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Structure of RyR1 in native membranes
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Abstract

Ryanodine receptor 1 (RyR1) mediates excitation–contraction
coupling by releasing Ca2+ from sarcoplasmic reticulum (SR) to the
cytoplasm of skeletal muscle cells. RyR1 activation is regulated by
several proteins from both the cytoplasm and lumen of the SR.
Here, we report the structure of RyR1 from native SR membranes
in closed and open states. Compared to the previously reported
structures of purified RyR1, our structure reveals helix-like densi-
ties traversing the bilayer approximately 5 nm from the RyR1
transmembrane domain and sarcoplasmic extensions linking RyR1
to a putative calsequestrin network. We document the primary
conformation of RyR1 in situ and its structural variations. The acti-
vation of RyR1 is associated with changes in membrane curvature
and movement in the sarcoplasmic extensions. Our results provide
structural insight into the mechanism of RyR1 in its native envi-
ronment.
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Introduction

Ryanodine receptors (RyRs) are large ion channels performing Ca2+

release from the sarcoplasmic reticulum (SR) into the cytosol of

skeletal and cardiac muscle, triggering muscle fibre contraction

[1,2]. RyRs are homotetramers with a total molecular weight greater

than 2.2 MDa that consist of a transmembrane domain forming an

ion-conductive pore, regulated by a large N-terminal cytoplasmic

domain [3–5]. The cytoplasmic domain of RyR1, which is primarily

expressed in skeletal muscle, interacts with Ca2+ and Mg2+ ions,

ligands such as ATP, caffeine and ryanodine, and accessory proteins

such as calmodulin (CaM) [6]. CaM in its Ca2+-unbound form is a

weak agonist of RyR1, while in its Ca2+-bound form it is an RyR1

antagonist. A 10-kDa protein, S100A1, capable of increasing the

open probability of RyR1, has been suggested to compete with CaM

for the same binding site on the receptor [7]. RyR1 has also been

suggested to physically interact with the voltage-gated Ca2+ channel

(Cav1.1), also known as the dihydropyridine receptor (DHPR),

located in an invagination of muscle cell membrane called a trans-

verse tubule (T-tubule) [8]. In the SR lumen, the major Ca2+-

buffering protein, calsequestrin (CSQ), interacts with RyR1 indi-

rectly through the membrane-anchored proteins triadin and junctin

[9], each of which has a single transmembrane helix and a disor-

dered intra-SR domain. CSQ has two isoforms: CSQ1, which inter-

acts with RyR1 in skeletal muscle, and CSQ2, which interacts with

RyR2, a form primarily expressed in cardiac muscle [10]. CSQ poly-

merizes in a Ca2+-dependent manner [10,11] and regulates the

activity of RyR1 [12]. Biochemical analysis suggests that CSQ1 is the

major protein component found in the sarcoplasmic reticulum at its

junction with T-tubules while along the longitudinal SR, the domi-

nant protein is the 110-kDa P-type ATPase pump, sarco/endoplas-

mic reticulum Ca2+-ATPase (SERCA) [13,14]. RyR gene mutations

and the consequent dysfunction of RyR proteins have been linked to

a number of pathologies, making RyRs an attractive drug discovery

target [15].

Previous structural analyses of RyR1 have been performed by

single-particle negative stain and EM of purified receptors, typically

in detergent [16,17], or by a combination of EM maps with atomic

models of RyR1 domains [18–21]. RyR1 has been visualized in

native toadfish and zebrafish muscles [22], and a structure of the

receptor from purified native muscle membranes was previously

reported at a resolution of 71 Å [23]. More recently, advances in

single-particle cryo-EM [24] have led to sub-5-Å [25] and sub-4-Å

[26] resolution structures of RyR1 in the apo state, as well as struc-

tures of RyR1 in nanodiscs in both closed and partially open states

[27]. Des Georges et al [28] determined a series of approximately 4-

Å reconstructions of RyR1 that proposed the following activation

sequence: first Ca2+ or ATP “prime” the channel for opening, stabi-

lizing the structure in a conformation permissive for opening; then a

combination of three ligands, Ca2+, caffeine and ATP, open the

channel. Alternatively, Ca2+ and ryanodine in combination lock the

channel in an open state [28]. Conformational changes from the

ligand binding sites are transmitted to the pore several nanometres

away via the central domain [29], and computational analysis

suggests multiple routes by which ligand binding leads to channel

activation [preprint: 30]. However, there are significant differences

between the activation of RyR1 in vitro and in vivo. Transition

between closed and open conformations of RyR1 is sensitive in vitro

to applied detergents, which favour the closed state [31], and is

generally modulated by a large number of small molecules [7,12],

which were only partially present with the purified receptors anal-

ysed by single-particle cryo-EM.
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Here, we report a structure of RyR1 in native membranes purified

from rabbit skeletal muscle, determined by cryo-electron tomogra-

phy and subtomogram averaging (StA). The structure includes the

native membrane, shows observable curvature, as well as several

interacting protein densities that were not observed in the reported

high-resolution cryo-EM structures of purified RyR1. Our analysis

reveals the most probable conformations of RyR1 in situ and decom-

poses its structural variation into principal components. Upon acti-

vation by Ca2+ and ryanodine, conformational changes in RyR1

lead to a noticeable change in the curvature of the membrane that

potentially contributes to the energetics of channel opening and

closing.

Results and Discussion

Structure of RyR1 in native SR membranes

We purified the SR-containing fractions from rabbit muscle as previ-

ously described [32] and imaged them by cryo-electron tomography.

Similar to previously published work [23], SR vesicles were identi-

fied by their coating of small transmembrane proteins, thought to be

SERCA (Fig 1A). RyR1 can be easily identified in both side and top

views due to their characteristic shape and large size. Triad junc-

tions composed of one T-tubule flanked by two SR vesicles [32,33]

were observed in the tomograms. However, while some RyR1s were

observed directly juxtaposed to the T-tubule membranes, most were

not. Furthermore, the SR membrane in the vicinity of each RyR1

was not smooth and had observable local curvature resulting in an

undulating membrane appearance when several receptors were

present (Fig 1A). Inside the SR lumen, higher protein density was

observed in the vicinity of RyR1 as compared to other areas

(Fig 1A).

We used StA to determine the structure of RyR1 in native SR

membranes. To ensure that RyR1 was in a closed state, we used

EDTA to deplete Ca2+ from the sample. From the recorded tomo-

grams, we manually picked 3,118 particles, out of which 205 had

an observable adjacent T-tubule-like membrane density. From this

subset, we generated an asymmetric reconstruction that showed

C4 symmetry, which we applied for further refinement. The final

structure had a resolution of 38 Å (Figs 1B and EV1). Interestingly,

we could not detect an ordered density which could be attributed

to DHPR, which we would expect to be distinguishable at such

resolution. We further performed StA on all the available particles

most of which were not juxtaposed to the putative T-tubule

membranes. An asymmetric reconstruction of a dataset consisting

of the best 2,574 particles was C4 symmetric, and we therefore

applied C4 symmetry for the subsequent alignment and reconstruc-

tion. As a consequence, all the features in the maps are C4

symmetric unless otherwise stated. The global resolution of the

resulting structure is 12.6 Å (Figs 1C and EV1), with local resolu-

tions ranging from 12 to 15.5 Å (Fig EV1). Local resolution is

higher in the central domain, suggesting greater flexibility in the

peripheral domains (Fig EV1). Overall, the structure resembles the

reported cryo-EM reconstructions of purified RyR1, particularly in

its cytoplasmic domain (Fig EV1) [16,17,25–29,34]. The structures

of standalone apoRyR1 and apoRyR1 adjacent to the putative T-

tubule membrane were very similar at the resolution of 38 Å with

the peripheral domains positioned slightly further away from the

SR membrane (Fig 1D).

One of the previously reported structures of purified receptor in

the apo state, EMD-8393, one of multiple classes obtained at the

time [28], is most similar to our in situ structure based on both

Fourier shell correlation (Appendix Fig S1) and visual analysis of

the rigid-body fitting of the corresponding atomic model (PDB:

5TB2). This suggests that the captured conformation represents a

closed apo state (apoRyR1) and we have therefore used the atomic

model 5TB2 for further analysis (Fig 1E). Rigid-body fitting of the

atomic model revealed that the interaction sites of a protein called

FK506-binding protein 12 (FKBP12) are occupied (Fig EV2) and

FKBP12 is bound to RyR1 and regulates its gating [35]. As observed

in the tomograms themselves, the StA structure also contains an SR

membrane that is not flat, but instead follows the curvature of a

sphere with a radius of approximately 50 nm (Fig EV1). By compar-

ison, the diameters of the SR vesicles themselves were typically in

the range of a few hundred nanometres. Closer examination of the

average revealed a defined density visible approximately 5 nm from

the edge of the transmembrane domain of RyR1 (Fig 1C). The

density appears to connect the inner and outer leaflets. We suggest

that this density corresponds to an ordered transmembrane helix;

however, at the current resolution, we cannot conclude whether it

is a single helix or a few closely positioned helices.

Our apoRyR1 map also shows density that, based on fitting of

the atomic model, corresponds to residues 3,613–3,639 of the RyR1

protomer (Fig 1F). This density is not present in the reported high-

resolution cryo-EM maps of isolated RyR1 (Fig 1F, Appendix Fig S1,

Movie EV1), and consequently, it is not included in the existing

atomic models of RyR1 (Fig 1F and C) [25–29,34]. The missing resi-

dues at this location have been previously shown to be the 17-kDa

CaM-binding site [36] for which a 10-kDa agonist S100A1 also

competes [37]. However, at the current resolution we cannot clearly

identify the origin of the observed density. Alternatively, the density

corresponding to the missing residues and the nearby lobes may be

more ordered in situ compared to the structure of purified RyR1.

Previous studies using freeze-fracture electron microscopy and

cryo-electron tomography report RyR1 forming a loosely ordered

paracrystalline array [22,23]. Image classification revealed that out

of 2,547 particles, 960 showed a neighbouring density. Of these, 242

resulted in the most ordered arrangement (Fig EV3). Rigid-body fit-

ting of the RyR1 atomic model (PDB: 5TB2) into the resulting

density suggests that inter-receptor interactions may be modulated

by bridging solenoids. The closest contacts between the fit atomic

models occur between corresponding helices 2,950–2,976, 3,126–

3,143, 3,140–3,163, 3,199–3,212 and 3,241–3,254 of the neighbour-

ing RyR1 tetramers (Fig EV3D).

Interactions of RyR1 in the SR lumen

Inside the SR lumen, approximately 4-nm long extensions originat-

ing from the transmembrane domain of RyR1 can be observed

(Fig 2A and B). The local resolution of these extensions is lower

than that of the cytoplasmic domain of RyR1, suggesting lower local

order. Previously reported atomic models of purified RyR1 are miss-

ing the residues between R4341 in the cytoplasmic domain through

to F4540 on the lumenal side. However, we are able to observe

density traversing the inner and outer leaflet of the SR bilayer in the
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vicinity of F4540 (Fig 2B), adjacent to the transmembrane density

presented in Fig 1C. Junctin and triadin both have single predicted

transmembrane helices and long disordered intra-SR domains. We

were unable to identify distinct densities in the SR that could corre-

spond to triadin and junctin; however, the ordered transmembrane

density in the SR bilayer adjacent to the central pore could corre-

spond to the transmembrane domains of triadin, junctin or both.

In previously published in vitro experiments, the Ca2+-buffering

protein CSQ1 located in the SR lumen was suggested to bind RyR1

via triadin and junctin at physiological Ca2+ concentrations

(1 mM), and disassociate from RyR1 at Ca2+ concentrations that are

either lower (≤ 1 mM) or higher (≥ 4 mM) than physiological level

[10]. We therefore probed whether the appearance of these density

extensions could be manipulated by variation in intra-SR calcium

concentrations. To this end, we recorded tomograms of sample

which had been depleted of Ca2+ (with 0.5 mM EDTA), were at

physiological Ca2+ concentrations (1 mM) and were at high (5 mM)

Ca2+ concentrations. In order to make the SR lumen accessible for

Ca2+ supplementation, we added sub-CMC concentrations of n-

Dodecyl-B-D-Maltoside detergent (DDM) to the SR fraction to a final

concentration of 0.005% (57% of the critical micelle concentration)

in order to gently destabilize the SR membrane, and equalize the

concentration of Ca2+ inside and outside the SR lumen. Tomo-

graphic data of RyR1 under each condition were collected. Segrega-

tion of protein density inside the SR lumen to regions adjacent to

RyR1 was observed at physiological concentrations of Ca2+ in the

presence of detergent (Fig 2C) and in our tomograms where no

detergent had been added (Fig 1A) suggesting that the SR lumen

has become accessible to Ca2+ after addition of detergent. Addition

of detergent and depletion of calcium by EDTA changed the appear-

ance of the density inside the SR from primarily “segregated” to

primarily “evenly distributed” (Fig 2C and D). Addition of 5-mM

exogenous Ca2+ also resulted in either “evenly distributed” protein

density or “empty” SR lumen (Fig 2C and D). We therefore specu-

late that the observed density in the SR lumen corresponds to CSQ1

which is reported to respond to changes in Ca2+ concentration [10].

A

D E

G

B F

C

Figure 1. Structure of RyR1 in native SR membranes.

A A slice through a filtered tomogram showing SR vesicles in contact with a putative T-tubule. Individual RyR1 molecules are indicated by the red circles. The dense
protein coat on the surface of the SR vesicles corresponds to the SERCA pump. Areas circled in yellow indicate accumulation of density inside the SR. Scale bar:
20 nm.

B A slice through the structure of RyR1 in contact with putative TT membrane.
C A middle slice through the in situ structure of RyR1 at 12.6-Å resolution. The observed additional transmembrane density is indicated by the red arrows. Scale bars in

B, C: 10 nm.
D Slice through the structures of apoRyR1 with the putative TT membrane (left) and the standalone apoRyR1 (right, with the flipped handedness and reduced

resolution for comparison) 22 Å away from the middle slice (Y = 92 in the volume coordinates). Scale bar: 10 nm.
E Volume-rendered visualizations of the average structure of RyR1 with the RyR1 atomic model fit (PDB: 5TB2). The left panel is a thin section through the centre of the

volume.
F The location of the CaM/S100A1 binding site is marked with red circles in slices through maps of the in situ structure (left) and the single-particle structure (EMDB:

8393) in the same orientation as the in situ structure and filtered to 15 Å (right). Scale bar: 10 nm.
G The in situ structure with an atomic model (PDB: 5TB2) fitted showing an unaccommodated density. Red circles are sites of potential interaction between RyR1 and

the regulatory proteins.
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Filamentous densities inside and outside of the SR vesicles were

observed in tomograms with 5 mM Ca2+(Fig 2C, rightmost panel).

Some of these filaments observed inside the SR vesicles may be

attributable to polymerized CSQ1, while those outside of the SR

could be polymerized CSQ1 or actin.

Subtomogram averaging was performed on RyR1s for the varying

Ca2+ concentrations, all of the resulting structures were similar and

had intra-SR extensions (Fig 2E). We therefore concluded that most

of the density in the sarcoplasmic extensions does not respond to

changes in calcium concentration. We suggest that the sarcoplasmic

extension densities may represent some parts of residues 4,340–

4,540 of RyR1, which are absent from the published atomic models

due to higher flexibility in this region. We have updated the domain

definitions based on the annotation by Des Georges et al [28] to

include these sarcoplasmic extensions (Table 1). Interestingly,

based on fitting of the atomic model, F4540 is located in the outer

bilayer of the SR membrane, and A4350 in the inner bilayer, with

no other transmembrane helices predicted in the interval between

them by TMHMM [38]. We therefore cannot currently estimate how

many residues of RyR1 may be located in the SR lumen. Further

structural analysis will be required to determine the composition of

the sarcoplasmic extensions.

Structural variation of the RyR1 domains in native membranes

We further aimed at analysing the structural heterogeneity of RyR1

domain movements in apo state in native membranes (Fig 3).

Classification of the apoRyR1 particles into four distinct classes

yielded one major class containing 45% of the particles, with the

other classes less populated, with 27, 19 and 10% of the particles,

respectively (Fig 3C and Appendix Fig S3). Sarcoplasmic extensions

are apparent in all four classes (Fig 3C), suggesting that the majority

of the particles have the corresponding density. Class 1 is most simi-

lar to the global average. The major differences between class 2 and

class 1 are the downward movement of the AB domain (ABD) and

the outward rotation of the peripheral domains. Comparing class 3

to class 1, in class 3 an outward movement of the N-terminal sole-

noid towards the SPRY3 domain can be observed; this rotation is

accompanied by a rotation of the Ry1-2 domain. While classes 1–3

all had similar membrane curvature, the membrane curvature in

class 4 is less pronounced, and class 4 also shows the Nsol and

SPRY3 domains slightly extending in the cytoplasmic direction

(Fig 3 and Movie EV1). At the current resolution, we could not

determine reliable correlations between classification for the entire

receptor and the classes obtained focusing on the region around

3,613–3,639. However, there was a clear difference in class occu-

pancy when compared to the classifications performed by both des

Georges et al [28] and Efremov et al [27] on purified RyR1. In the

case of the single-particle structures, the Ca2+-depleted datasets had

almost equal occupancy of their four classes. In contrast, the most

populated class for our in situ data had approximately 45% of the

particles, suggesting a different conformational spectrum from the

purified RyR1. The most populated class in situ represented the

global average and showed the highest similarity to class 2 from Des

A C

E

B

D

Figure 2. Intra-SR extensions of RyR1.

A A slice through the average structure of the apo state at a position 22 Å away from the middle slice shown in Fig 1C. The intra-SR extension is boxed on the density
in red.

B An enlarged view of a volume-rendered representation fitted with an atomic model (PDB: 5TB2) corresponding to the region boxed in (A). The red arrow points to a
density between the bilayer leaflets; this density is at a different location from the one in Fig 1C and D.

C Representative SR vesicles with different distributions of inner SR density: segregated, evenly distributed, empty and empty with filaments. RyR1 particles are circled
in red, and areas circled in yellow indicate accumulation of density inside the SR.

D The fractions of vesicles that fall into each density category for each RyR1 sample (EDTA: n = 64; 1 mM Ca2+: n = 32; 5 mM Ca2+: n = 21, technical replicates). Blue
corresponds to the fraction of SR lumen vesicles showing evenly distributed density, orange to segregated density and grey to empty vesicles.

E Structures of RyR1 determined in the presence of increasing Ca2+ concentration (1 and 5 mM), all with intra-SR extensions. Scale bars: 10 nm in (A) and (E), 20 nm in
(C).
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Georges et al (PDB: 5TB2), suggesting that this may be a more phys-

iologically common conformation. The observed differences in the

occupancy distribution across the classes may be due to the pres-

ence of curved native membrane, the occupancy of natively interact-

ing and/or the presence of additional transmembrane proteins

in situ.

In order to further understand the structural variation of RyR1

present in the data, we made use of principal component analysis

inspired by Dashiti et al [39] and by Haselbach et al [40]. Briefly,

we performed multireference classification with alignment into a

large number (50) of classes and then executed a principal compo-

nent analysis on the result (see Materials and Methods). This analy-

sis resulted, by definition, in multiple uncorrelated modes, ordered

by the variance encapsulated within each of the modes. For exam-

ple, mode 1 is defined as that encoding the highest variance and is

therefore more informative than mode 5 (Fig 3D and E). Dividing

the data into half-sets along the eigenvector of each mode and

comparing the resulting averages revealed the principal movements

of apoRyR1 (Fig 3D, Appendix Fig S3, and Movies EV2–EV7):

Mode 1: global movement of the central domains in the direction of

the membrane with an associated upward rotational movement of

the peripheral domains of the receptor (Movies EV2 and EV3). This

mode also includes movement of the N-terminal solenoid towards

the SPRY3 domain suggesting the presence of two populations of

RyR1 in native membranes with and without contact between the

N-terminal solenoid and the SPRY3 domain. It has been previously

suggested that addition of a peptide corresponding to residues 590–

628, which are located at the end of the N-solenoid domain

(Table 1), can cause enhancement of ryanodine binding to RyR1

and RyR2 [41]. In light of this, we hypothesize that mode 1 corre-

sponds to two populations of RyR1 consisting of more and less

active receptors. Interestingly, for mode 1, receptors with similar

eigencoefficients, and therefore similar conformations, were also

spatially located proximal to each other in the tomograms

(Appendix Fig S4), suggesting that this conformational variation

could be spatially regulated. The molecular mechanisms of such

spatial regulation would need to be investigated further. Such a

spatial relationship has not been observed for the other modes.

Mode 2: (71% of variance compared to the mode 1): an increase in

the distance between the leaflets of the bilayer around the trans-

membrane domain of RyR1 is associated with minor movement of

SPRY3 towards, and the bridging solenoid away, from the symmetry

axis (Movies EV2 and EV3). The variation in the distance between

the leaflets of the bilayer could originate from compositional hetero-

geneity of bilayer itself, which would have implications for protein

function.

Mode 3: (49% of variance compared to the mode 1): movement of

the inner domains upwards along the central axis of the receptor

coupled with a lower amplitude movement by the membrane in the

same direction (Movies EV2 and EV5).

Mode 4: (42% of variance compared to the mode 1): vertical stretch

of the cytoplasmic domain of the receptor away from the

membrane, coupled to displacement of the intra-SR extensions away

from the symmetry axis (Movies EV2 and EV6). Modes 3 and 4

show two types of vertical elongation/contraction that may relate to

a change in the distance between the SR membrane and the T-

tubules, something that can also occur in vivo as a response to

membrane deformation. Similar conformational changes are present

Table 1. Updated assignment of RyR1 residues into domains based on Des Georges et al [28].

Domain name Abbreviation Residues

1 N-terminal domains A and B AB domain 1–392

2 N-terminal solenoid Nsol 393–627

3 SP1a/ryanodine receptor domain 1 SPRY1 628–849

4 RYR repeats 1 and 2 Repeat 1–2 850–1,054

5 SP1a/ryanodine receptor domain 2 SPRY2 1,055–1,241

6 SP1a/ryanodine receptor domain 3 SPRY3 1,242–1,656

7 Junctional solenoid Jsol 1,657–2,144

8 Bridging solenoid Bsol 2,145–3,613

9 RYR repeats 3 and 4 Repeat 3–4 2,735–2,938

10 Shell-core linker peptide, CaM and JSol binding sites SCLP 3,614–3,666

11 Core solenoid Csol 3,667–4,174

12 EF-hand pair EF1&2 4,060–4,134

13 Thumb and forefingers domain TaF 4,175–4,253

14 Auxiliary transmembrane helices TMx 4,322–4,370

15 Sarcoplasmic extensions SExt 4,371–4,540

16 Pseudo-voltage-sensor domain pVSD 4,541–4,819

17 Helical-bundle domain between S2 and S3 S2S3 4,666–4,786

18 Channel pore domain Pore 4,820–4,956

19 Cytoplasmic extension of S6 S6c 4,938–4,956

20 C-terminal domain CTD 4,957–5,037
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when comparing the apoRyR1 and apoRyR1 with the putative TT

membrane structures (Fig 1D). However, the majority of our RyR1

particles did not have the opposing T-tubule, so the presence of

these modes of movements in our analysis suggests that the vertical

elongation may also have additional functions.

Mode 5: (36% of variance compared to the mode 1): an outward

twist of the cytoplasmic domains associated with an increase in

membrane curvature (Movies EV2 and EV7).

Activation of RyR1 in native membranes

We further analysed the structure of RyR1 in the presence of

0.3 mM Ca2+ and 10 lM ryanodine, which have previously been

reported to lock the receptor in an open state [28]. The structure

was determined by cryo-electron tomography and StA of 890 parti-

cles and resulted in a structure with a global resolution of 17.5 Å

(Fig 4A and Appendix Fig S4). When compared to apoRyR1, the

structure of RyR1 in the presence of Ca2+ and ryanodine, which we

refer to as ryRyR1, shows movement of the outer domains of RyR1

down towards the SR membrane (Fig 4A and B, Movie EV7). In the

previously reported single-particle structures of purified receptor

[16,27,28], similar conformational changes were suggested to be

associated with the opening of the ion channel, suggesting that the

captured conformation in our in situ structure corresponds to the

open state of RyR1. Interestingly, we also observe a difference in the

curvature of the SR membrane between apoRyR1 and ryRyR1,

resulting in an additional displacement of the intra-SR extensions

inwards by approximately 1 nm (Fig 4B). The membrane curvature

measured in the same section through RyR1 changes from approxi-

mately 1/50 nm�1 in the apo state to approximately 1/35 nm�1

(Figs 4A and EV4, and Movie EV8) in the presence of Ca2+ and

ryanodine. The curvature of apoRyR1 attached to putative T-tubule

membrane had a curvature of 1/55 nm�1, slightly lower than that of

apoRyR1 (Fig EV4). In comparison, patches of the SR membrane

lacking RyR1 showed a wide range of curvatures from concave to

convex, with the most common appearance near flat (Fig EV4).

Mode 5 of the principal component analysis also shows a relation-

ship between the conformation of the receptor and the local

membrane curvature; however, it should be noted that the change

in curvature is smaller than that observed upon the activation of the

receptor.

The curved membrane surrounding RyR1 has been previously

observed by Renken et al [23]. The curvature observed in our struc-

tures is higher than the curvature in the subtomogram average

structure reported by Renken et al [23], but was not as pronounced

as the curvature seen in some views of the membrane around junc-

tional RyR1s from native fish muscle [22]. In general, membrane

curvature can be established through various mechanisms, includ-

ing (asymmetric) lipid composition or insertion of wedge-shaped

membrane proteins and/or amphipathic helices [42,43]. At the

A

B

E

C

D

Figure 3. Structural heterogeneity of RyR1 in situ.

A, B The domain definition displayed on the in situ structure, and the update from Ref [28] is presented in Table 1. A is a volume-rendered representation with the
atomic model (PDB: 5TB2), and B is domain representation on the greyscale image. Please note the location of two transmembrane densities: yellow—shown in
Fig 1C and magenta—shown in Fig 3B.

C Slices through the results of classification of the particles in the global average into 4 classes at resolutions 15.4, 18, 18 and 27 Å, respectively, with the percentages
of the total particles in each class shown beneath. Red arrows show domain movements compared to class 1.

D The first five modes of correlated movements. Direction of motion is indicated by the arrows.
E Informativity of the respective modes measured as variance of the corresponding mode divided by variance of the first mode. Scale bars: 10 nm.
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current resolution of our in situ structure, we were unable to iden-

tify any proteins asymmetrically inserted into the bilayer that could

contribute to membrane curvature other than RyR1. It has previ-

ously been reported that SR membranes purified from rabbit muscle

contain a significant proportion of phosphatidylethanolamine (PE)

lipids (21% of total lipid contents), which can induce spontaneous

curvature, and that 69% of PE lipids resided in the outer leaflet,

while 85% of phosphatidylserine lipids and 88% of phosphatidyli-

nositol lipids resided in the inner leaflet [44]. The formation of the

observed curvature in vivo is therefore likely to be a combination of

A

B

Figure 4. Activation of RyR1 in situ.

A Structure of ryRyR1 at a resolution of 17.5 Å. Two views are through the middle slice (top) of the reconstruction and at the level of sarcoplasmic extensions 22 Å
below (bottom panels). The movement of the outer domains is associated with a visible change in membrane curvature as compared to the apo structure. This
movement is highlighted by red arrows in the right panels. Scale bar: 10 nm.

B A volume-rendered representation of the apoRyR1 (orange) and ryRyR1 (blue) structures with the highlighted conformational changes. The ryRyR1 reconstruction was
mirrored in the right panel for a clear comparison to the apoRyR1. The left panel depicts the view down onto the receptor from the cytoplasm. The right panel
depicts the section through the isosurface indicated by the dashed line, with red arrows indicating the conformational transition of the SR extensions (dark orange
and blue circles for apoRyR1 and ryRyR1, respectively). Red arrows indicate the conformational changes of the SR extensions.
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lipid composition, asymmetric lipid distribution and the impact of

multiple RyR1s clustered in close proximity to each other at the

junctional SR.

Interestingly, the activation of the receptor increases the

observed membrane curvature, a change that was not observed

during a previous structural analysis of purified RyR1 reconstituted

in nanodiscs [27]. Fluctuations in membrane curvature in the

absence of RyR1 activation are small and have only been observed

in mode 5 of our PCA (Appendix Fig S4) and in 10% of the particles

assigned to class 4, which had decreased membrane curvature

(Appendix Fig S3). This suggests that the even higher membrane

curvature observed in the ryRyR1 structure is likely a consequence

of RyR1 activation. An increase in membrane curvature has two

potential implications for the gating of RyR1. First, energy stored

upon RyR1 opening in the deformed membrane can contribute to

additional force in the direction of channel closing. As this force

contributes to the energy landscape that defines the thermodynamic

properties of channel opening and closing, it should be accounted

for when performing computational modelling of the channel activa-

tion. Second, potential energy stored in the curved membrane could

be used for mechanical regulation of neighbouring proteins located

in the same membrane. Increased membrane curvature could

increase the lateral pressure of lipids in the outer bilayer. SERCA,

postulated based on size and shape to be the highly abundant SR

membrane protein in our tomograms, occupies a larger area in the

outer leaflet than it does in the inner leaflet when in an outward-

facing conformation [45,46], also potentially leading to lateral pres-

sure on the surrounding lipids. As SERCA and RyR1 cover most of

the SR membrane surface, the open and closed states of each protein

have the potential to manipulate membrane tension in opposing

directions and therefore cross-regulate each other.

Understanding conformational dynamics in situ, including inter-

actions with binding partners and the native lipids, promises to be

a comprehensive way to analyse the structure and function of

proteins like RyR1 with similarly extensive regulation. For this, StA

structures of RyR1 in situ still require higher resolution in order to

better understand the molecular composition and regulation of the

entire RyR1 interactome in native membranes. The current class

averages reported from our data do not allow interpretation at the

level of secondary structure due to resolution limitations. The reso-

lution of our structures is limited by both the number of particles

and sample heterogeneity: in the apoRyR1 reconstructions, the

outer domains show significant lower resolution suggesting lower

level of local order. In the case of RyR1 attached to putative T-

tubules, the number of particles and the order of the DHPR-RyR1

interaction are potentially limiting factors preventing the observa-

tion of the DHPR-RyR1 complex. Use of quicker data collection

schemes [47,48] currently in development may make it possible to

record sufficiently large datasets in the future, which would allow

better classification of the RyR1 conformational states in situ while

still retaining a sufficient number of particles in each class to reach

subnanometer resolution. Such structural analysis could be further

complemented by the application of molecular dynamics simula-

tions or manifold analysis [preprint: 30,49]. High-resolution classifi-

cation in situ would allow better understanding of the interactions

of RyR1 with its associated proteins, as well as quantitative under-

standing of the conformational landscape of the receptor activation

in native membranes.

Materials and Methods

Sample preparation for cryo-EM

SR vesicles were isolated based on the previously described protocol

[32]. Briefly, 60 g of fresh rabbit skeletal muscle tissue from the

hind leg and back was ground using a meat grinder and then

homogenized using a blender with 300 ml of homogenization buffer

(0.5 mM EDTA, 10% sucrose, 20 mM Na4O7P2, 20 mM NaH2PO4

and 1 mM MgCl2, pH 7.1) plus the following protease inhibitors:

2.6 lg/ml aprotinin, 1.4 lg/ml pepstatin and 10 lg/ml leupeptin.

Homogenates derived from a total of 180 g of muscle were centri-

fuged in a Beckman Coulter rotor JLA-16.250 fixed-angle rotor at

8,900 × g at 4°C for 20 min. The resulting supernatant was filtered

through cheesecloth and then ultra-centrifuged in a Beckman Coul-

ter Type 45Ti fixed-angle rotor at a speed of 20,000 × g at 4°C for

1 h. The membrane pellets were divided into 20 aliquots. One

aliquot was used immediately in the next step, and the remaining

aliquots were stored at �80°C for future use. The membrane pellet

fraction was subjected to a discontinuous sucrose gradient with

steps of 0.15 ml 50%, 1.27 ml 36%, 1.27 ml 34%, 1.58 ml 32%,

1.58 ml 28%, 3.8 ml 25% and 1.27 ml 14% sucrose. The sucrose

gradient was then centrifuged in a Beckman Coulter SW 40Ti swing-

ing-bucket rotor at 96,200 × g for 90 min. Bands at the interface of

the 25 and 28% sucrose phases and at the interface of the 28 and

32% sucrose phases were confirmed to contain RyR1 by Western

blot. These bands were extracted from the sucrose gradient, diluted

with dilution buffer (0.5 mM EDTA, 20 mM Na4O7P2, 20 mM

NaH2PO4 and 1 mM MgCl2, pH 7.1) to 4 ml and then ultra-centri-

fuged in a Beckman Coulter TLA 100.4 fixed-angle rotor at a speed

of 40,000 × g at 4°C for 20 min. The final membrane pellet was

resuspended with 1 ml of dilution buffer. For apoRyR1, this suspen-

sion was used directly for cryo-EM grid preparation. For ryRyR1,

this suspension was dialysed against dialysis buffer (20 mM sodium

pyrophosphate, 20 mM NaH2PO4, pH7.1) overnight at 4°C, and then

Ca2+ was added to the sample to a final concentration of 0.3 mM

Ca2+. The mixture was incubated at room temperature for 20 min

before ryanodine was added to a final concentration of 10 lM. This

final mixture was incubated overnight at 4°C and then used for

cryo-EM grid preparation. Male white New Zealand rabbits 11–

12 weeks old from the Frankfurt University Medical School or

Charles River Laboratories (https://www.criver.com/) were used.

Three independent preparations have been performed for the EDTA

dataset and one for the ryanodine dataset.

Cryo-EM grid preparation and tomographic data collection

Grids were frozen for cryo-EM using a VitrobotTM Mark IV (Thermo

Fisher). 3 ll of the sample mixed with 10-nm colloidal gold fiducials

was applied to a 300-mesh gold Quantifoil� R 2/2 grid with gold

support. The grid was blotted with Whatman� No. 1 filter paper

and plunged into liquid ethane cooled to liquid nitrogen tempera-

ture. Imaging was performed on a Thermo Fisher Titan Krios oper-

ated at 300 kV equipped with a Gatan K2 Summit� direct electron

detector and a Gatan Quantum� energy filter. Single-axis tilt series

(�60° to +60°) were collected using a dose-symmetric tilt-scheme

[50] with 3° intervals implemented in SerialEM [51]. For some

tomograms, the electron dose for the untilted image was increased
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to 18 e�/Å2, with the remaining projections receiving a dose of

1.1 e�/Å2 recorded in five frames; the total exposure was about

68 e�/Å2. Images were recorded at a magnification of 53,000×,

resulting in a pixel size of 2.7 Å/pixel. Nominal defocus was set

between 1.5 and 6 lm.

Image processing

Per-tilt motion correction was performed using MotionCor2 [52],

and defocus estimation was performed using Gctf for each projec-

tion [53]. The tomographic tilt series were aligned using the 10-nm

gold fiducials in IMOD [54]. Tomographic reconstructions were

generated by weighted back-projection implemented in IMOD [54].

Nonlinear anisotropic diffusion filtering [55] was performed to aid

particle picking in binned tomograms and for the figures. Subtomo-

gram positions were picked manually with IMOD and extracted with

a box size of 2003 cubic voxels from unbinned CTF-corrected tomo-

grams using the dtcrop function in Dynamo [56]. Initial alignment

was done manually with the dynamo_gallery followed by

constrained refinement of shifts and angles using the Dynamo align-

ment dcp workflow. C4 symmetry was applied. Initial classification

by multireference alignment was used to remove bad particles, after

which independent half-set refinement was performed for the data-

sets containing over 500 particles as previously described [57]. For

the datasets containing less than 501 particles, the frequency ranges

of the resulting reconstructions were restricted to 36 Å which was

much lower than the final resolution values. The final reconstruc-

tions were produced by taking into consideration dose-dependent

resolution decay for each particle, and the contribution of each of

the particle to the final average was proportional to the particle’s

cross-correlation to a reference. The resolution was determined by

dynamo_fsc; local resolution and locally filtered maps were gener-

ated using Relion 2.0 [58]. Summary of the produced maps may be

found in Appendix Table S1.

Analysis of conformational heterogeneity

We used Dynamo to perform multireference alignment and classifi-

cation of our final dataset into fifty classes using frequencies up to

22 Å and with applied C4 symmetry. From these fifty classes, we

excluded fourteen classes due to low particle abundance or due to

their inclusion of other confounding features, such as gold beads. We

aligned the remaining 36 classes, containing a total of 2,105 particles,

to a common average and performed eigenvolume analysis by princi-

pal component analysis (PCA). By this step, all 36 volumes were fully

sampled in Fourier space and therefore no missing wedge needed to

be accounted for. The half-maps for each mode were generated by

dividing these 36 averages into two equal-sized groups according to

their eigencoefficients, and these modes are presented in Fig 3D,

Appendix Fig S3 and Movies EV2–EV7. The first principal component

was trivial; therefore, the reported modes (1–5) are enumerated start-

ing from the second principal component. The informativity of the

classes presented in Fig 3E is the covariance along the corresponding

eigenvector. This graph is the result of the PCA procedure imple-

mented in dynamo_ccmartix_analyze and is presented in arbitrary

units with the covariance of the first eigenvector set to 1.

Transmembrane segment prediction was performed using

TMHMM v.2.0c [38].

Data availability

Ten generated maps were deposited to EMDB with accession

numbers EMD-10637, EMD-10638, EMD-10639, EMD-10640, EMD-

10641, EMD-10642, EMD-10643, EMD-10644, EMD-10645 and EMD-

10646. Original tilt series, particles and corresponding metadata are

available under EMPIAR-10349 (https://www.ebi.ac.uk/pdbe/emdb/

empiar/entry/10349/).

Expanded View for this article is available online.
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