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CLINICAL HIGHLIGHTS
� In humans, spatial coding is present in the entorhinal cortex with
gridlike representations of place as well as direction, speed, and
boundary or vectorlike representations (1–9).

� MEC dysfunction underlies deficits in spatial navigation and seman-
tic, episodic, and working memory, potentially causing symptoms in
a wide range of disorders (10–22).

� In Alzheimer’s disease (AD), both interneurons and principal cells in
superficial MEC are affected at very early stages (11, 12, 23–27).

� Even before the onset of proper AD, path integration is affected in
patients with mild cognitive impairment and can be used as a bio-
marker to predict AD (28). Path integration deficits may also reflect
more general memory deficits and likely contribute to the difficulties
AD patients experience in navigation (29–32).

� Path integration deficits correlate with grid cell-like activity in the ento-
rhinal cortex in aged humans (33), and distance estimation errors in
human path integration can be predicted by a grid cell model (34).

� In temporal lobe epilepsy, epileptiform activity may originate in superfi-
cial MEC, particularly in the highly excitable L3 pyramidal neurons.
These cells are selectively degenerated both in human patients post-
mortem and in rat models of epilepsy (15, 35, 36). Deficits in MEC may
also underlie the cognitive deficits often associated with epilepsy.

� Deep brain stimulation of the MEC, but not the hippocampus, can
directly improve spatial learning (37–39).

� We envision more refined therapies in the future, which build on our
exquisite knowledge of the MEC, specifically targeting memory defi-
cits based on our understanding of the underlying connectivity.
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Abstract

The hippocampal formation is critically involved in learning and memory and contains a large proportion of neu-
rons encoding aspects of the organism’s spatial surroundings. In the medial entorhinal cortex (MEC), this
includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell
types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding
emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how
local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we
focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both
excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it
appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited
to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms
underlying spatial navigation and memory.
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1. INTRODUCTION

The medial entorhinal cortex (MEC) is extensively con-
nected with the hippocampus and many other cortical
and subcortical areas (40–43) (FIGURE 1). A series of
recent in vitro physiological studies have started to eluci-
date the short-range connectivity within the MEC, both
within and across cortical layers (44–52). Here, we
attempt to bridge the gap between these in vitro studies,
which highlight the local connections between particular
anatomically defined cell types, and in vivo studies from
behaving rodents, which have described spatial coding
in the same MEC circuit (53–55).
We start by describing the various elements that

make up the MEC microcircuitry at two levels:

functionally defined cell types and anatomically
defined cell types. Functionally defined cell types
encoding spatial information include grid, head direc-
tion (HD), speed, border, and object-vector (OV) cells,
as well as various types of conjunctive cells, i.e., cells
with mixed firing correlates. We include some key
experiments that show correlations and dissociations
between particular subsets of these cell types, which
suggest particular constraints on local connectivity.
Because synaptic connectivity studies are still based
on anatomically defined cell types, we include a brief
review of the main anatomically defined cell types in
the superficial MEC in terms of morphology, hodology,
and intrinsic properties. Although the superficial and
deep layers of MEC are interconnected, we focus
on the superficial layers because in the deep layers
there is thus far very little data on microcircuits.
Furthermore, the superficial MEC provides the major
input to the hippocampus (FIGURE 1B), and one moti-
vation for studying superficial MEC microcircuits has
been to explain spatial coding in the hippocampus,
where cells firing at specific places in the environ-
ment (“place cells”) were first described 50 years ago
(56, 57).
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Of course, knowing which cell types exist in the circuit
is an important first step, but to understand how function
is generated it is also crucial to know which types of neu-
rons are connected (and which ones are not), how strong
and how common such connections are, and how these
connections can change over time to enable learning.
Although we are still in the early stages of addressing
these questions, recent advances have been made in
describing the connections of neurons in the superficial
MEC. These connections include two broad classes: syn-
aptic connections between various anatomically or ge-
netically defined cell types, as revealed by studies using
brain slices, anatomical tracing, or ultrastructural recon-
struction (13, 44–48, 50–52, 58–60), and functional con-
nections between genetically and functionally defined
cell types, as deduced from in vivo extracellular record-
ings in combination with chemo- and optogenetics (61–
65) or calcium imaging (66, 67).
We discuss the extent to which the structure of the

MEC microcircuit is compatible with the existence of con-
tinuous-attractor network (CAN) dynamics in the superfi-
cial MEC, which has been proposed to underlie gridlike
and head directional firing patterns (see APPENDIX). CAN
theories propose that cells with similar tuning properties
are more interconnected than dissimilar cells, such that 1)
cells with similar tuning can sustain activity in the absence
of external inputs and 2) these “bumps” of neural activity
can be translated across the network to reflect changing
input. Importantly, the translation of the activity bumps in

CAN models is typically achieved via a velocity-depend-
ent input, reflecting the speed and the direction of the
animal’s motion in the physical environment. By summing
such velocity inputs over time, one can keep track of
position in the environment, in a process called path inte-
gration, which many organisms, and grid cells in particu-
lar, are capable of (68–72).
CANmodels do not provide the only theoretical account

of grid cell formation. Alternative models have shown that
gridlike firing may also be generated in the absence of
CAN dynamics by a combination of spatially tuned input,
synaptic plasticity, and cell-intrinsic mechanisms (73–80).
A full discussion of grid cell models is beyond the scope of
this review (see, e.g., Refs. 53, 81–84), in which we focus
on local excitatory and inhibitory microcircuits in the
mature animal and the extent to which they exhibit
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FIGURE 1. Medial entorhinal cortex (MEC) anatomy and extrinsic
connections. A: mouse head (top left) showing the location of the
MEC (green) at the posterior edge of the cortex and a sagittal view of
the rat brain (bottom left) showing the MEC and main connected
structures including the lateral entorhinal cortex (LEC, gray), hippo-
campus (yellow), and presubiculum (PrS) and parasubiculum (PaS)
(both blue). Dashed line depicts the horizontal plane for the brain sec-
tion on right, which also shows layer (L)2, L3, and L5 in the MEC. DG,
dentate gyrus; Sub, subiculum. B: main inputs to and outputs from
principal cells in the MEC, including stellate (S, red) and pyramidal (P,
gray) cells in L2 and pyramidal cells in L3 (green) and L5 (gray).
Arrows depict main known excitatory connections. Note the strong
output from stellate cells in L2 and pyramidal cells in L3 to the hippo-
campus (yellow), which provides the main input to L5 pyramidal cells.
Inputs to the superficial MEC are mostly from the PrS and PaS. cMEC,
contralateral MEC; MS, medial septum; further colors and abbrevia-
tions as in A. Data summarized are from Refs. 49, 50, 58–60, 65, 85–
87). Bottom left and right images in A adapted from Moser et al. (53)
with permission fromNature Reviews Neuroscience.

CLINICAL HIGHLIGHTS

• In humans, spatial coding is present in the entorhinal cortex with grid-
like representations of place as well as direction, speed, and
boundary or vectorlike representations (1–9).

• MEC dysfunction underlies deficits in spatial navigation and semantic,
episodic, and working memory, potentially causing symptoms in a
wide range of disorders (10–22).

• In Alzheimer’s disease (AD), both interneurons and principal cells in
superficial MEC are affected at very early stages (11, 12, 23–27).

• Even before the onset of proper AD, path integration is affected in
patients with mild cognitive impairment and can be used as a bio-
marker to predict AD (28). Path integration deficits may also reflect
more general memory deficits and likely contribute to the difficul-
ties AD patients experience in navigation (29–32).

• Path integration deficits correlate with grid cell-like activity in the entorhi-
nal cortex in aged humans (33), and distance estimation errors in
human path integration can be predicted by a grid cell model (34).

• In temporal lobe epilepsy, epileptiform activity may originate in superficial
MEC, particularly in the highly excitable L3 pyramidal neurons. These
cells are selectively degenerated both in human patients postmortem
and in rat models of epilepsy (15, 35, 36). Deficits in MEC may also
underlie the cognitive deficits often associated with epilepsy.

• Deep brain stimulation of the MEC, but not the hippocampus, can
directly improve spatial learning (37–39).

• We envision more refined therapies in the future, which build on our
exquisite knowledge of the MEC, specifically targeting memory def-
icits based on our understanding of the underlying connectivity.
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connectivity consistent with CAN dynamics. Although
there is a large body of work on spatial coding and micro-
circuits in the MEC or its functional analogs in species
ranging from the fly (e.g., Ref. 88) to humans, the focus of
the present review is on the rodent MEC (but see CLINICAL

HIGHLIGHTS for some insights related to humans).

2. FUNCTIONALLY DEFINED CELL TYPES

Extracellular recordings from the MEC have revealed strik-
ing correlations between the timing of recorded action
potentials (or “spikes”) and variables related to the ani-
mal’s behavior. By assigning detected spikes to single
neurons and correlating their spike times to particular
dimensions of behavior such as location, head direction,
or speed, spatially tuned neurons can be identified
(FIGURE 2B). In most other higher-order brain areas, indi-
vidual neurons are tuned to a wide array of parame-
ters, displaying mixed selectivity (89). The MEC stands
out in the sense that it contains a large number of cells
tuned primarily to a single variable. Such functional
“cell types” provide useful conceptual building blocks
for understanding spatial function (53, 54, 90–92),
and their existence has greatly facilitated the search
for mechanisms of computation at the network level.
The recorded spike patterns themselves can also

be informative regarding the mechanisms underlying
spatial coding. Rhythmic firing at a particular fre-
quency [particularly theta frequency, 6–10 Hz (93–95)]
and firing bursts versus single spikes (96–98) have
both been associated with spatial coding. The spiking
patterns of recorded neurons, particularly when com-
bined with spike shapes, can also be used to predict
the underlying anatomical cell type, allowing a puta-
tive identification of excitatory principal cells and in-
hibitory interneurons in the MEC (99). Because the
population of interneurons is very heterogeneous (dis-
cussed below), this identification is likely only correct
for those subtypes of interneuron whose firing is most
different from principal cells (so-called fast-spiking
interneurons, forming <10% of MEC neurons). Other
methods such as the cross-correlation between
recorded pairs of units [showing, e.g., consistent inhi-
bition in cell B when cell A fires (100, 101)] or optoge-
netic tagging (102) can further aid identification.
Neuronal firing patterns also tend to be linked to oscil-

lations of the local field potential (LFP) in specific fre-
quency bands including theta (6–10 Hz), gamma (30–80
Hz), and ripple (120–250 Hz) oscillations, which reflect
temporal organization of neuronal activity and correlate
with particular brain states (103, 104). Indeed, many
recorded cells in the MEC are modulated by such oscil-
lations (105–112). In particular, theta oscillations, which

are prominent during active explorative behavior in a
wide range of species including rodents and primates,
have been proposed to play a role in spatial coding (6,
113–117). In the hippocampus, specific frequency and
phase preferences of recorded neurons have been
linked to anatomically defined interneuron subtypes
(118–124). For the MEC, although intracellular and juxta-
cellular recordings allowing anatomical identification of
neurons have been made in anesthetized and awake
rodents (95, 108, 110, 125–134), the relationship between
anatomical subtypes and spike timing relative to oscilla-
tions remains unclear, so that in most cases extracellularly
recorded spike times only allow putative classification of
fast-spiking interneurons and principal cells. The great
majority of studies have focused on principal cells, since
very few (0.3%) grid, HD, and border cells are classi-
fied as fast-spiking interneurons, with only speed cells
including a significant proportion (25%) of such inter-
neurons (135).

2.1. Grid Cells

The grid cell is the most-studied spatially selective cell
type in the MEC. Grid cells are characterized by multiple
firing fields that are arranged in a periodic manner, form-
ing a hexagonal grid of firing fields (FIGURE 2A). This
grid is defined by its orientation relative to the environ-
ment, spatial phase (location), period (distance between
fields), and skewness (shearing-induced asymmetry),
and the size and firing rates of its firing fields (93, 136,
137). Given the fact that the grid spatial period changes
along the dorsoventral extent of the MEC (93, 94, 138)
and different scales cannot coexist within the same
CAN, it was predicted that several separate CAN mod-
ules should exist (71, 139). The same paper also pre-
dicted that inputs from multiple such modules may
generate nonperiodic place fields in the hippocampus
and that “remapping” of place fields (140, 141) could be
driven by changes in the inputs from different grid mod-
ules (142, 143). Indeed, subsequent simultaneous record-
ings from a large number of grid cells confirmed that not
only the spatial period but also the orientation and skew-
ness tend to be limited to a few relatively sharp ranges
of values (FIGURE 2C) (136). Cells with similar values are
located in overlapping mediolaterally extended bands,
forming at least four functionally independent modules
along the dorsoventral axis of the MEC (136). Grid cells
within such modules fire at different spatial phases (i.e.,
at different locations), so that as a population they uni-
formly cover the entire space.

Interestingly, changing the size and shape of an ani-
mal’s environment causes rescaling of the grid pattern
(144), as predicted for two-dimensional CANs (145). This
rescaling is different for each module and coherent

MEC MICROCIRCUITS
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across all cells within a module (136). In conditions where
the spatial phase (i.e., firing field locations) of single grid
cells changes over time, or the properties of the grid
itself change, as happens in altered or novel environ-
ments (144, 146), the entire population appears to
change coherently (93, 143, 147). Although this tight cou-
pling among grid cells may limit the representational
capacity of a module, it makes the behavior very robust
to perturbations: the network within a module behaves
as a two-dimensional manifold, similar to a continuous
attractor pulling the network to the same sets of states
that lie along this manifold. In this respect, grid cells dif-
fer from hippocampal place cells, whose firing is more
high dimensional, with patterns of active cells differing

strongly depending on the particular environment or var-
iables associated with it. During novelty, which causes
hippocampal remapping, the grid cell network remains
stable (147), suggesting that the dynamics of the network
do not depend on input from the hippocampus. Indeed,
after hippocampal inactivation that strongly reduces grid
firing (148), grid cells remain coupled (149), consistent
with a model in which the hippocampus provides the
main excitatory drive to a CAN where connectivity is
purely inhibitory (47, 148). The robust coupling of grid
cells within a module persists also in the absence of vis-
ual input (62, 93, 150) and during sleep (151, 152), suggest-
ing that the coupling is not dependent on shared sensory
inputs but rather reflects local CAN dynamics.
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Grid cells have been found in all principal cell layers
of the MEC (FIGURE 2A), but higher proportions exist
superficially particularly in layer 2 (L2) (153). Grid cells in
the superficial layers of MEC project to the hippocampus
along with HD and border cells (154). Finally, grid cells
have also been recorded, together with HD, border, and
speed-tuned cells, in the pre- and parasubiculum (155),
two areas that provide a large proportion of overall input
to the MEC (FIGURE 1B) with axons forming layer-spe-
cific bands in the superficial MEC (40, 41, 156–159). It is
therefore in theory also possible that a specific pattern
of inputs from these areas to different modules could
explain grid cell firing in the MEC, without any role for
local MECmicrocircuits. The connectivity in both the pre-
subiculum (160) and parasubiculum (161), together with
the availability of HD and speed information in these
areas, suggests that grid cell firing could be locally gen-
erated there with CAN dynamics. Since connections
from the superficial MEC back to the pre- and parasu-
biculum have been reported (40, 41, 162–166), grid
cell firing in the pre- and parasubiculum could also be
driven by the MEC. These possibilities remain to be
investigated.

2.2. Head Direction Cells

First discovered in the presubiculum, head direction
cells are defined by their selective firing whenever the
animal’s head is facing a particular direction relative to
its environment (FIGURE 2D) (167). In the rat superficial

MEC, HD cells appear to be particularly abundant in
layer 3 (L3) and almost absent in L2 (FIGURE 2D) (153,
155, 168). In mice, HD tuning is less restricted to L3 (168,
169). In general, layer boundaries are imprecise, and
therefore observed percentages of functional cell types
within layers can vary across studies (compare FIGURE
2A and 2D vs. 2I; see also, e.g., Refs. 130, 131).

The HD signal is likely generated subcortically, pri-
marily based on vestibular cues (170) in a process that is
well modeled by CAN dynamics with head angular ve-
locity inputs, “anchored” to landmarks in the environ-
ment (171–174). It has been shown that HD signals
propagate via anterior thalamic nuclei and presubiculum
to the MEC (175–177), and HD cell activity in both anterior
thalamus and presubiculum has a ring topology as pre-
dicted by CAN models (see APPENDIX) (178–180). Other
thalamic nuclei and the parasubiculum also contain HD-
tuned cells and may play similar roles (155, 181–183).
Anterior thalamic lesion and inactivation experiments
suggest that this HD input is crucial to MEC grid and HD
cell firing (184). HD input to grid cells may also be directly
observed in conjunctive cells, which have both grid firing
and HD tuning (153) (discussed below), and can even be
“unmasked” in nonconjunctive grid cells when excitatory
drive from the hippocampus is reduced (148). One func-
tion of HD cells in the MEC may therefore be to provide
grid cells with information regarding the direction of the
animal’s movement, consistent with CAN models that
require a velocity input (velocity consists of speed and
direction) to move the bumps of activity such that the

FIGURE 2. Spatial-coding cells in the superficial medial entorhinal cortex (MEC). A: the firing map of a grid cell (left; gray lines, rat trajectory; black
dots, location at which recorded cell fired a spike). The grid pattern can be more clearly seen in the rate map (center; in this panel and all subsequent
similar panels, blue colors represent low firing rates, red high). In the three main layers [layers 2 (L2), 3 (L3), 5 (L5)] of MEC containing principal cells, a
large percentage of all recorded neurons consists of grid cells (right). B: extracellular recordings are performed with tetrodes in the MEC (green) as a
rat explores a circumscribed area (blue square). Spike times (Spikes) for single isolated units are isolated from the recorded voltage traces (Voltage),
which can also be filtered to identify theta oscillations of the local field potential (LFP-theta). Video tracking of the rat’s trajectory (gray curve) is com-
bined with the recorded spike times (black dots) to form a firing map (as in A). C: the population of grid cells in MEC forms modules displaying discrete
values of grid spacing (left) and orientation (right). Leftmost graph shows grid spacing of single grid cells (black dots) with 3 example firing maps on the
left and the probability density plotted on the right (black). Note that the modules have a dorsoventral organization, with only 1 module being recorded
dorsally in this example and 4 ventrally. Rightmost graph shows probability density (bottom) of grid orientation for another example recording, with fir-
ing maps from 3 example grid cells (top) showing the different orientations with the highest probability (red dashed lines). D: head direction cell (HD)
with firing rate shown in a polar plot as a function of the rat’s head direction (left; maximum rate 6 Hz), recorded while the rat oriented its head in all
directions over the course of a session (center). Percentage of recorded cells with HD tuning (right) was smallest in L2. E: firing rate of 4 example speed
cells as a function of the animal’s speed (left) shows both linear and saturating tuning curves. The correlation between speed and firing rate (right) is
low for most spatially modulated cells (HD, grid, border), suggesting that speed cells (speed) are mostly a separate class of cells. F: border cell rate map
shows preferential firing at 1 border of the arena (left) and additional firing when an extra wall is introduced (right; added border) parallel to the preferred
border. G: object-vector (OV) cell with very low firing rate in absence of an object (left) fires at a specific distance and angle from an introduced object
(center and right), independent of the precise location of the object. H: conjunctive grid-by-head direction (grid � HD) cell rate map (left), firing rate as a
function of HD (center), and percentages of cells in layers of MEC (right). I: percentages of all recorded cells in L2, L3, and L5 classified as grid (G), head
direction (HD), speed (S), border (B), or conjunctive cells (HD 1 G, HD 1 S, HD 1 B). Note that about half of all cells could not be classified (light gray
slice in pie charts); for clarity, only percentages>5% are labeled. OV cells are not included but would account for an additional 15% in superficial layers;
their presence in deep layers is not known. J: functional cell types cluster in terms of HD and spatial information. Note also presence of conjunctive
cells. A, left and center, adapted from Hafting et al. (93) with permission from Nature. A, D, and H, right, adapted from Boccara et al. (155) with permis-
sion from Nature Neuroscience. Traces in B adapted from Hafting et al. (185) with permission from Nature. The brain in B and all panels in C are
adapted from Stensola et al. (136) with permission from Nature. D and H, left and center, adapted from Sargolini et al. (153) with permission from
Science. E, I, and J adapted from Kropff et al. (135) with permission from Nature. F reprinted from Solstad et al. (186) with permission from Science. G
reprinted with permission from Høydal et al. (187) with permission from Nature.
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same cells are always active at the same location,
regardless of how the animal is moving. However, ex-
trinsic HD inputs could also perform this function.
Indeed, a recent experiment showed a dissociation
between HD cells and grid cells in the MEC: when grid
cell firing in the MEC was affected by changing the
shapes of the environment, HD cells in the MEC did
not change in a correlated manner, taking much lon-
ger than grid cells to reorganize their firing patterns in
response to the environmental manipulations (188,
189).
HD cell tuning is influenced by landmarks that the ani-

mal uses to orient itself. This is classically shown by put-
ting animals in an environment with a single cue card as
a salient (visual) landmark: shifting this cue card by a cer-
tain angle usually causes the HD system to also reorient
itself, with most HD cells also shifting their preferred
head direction (190, 191). In the MEC, it was recently
reported that not all HD cells are similarly “visually
driven”: when the visual pattern of LEDs on the record-
ing environment walls was changed, HD cells with non-
theta-rhythmic firing changed both the preferred direc-
tion and strength of their HD tuning, whereas this was
not the case for theta-rhythmic HD cells (192). On the
other hand, theta-rhythmic HD cells appeared to be
much more constrained by CAN dynamics, similar to
grid cells (192). It is tempting to speculate that theta-
rhythmic HD cells may be part of the same CAN micro-
circuit as grid cells, which also tend to be theta-rhythmic
and also tend to be more affected by the animal’s
motion than by visual input (71, 93, 193). Consistent with
this idea, optogenetic stimulation of local principal cells
(L2 pyramidal cells) (65) recently showed that only a sub-
set of HD cells (defined by their broad HD tuning curves)
altered their firing rates, as did grid cells. In contrast,
sharply tuned HD cells did not alter their firing rates, sug-
gesting that whereas grid cells and broadly tuned HD
cells are part of the same microcircuit (together with
interneurons), the sharply tuned HD cells are not.
Interestingly, most sharply tuned HD cells in this study
were also non-theta-rhythmic (Ipshita Zutshi and Stefan
Leutgeb, personal communication), suggesting that they
may overlap with the non-theta-rhythmic visually driven
HD cells in the Kornienko et al. study (192), forming a sin-
gle population of HD cells that may not be part of the
CAN underlying grid cell firing (194). In contrast, the
more broadly tuned and theta-rhythmic HD cells
would be predicted to be more connected to the CAN
underlying grid cell firing. These broadly tuned HD
cells may encode the direction of prospective trajecto-
ries encoded by grid cell ensembles during so-called
theta sequences, which would explain why their firing
is not as tightly correlated to ongoing head direction
(194).

Finally, it should be pointed out that the animal’s head
direction is not the same as the animal’s movement direc-
tion: an animal’s head is often facing in a different direc-
tion as it is moving (195). In fact, it has been suggested
that, in contrast to movement direction input, HD input
cannot sustain stable grid firing as an animal moves
around its environment (195). It remains to be determined
whether, and under which circumstances, the MEC 1)
receives explicit input on the animal’s movement direc-
tion from other areas, for instance the medial septum
(196); 2) computes location without any use of movement
direction, for instance based on spatial input from hippo-
campus (80); or 3) computes movement direction and/or
location based on sensory input or self-motion (pro-
prioceptive or motor) signals (197, 198). Interestingly,
to detect movement direction based on auditory, vis-
ual, or somatosensory (e.g., whisker) cues, HD cells
could theoretically play a role in transferring a head-
centered frame of reference to an environment-linked
reference frame.

2.3. Speed Cells

Speed information in the MEC is present in the firing pat-
terns of some grid, border, and HD cells, as well as in
specific “speed cells” (FIGURE 2E), which include
fast-spiking parvalbumin-expressing (i.e., inhibitory)
cells projecting to the hippocampus (61, 62, 135, 153,
199, 200). In fact, speed-sensitive cells have been
reported in many cortical and subcortical areas (201–
208), perhaps reflecting the fact that speed can be
easily computed in the brain based on self-motion
(motor), visual (optic flow), or other sensory information
(e.g., vestibular). Together with HD cells, speed cells can
inform the grid CAN about the animal’s current velocity;
as mentioned above, this information is crucial for spatial
coding since it enables the firing fields of the grid to
remain locked to the same locations, regardless of how
the animal moves.

The precise mechanisms of how speed and HD infor-
mation are combined remain unclear, but several stud-
ies have suggested that speed cells may be more
closely linked to grid cell firing than HD cells (189, 193,
209). Similar to grid and HD cells, the firing of speed
cells is mostly context independent (135), although some
changes in the speed code have been reported, for
instance in darkness (62, 150, 210), when the shape or
size of the environment is changed (189), or even when
a visual pattern is changed along a linear track (62). The
finding that changes in speed cell firing tend to be corre-
lated with changes in grid cell coding suggests that
speed cells may be embedded in functional grid cell
modules, possibly providing part of the velocity input
needed to shift activity bumps in CANmodels.
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Two recent findings appear to challenge this idea.
First, a nonlinear relationship between firing rate and
speed has been reported under some circumstances
(FIGURE 2E), which could make it difficult to use firing
rate as a simple readout for speed (211). However, it
remains to be seen whether such a nonlinearity, which is
mostly related to slow speeds and may be explained by
more general state changes (135, 212), is limiting to the
computation of grid firing. It is worth noting that above a
minimum activation threshold speed and firing rate are
linearly correlated over a wide range of running speeds,
in agreement with a possible role for speed cells in path
integration (135, 212). Second, it has been argued that the
reliable “readout” of a speed cell’s firing rate may take
several seconds, and that this would be too long to be
used as an online measure of speed (213). Although this
may be true for the readout of single cells, readout could
be much faster when based on large populations of cells,
where readout likely takes place. This is particularly evi-
dent if the population also includes the subset of highly
modulated speed cells with high firing rates and inter-
neuron-like properties (which were in fact detected).

2.4. Border Cells

Border cells (FIGURE 2F) fire selectively when the ani-
mal is at a certain position relative to a geometric “bor-
der” of its environment (186, 214). The border signal is
also present upstream in the presubiculum (155), where
the integration of a pure HD signal (e.g., north) from an-
terior thalamus with local egocentric information (e.g.,
wall on the animal’s left) may lead to spatial information
[the wall is in the west in this example (215)]. Similar
merging of egocentric and HD information may also
take place in the MEC itself, based on direct inputs from
the postrhinal cortex (216–218), which was recently
shown to contain a population of egocentric border cells
(54, 219). In the context of path-integrating CAN net-
works, border cells could help to “anchor” the represen-
tation to the environment, particularly for elements in
the environment that can block the animal’s trajectory
(187). Periodic anchoring of the CAN to the environment
is necessary because path integration mechanisms gen-
erally accumulate random errors over time, and this is
also true for grid cells: they coherently accrue “drift” as
the mouse moves away from the boundaries of the envi-
ronment, and this drift is “reset” whenever the mouse
encounters a boundary in a manner consistent with bor-
der cell input to a CAN grid model (139, 220).

2.5. Object-Vector Cells

Object-vector (OV) cells (FIGURE 2G) fire whenever the
animal is at a particular distance and direction (i.e., a

vector) from a particular “object” in the environment (187),
in a manner that appears independent of the precise
properties of the object. Across environments, the orien-
tation of the object-vector can rotate, but the distance
metric remains the same, and pairs of cells keep their rel-
ative orientations, also with respect to simultaneously
recorded grid and HD cells (187). Although the latter find-
ing is only based on a small sample, and for example the
two kinds of HD cells described above were not differen-
tiated, it suggests that OV and grid cells may be part of a
single low-dimensional CAN for the representation of
location. OV cells have thus far only been described in
the superficial MEC, where they make up �15% of all
recorded cells (187). They may have a role similar to bor-
der cells, in the sense that they could help to link grid cell
firing to particular landmarks or discrete sensory features
of the environment. Recently described “cue cells,”which
fire near visual landmarks across different virtual reality
environments, have also been posited to belong to a sim-
ilar population as OV cells (221). Although the trajectory
of the mice in these experiments was along a one-dimen-
sional virtual track, with little opportunity to infer direc-
tional tuning as would be expected for OV cells, the cue
cells did show a preference for the left or right side when
cues were presented on both sides of the track (221). In
real-world recordings, these cells showed irregular but
stable firing patterns, suggesting they were neither grid
nor border cells, but their responses to real objects
remain untested. For an excellent review of a wide range
of other recently discovered vector-coding cells, see
Ref. 54.

2.6. Conjunctive Cells

Conjunctive cells (FIGURE 2, H–J) encode different
combinations of speed, place, and head direction (135,
153, 186). The grid � HD conjunctive cells are the most
common (FIGURE 2, H and I) and have been studied
the most. HD coding of grid cells appears to be some-
what bimodal, with tuning being either very sharp or
very wide, rather than forming a clear continuum (222),
and may be present in all principal cell layers (FIGURE
2I) (135), although reported proportions differ greatly
(135, 153, 186). Consistent with a crucial role for conjunc-
tive “integrator” cells in path integration (71, 145, 223), it
has been proposed that deep-layer conjunctive cells
integrate velocity inputs to generate grid cell firing, in
turn providing feedforward input to superficial pure grid
cells (222, 224–226).

It has been suggested that most cells in the MEC are
conjunctive, in the sense that their firing exhibits some
degree of tuning by all three variables, i.e., place, speed,
and HD (227). However, these variables tend to be
unequally weighted, and most cells in the MEC display a
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strong preference for one particular kind of spatial cod-
ing, rather than being truly conjunctive (FIGURE 2, I and
J). Thus, perhaps more than in any other well-investi-
gated high-level cortical region, functionally defined cell
types describe an important property of neural organiza-
tion in the MEC.

3. ANATOMICALLY DEFINED CELL TYPES

To understand the microcircuits potentially underlying
the spatial coding properties in MEC neurons outlined

above, it is important to know the elements that make
up these circuits. Layer 2 of the MEC is populated by
two main types of excitatory cells, namely the stellate
cell (L2S) and the pyramidal cell (L2P), which can be dif-
ferentiated on the basis of their morphologies and physi-
ological properties (FIGURE 3, A and C), projection
targets (FIGURE 1B), and molecular profiles (58, 228–
231). A recent study also defined “intermediate stellate”
(intS) and “intermediate pyramidal” (intP) cells, based on
morphological and electrophysiological criteria, which
partly coexpressed pyramidal and stellate cell markers
(50). However, these intermediate cell types could not
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FIGURE 3. Anatomically, electrophysiologically, and molecularly defined cell types within superficial layers of the medial entorhinal cortex (MEC). A:
reconstructed somata and dendrites (top) and voltage traces (bottom; overlaid responses to current injection steps) for the main excitatory cell types:
L2S, layer 2 (L2) stellate cell; L2P, L2 pyramidal cell; L3P, layer 3 (L3) pyramidal cell. Note the presence of a sag potential at hyperpolarized voltages for
the L2S cell. B: schematic representation of axonal projections for 4 interneuron classes in the superficial MEC, classified via clustering based on intrin-
sic electrophysiological and axonal projection data from glutamate decarboxylase 2 (GAD2)1 neurons. Note that apart from the fast-firing group (2nd
panel), cell classes identified in this study only partially coincide with common genetic markers (shown below each panel). CCK, cholecystokinin; CR,
calretinin; PV, parvalbumin; SOM, somatostatin; 5HT3aR, serotonin receptor type 3a. C: hierarchical clustering based on 9 electrophysiological parame-
ters suggests that 8 cell types based on anatomical and genetic criteria (listed top right) can be grouped (groups shown with arrows at bottom; based
on a cutoff linkage distance shown as a dashed line) into 2 principal cell types (P for L2P and L3P, S for L2S) and 5 interneuron types, which we named
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(cells linked at a smaller linkage distance are more similar). Note that the groups only partially coincide with the anatomical/genetic types [listed at top,
number of recorded cells in parentheses; RCan2, cells in a regulator of calcineurin 2 mouse line used here to identify PV1 fast-spiking (FS) interneur-
ons; SOM, subpopulation of SOM1 cells from GIN mouse line; NPY-NGF, cells anatomically identified as neurogliaform (NGF) cells in a neuropeptide Y
mouse line; NPY Non-NGF, cells anatomically identified as non-NGF cells in a neuropeptide Y mouse line; VIP, cells in vasointestinal protein mouse
line; P, pyramidal cells; L2S were identified by soma size and shape]. B adapted from Martínez et al. (232) with permission from eNeuro. C adapted
from Ferrante et al. (233) with permission from Cerebral Cortex.
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be identified in another data set (52). Layer 3 is only
populated by pyramidal cells (L3P), with characteristic
intrinsic properties (234). Both layers additionally contain
a very heterogeneous minority of �10% gamma-amino-
butyric acid (GABA)-releasing inhibitory interneurons,
which mostly have local axonal projections (FIGURE 3B)
but also include a minority of GABAergic cells with pro-
jections to the hippocampus (199, 235).

3.1. Layer 2 Stellate Cells

L2S cells make up�50–75% of principal cells in MEC L2
(228, 236, 237). L2Ss were first described by Ramon y
Cajal, who called them “cellulas estrelladas grandes,” or
large starlike cells, reflecting their relatively large, polyg-
onal soma emitting four or five dendrites (FIGURE 3A)
(229, 238). They provide the main output from MEC to
the ipsilateral dentate gyrus of the hippocampus
(FIGURE 1B) (85), express reelin (58), and show intrinsic
membrane properties that are markedly different from
L2P cells: L2Ss are characterized by subthreshold
membrane potential oscillations, membrane potential
resonance, clustered firing, and a hyperpolarization-
activated cation current Ih that causes a depolarizing
“sag” (FIGURE 3A) in response to hyperpolarizing cur-
rent steps (228, 230, 239–241).

Synaptic integration in stellate neurons has been
investigated extensively (242, 243), and the width of
their temporal integration windows and excitatory post-
synaptic potentials (EPSPs) correlates with grid spacing
along the dorsoventral axis of the MEC: broader tempo-
ral integration windows and EPSPs at more ventral levels
may help to explain the increased grid spacing in ventral
MEC (93, 94, 138). It has been shown that prolonged
synaptic currents can indeed lead to larger grid field
sizes and spacing in a CAN model of grid firing (244,
245). Similarly, slower intrinsic subthreshold oscillation
frequency in ventral MEC stellates has been proposed
to underlie this spacing gradient (240). HCN1 channels
are likely to play an important role in defining the scale
of spatial tuning (241, 246, 247) by mediating Ih (together
with HCN2). Interestingly, a dorsoventral grid spacing
gradient persists after knockout of HCN1 (248), suggest-
ing that other factors must also be considered.
However, in the latter study grid spacing and field size
were expanded at all dorsoventral levels, together with
a drop in the frequency of the accompanying theta-
rhythmic firing in stellate cells, particularly at higher
speeds; this suggests a role for Ih in determining the
gain of the speed-dependent input in stellate cells,
which moves around activity bumps in a CAN. However,
feedforward models of the development of grid cell pat-
terns also predict a tight relation between adaptation
currents and the scale of spatial tuning (74, 80).

L2S cells can be grid cells but also head direction,
speed, border, or conjunctive cells (67, 127, 249, 250).
This lack of 1:1 correspondence between L2S cells and
any type of functional cell is not an exceptional trait of
L2S cells but seems to be a general principle in the
MEC, although of course more fine-grained classifica-
tions may yet uncover specific molecular markers,
morphological traits, or intrinsic electrophysiological
properties that correspond to a particular functional
cell class.

3.2. Layer 2 Pyramidal Cells

L2P cells are the second excitatory cell type in L2 of the
MEC, making up 25–40% of principal cells in this layer
(228, 236, 237). Like L2S cells, their dendrites are mostly
limited to layers 1 and 2, but in contrast to L2S cells, they
display a pyramidal cell body shape with a clear apical
dendrite (FIGURE 3A). L2Ps can be further identified by
immunohistochemical markers like calbindin or wfs1 (58,
87, 129). They are organized in a hexagonal pattern of
patches or “islands” arranged in a skewed gridlike man-
ner, with their apical dendrites bundled together in layer
1 (87, 129, 251, 252). These patches may be part of a
more elaborate structural organization that appears to
be present in the MEC of many species that includes
also patches identified by zinc, bundling of dendrites
from deeper layers, and patch-specific inputs (237, 253).
Note that similar structures have also been identified in
many other cortical regions and may therefore reflect a
more general cortical organizational principle (254–
257).

L2Ps comprise a heterogeneous population in terms
of their axonal projections, with �50% comprising “exci-
tatory interneurons,” with local but relatively widespread
axonal projections restricted to the superficial layers of
ipsilateral MEC or lateral entorhinal cortex (LEC), �30%
projecting to the contralateral EC, 20% to the hippocam-
pal area CA1, and 2% to medial septum [as recently
quantified in rats (60); see also FIGURE 1B (50, 58, 65,
87, 258)]. Although it seems clear that most L2P cells
have local axon collaterals, and at least some of these
also project to the contralateral EC (60, 95), the extent
to which the same cells project to multiple distal targets
is still unclear. Recent advances in whole brain micros-
copy, genetic cell type-specific labeling, and tissue
clearing have made it possible to create whole brain
reconstructions of relatively large numbers of neurons
and their long-range arborizations (259, 260), but this
approach has not yet been applied to cells in the MEC.
Although L2P intrinsic membrane properties are not

conducive to the generation of theta oscillations (58),
and they do not display a prominent sag potential
(FIGURE 3A), it has been reported that in vivo L2P cells
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in fact have higher theta rhythmicity than stellate cells
(97, 130; but see also 126). A possible source of this
theta rhythmicity could be input from the medial sep-
tum (261). Besides GABAergic and glutamatergic
inputs likely to be important for driving theta oscilla-
tions (205, 206, 262–264), this input also includes
cholinergic fibers that may modulate theta rhythmicity
(265–266) and specifically affect pyramidal patches
(129). Alternatively, or in addition, theta rhythmicity in
L2P cells may also be driven by the observed patch-
specific axonal projections from the parasubiculum
(181), a region with strong theta rhythmicity (155, 267).
Like L2S cells, L2P cells can also have a wide range of
functional coding properties (96, 127, 130, 249),
including grid firing, although determining the precise
proportions may require methods that allow tagging
of specific subpopulations of functionally character-
ized L2P cells, such as two-photon calcium imaging
microscopy in freely moving animals (268, 269).

3.3. Layer 3 Pyramidal Cells

Layer 3 of the MEC is one of the widest layers. It is popu-
lated by L3P cells expressing the oxidation resistance 1
(Oxr1) gene (270) that project bilaterally to CA1 and the
subiculum, as well as providing the large majority of pro-
jections to the contralateral MEC (FIGURE 1B) (43, 60,
85, 271, 272). L3P dendrites are largely limited to superfi-
cial layers 1–3 (FIGURE 3A) and appear to avoid L2P
patches in L2 (131), leading to the suggestion that L2P
cells may receive preferential inputs from the parasubic-
ulum (181) compared with L2S and L3P cells (97).

L3P cells appear to form a largely homogeneous pop-
ulation in terms of intrinsic electrophysiological proper-
ties, regardless of whether they project to the ipsilateral
hippocampus or to the contralateral side (131). Many L3P
cells respond to LEC stimulation with EPSPs lasting >3 s
(273); slow hyperpolarization lasting up to tens of sec-
onds has also been reported (234, 271, 272). Consistent
with these properties, L3Ps appear to preferentially
respond to low-frequency inputs, in contrast to L2Ss,
which are more tuned to higher-frequency input (273).
Part of the input to L3Ps is coming from deep layers,
which likely mediate input from the hippocampus (45,
273–275).
L3P cells were also shown to have a high excitability

in vivo (108) and fire spontaneously even in vitro, likely
driven by a persistent Na1 conductance (271). In contrast
to L2S cells, L3Ps do not display subthreshold theta-fre-
quency membrane oscillations in vitro (108) or in vivo
(108). However, both L3P and L2S cells seem to be rela-
tively weakly phase-locked to the LFP theta in compari-
son to L2P cells (97). Earlier extracellular recordings
have also shown that L3P cells are less theta-phase-

locked than L2 principal cells, which could not be further
differentiated (108, 112, 276).

3.4. Inhibitory Interneurons

For a long time, it has been clear that principal cells in
the superficial MEC receive strong inhibitory input, both
via spontaneously released GABA (277, 278) and via
action potential-driven GABA release (234, 272, 273,
279). The latter can both mediate feedforward inhibition,
as shown via electrical stimulation of the deep layers of
the MEC, the subiculum, or parasubiculum (272, 273,
279, 280), or provide feedback inhibition, as suggested
by local stimulation experiments and paired recordings
(13, 46, 47, 58, 281). Potentially, all three types of inhibi-
tion could play a role in spatial coding, but particularly
feedback inhibition is expected to play a role in CAN dy-
namics. In various models, inhibitory interneurons are ei-
ther the exclusive mediator of connections between
excitatory principal cells or work in concert with recur-
rent excitatory connections to generate a “Mexican hat”-
type connectivity profile, in which excitatory cells excite
nearby cells but inhibit cells further away (47, 48, 139,
282). One important issue to deal with when searching
for the anatomical substrate of inhibition as specified,
e.g., in particular CAN models, is that inhibitory inter-
neurons in the cortex, though forming only �10–20% of
all neurons, are a very heterogeneous population. They
can be divided into three generally nonoverlapping
classes expressing parvalbumin (PV1), somatostatin
(SOM1), or the serotonin receptor type 3a (5HT3R1)
(50, 64, 283–289).

The strong inhibition recorded electrophysiologically
within superficial layer principal cells coincides with a
dense band of GABAergic fibers (290), later shown to
consist mostly of axons from PV1 basket cells (46, 291).
By specifically innervating somata, basket cells are able
to exert strong control over the output of their postsy-
naptic cells, which include both inhibitory and excitatory
cells in superficial MEC (13, 47, 48, 50, 58, 292). PV1
basket cells fire at high rates in vivo and largely coincide
with “fast-spiking” (FS) interneurons. Within layer 2, sin-
gle PV1 basket cell axons contact the somata of both
L2P and L2S cells, although L2P cells have �40% more
PV1 perisomatic boutons (13). In addition to PV1 basket
cells, the superficial MEC also contains a much lower
number of axo-axonic cells (293), also known as chan-
delier cells. These cells, presumably also expressing PV
as they do in other brain areas (291, 294), exert strong
control over postsynaptic excitatory cells through specif-
ically targeting the axon-initial segments of principal
cells (295). Both types of PV1 cells have very divergent
connectivity. Together with their high firing rate and the
fact that they make up �50% of all GABAergic
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interneurons in the MEC (296), this makes PV1 inter-
neurons potentially very important in terms of controlling
the much larger population of principal cells, albeit in a
likely nonspecific manner.
SOM1 interneurons are specialized in providing inhi-

bition to postsynaptic dendrites (297), rather than to
somata or axons. Thus, they are more likely to influence
dendritic integration of inputs, rather than directly con-
trolling the action potential output of their target cells. In
the neocortex, these cells form a diverse group, with
subtypes differing in terms of morphology and firing
properties in awake mice, which have been related to
differences in innervation by other interneurons and in
modulation by the neuromodulator acetylcholine (298).
SOM1 cells partly coincide with low-threshold spiking
neurons and tend to fire at lower rates than FS cells.
They also tend to display synaptic facilitation, in contrast
to PV1 cells, making themmore likely to respond to sus-
tained inputs (within a certain time frame) rather than
encoding precise onsets. Finally, by modulation of
dendritic spiking and plasticity in postsynaptic py-
ramidal cells, SOM1 cells have been implicated in
the generation of spike bursts and place field firing in
the hippocampus (299–301). This could be relevant
for understanding spatial coding in MEC, given the
prevalence of burst firing among grid cells (96) and
evidence for dendritic spiking in both L2P and L2S
cells (128).
5HT3aR1 interneurons are perhaps the most hetero-

geneous group (302). This group includes interneurons
expressing calretinin (CR1), neuropeptide Y (NPY1),
vasoactive intestinal peptide (VIP1), or cholecystokinin
(CCK1). Interestingly, CCK1 basket cells in the MEC in-
hibit layer 2 principal cells, with a strong preference for
L2P somata (13, 58). The greater number of CCK1 punc-
tae onto L2P compared to L2S somata suggests that
L2P cells may be more influenced by neuromodulators,
since receptors for cannabinoids, serotonin, and acetyl-
choline are all present on CCK basket cells (303). Other
5HT3aR1 interneurons tend to preferentially target
interneurons rather than principal cells; this includes
5HT3aR1 interneurons expressing VIP, which are often
found in cortical layer 1, and those expressing CR (304).
VIP cells, driven by acetylcholine on a fast timescale via
nicotinic receptors, can mediate learned responses to
sensory inputs by inhibiting SOM1 cells (305–309).
Similar circuits, potentially also involving non-VIP layer 1
interneurons inhibiting PV1 cells (310), are likely to set
the level of inhibition in the superficial MEC. Whether
this has a role in spatial coding remains a matter of spec-
ulation. It has been suggested that VIP cells could disin-
hibit grid cell firing specifically whenever an animal
enters a particular location (233), providing one possible
explanation for the depolarizing ramp-up of the

membrane potential of stellate cells as they enter a firing
field (126, 127). This would imply that VIP cells fire in a
gridlike pattern, which is unlikely but cannot be ruled out
since most extracellularly recorded “principal cell” popu-
lations also include non-FS interneurons such as VIP
cells. VIP-mediated disinhibition of MEC border cells,
specifically during whisking, has also been posited,
based on data from monosynaptic retrograde rabies
revealing that VIP cells receive input from the mesence-
phalic trigeminal nucleus Me5, an area in the brain stem
that encodes whisker-related proprioceptive information
(311).
Two recent studies used clustering approaches in

combination with in vitro patch-clamp recordings from
the superficial MEC to see to what extent the molecu-
lar markers outlined above correlate to anatomical or
electrophysiological parameters. One study used
mice expressing Cre under the glutamate decarboxyl-
ase 2 (GAD2) promoter, which codes for the protein
GAD67, one of the two main markers for GABAergic
cells in the cortex, together with a PV-Cre mouse line
(232). Based on five electrophysiological and four an-
atomical parameters, they performed a principal com-
ponent analysis (PCA) to reduce the data to four
orthogonal dimensions that together could explain
80% of the variance; k-means clustering was then
applied for a range of 2–16 clusters, with optimal
results found when the data were divided into four
groups of cells with distinct axonal projection patterns
(FIGURE 3B) and electrophysiological properties.
Unfortunately, apart from the PV1 FS group, these
groups did not coincide in a simple manner with par-
ticular molecular markers, and separate clusters
based on either electrophysiological or anatomical pa-
rameters only showed a 58% overlap. In a second
study, interneurons were recorded from five mouse
lines including a PV-like Cre line, a SOM-like Cre line,
and 5HT3aR-Cre mice (233). Based on nine recorded
electrophysiological parameters for each cell, hier-
archical clustering was used to derive five groups of
interneurons (FIGURE 3C). This functional classifica-
tion could predict the molecular cell class with 81% ac-
curacy, with only one group (PV1 cells) clearly
coinciding with a particular molecular marker, and
having similar properties as the PV1 groups defined
by Martínez et al. (232) (FIGURE 3B). Thus, apart from
PV1 FS cells, the best way to group the molecular,
morphological, and electrophysiological properties of
interneurons in the MEC into separate classes remains
unclear.
How are all these anatomical cell types connected to

form microcircuits that can generate the spatial coding
of the functional cell types described above? This con-
nectivity has recently been investigated in a number of
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studies using both in vivo and in vitro approaches, which
we describe next.

4. MICROCIRCUITS

The connectivity between cells in the MEC has mostly
been investigated in superficial layers 2 and 3, with
paired patch-clamp recordings in slice preparations.
This method allows labeling of recorded neurons and, in
principle, an unequivocal identification of the anatomical
cell types involved and their precise location. Other,
more indirect methods have been applied in vivo, includ-
ing the identification of putative monosynaptic interac-
tion between extracellularly recorded units, often in
combination with optogenetic stimulation. The genetic
tagging of anatomical populations based on specific
promoters has been a key tool for both in vivo and in
vitro connectivity studies, enabling the expression of flu-
orescent proteins, opto- or chemogenetic actuators, and
activity sensors in specific anatomical cell types (to the
extent that such cell types can be identified with molecu-
lar markers).

4.1. Excitatory Connections in Superficial Layers

All three anatomical principal cell types in superficial MEC
appear to receive the majority of their inputs from superfi-
cial rather than deep layers (45), consistent with the fact
that these cells do not extend dendrites into the deep
layers (FIGURE 3A). Thus, the local microcircuit in the su-
perficial MEC, rather than the full column, may already be
sufficient for the generation of the spatial coding in these
cells. Here, we review the connectivity between these su-
perficial excitatory cells in some detail and discuss the
extent to which this may constrain CAN models of spatial
coding, particularly grid cell firing. Note that although sev-
eral possible connectivity schemes may generate a grid-
like pattern in a CAN (see APPENDIX), it is still important to
see which precise scheme is implemented. Are all ana-
tomically defined cell types part of a single intercon-
nected CAN, or is there one interconnected cell type that
generates grid firing that is then propagated to other cell
types? Cell types that provide output to many local cells
without receiving local input may play a role in translating
the activity bumps of a two-dimensional (2-D) CAN sheet,
or otherwise modulate how extrinsic inputs affect the cir-
cuit, but cannot participate in the generation of the sheet
itself.

4.1.1. L2S! L2S.

Direct data on connectivity were recently acquired by
performing patch-clamp recordings of up to eight cells

simultaneously (52). By stimulating each cell one at a
time while detecting responses in all the others, synaptic
connections were tested for up to 56 pairs of cells at a
time (FIGURE 4, A and B). With this method, cells could
also be electrophysiologically characterized and filled
with biocytin, allowing post hoc immunohistochemical
analysis: L2S cells were identified by their expression of
reelin and relatively long depolarizing “sag” potentials in
response to hyperpolarizing voltage steps, whereas L2P
cells expressed calbindin and showed shorter sag
potentials.

Based on these criteria, L2S cells received monosy-
naptic inputs from other L2S cells (2.5%) (52) (FIGURE
4D). Although this percentage is low compared to the
�10% or more typically reported in other cortices (312,
313), this recurrent connectivity (based on 882 recorded
pairs of L2Ss) is considerably higher than previously
reported: several studies (47, 48, 50) observed 0 con-
nections between L2S cells. The fact that L2S cells were
identified in different ways in these four studies may
explain part of the discrepancy: if one includes the con-
nectivity between pure and intermediate stellate cells
identified in the Fuchs et al. (50) study (4–7%), their over-
all L2S connectivity becomes consistent with the 2.5%
reported byWinterer et al. (52).
Interestingly, even when Couey et al. (47) stimulated

up to three stellate cells simultaneously (in clusters of up
to 4 simultaneously recorded stellate cells), no response
in the fourth stellate cell was observed. This experiment
is important because a lack of monosynaptic responses
in any paired patch-clamp recording simply means that
there is insufficient synaptic input at the dendrites of the
postsynaptic cell (within a particular spatiotemporal win-
dow) to elicit a response at the soma, but does not nec-
essarily imply a lack of synaptic connections. Stimulating
several presynaptic cells increases the chances of
detecting such a connection, but it is unclear how much:
most neurons receive thousands of synaptic inputs, typi-
cally with a lognormal distribution of synaptic strengths
such that the majority of synapses are relatively weak
(314). In other words, a lack of responses in a paired re-
cording may indicate that many convergent inputs are
needed to elicit a somatic response, rather than showing
a lack of synaptic connections per se. Such functionally
weak synapses can be detected via electron micros-
copy (EM), and indeed a very high percentage (22%) of
connectivity between L2S pairs was reported in a sam-
ple of nine EM-reconstructed L2S cells (51). It should,
however, be noted that these EM data are from a very
small sample, and differences in identifying L2S cells
may also have led to an overestimation of connectivity
in this particular case: L2S cells were identified based
on their larger somata, and theoretically some L2P or in-
termediate cells (with higher connectivity) may have
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been misclassified as L2S. Even relatively strong synap-
tic responses at the dendrites may be suppressed by
coincident inhibitory inputs or other dendritic mecha-
nisms, which may shunt excitatory potentials or affect
nonlinear mechanisms of propagation along the den-
drites (315, 316), again potentially leading to an underesi-
mate of connectivity when measuring at the soma. Of
course, what is more important for the network (ana-
tomically identified synapses with locally restricted
effects or functional connections affecting the neu-
ron’s somatic membrane potential) depends on the
particular question.
There are two more reasons that paired patch-clamp

recordings in vitro tend to bias connectivity estimates.
First, in slices some connections may be cut. Second,
the recorded cells are typically located within a short

distance of each other, but connections become sparser
at longer distances and are thus more difficult to detect.
Thus, the method tends to undersample connections at
longer distances and mainly provides insight into local
connectivity. Despite or perhaps even because of these
limitations, the finding of local functional recurrent con-
nectivity among L2S cells appears to be robust, and cru-
cial for CAN models of grid cell firing. The relatively low
connectivity percentage may suggest that excitatory
input from other sources is needed for the generation of
L2S grid cell firing.

4.1.2. L2P! L2S.

Since pyramidal cells in all layers can also display grid
cell firing, similar to L2S cells, it may be that the L2S cells
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FIGURE 4. Superficial medial entorhi-
nal cortex (MEC) excitatory microcircuits.
A: example of 8 simultaneously recorded
cells, showing a connection between a
presynaptic layer 2 pyramidal (L2P) cell
expressing the L2P marker calbindin
(inset, P) and a postsynaptic layer 2 stel-
late (L2S) cell expressing reelin (inset, S).
Columns depict responses of all possible
postsynaptic cells to stimulation of 1 cell
(stimulation shown along the diagonal).
Only 1 cell (the L2S cell in row 1) showed
a response in this case (red trace on top,
magnification). B: example of 6 simulta-
neously recorded cells, showing a con-
nection between a presynaptic layer 3
pyramidal (L3P) cell and a postsynaptic
L2S cell. C: hierarchical classification of
principal cells in layer 2; for the 2 main
classes, characteristic voltage traces in
response to current injection are shown
at bottom. D: summary of excitatory
microcircuits. Blue arrows depict connec-
tivity as % of postsynaptic cells showing a
response to induced presynaptic spikes.
Percentages are from Winterer et al. (52).
�Earlier studies reported 0% based on a
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Reports. C adapted from Grosser et al.
(292) with permission from eNeuro.
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inherit their grid firing from pyramidal cells. Indeed, L2S
cells were found to receive remarkably strong monosy-
naptic glutamatergic projections from L2Ps: in 13.5% of
recorded L2P-L2S pairs, L2P stimulation elicited an exci-
tatory synaptic response in a L2S cell (52) (FIGURE 4, A
and D). In vivo, optogenetic stimulation of L2P cells also
appears to elicit responses in L2S cells: 50% of extracell-
ularly recorded cells in L2 showed an excitatory
response (65), and L2Ps make up at most 40% of princi-
pal cells in L2 (237). However, it is difficult to compare
these in vivo results directly with the in vitro results
above, since the optogenetic stimulation induces unphy-
siologically high synchrony among stimulated presynap-
tic cells, in contrast to the limited single-cell stimulation
in vitro as discussed above. Furthermore, the relatively
long latencies of excitatory responses measured in vivo
(up to�10ms) (65) suggest that these also included mul-
tisynaptic responses.

4.1.3. L3P! L2S.

Besides this input from L2P cells, L2S cells were also
shown to receive a relatively strong input from L3P cells
(7%) (52) (FIGURE 4, B and D). These L3Ps are also con-
nected to the deep layers (45, 59, 317). The high con-
nectivity rate of L3Ps, combined with their slowly
integrating EPSPs and high excitability, makes this cell
type an ideal candidate for interlaminar communication
in the MEC.

4.1.4. L2P and L3P connectivity.

The finding that L2S cells receive input from pyramidal
cells in L2 and L3 and L2S cells have only sparse recur-
rent connectivity among themselves, suggests the possi-
bility that L2P or L3P cells are themselves recurrently
connected, forming an excitatory CAN that can generate
grid cell firing patterns, which then in turn are inherited by
L2S grid cells. Glutamate uncaging suggests that L2Ps do
indeed receive scattered inputs arising from L2 and L3,
as well as from deeper layers of the MEC (45). However,
local recurrent excitatory connections between L2Ps
appear to be relatively rare (�2%) (50, 52) (FIGURE 4D).
Intermediate pyramidal cells as defined by Fuchs et al.
(50) were more strongly connected with each other (5%)
and with pure pyramidal cells (5–8%), suggesting an over-
all somewhat higher recurrent connectivity for L2Ps. Even
higher connectivity rates were reported between L2Ps
identified based on their morphology in an electron micro-
scopic reconstruction study (22%, n=54) (51). This may be
explained by differences in the identification of L2Ps and
the presence of weak synapses that cannot be easily
detected in paired patch-clamp recordings, although the
finding that pairs of cells were typically connected via

multiple, clustered synapses (51) makes this possibility
less likely. Despite these methodological considerations,
overall the data suggest that functional, local recurrent
excitatory connections between L2Ps are robust but rela-
tively sparse. In turn, this suggests a relatively weak con-
nectivity within L2P patches, which is surprising and very
different from the strong recurrent connectivity (25–36%)
within cortical barrels (313), which also arise from the
clustering of cortical excitatory cells. L2Ps may be
more specialized in connections over longer distan-
ces, either between different L2 patches (95) or
between hemispheres (58).

Monosynaptic connections between L3Ps and L2Ps
were also not found in either direction (0%) (52) (FIGURE
4D), suggesting that they do not form a recurrent excita-
tory network within superficial MEC. In contrast, recur-
rent connectivity among L3Ps is strong (6–9%) (44, 52).
Thus, a CAN consisting of recurrently connected L3Ps
could in theory generate grid cell firing, which is then
inherited by L2S cells. How L2P cells are able to gener-
ate grid cell firing would remain unexplained in this
scheme, however.

4.1.5. L2S! L2P or L2S! L3P.

One alternative possibility is that the pyramidal cells in
layers 2 and 3 are driven by L2S cells, thus forming a mul-
tisynaptic excitatory recurrent circuit (L2S ! L2/3P !
L2S) with CAN dynamics able to generate grid cell firing.
This would require inputs from L2S cells onto L2/3 pyram-
idal cells, which were indeed reported in one study based
on a small sample (8%, n=24) (47). An optogenetic study
reported that 14–19% of recorded pyramidal cells in layers
2 and 3 were depolarized in response to light stimulation
of L2S cells in a Sim1-Cre mouse (see FIGURE 6C) (49).
However, the unphysiological nature of optogenetic stim-
ulation, together with the lack of detailed information on
the timing of these responses (which were not the focus
of the cited study), makes it difficult to compare the latter
results with paired patch-clamp recordings, which consis-
tently showed very sparse or absent connectivity
(FIGURE 4D) when examining a larger sample of connec-
tions from L2Ss to L2Ps [0%, n = 126 (52); 0%, n =77 (50)]
or L3Ps [1%, n= 100 (52)]. Thus, a multisynaptic excitatory
microcircuit linking L2P, L3P, and L2S cells appears
unlikely.

On the other hand, the strong coherence among grid
cells in a module (136, 222, 226), together with the fact
that grid cells likely include not only L2S but also L2P
and L3P cells (67, 127, 130, 249, 250), suggests that any
CAN underlying grid firing in superficial MEC likely
includes all three principal cell types. So how can L2P
cells generate grid firing, if they do not receive any exci-
tatory inputs (FIGURE 4D) from the other cells that are
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part of the assumed CAN? One explanation could be
that grid firing in L2P cells is generated by mechanisms
that are fundamentally different from those underlying
CAN models: during a developmental phase, grid firing
in L2Ps could be guided by mechanisms that combine
spatially tuned input (for example from parasubiculum),
synaptic plasticity, and cell-intrinsic dynamics (73–80).
Such grid-tuned feedforward input to the MEC-hippo-
campal loop via L2P grid cells could supervise the devel-
opment of recurrent connectivity underlying CAN
dynamics (318, 319). In this way, spatially tuned activity of
L2Ps would serve also to anchor the grids produced by
CAN networks to physical space (48, 220, 320–323).

4.2. Inhibitory Connections in Superficial Layers

CAN models depend on cells with similar tuning proper-
ties being interconnected, but these specific connec-
tions can in theory be excitatory, inhibitory, or a
combination of both (71, 174, 282, 324–327). In paired
recordings of L2S cells, Couey et al. (47) found that stim-
ulation of L2S cells led to exclusively inhibitory
responses in simultaneously recorded L2S cells, which
were mediated by FS cells (likely PV1) but not low-
threshold spiking (LTS) cells (likely SOM1); this finding
led to a CAN model that could generate L2S grid cell fir-
ing depending solely on inhibitory connections, together
with an external excitatory drive (see below). This con-
nectivity has been repeatedly confirmed with paired
recordings in vitro (FIGURE 5, A and C) (48, 50), with
connectivity percentages of up to 78% for dorsal MEC
(292).

L2P cells also show high connectivity with fast-spiking
interneurons, although this appears to depend strongly
on how L2P cells are defined: Grosser et al. (292)
recently reported �20–50% connectivity depending on
the direction (FIGURE 5B), whereas Fuchs et al. (50)
reported 0% connectivity in both directions for their
“pure” L2Ps but 37–48% with “intermediate” pyramidal
cells (FIGURE 5C). In vivo, optogenetic stimulation of
L2Ps inhibited firing of �75% of extracellularly recorded
layer 2 principal cells, with relatively short delays (�1–6
ms) (65). This very large proportion of cells with a reduc-
tion in firing rate, together with responses in many FS
interneurons (65), suggests that in vivo strong FS cell-
mediated inhibitory connectivity exists between L2P
cells and other principal cells in layer 2, including mostly
L2S cells.
Optogenetic stimulation of L2P cells also induced

disynaptic inhibition in �80% of extracellularly recorded
L3P cells (65). Strong interaction of L3P cells with PV1
interneurons, but not other interneuron subtypes (includ-
ing SOM1, VIP1, and CR1 interneurons), was shown in
an in vitro model of Up and Down states (328),

suggesting that at least part of the inhibition reported by
Zutshi et al. (65) could be mediated by PV1 cells. On
the other hand, L3P cells were reported to receive less
inhibition than principal cells in L2 (278), and the
reduced intensity of PV1 neuropil in L3 [only roughly
50% of what is seen in L2 (46, 251)] suggests that this is
likely due to weaker innervation by PV1 cells.
Although microcircuits with sufficient connectivity are

certainly necessary for CAN models, more is required to
generate spatial coding: CAN models of grid firing
require directional and speed input able to move the ac-
tivity around. This can lead to specific predictions about
functional connections. For instance, a model based on
inhibitory connectivity predicted that interneurons
should display grid firing (48). So do cells with particular
functional properties indeed show such signs of a CAN
connectivity, rather than random connections? In vivo,
this question was directly investigated in a landmark
study applying extracellular tetrode recordings from
optogenetically tagged PV1 interneurons and unidenti-
fied principal cells (61). A great advantage of this
approach was that functional cell types such as grid and
HD cells could be identified; a disadvantage is that con-
nectivity could only be inferred based on correlations
between spikes recorded from different cells (with a
delay consistent with monosynaptic connections), which
could also be due to a common (temporally offset) input
(see also Ref. 329). Buetfering et al. (61) found that 12%
of tagged PV1 cells appeared to receive input from grid
cells (at least threefold more than from HD cells, unclas-
sified spatial cells, conjunctive cells, or other PV1 cells),
and grid cells appeared to target almost exclusively ei-
ther tagged PV1 interneurons or untagged cells with a
high firing rate, presumably also interneurons. These
data are consistent with the sparse excitatory and strong
inhibitory connectivity reported in vitro and appear to
support an inhibitory CAN model. However, the fact that
PV1 interneurons were not grid tuned, and did not
receive inputs from similarly tuned grid cells (61), argues
against a simple model in which similarly tuned grid cells
within a CAN module selectively drive interneurons in a
one-to-one fashion. A slightly more advanced model, in
which interneurons are driven by excitatory uncorre-
lated spatial inputs, can in fact generate selective grid
firing in excitatory neurons without grid firing in inter-
neurons (330).
Regardless of the particular model that is imple-

mented (329), the specific importance of PV1 interneur-
ons for spatial coding was recently shown directly by
chemogenetic silencing of PV1 interneurons in the
MEC, which caused a reduction in grid and speed cell
tuning (64). The fact that both of these cell types were
affected may suggest that a reduction in speed tuning
impaired the velocity-dependent translation of the
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activity bump in a CAN, leading to a random moving of
the firing fields of grid cells.
In contrast, neither speed nor grid cells were affected

by silencing of SOM1 interneurons (64). Instead, this
manipulation altered the spatial selectivity of cells with
discrete aperiodic firing fields. In vitro, only Fuchs et al.
(50) has specifically quantified SOM1 interneuron con-
nectivity in the MEC, finding that L2P and intermediate
stellate cells receive zero input from SOM cells, whereas
L2S and intermediate pyramidal cells do receive sub-
stantial input (12–14%) (FIGURE 5C). Overall the data
suggest that for both L2P and L2S cells at least some
subpopulation is getting direct inhibition from SOM1

interneurons, which could mediate the effects of silenc-
ing in the Miao et al. study (64).
The dissociation between the effects of silencing

SOM1 and PV1 interneurons suggests they may be em-
bedded in different functional networks, with PV1 being
more associated with speed and grid cells and SOM1
more associated with nonperiodic spatially selective cells.
The dissociation also suggests that connectivity between
SOM1 and PV1 cells, which has been reported in other
cortical areas, may not be significant in the MEC.
Interestingly, neither HD nor border cells were affected
by either manipulation, suggesting that they may be more
driven by external inputs rather than being dependent on
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FIGURE 5. Superficial medial entorhinal cortex
(MEC) inhibitory microcircuits. A: example paired
recording from a layer 2 stellate (L2S) cell (red)
and a fast-spiking basket cell (blue soma and
dendrites, purple axon) expressing parvalbumin
(inset, PV). Traces on right show that stimulation
of the PV cell (row 1) induced a hyperpolarizing
current in the L2S cell (row 2) and L2S cell stimu-
lation (row 3) induced a depolarizing current in
the PV cell (row 4). B: example paired recording
from a layer 2 pyramidal (L2P) cell (gray) and a PV
cell (same colors as above). Note again connec-
tivity in both directions. Scales as in A. C: sum-
mary of inhibitory microcircuits for layer 2
principal cells. Blue arrows depict connectivity as
% of postsynaptic cells showing a response to
induced presynaptic spikes. Dashed lines repre-
sent 0% connectivity. PV cell connectivity with
L2S and L2P cells is from Grosser et al. (292). All
other data are from Fuchs et al. (50), who defined
two additional types of layer 2 principal cells
(intP, intermediate pyramidal cells; intS, interme-
diate stellate cells) and recorded from all 3 main
classes of interneurons (SOM, somatostatin-
expressing interneurons; 5HT3, serotonin recep-
tor type 3a-expressing interneurons). Note that
because of the difference in classification of layer
2 principal cells, it is not possible to directly com-
pare the results from these 2 studies. D: motifs
involving PV interneurons. Three motifs with
feedforward inhibition (FFI) are apparent: 1) from
L2P to L2S, accompanied by feedforward excita-
tion (FFI1 FFE; purple); 2) from L2P to layer 3 py-
ramidal cell (L3P), not accompanied by excitation
in either direction (FFI; light green); 3) from L2S to
L3P, accompanied by feedback excitation (FFI 1
FBE; orange). In addition, 2 feedback inhibitory
motifs can be discerned: 1 among L2S cells and 1
among L2P cells (both dark green); note that
these feedback inhibitory motifs are both accom-
panied by sparser (1.7–6%) feedback excitation
among the principal cells (FIGURE 4). Further
motifs are likely to emerge, for instance if L3P
cells provide input to PV interneurons, which has
not been demonstrated directly (‘?’). A and B
adapted from Grosser et al. (292) with permission
from eNeuro.
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local microcircuits. Alternatively, they may be more de-
pendent on 5HT3aR1 interneurons.
Regarding 5HT3aR interneurons in the MEC, very little

is known in terms of physiology, anatomy, and function.
Fuchs et al. (50) reported a high probability of inputs
from 5HT3aR cells (�25%) (FIGURE 5C) onto L2Ps, con-
sistent with the prominent CCK basket cell terminals pre-
viously reported (58). L2S cells receive considerably
less inhibition from this category of interneurons overall
(50). All principal cell types in layer 2 appeared to pro-
vide modest output onto 5HT3aR1 cells (FIGURE 5C).
Because 5HT3aR1 interneurons are a very heterogene-
ous group, it will be important to investigate the extent
to which particular subtypes have different connectivity
profiles. This point can also be applied more generally
to all three main interneuron classes, which each contain
several subtypes with likely very different roles within
their local microcircuits.

4.3. Connections between Deep and Superficial
Layers

So far we have discussed mostly superficial layer connec-
tivity. However, there is also bidirectional communication
between the superficial (L1–3) and deep (L5–6) layers in
the MEC. In vivo, it was reported that deep layers have a
large proportion of speed-modulated cells as well as con-
junctive grid and head direction cells whereas the superfi-
cial layers have more distinct populations of head
direction or grid cells (153). One hypothesis could be that
the deep layers, which have been shown to have strong
recurrent excitatory connections (44), might update the
neuronal computations occurring in the superficial layers,
based on the input they receive from the hippocampus
(FIGURE 1B). Morphological reconstructions of L5 cells
(331), anatomical tracer studies (59), as well as single-pho-
ton glutamate uncaging (45) (FIGURE 6A) indicate that
deep layers provide input to the superficial layers in the
MEC. In particular, L5b sends projections to layers 2 and
3 (59). L5b also receives synaptic inputs from L3P (317)
and L2S neurons, whereas axon terminals from L2P neu-
rons are very sparse in all deep layers (49) (FIGURE 6, B
and C). Thus L5b cells appear to form excitatory loops
with L3P and L2S cells (FIGURE 6D), which could in
theory sustain an excitatory CAN network (although in
fact L2P cells appear to receive a stronger input from
deep layers than L2S cells) (45) (FIGURE 6, A and D).
This loop can be expanded with hippocampal connec-
tions, as L2S and L3P cells provide the main output to the
hippocampus (FIGURE 1B) and L5b was shown to receive
the main input from the hippocampus (49). In contrast,
L5a pyramidal cells receive very little input from L2 princi-
pal cells and project out of the MEC to other cortical areas
like the retrosplenial cortex.

5. SUMMARY

Overall, the current data on local connectivity within the
MEC, and particularly the superficial MEC, provide some
constraints on possible anatomical instantiations of the
CAN microcircuits thought to underlie grid cell firing. We
summarize several main points:

• Grid cells in the superficial MEC likely include L2S,
L2P, and L3S cells; therefore, for any functional CAN
module at least a subset of these three cell types
must be interconnected directly or indirectly.

• Monosynaptic recurrent excitatory connectivity within
the L2S and L2P populations is present but sparse.

• Monosynaptic recurrent excitatory connectivity within
the L3P and L5P populations is more abundant.

• Monosynaptic excitatory connectivity from pyramidal
cells in both superficial layers onto L2S cells is abun-
dant and unidirectional.

• Both L2S and L2P cells are strongly interconnected
via PV interneurons and sparsely via 5HT3 interneur-
ons. SOM input to L2P cells is sparse or absent.

6. OUTLOOK

Although many open questions remain, a start has been
made in terms of describing the MEC microcircuits in vitro
with multipatch approaches and in vivo with chemo- and
optogenetics in combination with transgenic mouse lines.
One major insight coming from recent studies on MEC
microcircuitry is that there are not only feedforward but
also recurrent excitatory and inhibitory connections within
superficial layers 2 and 3 of MEC. It is tempting to specu-
late that recurrent connections enable CAN dynamics,
which in turn contribute to spatial coding properties of
cells in the MEC.
The extent to which synaptic connections underly-

ing CAN dynamics in the MEC are excitatory or inhibi-
tory, or some combination of both, remains an open
question, but current data do suggest several possi-
ble polysynaptic motifs. Further anatomically precise
models are needed to explore these possibilities. For
instance, it is difficult to intuit whether 2% monosy-
naptic excitatory connectivity between L2S or L2P
cells could be biologically significant for CAN func-
tion. Although 2% sounds extremely low, in hippo-
campal area CA3, classically considered to be a
“highly recurrent” area, the connectivity rate among
CA3b pyramidal cells was recently reported to be
only �0.9% (146/15,930 tested pairs) and remarkably
independent of the distance between the recorded
cells (up to 400 mm) (332). The question of scale is
crucial here: an overall low connectivity rate, such as
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2% between L2Ps, can still be compatible with high
local connectivity, which is all that is required for a
CAN. Note that “local” here pertains to the connection
matrix, not to the anatomical locations of neurons;
even though paired patch-clamp recordings tend to
be made from relatively nearby cells, one cannot
know how local cells are in the connection matrix with-
out recording very large numbers of cells from the
same slice. In theory, the extent to which cells are
locally connected should determine the size of
the cell assembly representing the “bump size” of the
CAN. Recent developments in technology for simulta-
neous recording of activity and connectivity from
thousands of neurons at the same time, in behaving

animals (333–339), will enable us to determine the
minimal required connectivity of a functional CAN.
One way to address the issue of anatomically distrib-

uted cell assembly connectivity in vitro is to record a
large number of pairs and identify higher-order motifs. In
the Guzman et al. study (332), several higher-order
motifs were identified, and it was shown that sparse con-
nectivity specifically in combination with a disynaptic
“chain”motif could generate pattern completion, a long-
proposed function of CA3 recurrent networks (340–
342). In general, multisynaptic motifs have been shown
to occur in the cortex much more commonly than would
be expected based on random connectivity (particularly
among principal cells); such motifs have been posited to
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enhance memory storage capacity and could reflect
associative synaptic plasticity underlying the formation
of neuronal assemblies (314, 343–346). In the MEC, a
high ratio of reciprocal connections has been shown
directly between PV interneurons and L2S cells and L2P
cells (47, 292), but the extent to which this exceeds
chance levels (taking into account the extensive diver-
gent and convergent properties of these cells) was
not examined. In the neighboring presubiculum, which
shares several properties with the MEC including the
presence of grid cells (155), both reciprocal and
“chain” motifs involving PV cells are statistically over-
represented (160).
Overall, the superficial MEC connectivity data reviewed

here constrain possible motifs by ruling out, e.g., recipro-
cal connections between L2P cells and other principal
cell types (FIGURE 4D). On the other hand, it also sug-
gests several possible motifs, e.g., involving PV cells, that
could be further investigated (FIGURE 5D). First, feedfor-
ward inhibition from L2Ps onto L2S cells appears to be
accompanied by feedforward excitation of L2S cells, in a
manner consistent with recent EM reconstructions (51).
Second, feedforward inhibition from L2Ps onto L3P cells
is not accompanied by feedforward or feedback excita-
tion. Together, these motifs suggest that L2Ps may have
a role in mediating feedforward input rather than partici-
pating in the recurrent circuits thought to form a local
CAN in the superficial MEC. Third, feedforward inhibition
from L2Ss onto L3Ps is accompanied by feedback excita-
tion from L3Ps onto L2Ss. Fourth, feedforward inhibition
from L2Ss onto L2Ps is also accompanied by feedback
excitation. Finally, feedback inhibition is commonly seen
among L2Ss and among L2Ps and is also likely to be
present in L3Ps, although this has not been directly
shown. The strong inhibitory connectivity among all prin-
cipal cells suggests that the superficial MEC could form
an inhibitory CAN that, if combined with a nonspecific
excitatory drive, may be sufficient to generate grid cell fir-
ing (47). This is consistent with the finding that most PV
cells contact both L2S and L2P cells (13). The excitatory
drive may reach L2S cells via pyramidal cells in either
layer (FIGURE 4D), which could mediate external inputs
from the pre- and parasubiculum (FIGURE 1B) or from
L5b (FIGURE 6D). L5b pyramidal cells in turn may be
bound into the CAN via direct inputs from L2S (FIGURE
6, C and D), as well as relaying a drive from the hippo-
campus that has been shown to be important for grid cell
function (148).
Beyond the feedback inhibition motif between L2S

cells (47, 48), the role of specific network motifs in spatial
coding has not been directly explored to our knowl-
edge. The feedback inhibition motif at the network level
could be instantiated at the neuron level as two different
disynaptic motifs: a reciprocal motif between pairs of

cells or a “chain” motif involving a principal cell, a PV
cell, and another principal cell. It is likely that the ratio of
such neuron motifs will have a large effect on for
instance how effectively activity can spread within a net-
work. As ever-higher numbers of cells can be simulta-
neously recorded in vitro, it will be interesting to see
more detailed studies and models of MEC network to-
pology, also including different types of interneurons.
Possible motifs involving other interneuron types in
the MEC remain difficult to identify since connectivity
data on these cell types remain mostly limited to a sin-
gle study, which did not include layer 3 and classified
principal cells into four instead of two categories
(FIGURE 5C) (50).
In general, classification of cell types remains an im-

portant challenge for the future, both for interneurons
and principal cells (FIGURE 3). It has not been possible
thus far to directly relate anatomically and functionally
defined cell types, in large part because there is no
straightforward link between anatomical (molecular
expression profile, hodology, morphology, layer, brain
region) and intrinsic physiological properties (50, 91,
232, 233, 289, 347–349). Adding further complexity, py-
ramidal cells in different MEC layers and even different
parahippocampal areas can have similar functional prop-
erties (153, 155), and there can be substantial variability
of function for any particular anatomically defined cell
type both within and between animals [e.g., MEC L2 stel-
late cells (243)]. This is perhaps even more pronounced
for different types of inhibitory interneurons, which can
also have differential functional roles (61, 64, 199, 200).
One possible solution may be to start out with func-

tionally defined cell types and determine their functional
connectivity through precise manipulations in vivo.
Precise optical stimulation methods with simultaneous
imaging may enable experiments in the MEC that can
indeed combine functional readouts based on calcium
sensors with optogenetically driven tests of connectivity
and function, as has been shown in other brain areas
(333, 334, 337). These methods can overcome some of
the shortcomings of optogenetics approaches applied
in the MEC thus far, where typically large numbers of ge-
netically identified cells were synchronously activated,
in a highly nonphysiological manner, likely leading to
overestimates of functional connectivity. However, the
low temporal resolution of current calcium imaging limits
their use in investigating monosynaptic connectivity
compared to electrophysiological methods. By combin-
ing electrophysiological and imaging methods with
optogenetics in behaving animals, it is in principle al-
ready possible (but challenging) to directly address the
question of how grid cells and their underlying CAN neu-
ral circuits are connected to cells encoding speed, head
direction, or landmark information. Speed and HD input
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Table 1. Reported connectivity of principal cell types in the superficial MEC

Presynaptic Postsynaptic Connectivity, % n Pairs Tested Species/Strain Cell Identification Publication

L2S L2S 0a 644a Long-Evans rat Intrinsic ephys�; morphol-
ogy in subset

Couey et al. (47)

L2S 0 56 Thy1-ChR2-YFP mouse Sag potential, clustered APs Pastoll et al. (48)

L2S 0 2,200b Thy1-ChR2-YFP mouse Sag potential, clustered APs Pastoll et al. (48)

L2S 0 100 Uch1-Cre mouse Intrinsic ephys^; apical
dendrite�

Fuchs et al. (50)

L2S 2.49 882 Wistar rat Sag potential Winterer et al. (52)

L2IntS 4.3 47 Uch1-Cre mouse Intrinsic ephys^; apical
dendrite

Fuchs et al. (50)

L2P 8.3 24 Long-Evans rat Intrinsic ephys�; morphol-
ogy in subset

Couey et al. (47)

L2P 0 38 CB-Cre mouse Intrinsic ephys^; apical
dendrite

Fuchs et al. (50)

L2P 0 126 Wistar rat Sag potential Winterer et al. (52)

L2IntP 0 39 CB-Cre mouse Intrinsic ephys^; apical
dendrite

Fuchs et al. (50)

L3P 1 100 Wistar rat Sag potential Winterer et al. (52)

L2IntS L2S 6.5 46 UCh1-Cre mouse Intrinsic ephys^; apical
dendrite

Fuchs et al. (50)

L2P L2P 1.8 56 CB-Cre mouse Intrinsic ephys^; apical
dendrite

Fuchs et al. (50)

L2P 1.6 64 Wistar rat Sag potential Winterer et al. (52)

L2IntP 4.8 42 CB-Cre mouse Intrinsic ephys^; apical
dendrite

Fuchs et al. (50)

L2S 0 38 CB-Cre mouse Intrinsic ephys^; apical
dendrite

Fuchs et al. (50)

L2S 13.49 126 Wistar rat Sag potential Winterer et al. (52)

L2S 0 52 Long-Evans rat Intrinsic ephys�; morphol-
ogy in subset

Couey et al. (47)

L3P 0 84 Wistar rat Sag potential Winterer et al. (52)

L2IntP L2P 7.5 40 mouse 4 intrinsic ephys parame-
ters; apical dendrite

Fuchs et al. (50)

L2IntP 4.7 43 mouse 4 intrinsic ephys parame-
ters; apical dendrite

Fuchs et al. (50)

L2S 10.0 40 mouse 4 intrinsic ephys parame-
ters; apical dendrite

Fuchs et al. (50)

Continued
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must be input into the CAN in order for spatially stable
grid patterns recorded from grid cells to arise: the stabil-
ity of the grid firing can be seen as a representation or
readout of a path integration process (71, 350). Although
the path integration is in principle separate from the
CAN dynamics, which are also present for instance in
sleep (151, 152), the HD and speed inputs must be inte-
grated in the same superficial MEC microcircuits under-
lying CAN dynamics. This information is likely passed on
from cells in the pre- and parasubiculum, which encode
speed, direction, and grid cell patterns reflecting al-
ready-integrated combinations of these two variables,
onto cells in the superficial MEC (155, 158, 176, 181, 351).
In addition, speed information is likely to come from the
medial septum (206, 212), and other inputs from for
instance the visual or retrosplenial cortex may also con-
tribute. Besides needing to be able to continually keep
track of speed and direction, CANs must also be periodi-
cally “anchored” to particular aspects of the environ-
ment, to prevent the accrual of random errors over time.
Again the anatomical pathways mediating such inputs
remain unclear: grid cell CANs may receive this input
from local border or OV cells, or from extrinsic sources.
Importantly, the output from the MEC into the hippocam-
pus comes primarily from L2Ss and includes not only
grid cells but many functional cell types (154, 250). Thus,
it would be wrong to consider MEC merely as a circuit to
produce grid cell output: other cell types recorded in the
MEC are likely to also have roles beyond the generation
of grid cell firing.
Approaches based on functional cell types in vivo are

easily combined with genetic methods, enabling some
insights into how anatomical cell types relate to functional
cell types. Finding the anatomical substrates underlying
function is particularly important for translational ques-
tions. For the next generation of drug development, a cir-
cuit-level understanding based on extracellular “units”

needs to be complemented with concrete knowledge of
which neurons should be targeted to effectively counter-
act pathological circuit function and what their molecular
profiles are (e.g., specific receptors). MEC layer-specific
and cell-type specific lines (347), possibly using intersec-
tional approaches (352–354), could allow us to dissect
the excitatory and inhibitory microcircuitry of the MEC in
much finer detail. It is likely that more heterogeneity exists
than the simple schemes we currently use, and perhaps
higher-dimensional anatomical analyses are needed, as
have been applied in visual cortex and other areas (286,
355–358). Combining such anatomical knowledge with
in vivo functional readout and manipulation approaches
as outlined above will surely provide great insights in the
future. Alternatively, combining in vivo with in vitro
approaches may enable even greater mechanistic
insights into the anatomical underpinnings. In vivo, func-
tional traits of cells can be determined with, e.g., patch-
clamp or juxtacellular recordings enabling single-cell
labeling or transfection (90, 359–361), head-fixed or
head-mounted calcium or voltage imaging in combination
with precise optogenetic stimulation (337) and virtual real-
ity (362), or spatiotemporally controlled labeling or gene
expression (363–367). Combining these approaches with
post hoc identification of the functionally characterized
cells enables further in vitro anatomical, electrophysiolog-
ical, or even ultrastructural identification of the microcir-
cuits in which they are embedded (51, 368–370).
Complementary approaches recording from many cells
at the same time are also likely to be required to decipher
the circuit, via imaging approaches, high-density electro-
physiological recordings, or a combination of both (371–
377). Ultimately, such big-data approaches will enable
much more complete models of the microcircuits underly-
ing spatial coding. The insights from these models will
enable artificial agents to navigate better, or at least help
us understand the performance of artificial agents under

Table 1.—Continued

Presynaptic Postsynaptic Connectivity, % n Pairs Tested Species/Strain Cell Identification Publication

L3P L3P 8.4 393 Wistar rat Regular firing Dhillon and Jones (44)

L3P 5.7 209 Wistar rat Input resistance, resting
membrane potential

Winterer et al. (52)

L2P 0 84 Wistar rat Sag potential Winterer et al. (52)

L2S 7.0 100 Wistar rat Sag potential Winterer et al. (52)

AP, action potential; ephys, electrophysiology; L2IntP, layer 2 intermediate pyramidal cell; L2IntS, layer 2 intermediate stellate cell; L2P, layer 2 pyramidal
cell; L2S, layer 2 stellate cell; L3P, layer 3 pyramidal cell. aNot fully clear from text how many pairs tested under which conditions; sporadic connectivity
(0.3–1.8%) seen before p28 and in 3/246 pairs (1.2%) in adults with GABAergic input and Kv1 channels blocked “only in response to multiple simultaneous
stimulations.” bEstimated based on 11 cells recorded, each with estimated 200 channelrhodopsin (ChR)-expressing L2S cells stimulated by light. �Not
fully clear from text whether dendrites were used for identification of stellate cells. �Sag potential, ratio first and second interspike interval, input resist-
ance, high-frequency burst firing. ^Sag potential, ratio first and second interspike interval, depolarizing afterpotential, latency to first spike.
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some circumstances, as recently shown for a recurrent
network trained to perform path integration, in which
units developed gridlike properties as well as border, HD,
and conjunctive tuning (378) (see also Ref. 379). This
agent outperformed previous deep learning navigation
systems, e.g., exploiting novel shortcuts in challenging
environments. Perhaps more importantly, these models
may shed light on general knowledge representation and
memory processes and enable novel ways to improve cir-
cuit function for a wide range of pathologies (see Clinical
Highlights) involving this fascinating brain area.

APPENDIX: CONTINUOUS ATTRACTOR
NETWORKS

A network of interconnected neurons can in principle
reach a large number of states, often defined by “popula-
tion vectors” of neuronal firing rates, which express the
dynamic combination of activity in all cells of a recorded
neuronal ensemble (380, 381). In many neural networks,

the dynamics tend to spontaneously converge on only a
limited number of stable states, known as attractors. If we
assume that particular stable states in a memory network
represent previously encoded activity states, then the
shift of the network activity from some starting state to an
attractor can be seen as memory recall (382). With an
appropriate network architecture, several attractor states
can be linked such that the transition between them has a
very low threshold (0 in the extreme case of an infinite net-
work), forming a “quasi-continuous” manifold of stable
states, which can represent continuous variables (324)—
now referred to as a CAN.

Theoretical insights like these gave rise to models of
orientation tuning in neurons of the visual cortex (383)
and memory of eye position in oculomotor circuits of the
brain stem and cerebellum (384). Early on, it was also
acknowledged that CANs provide powerful models of
representation of self-location, both in one dimension,
as expressed in head direction cells (172,173, 385), and
in two dimensions, as in place cells (145, 223, 386, 387).
Two-dimensional models for place cells (145, 223) were
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FIGURE A1. Continuous-attractor network (CAN) models of head
direction (HD), place, and grid cell function. Head direction: A classic
ring attractor network (left) in which neurons (circles) are connected
(red, gray) such that only 1 bump of activity is active at a time (repre-
sented by warmer colors of circles), encoding the animal’s head direc-
tion. Note that additional mechanisms that are required to shift the
activity appropriately when the head moves are not shown here.
Activity of HD cells in the brain was recently shown (178–180) to
indeed have a ring structure (center; colors represent different pre-
ferred head directions). This structure is very similar (right) during
REM sleep (green) and awake (black) states (179). Place: A bump of
activity in a 2-dimensional (2-D) sheet of hippocampal place cells can
follow the animal’s position in space (top). To avoid discontinuity at
the edge of the sheet, cells can be connected (bottom left; red arrows
depict connections for 2 example cells) such that the CAN forms a
torus (bottom right) (71). Grid: A: a specific connectivity profile (top left,
in this case a combination of local excitation and surround inhibition)
for neurons arranged on a 2-D sheet can lead to the emergence of a
gridlike pattern of activity bumps (top right). Note that the connectivity
profile shown is merely 1 example; different combinations of local and
global excitation and inhibition can lead to a similar pattern. B:
because the different states represented by the sheet are all con-
nected on a 2-D manifold, the sheet can be easily shifted around
from 1 state to another. Translation v follows the velocity of the ani-
mal’s locomotion, shown here for 2 example paths (p1, p2), each at 3
consecutive time points (t1, t2, t3 and t10, t20, t30, respectively). The
effect of these translations on neuronal firing is illustrated for 1 exam-
ple neuron ni, both in the temporal (blue traces, top right and bottom
left) and spatial (bottom right) domain. Note that in this example v1 is
larger than v2, leading to a longer path for p1 than p2 (dashed arrows)
in a shorter time (t1–t3 are closer together than t10–t30). In reality, the
animal’s movement will contain a wide range of directions and
speeds, but as long as the translations of the activity sheet closely
mirror these, the pattern of firing for any single neuron will remain sta-
ble. Head direction left panel, all Place panels, and Grid panel a from
McNaughton et al. (71) with permission from Nature Reviews
Neuroscience. Head direction center panel from Rybakken et al. (180)
with permission from Neural Computation. Head direction right panel
from Chaudhuri et al. (179) with permission from Nature Neuroscience.
Grid panel B inspired by Couey et al. (47) and Bonnevie et al. (148).
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subsequently extended to account for grid cells (47, 71,
139, 282, 321; see 388 for a historical review). In these
models, the CAN can be visualized as an arrangement
of neurons with activity on a periodic manifold, where
the cells are arranged such that the cells with most simi-
lar connectivity are closest together, whether this is on a
circle, in one dimension, or on a torus, for a two-dimen-
sional manifold (FIGURE A1). On these continua, the
active cells at a given moment in time form a “bump” of
activity. Because CANs contain a range of stable states,
the bump can be easily moved around from one stable
state to another, in accordance with external inputs to
the CAN. Spontaneous noise-driven “drift” can occur in
the absence of inputs that, over time, may lead to
“errors” or mismatches with the position in space that
they normally correspond to. Errors induced by drift in a
CAN are expected to be coherent across all its ele-
ments, a prediction that has been confirmed in record-
ings from coactive neurons in the MEC (143, 147,
151,152).

In the case of spatial navigation, in order for the
underlying neurons to remain linked to the same place
and exhibit stable spatial coding, two aspects are
needed. First, the bump of activity in the CAN must be
moved in a manner that is consistent with the speed
and direction of the animal’s movement; exactly how
this is implemented in the brain remains an important
topic of research. Furthermore, the CAN must be “anch-
ored” to visual landmarks or other location-correlated
sensory inputs in the external environment. This enables
the animal to have different sets of active neurons for
different environments. Location-correlated input can
also serve to periodically correct the abovementioned
drift and may serve to “teach” the network during devel-
opment, such that the connectivity underlying CAN dy-
namics becomes linked to spatial coding properties (71,
318, 319).
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