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Fig. S1: MTBP mutants of methylation (mut-Met.) and ubiquitylation/sumoylation (met-

Ubi.) sites do not result in obvious defects in genome replication. 

A/B) Hela Flip-In T-Rex cell expressing RNAi-resistant MTBP-wild type (WT), MTBP mut-

Met., MTBP mut-Ubi., or no transgene were treated with control siRNA (siCtr) or siRNA 

against MTBP (siMTBP) and doxycycline, stained with anti-5 bromo-2’deoxyuridine (BrdU) 

after pulse-labelling and by propidium iodide (PI). Quantification of replication activity for 

each cell line is shown in A and cell cycle distribution in B. Error bar: SEM; n =3; MTBP 

mutants: MTBP-mut-Met., amino acid exchanges, K739A; MTBP-mut-Ubi., amino acid 

exchanges, K570R, K591R, K604R, K608R, K627R, K630R, K642R, K752R; Significance 

tests as in 2D/E. In (B) are indicated differences in G2/M population distribution. 

C) Expression levels of methylation and ubiquitylation MTBP mutants is similar to MTBP-

WT. Whole cell lysates of stable cell lines cells described in C were analysed by 

immunoblotting using anti-MTBP (12H7) and Ponceau (Pon.) staining. 
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Fig. S2: Expression level of MTBP-23A is lower than MTBP-WT.  Soluble cell lysates of 

293T cells transiently transfect with C-terminally 3xFlag-TEV2-GFP-tagged MTBP-wild type 

(WT), MTBP-23A or MTBP-14A were analysed by immunoblotting using anti-MTBP (12H7) 

and Ponceau (Pon.) staining. MTBP-23A, amino acid exchanges S17A, S55A, T265A, S270A, 

S336A, T386A, S388A, T439A, T441A, T531A, T577A, S579A, T611A, T687A, S738A, 

S755A, S761A, T781A, T804A, S808A, S827A, S846A, S858A; 
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Fig. S3: RNAi-replacement system of endogenous MTBP in Hela-Flip-In cell lines. siRNA 

against MTBP (siMTBP) specifically eliminates endogenous, but not siRNA-resistant 

transgenes MTBP. Replacement of endogenous MTBP by siRNA as published 1,2. Whole cell 

lysates of Hela Flip-In T-Rex cell expressing RNAi-resistant MTBP-wild type (WT) were 

treated with control siRNA (siCtr) or siRNA against MTBP (siMTBP) and doxycycline as 

indicated and analysed by immunoblotting using anti-MTBP (12H7) and Ponceau (Pon.) 

staining. 

 

 

1 Boos, D., Yekezare, M. & Diffley, J. F. Identification of a heteromeric complex that 
promotes DNA replication origin firing in human cells. Science 340, 981-984, 
doi:10.1126/science.1237448 (2013). 

2 Kohler, K. et al. The Cdk8/19-cyclin C transcription regulator functions in genome 
replication through metazoan Sld7. PLoS Biol 17, e2006767, 
doi:10.1371/journal.pbio.2006767 (2019). 
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Fig. S4: Expression levels of checkpoint kinase site MTBP mutants are similar to MTBP-

WT. Cell lysates of Hela Flip-In T-Rex cell expressing MTBP-wild type (WT), MTBP-14D, 

MTBP-10D, MTBP-4D, MTBP-1D and MTBP-3D were analysed by immunoblotting using 

anti-MTBP (12H7) and Ponceau (Pon.) staining. 
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Fig. S5: ATR inhibitor VE-821 does not restore DNA synthesis in MTBP-14D cells 

A) Individual PI-BrdU density flow cytometry plots quantified for Fig. 3C. Upon siMTBP 

treatment, MTBP-WT and MTBP-14A cells showed normal profiles whilst parental control 

cells and MTBP-14D cells showed heavily compromised BrdU incorporation, regardless of 

presence of the ATR inhibitor VE-821 (6 µM) for 2 h. 

B) Whole cell lysates of cells treated as in A were immunoblotted to determine ATR activity 

levels by anti-phospho-S345-Chk1 antibody. Treatment with 2 mM hydroxyurea (HU) served 

as a control that induces strong ATR activity. Parental cells and MTBP-14D cells, but not 

MTBP-WT and 14A cells, induced detectable ATR activity, albeit less strong than HU. This 

suggests that severely compromising origin firing leads to ATR-checkpoint activation 

independently on the presence of MTBP-14D. Adding 6 µM VE-821 decreased ATR activity 

below levels detected in siCtr-treated MTBP-WT cells. This suggests that a) VE-821 inhibits 

ATR, and b) normally growing Hela cells have basal ATR-checkpoint activity. 
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Figure S5
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Fig. S6: Forced MTBP dimerization rescues phospho-mimetic MTBP checkpoint site 

mutants 

A) Expression levels of mutant and WT MTBP-GST and GFP are similar. GST-tagged MTBPs 

are always lower expressed than GFP-tagged MTBPs. Whole cell lysates of Hela Flip-In T-

Rex cell expressing MTBP-wild type (WT), MTBP-ΔC150, MTBP-5m, MTBP-4A, MTBP-

4D, MTBP-14A, or MTBP-14D were analysed by immunoblotting using anti-MTBP (12H7) 

and Ponceau (Pon.) staining. 

B/C) Forced MTBP dimerization of MTBP by GST fusion rescues deletion of the MTBP C-

terminus (ΔC150) and checkpoint kinase site aspartate mutants (4D, 14D), but not a Treslin 

non-binding MTBP mutant (5m). Quantification of replication by BrdU-PI-flow cytometry (B) 

or cell cycle distribution (C) of cell lines described in A. Most important samples are also 

shown in Figure 3. Replication activity and cell cycle distribution of Hela Flip-In T-Rex cells 

was measured after replacement of endogenous MTBP with indicated mutants. Cells were 

treated with control siRNA (siCtr) or siRNA against MTBP (siMTBP) and doxycycline, 

stained with anti-5 bromo-2’deoxyuridine (BrdU) after pulse-labelling and by propidium 

iodide (PI). Error bar: SEM; n= 4 (no transgene); 4 (MTBP-WT); 4 (MTBP-ΔC150); 4 (MTBP-

5m), 4 (MTBP-4A-GS4-GFP); 3 (MTBP-4A-GS4-GST); 3 (MTBP-4D-GS4-GFP); 5 (MTBP-

4D-GS4-GST); 3 (MTBP-14A), 3 (MTBP-14D-GS4-GFP), 5 (MTBP-14D-GS4-GST). 

Significance tests as in 2D/E. In (C) are indicated differences in G2/M population distribution. 
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Figure S6
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Fig S7: Measuring radio-resistant DNA synthesis by BrdU-flow cytometry 

A/B) Reduction of replication by ionising irradiation is dose-dependent. BrdU-PI-flow 

cytometry density plots of HeLa Flip-In T-Rex cells radiated at 130 kV, with a 0,5 mm-

aluminium filter at a dose rate of 1 Gy/72 sec (RX-650 Faxitron), with a total dose of 0, 6 , 10 

or 20 Gy, and BrdU pulse labelled 1h after irradiation, stained with anti-5 bromo-

2’deoxyuridine (BrdU) by propidium iodide (PI). B) shows a decrease in BrdU signals with 

increasing IR doses. Relative quantification of BrdU signals used normalisation to cells treated 

with 0 Gy. Log., logarithmic scale; lin., linear scale; [AU], arbitrary units. 

C/D) Reduction of replication by ionising radiation takes effect at 30 minutes after irradiation, 

is maximal around 3 h and recovers at later time points. Quantification of replication activity 

by BrdU-PI-flow cytometry as described in A of HeLa Flip-In T-Rex cells irradiated at 130 

kV, with a 3 mm-aluminium filter at a dose rate of 1 Gy/50 sec (Philips) with a total dose of 6 

Gy, and BrdU pulse labelled 0,5 h, 1 h and 3 h (C), or 3 h, 5 h, and 7 h (D) after irradiation, 

and stained as in A. Because a different x-ray unit with a different aluminium filter was used, 

6 Gy here are equivalent to 20 Gy in A/B. 

E) Reduction of replication by ionising radiation is dependent on the ATR kinase. Treatment 

of irradiated cells with ATR inhibitor VE-821 (6 µM) rescued replication activity to same 

levels as non-irradiated cells 1h after IR treatment. Flow cytometry PI-BrdU density plots of 

HeLa Flip-In T-Rex cells irradiated at 130 kV, with a 0,5 mm-aluminium filter at a dose rate 

of 1 Gy/72 sec (RX-650 Faxitron), with a total dose of 0 or 20 Gy, treated with DMSO or ATR 

inhibitor VE-821, and stained as in A. Quantification of BrdU signals are normalisations to 

cells treated with 0 Gy and DMSO. 

 

14



A

C D

B

E

Gamma
irradiation (Gy) 0 

G
y

6 
G

y

10
 G

y

20
 G

y

N
or

m
al

is
ed

 re
pl

ic
at

io
n 

ac
tiv

ity

0.00

0.25

0.50

0.75

1.00

N
or

m
al

is
ed

 re
pl

ic
at

io
n 

ac
tiv

ity

Time after gamma
irradiation (h) 0 

h

3 
h

5 
h

7 
h

N
or

m
al

is
ed

 re
pl

ic
at

io
n 

ac
tiv

ity

0.00

0.25

0.50

0.75

1.00

Time after gamma
irradiation (h) 0 

h

0,
5 

h

1 
h

3 
h

N
or

m
al

is
ed

 re
pl

ic
at

io
n 

ac
tiv

ity

0.00

0.25

0.50

0.75

1.00

Br
dU

 (l
og

.) 
[A

U
]

0 5 10 15 20
Gamma irradiation (Gy)

0.00

0.25

0.50

0.75

1.00

1.25

Figure S7

PI (lin.) [AU]

0 Gy 6 Gy 20 Gy10 Gy
1 h after gamma irradiation

ATR inh.
(VE-821)

N
or

m
al

is
ed

re
pl

ic
at

io
n 

ac
tiv

ity

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

- + - +
0 Gy 20 Gy

DMSO ATR inh.
(VE-821)

ATR inh.
(VE-821)

DMSO

Br
dU

 (l
og

.) 
[A

U
]

0 Gy 20 Gy

PI (lin.) [AU]

15



Fig. S8: Characterising ATR signalling and replication fork speed in MTBP-14A, 6A and 

6D mutant cell lines 

 

A) MTBP-14A cells show normal basic levels and normal response dynamics of ATR-

checkpoint activation upon hydroxyurea (HU) treatment. Whole cell lysates of cells treated 

with buffer or indicated concentrations of hydroxyurea were immunoblotted using anti-Chk1 

and anti-pS345-Chk1 antibodies. Ponceau staining served as a loading control. HU induced 

detectable Chk1 phosphorylation from 100 µM in both cell lines. 

B) MTBP-6D and 6A cells have normal basic levels and normal response dynamics of 

ATR-checkpoint activation upon hydroxyurea (HU) treatment. MTBP-6D, 6A and WT 

cells were treated and analysed as described in A. No difference between WT and the mutants 

could be observed. 

C) Replication fork speeds in different MTBP phospho-mutant cell lines. Average speed 

of replication forks in the phospho-site mutants and Cdk8 non-binding mutant is similar to 

MTBP-WT. Quantification of average fork speed (kbp/min) by DNA combing with siMTBP-

treated Hela Flip-In T-Rex cells expressing siMTBP resistant C-terminally 3xFlag-TEV2-

GFP-tagged MTBP-wild type (WT), MTBP-14A, MTBP-cdk8bm, MTBP-6D, or MTBP-6A. 

Error bars: SEM; n = 3; Significance tests as in 2D/E. 
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Fig. S9: MTBP is phosphorylated in cell lysates  

A) Phosphorylation-mediated gel shifts of MTBP and Treslin in mitotic cells depend on M-

CDK. Data shown in Fig 5A. For better visualisation of the gel shift, a dashed line was 

introduced indicating the running behaviour of phospho-MTBP. To reveal phospho-shifts SDS 

PAGE using 3-8% Tris-acetate Criterion gels (Biorad) was used, and the degree of shift varied 

between gels.  Cells arrested in mitosis with nocodazole (Noc) or asynchronous cells were 

treated for 30 minutes with DMSO, low (9µM) or high concentrations (90µM) of RO-3306 

(RO.), roscovitine (Rosc.) or senexin A (Sen.). After cell lysis lysates were treated with lambda 

phosphatase (PPase) where indicated before immunoblotting using antibodies against MTBP 

(12H7) and Treslin (148). MTBP and Treslin from cells treated with lambda phosphatase or 

Cdk1 inhibitors (RO-3306 or roscovitine) showed fastest gel running behaviour than MTBP 

from cells treated with DMSO or Cdk8 inhibitor senexin A, indicating that both proteins are 

phosphorylated by Cdk1 in mitosis. Ponceau staining shows that stained unspecific bands run 

at the same speed in all lanes. 

B) Endogenous MTBP showed a phosphorylation-mediated gel shifts in S-phase. Cells were 

arrested with a nocodazole-thymidine block before release into S-phase for 4h before lysis, 

lambda phosphatase treatment and addition of Laemmli sample buffer. For better visualisation 

of gel shifts dashed lines were introduced that indicate running behaviour of phospho-MTBP. 

(i) MTBP from cells treated with phosphatase showed slightly faster gel modility than cells 

treated with DMSO. The phosphorylation-mediated gel shifts of MTBP and Treslin in S phase 

cells is smaller than in mitotic cells (A), which precluded conclusions about inhibitor effects.  

 (ii) Second experiment confirming (i). Here, S phase cell lysates treated with DMSO or 

phosphatase are shown. Here, indicated cells were treated with the phosphatase inhibitors 

tautomycin (tauto.) and okadaic acid (ok.) before lysis in the hope to increase the phospho-

shift, which was ineffective.  

C) Cells used in B were stained with anti-5 bromo-2’deoxyuridine (BrdU) after pulse-labelling. 

Quantification of BrdU intensity by flow-cytometry showed that 71% of the cells released from 

thymidine for 4h had started replication in comparison to 5% of cells that remained arrested in 

thymidine. This indicates that the majority of the cells used in B was in S-phase. 
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Fig. S10: Scatter plots of inter-origin distance measurements by DNA combing in 

different MTBP phospho-mutant cell lines 

In 4C and 6D few data points were cropped out for better visibility. Here, the uncropped 

images are shown. Scatter plots of individual IOD measurement samples are shown. (A) 

quantification in Fig. 4 C(ii); (B) quantification in Fig. 6F(ii).  
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Figure S10
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Fig. S11: Uncropped images of the immunoblots and radiograms presented in the 

main and supplementary figures. 
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Fig. 5A, S9A and S9B(i)
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Fig. S4 Fig. S3 
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Fig. S6A 
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