary Fig. 6b–d), as has been reported for other
epithelial cell types. The specificity of the FAT1 antibody used
was validated using mouse embryonic fibroblast (MEF) isolated
from WT and Fat1−/− mouse embryos (Supplementary Fig. 6c),
where FAT1 immuno-staining was observed at the earliest
cell–cell contacts in WT cells but was absent in FAT1−/− cells. In
sub-confluent RPE cultures, FAT1 localized with F-ACTIN fibers
at leading cell edges (Supplementary Fig. 6b, d) and with ZO-1 at
the earliest cell–cell interactions (Supplementary Fig. 6e),
respectively.

We usually culture RPE cells on a 2D trans-well culture system
where they form a polarized monolayer, to recapitulate in vivo
electro-physiological properties of RPE monolayer. In confluent
monolayer polarized RPE cultures, FAT1 localized at the cell
borders similar to the organized F-ACTIN filaments and ZO-1
staining (Fig. 3b, c top panels) suggesting that it might be
involved in formation or maintenance of cell–cell junctional
complexes. Short hairpin RNA (shRNA)-mediated knockdown of
FAT1 in sub-confluent RPE cultures resulted in loss of FAT1
from filopodia and disruption of ZO-1 immuno-staining at the
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Fig. 3 FAT1 knockdown disrupts F-ACTIN and ZO-1 localization in RPE. ShRNA-mediated knockdown of FAT1 in RPE cells was confirmed using Western
blotting (a, N= 3). Disorganization of F-ACTIN fibers (b) and loss of ZO-1 staining pattern (c) was observed in RPE cells upon knockdown of FAT1. Trans-
epithelial electrical resistance was measured at week one and two post-FAT1 knockdown to determine junctional integrity (d, N= 6). Scale bar is 20 µm.
Error bars represent standard error of mean, and statistical significance is at P < 0.05 (two tailed t-test) denoted by “*”. Raw data is provided in
supplementary section
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earliest cell–cell junctions (Supplementary Fig. 6d, e). Knockdown
of FAT1 in RPE cells before monolayer formation (Fig. 3a)
resulted in failure to organize F-ACTIN fibers (Fig. 3b), loss of
ZO-1 staining from cell–cell junctions (Fig. 3c), and significantly
reduced trans-epithelial barrier potential, suggesting compro-
mised junctional integrity (Fig. 3d). As such, FAT1 might play
an important role in the earliest RPE cell–cell junctions and
F-ACTIN filament organization during RPE monolayer forma-
tion. To further confirm our assumption that junctional
integrity is compromised due to FAT1 knockdown we studied
β-CATENIN staining which is known to localize at adherens
junctions. Although not as dramatic as loss of ZO-1 staining, we
observed a significant disruption of β-CATENIN staining
(Supplementary Fig. 7), confirming our assumption that FAT1
might be involved in establishing junctional integrity of RPE
monolayer. These observations were further supported by TEM
studies where shRNA-mediated knockdown of FAT1 resulted in
a failure to organize RPE cells into an epithelial monolayer
(Fig. 4a, b) and disrupted epithelial junctions (Fig. 4c, d). We
currently do not know if the failure to organize RPE cells into
an epithelial monolayer is primarily due to loss of FAT1 or a
secondary defect resulting from disrupted junctions.

Interestingly, in vivo differentiation of RPE from neuro-
ectodermal to an epithelial cell type is not affected by loss of
FAT1 as observed during mouse eye development (Fig. 2g–m).
No defects were observed in the organization of F-Actin fibers
and ZO-1 staining pattern in the RPE flat-mounts from WT and
Fat1−/− mouse embryos (Supplementary Fig. 8), suggesting a
specific role of FAT1 in epithelial sheet fusion by mediating

earliest cell–cell junctions, rather than differentiation towards
epithelial lineage.

The Fat1 cytoplasmic tail is involved in optic fissure closure.
We also studied the expression of the remaining Fat gene family
members, Fat2, Fat3, and Fat4, in the developing WT mouse eye
at E10.5, E11.5, and E12.5. Fat2, and Fat3 were not expressed in
the developing eye. The Fat4 mRNA expression pattern was
overlapping with that of Fat1 (Supplementary Fig. 9a–e). The
Fat4 mRNA expression was observed around the optic cup in
peri-ocular mesenchyme and RPE. Although, we observed that
both Fat1 and Fat4 had overlapping expression pattern in the
developing mouse eye, we only found Fat1 to be essential for
optic fissure closure in mouse and zebrafish. Unlike Fat1−/−

mice, no developmental defects, including microphthalmia or
coloboma were observed in Fat4−/− mice eyes by E12.5 (n= 20,
Supplementary Fig. 9g–l). Similarly, morpholino-mediated
knockdown of the zebrafish fat4 showed no apparent defects
during eye development. A similar observation was made during
zebrafish pronephros and lens epithelia development, where
morpholino-mediated fat1 knockdown, but not fat4, resulted in
cystic pronephros7 and loss of apical–basal polarity of Fat1−/−

mouse lens epithelia6. This is in line with the observation that
recessive mutations in FAT4 result in Van Maldergem syndrome
(MIM615546) and Hennekam lymphangiectasia-lymphedema
syndrome 2 (MIM616006), neither of which include coloboma
or any other eye defects.

Since FAT1 and FAT4 have similar extra-cellular domains, but
diverge significantly in the cytoplasmic region, we hypothesized
that the FAT1 cytoplasmic tail could be involved during optic
fissure closure. We therefore targeted the cytoplasmic tail region
of zebrafish fat1a using CRISPR/cas9 and selected for frameshift
truncating alleles, resulting in loss of the two preferred VASP/
MENA and the PDZ-binding domains located at the C-terminal
end, due to a premature stop codon (Supplementary Fig. 10a, b).
We observed optic fissure fusion defects in embryos with
homozygous alleles of truncated fat1a (Fig. 5a, b, e, f). This was
further confirmed by detailed histological analysis of optic cup
during the time of optic fissure fusion (Fig. 5c, d, g and h). Sagittal
section through the zebrafish optic cups at the time of optic
fissure fusion revealed abnormal organization of the optic fissure
margins and migration and/or delayed differentiation of the RPE
cells at the optic fissure margins (Fig. 5d, h, black arrows) in
homozygous fat1a mutants. Compromised structural integrity
of RPE monolayer around the optic cup of homozygous fat1a
mutants was also observed, pointing towards a combination of
morphogenetic and structural organizational defects as the
cause of fissure margins fusion failure. These observations also
suggest that VASP/MENA and PDZ-binding domains located in
the cytoplasmic tail of FAT1 are involved in optic fissure closure.

Discussion
We here identified five unrelated families presenting with a new
syndrome consisting of colobomatous microphthalmia, ptosis,
and cutaneous syndactyly with or without glomerulotubular
nephropathy, associated with homozygous frame-shift mutations
in the FAT1 gene. The causal relation between loss of function
mutations in FAT1 and coloboma was established through studies
in mice and fish loss-of-function models, underscoring a highly
conserved role of FAT1 during vertebrate eye development. We
demonstrated for the first time that FAT1 is expressed in human
primary RPE cells, the primary site for optic fissure margins
fusion, placing it exquisitely at the precise cell type and location
for facilitating optic fissure fusion during vertebrate eye devel-
opment. Using an in vitro culture system, we showed that FAT1

*

Scrambled

2 μm 2 μm

500 nm500 nm

FAT1 shRNA

a b

c d

Fig. 4 FAT1 knockdown results in a failure to organize RPE cells into a
monolayer. Transmission electron miscroscopy (TEM) of RPE cells cultured
on trans-wells for 2 weeks following treatment with scrambled (a, c) and
FAT1 shRNA (b, d). A transverse section depicting RPE cells (*, scale
bar is 2 µm) sitting on top of trans-well membrane (a, arrow). A higher
magnification showing epithelial tight junction (c, d, arrow, scale bar is
500 nm) between two neighboring cells
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is essential for establishment of the earliest cell to cell junctions,
F-Actin organization, and maintenance of junctional integrity
of RPE monolayer.

The novel clinical syndrome we describe here joins the growing
list of human conditions involving both coloboma and renal
disease. The differential diagnosis includes amongst others
CHARGE, Papillorenal, Temtamy, and Klippel–Feil syndromes.
Mutations in SALL1/SALL2, YAP1 and STRA6 also result in a
syndromic form of coloboma with a renal phenotype8,16.
Although we found a strikingly high penetrance of ocular and
limb defects in affected individuals, renal dysfunction was less
prominent. We found a wide spectrum of renal involvement
ranging from asymptomatic proteinuria (3/10) to severe
nephrotic syndrome (2/10). In addition, in some of the affected
individuals, proteinuria was only present intermittently. We
therefore recommend that asymptomatic FAT1 patients should
undergo clinical evaluation of kidney function, which should
be repeated on a regular basis. FAT1 is another example of a
gene wherein genetic variation has pleiotropic effects, with
biallellic missense variants leading to non-syndromic glomer-
ulotubular nephropathy and homozygous frameshift variants
causing the broad multi-system disorder that we describe here.

Our mechanistic studies in mice, zebrafish, and RPE cell cul-
tures support the causality of FAT1 biallellic frameshift variants
in the pathogenesis of coloboma, and for the first time implicate
FAT1 in optic fissure fusion during eye development. During
optic fissure closure apposing margins of the presumptive neural
retina that are lined by presumptive RPE adhere initially by cel-
lular protrusions (Supplementary Fig. 6a), then proceed to form
more stable appositional junctions17 and subsequently undergo
differentiation of the RPE and neuroepithelium to yield a com-
plete eye where RPE is overlying neural retina. In our previous
study we showed that genes that are dynamically expressed at the
apposing edges of the optic fissure margins during the process of
optic fissure closure are important in this developmental pro-
cess18. Tissue collected from optic fissure margins in wild-type
mouse embryos at E10.5, E11.5, and E12.5—approximately
corresponding to “before”, “during”, and “after” optic fissure
closure—identified the important role of Nlz genes in optic fissure
closure in mouse and zebrafish18. In the same screen we inde-
pendently identified FAT atypical cadherins as potential candi-
dates for optic fissure closure18. Though we were not able to show
FAT1 immunoreactivity at the earliest cellular processes that

initiate the optic fissure fusion process, due to technical difficul-
ties, we did observe the presence of Fat1 mRNA at the leading
edges of the optic fissure margins (Fig. 2b, c, e, f). In cell culture
experiments we observed FAT1 immunoreactivity at leading
edges, filopodia, and earliest cell–cell contacts of RPE cells
(Supplementary Fig. 6b–e). Neural tube closure, like optic fissure
fusion, is a classical epithelial sheet adhesion and fusion mor-
phogenetic event. Fat1−/− mice display partially penetrant
anterior neural tube closure defects due to reduced actin accu-
mulation, leading to aberrant apical constriction in the neural
epithelium cells9. The presence of optic fissure and neural tube
closure defects supports the role of FAT1 in epithelial cell–cell
adhesion and/or fusion

We demonstrate that FAT1 plays an essential role in formation
and maintenance of junctional integrity. The observations that
support this finding include disruption of ZO-1 and β-CATENIN
immuno-staining at the earliest cell–cell junctions, failure to
organize F-ACTIN fibers and failure of RPE cells to organize an
epithelial monolayer resulting in reduced trans-epithelial barrier
potential. Disrupted epithelial junctions suggests a critical role of
FAT1 in formation and maintenance of earliest cell–cell junc-
tions. In line with the ocular and kidney involvement in affected
individuals, loss of FAT1 results in decreased cell adhesion in
podocytes (an epithelial cell type), and disrupted lumen forma-
tion in renal tubular cells8.

Our work in zebrafish where we targeted the cytoplasmic tail
region of zebrafish fat1a using CRISPR/cas9 provides evidence
that VASP/MENA and PDZ-binding domains located in the
cytoplasmic tail of FAT1 are involved in optic fissure closure.
The FAT1 cytoplasmic tail acts as a binding partner for
β-CATENIN, RERE, ENA/VASP, and PDZ domain containing
proteins including SCRIBBLE. Previous studies have suggested
the association of coloboma with β-CATENIN19, RERE20,
and SCRIBBLE21; currently we do not know which of these
proteins are involved in FAT1-mediated coloboma. The ENA/
VASP proteins have been implicated in F-ACTIN polymeriza-
tion/reorganization during epithelial adhesion22, and establishing
FAT1-mediated initial cell–cell contact3,23.

While a failure to fuse the fissure margins during the process of
optic fissure fusion is a commonly appreciated cause for colo-
boma formation, and our data supports such a mechanism, it
could also be due in part to morphogenetic events. Our finding
that intervening peri-ocular mesenchyme can be observed
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Fig. 5 Zebrafish embryos with homozygous alleles of truncated fat1a display coloboma. CRISPR/Cas9-mediated introduction of frame-shift mutations in
FAT1 C-terminal resulted in optic fissure closure defects (a and e, scale bar is 0.1 mm). A higher magnification of eye depicting fused margins in WT and
unfused margins in homozygous mutant (*, b and f, scale bar is 0.05 mm). Sagittal sections of zebrafish embryos (24–30 hpf) followed by toludene blue
staining showing organization of the optic cup (c and g, scale bar is 50 µm). Higher magnification of the optic cup shows morphology of optic fissure
margins in WT and homozygous mutant (d, h, scale bar is 20 µm)
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obstructing fusion of fissure margins (Fig. 2k, l panels) also
provides evidence for an underlying morphogenic event that may
at least in part explain the coloboma phenotype. We acknowledge
that further work is needed to provide more detailed insight into
the latter mechanism.

Heterozygous loss of function mutations in human YAP1 and
loss of Cdc42 in mouse have been associated with ocular colo-
boma24. These two genes have both been implicated in Hippo
signaling25. Yes-associated protein (YAP) is a downstream tran-
scriptional co-activator inhibited by Hippo signaling has a crucial
role in nephron induction and morphogenesis25, and specifica-
tion of RPE cell fate during eye development14. Cdc42 has been
shown to act upstream of YAP in nephron progenitor cells to
promote YAP-dependent gene expression necessary to form
functioning nephrons25. Tissue-specific deletion of Yap1 as well
as Cdc42 in mouse results in strikingly similar and severe defects
in kidney development25. The PDZ-binding domain of FAT1 has
been shown to recruit Scribble for mediating Hippo signaling that
leads to Yap inhibition, during pronephros development in zeb-
rafish7. Recently, loss of FAT1 has been shown to decrease Cdc42
activity8. Furthermore, in vitro studies in HEK293 cells showed
that FAT1 knockdown results in nuclear accumulation of
YAP126. Together, these data suggest that the ophthalmic phe-
notype due to loss of FAT1 may also result from deregulated
YAP1 activity. However, shRNA-mediated knock-down of FAT1
in primary human RPE monolayer on trans-wells showed no
significant differences in YAP/TAZ localization pattern compared
to scrambled shRNA control (Supplementary Fig. 11a). Also,
protein levels (n= 3) of total YAP/TAZ and phosphorylated
form of YAP (pYAP-Ser127) were unchanged in scrambled and
FAT1 shRNA-treated RPE monolayers (Supplementary Fig. 11b).
Similarly, no differences were observed in YAP/TAZ-staining
patterns between MEF cells isolated from WT and Fat1−/−

mouse embryos (Supplementary Fig. 11c). Moreover, YAP
immunostaining in mouse E11.5–12.5 optic cup sections (sagittal)
identified no differences in the pattern of YAP staining between
WT and Fat1−/− mouse presumptive neural retina and RPE cells
(Supplementary Fig. 11d), While we did not observe any sig-
nificant changes in YAP levels and localization upon loss of FAT1
in our experiments, additional studies on mechanisms by which
FAT1 regulates YAP1 during eye development are warranted.
Since we observed FAT1 RNA labeling in POM it is possible that
FAT1 could be involved in regulating YAP levels in the POM but
not in the RPE.

In conclusion, our study associates FAT1 frameshift mutations
to a previously undescribed clinically recognizable syndrome
consisting of ophthalmic, facial, renal, and skeletal abnormalities.
Fat1 ablation in mice and zebrafish showed a similar ophthalmic
phenotype, for the first time underscoring the fundamental and
evolutionary conserved role of the atypical cadherin FAT1 during
optic fissure closure. FAT1 also seems to be involved for earliest
cell–cell contacts, apical junction formation, and F-ACTIN re-
organization in primary human RPE cells. Our study identified
FAT1 as another example of a gene wherein genetic variation has
pleiotropic effects, where biallellic missense variants lead to non-
syndromic glomerulotubular nephropathy and homozygous fra-
meshift variants lead to a broad multi-system disorder.

Methods
Clinical evaluation and WES. Patients were referred to the Department of Clinical
Genetics for further comprehensive genetic analyses and counseling. The study
protocol was approved by the local Institutional Review Boards where the patients
were followed and signed informed consent was obtained from the patients or their
parents. The authors affirm that human research participants provided informed
consent, for publication of the images in Fig. 1. Sequencing protocols and mean
coverage for each family is summarized in Supplementary Table 1.

For family 1, genome-wide homozygosity mapping was performed in patients
IV-1, IV-3, IV-5, and their parents, by using the Affymetrix 250K NspI SNP
genotyping microarray. Multipoint LOD scores across the whole genome were
calculated using the MERLIN software (http://www.sph.umich.edu/csg/abecasis/
Merlin), assuming recessive inheritance with complete penetrance. Three regions of
homozygosity were shared by the three affected siblings: on chromosome 4 with a
size of 9.5 Mb, on chromosome 13 with a size of 1Mb, and on chromosome 17
with a size of 2.2 Mb. Because of the high number of genes present in these regions,
WES was then conducted in patients IV-3 and IV-5, and their parents using
Agilent SureSelect libraries and sheared with a Covaris S2 Ultrasonicator. Exome
capture was performed with the 51Mb SureSelect Human All Exon kit v5 (Agilent
Technologies). Sequencing was carried out on a pool of barcoded exome libraries
using a HiSeq 2500 instrument (Illumina), generating 100 + 100 bp paired-end
reads, with a mean depth of coverage of ×140. After demultiplexing, paired-end
sequences were mapped to the reference human genome (GRCh37/hg19 assembly,
NCBI) using Burrows–Wheeler aligner (BWA). Downstream processing was
performed using the Genome Analysis Toolkit (GATK)17, SAMtools27, and Picard.
Variant calls were made with the GATK UnifiedGenotyper. Variant annotation
was based on Ensembl release 71. Variants were filtered against publicly available
SNPs plus variant data from more than 7000 in-house exomes (Institut Imagine).

In family 2, the coding exons were captured using the Agilent SureSelect
Human All Exon v5 and sequenced on the Hiseq2000 sequencer (Illumina) at a
target mean depth of 50 reads per target base. SOAPaligner (version 2.21) was used
to align sequence reads to the human reference genome (NCBI build 37/hg19). For
single nucleotide variants, functional annotation was performed with SOAPsnp.
For insertion/deletion detection, we aligned sequence reads by BWA and
performed annotation with GATK.

In family 3, patient genomic DNA was isolated, followed by exome capture
using the SureSelect Human All Exon kit V4 (Agilent technologies Inc).
Sequencing of captured fragments was performed on the HiSeq2500 platform with
a mean depth of coverage of 84X After alignment of sequence reads, the DNAnexus
software (Palo Alto, CA, release October 2011) was used to perform variant calling
with the human reference genome (NCBI build 37/hg19) as reference. Variant
filtering was subsequently performed against public databases (dbSNP129,
HapMap, 1000 Genomes).

In family 4, exome capture for WES was performed using the NimbleGen
SeqCap EZ Human Exome Library (Roche NimbleGen Inc., Madison, WI).
Sequencing of paired-end 100 bp fragment reads was performed on the Illumina
HiSeq2000 with a mean depth of coverage of ×90. The VarBank v.2.1 data analysis
pipeline was used for mapping, alignment, and variant calling. Alignment of
sequenced reads, indexing of the reference genome, variant calling, and annotation
was conducted using a pipeline consisting of BWA, Samtools, Picard, and
Annovar28.

In family 5, genomic DNA was isolated from blood lymphocyte or saliva
samples. Exome capture for WES was performed using the SureSelect Human All
Exon kit V5 (Agilent technologies Inc). Subsequently, captured fragments were
sequenced on the llumina HiSeq2000 with a mean depth of coverage of ×50. The
CLC Genomics Workbench™ (version 6.5.2) software (CLC bio, Aarhus, Denmark)
was used to align sequence reads to the human reference genome (NCBI build 38/
hg19). Variant filtering was then performed against public databases (dbSNP147
and 1000 Genomes). We excluded synonymous and intronic variants that were not
located at splice sites. WES data was evaluated for potential disease-causing
mutations in >50 known monogenic genes associated to nephrotic syndrome. A
second round of filtering of the remaining variants was conducted using public
databases (EVS server, ExAC, gnomAD and 1000 Genomes). Variants identified in
families 1–5 were validated using Sanger sequencing and whenever parental DNA
was available, segregation analysis was performed. A combined LOD score across
the families was calculated using phenotype, genotype, and pedigree information of
each family by two-point linkage analysis with the use of the Superlink-Online
software package29 with the assumption of a recessive pattern of inheritance, a
disease-allele frequency of 0.001 and a penetrance of 0.99.

Genotyping of FAT1 c.2207dupT in Moroccan controls. Blood samples from the
umbilical cord were collected from 200 unrelated newborns. Individuals originated
from different regions in Morocco and the Moroccan origin of parents and
grandparents was established. DNA was extracted from 3mL blood with standard
salting-out method. Informed consent was obtained from the parents. We devel-
oped a realtime polymerase chain reaction (PCR; Applied Biosystems 7500 Fast
Real-Time PCR Systems) assay using TaqMan probes for the FAT1 c.2207dupT
mutation (Table 1), and validated the assay using homozygous and heterozygous
members of Family 1.

Animal breeding and maintenance. All animal studies were performed in
accordance with the NEI/NIH animal ethics committee guidelines (NEI-605 and
NEI-648). C57BL/6J mice were obtained from Jackson Laboratories (Bar Harbor,
ME). Fat1 and Fat4 knockout mice have been described previously6 and were
housed and bred according to an NEI-approved animal study protocol (NEI-605).
Embryo harvesting was performed according to standard protocol, with E0.5
marking the day after the appearance of a cervical mucus plug. Adult zebrafish
were maintained in an automated fish housing systems following a standard
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protocol and zebrafish embryos were maintained at 28.5 °C in fish embryo medium
as previously described30.

Histological and in situ staining of mouse tissue. Mice were euthanized using
carbon dioxide followed by cervical dislocation. Isolated mouse embryos for his-
topathology were dissected on ice-cold phosphate buffered saline (PBS) and fixed
overnight in phosphate-buffered 4% paraformaldehyde at 4 °C. Methacrylate sec-
tions through the optic fissure (eyes) or in appropriate sagittal orientation, stained
with hematoxylin and eosin (H&E), were used for histopathology. In situ hybri-
dization was performed using a Fat4 probe that included the 3′ UTR cloned into a
plasmid as previously described4,31. The plasmid for generating the Fat1 probe (ID
6841037) was from Open Biosystems (Lafayette, CO, USA). In situ and immu-
nofluorescence staining of mouse cryo-sections was performed as previously
described32. For RPE flat-mounts, mouse embryonic (E14.5–15.5) eye cups were
isolated and dissected to remove presumptive neural-retina. The surrounding
choroidal tissue was not removed completely to provide structural support to
the RPE monolayer. The dissected out RPE was immuno-stained with ZO-1 and
F-Actin as described below. The plane of RPE during confocal imaging of flat-
mounts was determined by adding a transmitted PMT (T-PMT) to visualize the
location of melanosomes present on the apical side of RPE.

Zebrafish embryo manipulation by morpholino and CRISPRcas9. Previously
described zebrafish fat1a translation-blocking morpholino oligonucleotides7,8

(Gene Tools LLC., Philomath, OR), diluted in 0.1 M KCl, nuclease-free water and
phenol red, were injected (0.45 and 0.52 pMol) in freshly fertilized zebrafish
embryos at the one cell stage. The knockdown experiments were repeated using a
different morpholino fat1a (TTTGCAGCGCACTCCTCTCTGAAAC) to validate
the results. The zebrafish fat4 morpholino (CCGGGTTTTCCCGAGCCTCATAC
AT) which has been previously reported7, and the injection control morpholino
(CCTCTTACCTCAGTTACAATTTATA), were used as described above for the
fat1a morpholino.

CRISPR targets and primers spanning the targets were selected using the online
tool CHOPCHOP33. The selected target had no off-target sequences of homology.
The oligonucleotides containing T7 promoter, target, guide RNA scaffold, and
termination signal sequences were purchased from IDT (Coralville, IA) in the form
of gBlocks® fragments. Guide RNA were synthesized in vitro by driving
transcription mediated by T7 promoter using the HiScribe™ T7 High Yield RNA
Synthesis Kit (NEB, Ipswich, MA). For targeting the cytoplasmic tail of zebrafish
fat1a, ~1 nL of in vitro synthesized guide RNA (200 ng/µL) and Cas9 protein
(500 ng/µL) were injected in one-cell stage embryos (F0 embryos). F0 embryos
were maintained until adulthood and then outcrossed to WT ABTL to isolate
F1 progenies carrying frame-shift mutations in the germline. The selected F1
progenies were inbred to generate F2 embryos that were screened for coloboma
phenotype and confirmation by genotyping. Zebrafish fat1a mutants were
maintained as heterozygotes and inbreed to generate homozygous mutants.

Cell culture experiments. Mouse embryonic fibroblast cells were derived from
embryonic day 12.5 (E12.5) embryos as described previously34. Primary human
fetal RPE cells kindly provided by Dr. Sheldon Miller, derived from cadaver eyes
obtained from Advanced Bioscience Resources (Alameda, CA, USA). RPE cells
were cultured in Primaria® tissue culture flasks (BD Biosciences, Franklin Lakes,
NJ) in culture medium based on MEM-α, as described previously35. Once con-
fluence was reached, cells were seeded onto vitronectin-coated polystyrene-based
trans-wells placed in the wells of a 12-well plate or four-well chamber slides for
shRNA-mediated knockdown, immuno-fluorescence staining, and confocal
microscopy, as described previously36. FAT1 (SHCLNV-NM_005245) and
scrambled (SHC016H) shRNA lentiviral transduction particles were purchased
from Sigma Aldrich (St. Louis, MO, USA). Lentiviral transduction was performed
48 h post seeding on four-well chamber slides followed by fixation and immuno-
fluorescence staining 48 h post transduction. In trans-well culture system, shRNA
lentiviral transduction was performed 48 h and again at 120 h post seeding, fol-
lowed by electron microscopy and immunofluorescence staining 2 weeks post
transduction. Trans-epithelial resistance of RPE monolayers on trans-well cultures
was measured using EVOM2 (World Precision Instruments, Sarasota, FL, USA) at
1 and 2 weeks post-shRNA transduction, as described by manufacturer (https://
www.wpiinc.com/var-2754-epithelial-volt-ohm-teer-meter). For TEM, mouse eyes
(E11.5) and RPE monolayers on trans-wells (2 weeks post transduction) were
processed as previously described37. Briefly, specimens were doubly fixed in
gluteraldehyde (2.5% in PBS) and osmium tetroxide (0.5% in PBS), dehydrated,
and embedded in Spurr’s epoxy resin. Ultrathin sections (90 nm) were prepared
and double-stained with uranyl acetate and lead citrate, and viewed with JEOL
JEM-1010 (Peabody, MA, USA) and photographed.

Immunofluorescence staining of cells and confocal imaging. Cultured cells were
fixed for 15 min in 4% paraformaldehyde (PFA) in PBS. After washing with 1× PBS
and permeabilization and blocking in ICC buffer (0.5% BSA, 0.5% Tween, and
0.1% triton X100 1× PBS). Cells were then incubated overnight at 4 °C with the
primary antibody in ICC buffer (1:100 dilution). After multiple washes in PBS, the
cells were incubated for 1 h at room temperature in Alexa488 or 555 conjugated

goat anti-rabbit and/or ant-mouse antibody or Phalloidin (Abcam ab176756,
ab176753) and Hoechst33342 (1:1000 dilution in ICC buffer). Cells were then
washed in PBST before mounting with Fluoromount-G® (SouthernBiotech, Bir-
mingham, AL, USA) imaging. Primary antibodies used were FAT1 (Abcam:
ab190242 and EMD Millipore: MABC612), YAP/TAZ (Cell Signaling Technology:
8418), FITC-tagged ZO-1 (Invitrogen: 33–9111). FAT1 antibody specificity was
confirmed in mouse embryonic fibroblast derived from WT and Fat1−/− mouse.

Zeiss confocal microscopes 700 and 880 coupled with Airyscan® detector was
used for confocal imaging. The images were analyzed using ZEN Software
(Carl Zeiss Microscopy LLC, Thornwood, NY). The cell culture experiments were
repeated three times for each scrambled and FAT1 shRNA conditions.

Western blotting. For Western blotting cells were lysed with RIPA lysis buffer
(Sigma-Aldrich, St. Louis, MO) containing protease inhibitor cocktail and Halt™
phosphatase inhibitor cocktail (Pierce Biotechnology), centrifuged at 14,000 × g,
and supernatant was collected. Total protein concentration was determined by
BCA protein assay kit (Pierce Biotechnology, Foster City, CA, USA). Samples
(40 µg/each well) were SDS–PAGE electrophoresed using Criterion XT system for
high molecular weight proteins (XT-running buffer, XT-sample loading dye and
3–8% Tris–acetate pre-casted gels Bio-Rad, Hercules, CA, USA), blotted onto
polyvinylidene fluoride (PVDF) membranes (Bio-Rad) and immunoreacted with
antibodies to FAT1 (Abcam: ab190242), YAP/TAZ (Cell Signaling Technology:
8418), phosphor YAP- Ser127 (Cell Signaling Technology:13008), and β-ACTIN
(Cell Signaling Technology: 3700) for normalization (1:1000 dilution). The
membranes were then incubated with secondary antibodies (LI-COR, goat anti-
mouse IRDye 800CW or donkey anti-rabbit IRDye 680RD, 1: 20,000 dilution)
for 45 min at room temperature followed by washings, scanned using the Odyssey
infrared scanner and analyzed using Image Studio Lite Ver.4.0 (LI-COR Inc.,
Lincoln, NE, USA). Uncropped scan of the blots is provided in the Supplementary
Information section.

URLs. For dbSNP, see http://www.ncbi.nlm.nih.gov/SNP/; for CHOPCHOP, see
http://chopchop.cbu.uib.no; for 1000 Genomes Project, see http://
www.1000genomes.org/; for NHLBI ESP6500 databases, see http://evs.gs.
washington.edu/EVS/; for VariantDB, see http://www.biomina.be/app/variantdb;
for ANNOVAR, see http://www.openbioinformatics.org/annovar/; for NCBI Map
Viewer, see http://www.ncbi.nlm.nih.gov/mapview/; for Exome Aggregation Con-
sortium (ExAC), Cambridge, MA, see http://exac.broadinstitute.org; for Genome
Aggregation Database (gnomAD), Cambridge, MA, see http://gnomad.
broadinstitute.org.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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