
 

  

 

 

 

 

 

 

 

 

 
Introduction 
 

 The combination of vitreous preservation of biological samples 
[1] with 3D electron tomographic imaging [2] has opened a unique 
opportunity to study living matter at nanometer scale [3]. 
Importantly, in addition to observing the ultrastructure of cells, it is 
also possible to perform structural analysis of large macromolecules 
and their complexes in situ. Since the inherent contrast of cryo-
preserved material is low, a large number of electron microscopy 
datasets of identical specimens is needed to allow statistical image 
processing with specialized algorithms and methods. This approach is 
fundamentally similar to single particle cryo-electron microscopy 
(cryo-EM) [4], except that each tomographic sub-volume is a 3-
dimensional dataset with anisotropic resolution, and that the particles 
are imaged in a crowded cellular context rather than isolated in 
solution. The process of producing an average structure is commonly 
referred to as “cryo electron tomography sub-volume averaging”, or 
CET SVA. The typical resolution that may be achieved by CET SVA 
in situ is 2-6 nm, dependent upon on a number of factors. We here 
discuss four major sources of resolution degradation: 1) sample 
thickness, 2) cryo-EM instrumentation, 3) sample heterogeneity, and 
the 4) effect of the contrast transfer function of the instrument. 

First, the quality of cryo-EM images worsens with increasing 
electron density thickness of the sample. The fraction of inelastically 
scattered electrons increases with growing sample thickness, degrading 
the resolution of structures derived from SVA. For the commonly 
used intermediate voltage transmission electron microscopes, 
operating at electron acceleration voltages of 200 or 300 kV, the 
sample thickness limit for tomographic imaging of biological 
specimens is around 0.5 – 1 µm. Second, the choice of cryo-EM 
instrumentation is important: electrons accelerated with higher 
voltages  are capable of  penetrating  thicker  samples;  electron energy  

 
  
 
 
 
 

 
 

loss imaging filters eliminate inelastically scattered electrons of lower 
energy, thereby improving the signal to noise ratio of the resulting 
images. The point resolution of modern electron microscopes is in the 
angstrom range, while the resolution of CET SVA is so far typically 
in nanometer range so this aspect currently does not limit the 
resolution. Thirdly, large protein complexes in the native context are 
subject to flexibility originating from external forces and from their 
own structural heterogeneity. Sub-volume averaging requires all 
volumes to contain structures in exactly the same conformation. 
Structural variations among sub-volumes would otherwise blur the 
calculated average, thereby reducing the resolution. Fourth, the low 
contrast in cryo-EM images is usually compensated for by the 
instrument's operator by defocusing the microscope's objective lens, 
which introduces strong oscillations to the instrument's contrast 
transfer function (CTF) that have to be accounted for during image 
processing (see below). 

Typical objects approached by CET SVA are large protein 
complexes inside intact bacterial [5-8] or eukaryotic cells [9-11]; large 
protein or protein-DNA complexes in cryo-sectioned cells or tissues 
[12-14]; viral cores [15-18] and outer surface proteins [19-21]; 
bacteriophages [22,23]; microtubule bound proteins in situ [24-26] 
or in vitro [27]; membrane protein complexes in simplified systems 
such as lipid vesicles [28]  or isolated membrane fractions [29] and 
proteins and their complexes that have a preferential orientation on 
the EM support [30,31]. 

The popularity of CET SVA is growing fast, and the number of 
laboratories in the world with access to the expensive instrumentation 
and image processing expertise is rising rapidly. Although progress in 
single particle electron tomography has recently been reviewed [32], 
here we use the rapidly increasing number of publications to present a 
comprehensive analysis of recently published structures and employed 
imaging parameters from cryo electron tomography and sub-volume 
averaging.  
 

Overview 
 

Table S1 summarizes the acquisition parameters and resulting 
resolutions of 123 structures solved by CET SVA that were found by 
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literature searches (Using http://pubmed.gov and searching for "cryo 
electron tomography" and "electron cryotomography" before 15 Feb 
2012) and contained structural analysis (99 entries, some examining 
more than one structure). We incorporated the image acquisition 
parameters, such as microscope accelerating voltage, applied objective 
lens defocus, tomographic angular coverage, presence of energy 
filtration, etc with the properties of the sample, such as estimated ice 
thickness and the properties of the protein complex of interest, such 
as number of averaged particles, symmetry and estimated maximal 
linear dimension.  

The number of structures solved by sub volume averaging grows 
year from year: while only 8 structures had been analyzed before 
2006, 44 structures were reported between 2006 and 2009; and 37 
structures were reported in 2011 alone (Figure 1). As seen from 
Figure 1, not only does the number of structures grow, but also the 
resolution of these structures tends to improve.  

We further performed a simple statistical analysis of acquisition 
parameters by correlation of values from columns of Table S1. Table 
1 illustrates relationships between publication year and resolution and 
other experimental parameters. The resolution of the reconstruction 
was in most of cases assumed as that where the signal to noise ratio in 
frequency space was above a defined threshold. Resolution is usually 
defined as that were the Fourier Shell Correlation curve between 
averages produced by two sub-halves of the dataset intersects with the 
horizontal “0.5” threshold, or with a threshold of “0.143” [33], or 
yet other information criteria [34].   

 

 

 
 
 

 
There is a positive correlation detected between the publication year 
and camera size and presence of the imaging filter, which is an 
indication of improvement in instrumentation used by structural 
biological laboratories. Interestingly, there is no correlation between 
year and number of acquired particles, which suggests that there is no 
significant increase in automation of data collection noticeable. As 
mentioned before, the resolution of structures analyzed by CET 
improved with time.  

 
 Factors affecting resolution 
 

Higher resolution of the resulting structure was achieved when 
processing more particles. Table 1 here shows a correlation value 
between the number of particles and the resolution value of cc=-0.28, 
indicating that with more particles the number reported resolution for 
the   resolution   value   became   smaller  (i.e.,  better  resolution  was  

 

 
reported). This trivial relationship illustrates the effect of improving 
the signal to noise ratio of the final reconstruction by increasing both 
the number particles and asymmetric units, when symmetric particles 
were processed. Interestingly, particles with higher symmetry on 
average yielded worse resolution (cc=0.21). This phenomenon may 
be related to a positive correlation (cc=0.14) with symmetry order 
and the linear size of the samples, suggesting that particles with higher 
symmetry are usually larger and may be more flexible than non-
symmetric particles. Indeed, there is a high positive correlation 
between resolution value and linear size of the protein complex 
(cc=0.44), suggesting that despite being less visible in the raw cryo-
EM images, smaller particles usually allowed for imaging parameter 
settings that led to higher resolution. Moreover, a larger quasi-
symmetric protein assembly often deviates from ideal symmetry, when 
the particle is suffering from sample preparation influences, like 
flattening in a thinner ice layer. For example, datasets from bacterial 
flagellar motors of spirochetes processed using C16 symmetry [5,35] 
have worse resolution than structures obtained without any symmetry 
assumptions [6], although a substantially increased number of 
particles were included in the asymmetric reconstruction. The degree 
of flexibility of a multi protein complex has to be analyzed carefully, 
as even fairly large assemblies may be studied at relatively high 
resolution by CET and SVA [36-38]. If a sufficiently large dataset is 
available, sample heterogeneity can be evaluated computationally by 
using classification of the aligned particles, wherein different particles 
or different conformations of the particles should be re-assigned to 
separate classes. This then reduces the in-class variation, thereby 
allowing higher resolution of the reconstruction in case of sufficient 
number of particles remaining in the class. Table 1 also shows a 
correlation (cc = -0.14) between the resolution and number of used 

Figure 1. Number of structures solved by CET and sub-tomogram 
averaging (red bar graph) and average improvement in resolution (black 
circles). 
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classes. Note that this suggest a tradeoff between the potential 
resolution increase contributed by averages of more heterogeneous 
data sets (classes) and the resolution loss derived from the reduced 
number of particles in each averaged set. Thus, similarly to the 
relaxation of symmetry assumption, the use of classification 
techniques requires the collection of larger data sets. 

Among the factors limiting resolution, ice thickness plays an 
important role: thicker ice layers contribute larger fractions of 
inelastically scattered electrons, thus decreasing the image quality. 
Researchers interested in protein complexes embedded in thicker ice 
layers on average apply higher electron dose (cc = 0.37), use higher 
accelerating voltage (cc = 0.33), image filtration (cc = 0.14) and 
higher objective lens underfocus (cc = 0.43), which further limits the 
resolution (see below).  

An increase in the applied electron dose for collecting one dataset 
improves the signal to noise ratio, but also results in dose-dependent 
beam-induced sample destruction. This leads to a loss in resolution, 
and may also induce sample drift [39]. Certain resolution targets 
tolerate sample destruction to different extents. Total electron doses 
of 70 e/A2 allowed a resolution of 2 nm in a number of cases, while 
applying 200 e/A2 allowed at best a resolution in the range of 5 nm 
(Table S1). 

Angular coverage determines the point spread function of the 
resulting tomograms and thus the sub-volumes to be aligned in CET 
SVA. For single tilt tomography, angular coverage defines the 
“missing wedge” of information [2] in the Fourier Space, while for 
dual tilt tomography the information is missing inside a cone. It is 
interesting to consider the effect of electron dose-related damage to 
the sample in Fourier space. The higher the angular coverage, the 
greater the Fourier volume is sampled for a given electron dose, so 
that over-exposure of low-resolution Fourier voxels along the tilt axis 
is minimized. While dual tilt-axis tomography is better suited to 
spread the beam damage over a larger Fourier volume than single tilt-
axis tomography, both data collection schemes still massively over-
expose the Fourier voxels along the one or two tilt axes in Fourier 
space with repeated electron beam exposure. A conical tilt geometry 
tomography data collection scheme [40] would minimize this over-
exposure of Fourier voxels, and would optimally spread the allowed 
electron dose in Fourier space. The price for this optimization, 
however, would be increased effective electron density thickness as 
every image would be acquired for a tilted specimen, so that one non-
tilted and a few low-angle tilted projection images should also be 
collected. Today’s sample stage implementations on some existing 
electron microscopes (e.g. FEI Titan Krios) suggest that 
implementation of conical tilt tomography may be performed. Table 
1 shows a negative correlation between resolution and angular 
coverage, meaning that higher resolution is on average achieved by 
higher angular coverage. In addition to the arguments given above, 
this may also be a consequence resulting from difficulties in the 
alignment of particles having a missing wedge. Even with specific 
algorithms designed to tackle this situation [41], it is not clear if 
complete compensation of the information lost in the missing wedge 
can be achieved for individual tomography sub-volumes, where 
oversampling of low-resolution data is limited by the allowed electron 
dose. Another possible hypothesis is that researchers try to use higher 
angular coverage for thinner ice layers that allow higher contrast also 
on highly tilted specimens. However, our analysis showed no 
correlation between angular coverage and ice layer thickness.  

Our analysis showed the strongest correlation between the 
resolution and the applied objective lens underfocus. This applied 
underfocus in combination with the electron acceleration voltage is 
the main determinant of the profile of the phase contrast transfer 
function,  which is a sinusoidal  function  modulating  the  frequency  

 

 
 

 
 

 
 
 
 
components of the projected EM image [42] (Figure 2A). In addition 
to the profiles plotted in Figure 2A, the CTF is dampened at higher 
frequencies by an envelope function that originates from the limited 
spatial coherence and energy monochromaticity of the electron beam, 
and from several other factors, like specimen movement, etc. Both, the 
CTF's oscillation frequency and the strength of the CTF's envelope 
decay are dependent on the applied underfocus. Higher defocusing 
(underfocussing) of the EM's objective lens provides more low-
frequency contrast at the expense of reduced contrast transfer at 
higher frequencies. Use of higher accelerating voltage extends the 
CTF into the high resolution area, improves sample penetration depth 
due to a lower inelastic scattering cross section of faster electrons, but 
also reduces the sample contrast due to a reduced elastic scattering 
cross section. In addition, most commonly used image recording 
media such as CCD cameras will be affected by a worsening point 
spread function in the recording device when exposed to higher 
electron beam energies [43]. Single particle cryo-EM typically 
determines the structure of protein complexes from cryo-EM 2D 

Figure 2. (A) Examples of CTF profiles for different conditions of 
underfocus and accelerating voltage. (B) Achieved resolution and applied 
defocus values for various projects listed in Table S1, sorted by electron 
acceleration voltages of 120, 200, and 300kV. Curves indicate the “first 
zero” of CTF depending on underfocus and accelerating voltage: 120 kV – 
blue, 200 kV – red, 300 kV – green. 
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projection images, where the CTF can relatively easily be corrected 
and the protein structures recovered. For cryo-electron tomography, 
however, CTF correction is not yet a routine process (see below). The 
resolution of 3D reconstructions from CET SVA is therefore in most 
cases limited to the first zero crossing of the CTF. Figure 2B shows 
the achieved resolution as a function of applied underfocus for 
structures listed in Table S1, acquired at accelerating voltages of  120, 
200 and 300 kV. While a few published structures report to have 
overcome the “first zero” limit of the CTF, without proper CTF 
correction the reliability of the frequencies in the resolution range 
beyond the first Thon ring is questionable. 

 
Correction of the Contrast Transfer Function 

 
A direct translation of CTF correction methods from single 

particle methodology [4] to electron tomography is not feasible for 
two reasons: 

First, for thick cryo samples there is a defocus gradient along the 
axis of the electron beam. The image formation model provides a 
good framework for the derivation of a correcting step for projection 
images of thin samples, as in this assumption, the obtained image 
truly corresponds to the projection image of the object convoluted 
with a point spread function that remains constant in the image 
definition domain. Thus, suitable deconvolution algorithms can 
recover the initial image, possibly incorporating some processing, such 
as Wiener filtering, to address the low SNR of cryo-EM data and the 
vanishing information around the zeros of the CTF. This approach 
can be extended for the correction of CTF on images of tilted 
samples, as is customarily done in electron-crystallography [44-46]. 
However, for thick samples, where extreme vertical points of the 
imaged specimen are placed in different defocus distances, the 
treatment of the collected signal as a convolution of true signal with a 
simply describable transfer function is no longer valid. Correcting 
such images with a simple CTF correction without taking the defocus 
variations throughout the thicker specimen into account is likely to 
result in artifacts and thereby limit the achievable resolution. Tilting 
of the samples as done in tomography increases the gradient 
proportional to the amount of tilting. 

Secondly, while it is possible to determine the defocus of the 
micrograph for a single particle data acquisition by fitting Thon rings 
[47], in tomography the applied electron dose has to be divided 
among multiple images (typically 40-120), which reduces the signal 
to noise ratio in the individual images such that detection of a defocus 
value from a single micrograph becomes a challenging task. For tilted 
images a more complicated tilted CTF has to be taken into account 
[44]. Tomography data acquisition routines include potential 
focusing steps before the recording of every image. However, the 
focusing is not always precise [37]. To date, several implementations 
of CTF corrections are available [48-50], and have been shown to be 
capable of resolution improvement for samples thin ice layers (Figure 
2B, magenta crosses). 

A recently proposed method to partially circumvent the CTF 
barrier is “focal pair tomography” [51]. This includes acquisition of 
two consecutive tilt series from the same object, first at low 
underfocus in order to get high resolution information followed by a 
tilt series at high underfocus in order to collect data at high contrast. 
Two approaches were proposed: acquiring focal pairs from every view 
simultaneously, or the consecutive acquisition of two full tilt series. In 
the second case the sample receives a considerable electron dose before 
the start of the second tilt series acquisition, which causes the 
destruction of high resolution details (that may be recovered from 
firstly acquired tilt series) and results in sample movement, which may 

be compensated for with image processing. A data processing 
approach that uses the information from both tilt series allows 
achieving slightly higher resolution than when applying intermediate 
underfocusing conditions on synthetic [51] and on real data 
[Kudryashev et at, unpublished data].  

Another powerful method to increase resolution and contrast in 
electron microscopy is by employing a so-called phase plate during 
data collection. Phase plates allow close-to-focus imaging of cryo 
preserved biological material with significant contrast. Nevertheless, 
the defocus gradient through thicker samples or across tilted 
specimens leads to sample areas that are imaged with an oscillating 
CTF even when utilizing a phase plate. The principles and current 
challenges are reviewed elsewhere [52]. For tomographic data 
collection and sub-volume averaging phase plates provide a stunning 
advantage: since every particle has both high contrast and fine details, 
the requirements for the number of collected particles are significantly 
reduced [38]. Using this technology, the structure of the Epsilon15 
Bacteriophage was determined at 25 Å resolution with application of 
icosahedral symmetry from 50 particles, or at 30 Å resolution without 
application of symmetry from 95 particles (also see Figure 2B, blue 
crosses). Although to date the resolution of reconstructions from 
SVA with a phase plate is still slightly lower than of defocused 
datasets, fascinating details of single membrane proteins in whole 
mounted frozen cells in phase plate tomograms are very promising 
[53]. 

 
Conclusion 
 

Overall, CET SVA demonstrates a consistent trend both in the 
increase of publications and in quality of the determined structures. 
More exciting research is expected to come. The quality of the 
instrumentation is also rapidly improving, which should further 
improve reconstruction quality. Finally, a significant improvement in 
resolution is expected from a broad application of contrast transfer 
function correction for cryo-electron tomography data processing.  
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