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SUMMARY
Membrane remodeling and repair are essential for all cells. Proteins that perform these functions include
Vipp1/IM30 in photosynthetic plastids, PspA in bacteria, and ESCRT-III in eukaryotes. Here, using a combi-
nation of evolutionary and structural analyses, we show that these protein families are homologous and share
a common ancient evolutionary origin that likely predates the last universal common ancestor. This homology
is evident in cryo-electron microscopy structures of Vipp1 rings from the cyanobacterium Nostoc puncti-
forme presented over a range of symmetries. Each ring is assembled from rungs that stack and progressively
tilt to form dome-shaped curvature. Assembly is facilitated by hinges in the Vipp1 monomer, similar to those
in ESCRT-III proteins, which allow the formation of flexible polymers. Rings have an inner lumen that is able to
bind and deformmembranes. Collectively, these data suggest conserved mechanistic principles that under-
lie Vipp1, PspA, and ESCRT-III-dependent membrane remodeling across all domains of life.
INTRODUCTION

Various cytoskeletal elements, filaments, andmembrane remod-

eling systems that were once viewed as the defining features of

eukaryotic cells are now known to have a prokaryotic ancestry.

Bacteria and some archaea have their own versions of tubulin

(FtsZ), actin (MreB, FtsA, and ParM), intermediate filaments

(Crescentin), and dynamins (BDLPs) (Bohuszewicz et al., 2016;

Low and Löwe, 2006; Wagstaff and Löwe, 2018). These proteins

perform functions in prokaryotes that are often analogous to their

eukaryotic counterparts including cell division, cell shape con-

trol, and membrane remodeling. What, though, about ESCRT-

III proteins? Until recently, this major class of protein polymers

was only known in eukaryotes where they form composite poly-

mers (Bertin et al., 2020; McCullough et al., 2018; Nguyen et al.,

2020). ESCRT-III proteins are involved in multiple cell biological

processes including multivesicular body formation, cytokinetic

abscission, plasmamembrane repair, nuclear envelope reforma-

tion, and viral budding (McCullough et al., 2018; Vietri et al.,
3660 Cell 184, 3660–3673, July 8, 2021 ª 2021 The Authors. Publish
This is an open access article under the CC BY license (http://creative
2020). The idea that these proteins were specific to eukaryotes

changed with the discovery of ESCRT-III homologs in TACK

archaea (Lindås et al., 2008; Samson et al., 2008), where they

have been implicated in membrane scission during viral budding

(Liu et al., 2017), extracellular vesicle formation (Ellen et al.,

2009), and cell division (Tarrason Risa et al., 2020). This, and

the identification of even closer homologs of ESCRT-III proteins

(and their regulators) encoded by the genomes of Asgard

archaea, led to the suggestion that these eukaryotic signature

proteins have an archaeal origin (Spang et al., 2015).

A unique feature of ESCRT-III polymers is their structural flex-

ibility (Nguyen et al., 2020), enabling them to form helical tubes,

rings, spirals, filaments, cones (Chiaruttini and Roux, 2017), and

an array of structurally distinct composite polymers (Huber et al.,

2020;McCullough et al., 2015; Nguyen et al., 2020). As examples

of this, the X-ray structure of Snf7 showed how an ESCRT-III pro-

tein packs to build a linear proto-filament (Tang et al., 2015),

while the cryoelectron microscopy (cryo-EM) structures of

Vps24, and CHMP1B and IST1 co-polymers provided glimpses
ed by Elsevier Inc.
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Figure 1. ESCRT-III/Snf7/CdvB and PspA/Vipp1 proteins are part of the same superfamily

(A) ESCRT-III (human CHMP1B and yeast Snf7) and PspA (N. punctiforme Vipp1 and E. coli PspA) protein families are homologs and have a similar secondary

structural organization (alpha helices are labeled a0–a6). Helices a6 have different colors because it is not clear if they are homologous across the PspA/Vipp1 and

ESCRT-III/Snf7 families.

(B)Aco-evolutionaryanalysis reveals similarities in the tertiarystructureofPspAandESCRT-III proteins.Left: plot showsaco-evolutionary residuecontactmap (using

numbering based on theN. punctiformeVipp1 sequence) super-imposed on ESCRT-III residue-residue distance data extracted from the experimentally determined

structure of humanCHMP3 (PDB: 3FRT). Extent of blue shading represents the strength in covariance between Vipp1 co-evolving residue pairs. Grey and red circles

indicate intramolecular and intermolecular contacts (<5 Å) in theCHMP3X-ray crystal structure, respectively. Top right: inset focuses on selected Vipp1 evolutionary

coupled residues in blue clustering with known contacts derived from CHMP3 in gray. Bottom right: these contacts are mapped onto the CHMP3 structure.

(C) A phylogenetic analysis reveals a broad distribution of PspA/Vipp1 (blue) and ESCRT-III (red) homologs across bacteria (left, over 27,000 genomes) and

archaea (right, over 1,500 genomes). Only a very few genomes encode both proteins (yellow). Genomes lacking both PspA/Vipp1 and ESCRT-III are presented

in gray.

(legend continued on next page)
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into the mechanisms by which ESCRT-III proteins self-assemble

to form helical filaments with radically different lattices (Huber

et al., 2020; McCullough et al., 2015; Nguyen et al., 2020).

Because ESCRT-III polymers are implicated in the scission of

membrane tubes from the inside during a wide array of cell bio-

logical processes, it is generally thought that they preferentially

interact with negatively curved membranes. However, recent

studies indicate that ESCRT-III proteins can also act on posi-

tively curved membranes in vitro (Bertin et al., 2020; McCullough

et al., 2015; Nguyen et al., 2020) and possibly in vivo (Allison

et al., 2013; Chang et al., 2019; Mast et al., 2018). When acting

on membranes with either topology (Harker-Kirschneck et al.,

2019), the AAA-ATPase Vps4 is thought to provide the energy

required for membrane remodeling by driving stepwise changes

in the composition and structure of ESCRT-III co-polymers

(Harker-Kirschneck et al., 2019; Pfitzner et al., 2020).

Here, we identify PspA and Vipp1 proteins as members of the

ESCRT-III superfamily. This is striking because these proteins

share a common function in membrane remodeling. Thus,

PspA functions in membrane stress response and repair in bac-

teria (Brissette et al., 1990; Joly et al., 2010; Kobayashi et al.,

2007; McDonald et al., 2015; Yamaguchi et al., 2010), whereas

Vipp1 functions in thylakoid membrane biogenesis and repair

in cyanobacteria and chloroplasts (Aseeva et al., 2007; Fuhr-

mann et al., 2009b; Gao and Xu, 2009; Gutu et al., 2018; Kroll

et al., 2001; Lo and Theg, 2012; Nordhues et al., 2012; Walter

et al., 2015; Westphal et al., 2001; Zhang and Sakamoto,

2015). Like their ESCRT-III counterparts in eukaryotes, PspA

and Vipp1 bind membranes and self-assemble as polymeric

rings and tubes (Aseeva et al., 2004; Fuhrmann et al., 2009a;

Liu et al., 2007). Until now, only a partial structure of PspA (Osad-

nik et al., 2015) and low resolution reconstructions of Vipp1 and

PspA rings (Hankamer et al., 2004; Saur et al., 2017) had been

determined, so that their mode of self-assembly and membrane

binding remained obscure. In this study, we use cryo-EM to

show that Vipp1 and PspA form ESCRT-III-like filaments and

provide a mechanism for Vipp1-mediated membrane remodel-

ing. This is in line with parallel work carried out by other groups

(Gupta et al., 2021; Junglas et al., 2021, this issue ofCell). Collec-

tively, our data show that the wider ESCRT-III family of polymers,

which includes Vipp1 and PspA, arose prior to the divergence of

bacteria and archaea over 3 billion years ago and play common,

conserved roles in membrane remodeling and repair across all

domains of life.

RESULTS

PspA, Vipp1, and ESCRT-III are homologous
To identify other as yet unknown ESCRT-III relatives, we used

sensitive protein sequence searches based on Hidden Markov
(D) Tree of the PspA/ESCRT-III superfamily colored according to phylogenetic g

branch separates the PspA/Vipp1 (left) and ESCRT-III (right) subfamilies. Scale b

(E and F) Number of copies of PspA/Vipp1 (top) and ESCRT-III/Snf7/CdvB (botto

number of PspA in bacteria excludes cyanobacterial genes.

(G and H) Site-specific evolutionary rates in units of expected number of substi

N. punctiforme Vipp1 (top) and yeast Snf7 (bottom) as reference sequences.

See also Figure S1 and Data S1.
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Models (Zimmermann et al., 2018). Using eukaryotic ESCRT-III

proteins as search queries, PspA and Vipp1/IM30 families

were identified as bacterial ESCRT-III homologs with high statis-

tical support (Figure S1; STAR Methods). In addition to similarity

in primary sequence, PspA, Vipp1, and ESCRT-III families were

also found to share similar secondary structural elements with

five core helices a1–a5. In addition, these proteins often possess

an N-terminal helix a0 implicated in membrane binding (Buchko-

vich et al., 2013; McDonald et al., 2017; Otters et al., 2013) and a

C-terminal extension termed helix a6 (Figure 1A).

To probe their tertiary structure, we used a co-evolutionary

analysis (Anishchenko et al., 2017; Ovchinnikov et al., 2014).

This identified high-scoring residues that co-vary in PspA/

Vipp1 evolution within a key conserved ESCRT-III interface

that forms between helix a5 and helices a1 and a2 (Figure 1B).

For ESCRT-III, this tertiary and quaternary interaction functions

both to maintain the protein in its auto-inhibited closed mono-

meric conformation (Bajorek et al., 2009) and to stabilize the

open polymeric form following a helix a5 domain-swap between

subunits (McCullough et al., 2015). Thus, these data suggest that

Vipp1 polymers may rely on similar contacts for their structural

stability (Figure 1B).

We next looked at the wider evolution of the ESCRT-III/PspA

superfamily. By mapping the presence or absence of different

ESCRT-III homologs across the domains of life, it became clear

that PspA/Vipp1 proteins are widely distributed across bacteria

(Figure 1C). Conversely, CdvB/Chmp/Snf7-type proteins are

found in all eukaryotes and in clusters of archaea, largely within

Asgard and TACK superphyla (Spang et al., 2015; Figure 1C).

Moreover, this analysis identified a few additional CdvB/Chmp/

Snf7-type ESCRT-III homologs inmembers of the Euryarchaeota,

as previously reported (Makarova et al., 2010). Finally, a number

of PspA/Vipp1-type homologswere foundwithin the euryarchaeal

lineages Haloarchaea and Methanosarcinales (Figure 1C).

A phylogenetic analysis of the PspA, Vipp1, and ESCRT-III

superfamily as a whole revealed a long branch separating the

bacterial and archaeal/eukaryotic clades, with euryarchaeal

ESCRT-III homologs branching near the base of the ESCRT-III

subtree. The PspA/Vipp1 homologs found in Haloarchaea and

Methanosarcinales are nested within the bacterial PspA clade

and therefore appear to be relatively recent acquisitions by hor-

izontal gene transfer (HGT). Because CdvB/Chmp/Snf7-type

proteins are widely distributed across archaea and eukaryotes,

and PspA/Vipp1-type proteins are widely distributed across

bacteria, this phylogeny (Figure 1D; Data S1A and S1B) is

consistent with the hypothesis that a single gene ancestral to

PspA, Vipp1, and ESCRT-III was already present in the last uni-

versal common ancestor (LUCA).

Our evolutionary analysis also confirmed that Vipp1 likely

arose from a pspA gene duplication (Westphal et al., 2001) and
roups inferred under the best-fitting LG+C30+G+F substitution model. A long

ar represents expected substitutions per site.

m) genes found per genome in different taxonomic groups. The analysis of the

tutions per site across PspA/Vipp1 and ESCRT-III/Snf7 protein families using
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is widely distributed among cyanobacteria and eukaryotic plas-

tids derived from cyanobacteria. Interestingly, although most

bacteria and archaea possess a single copy of PspA, Vipp1

tends to exist in multiple copies in cyanobacterial genomes (Fig-

ure 1E). This is a common feature of eukaryotic ESCRT-III pro-

teins (Leung et al., 2008), which often form composite polymers

in both TACK archaea (Pulschen et al., 2020; Tarrason Risa et al.,

2020) and eukaryotes (Bertin et al., 2020; Nguyen et al., 2020;

Pfitzner et al., 2020). In addition, Euryarchaeota and Asgard

archaea genomes encode multiple copies of ESCRT-III proteins

(Figure 1F).

Finally, we mapped rate of evolutionary variance across both

ESCRT-III and PspA family proteins using yeast Snf7 andNostoc

punctiforme Vipp1 as reference sequences. This analysis

showed that both families share a similar evolutionary profile

(Figures 1G and 1H) with well-conserved core secondary struc-

ture including the interface between helix a5 and helices a1 and

a2 (Figure 1B). Because the regions C-terminal to helix a5

evolved much more rapidly, we were unable to detect homology

between Snf7 and Vipp1. Thus, it is uncertain whether the com-

mon helical elements within the C termini of both families are ho-

mologous or the products of convergent evolution. This includes

the MIM domain, which in archaeal and eukaryotic ESCRT-III

proteins physically associates with the AAA-ATPase Vps4

(McCullough et al., 2018).

Overall, our evolutionary analyses show that PspA and Vipp1

are members of the ESCRT-III superfamily. To investigate

whether this evolutionary conservation extends to structural sim-

ilarities between the bacterial and eukaryotic members of the

family, such as CHMP1B/IST1 and Snf7, we proceeded to carry

out cryo-EM studies on a member of the bacterial branch of this

ESCRT-III superfamily: N. punctiforme Vipp1.

Vipp1 purification and cryo-EM
For the structural analysis, full-length Vipp1/IM30 (amino acids

1–258, 28.7 kDa) from N. punctiforme was expressed in Escher-

ichia coli with an N-terminal maltose-binding protein (MBP)

fusion, purified by amylose affinity chromatography and then

separated from MBP by TEV cleavage and size exclusion chro-

matography (Figure S2A). Negative stain (NS) EM analysis of

Vipp1 revealed a remarkable array of polymeric assemblies (Fig-

ure S2B), including rings (Figure S2C), ring stacks, filaments (Fig-

ures S2D and S2E), and ribbons reminiscent of Vipp1 in other

systems (Aseeva et al., 2004; Fuhrmann et al., 2009a; Hennig

et al., 2017; Theis et al., 2019). For this study, we focused on

Vipp1 rings because they have been widely reported from cya-

nobacteria through to plants (Aseeva et al., 2004; Fuhrmann

et al., 2009a; Liu et al., 2007) and appear to constitute a repro-

ducible structural form for this class of proteins. In order to

determine their architecture, the sample was flash frozen on hol-

ey carbon grids for cryo-EM analysis. Because micrographs of

Vipp1 in thin vitreous ice revealed preferential orientation bias,

we mixed Vipp1 with pre-formed rat Dynamin 1 filaments before

vitrification (Sundborger et al., 2014) to thicken the ice layer

around the Vipp1 particles to capture a wider array of side views

(Figure S2C). Ultimately, 2D class averages of the Vipp1 rings re-

vealed a spectrum of seven symmetries ranging fromC11 to C17

(Figure S2F).
The Vipp1 monomer has an ESCRT-III-like fold
By reconstructing the C14 symmetry ring (Vipp1C14), we

achieved an overall resolution of 6.5 Å with highest resolution re-

gions reaching 4.8 Å (Figures S3 and S4A; Table S1). This was

sufficient to allow unambiguous assignment of the helical do-

mains within the Vipp1 monomer and asymmetric unit and

consequently the entire 2.4 MDa Vipp1C14 ring containing 84

subunits (Figures 2 and S4B–S4D; STAR Methods). To build

the Vipp1C14 monomer, a homology model was initially gener-

ated from the PspA crystal structure hairpin motif (aa 24–142).

For these amino acids, PspA and Vipp1 share 32.5% sequence

identity and 58% similarity with zero gaps, which indicates a

conserved sequence register in this section (Figures S4E and

S5). The Vipp1 hairpin homology model with its distinct axial

twist closely fitted the Vipp1C14 map and acted as an anchor

from which to build the remaining main chain. Reconstructions

were also generated for the other six symmetries and complete

ring models built. Sizes ranged from the 1.6 MDa Vipp1C11 ring

with 55 subunits to the 3.4 MDa Vipp1C17 ring with 119 subunits.

In order to validate these Vipp1C11–C17 structures, the accu-

racy of the sequence register within the Vipp1 monomer was

tested by cross-linking cysteine residues at opposing ends of

the Vipp1 monomer (Vipp1L86C/L193C and Figure 3A). Consistent

with Vipp1C11–C17 structures, which position these residues at an

inter-subunit contact with the cysteine sulfur atoms predicted

�6 Å apart, clear dithiothreitol (DTT)-sensitive band shifts were

observed for Vipp1L86C/L193C in the presence of the oxidizing

agent ortho-Cu(II)-phenanthroline (CuP) or the cross-linker

MTS4 with a 7.8 Å span. Importantly, no equivalent band shifts

were observed for the single cysteine mutants Vipp1L86C or

Vipp1L193C.

In order to compare the structures of Vipp1 and ESCRT-III pro-

teins, we followed the ESCRT-III nomenclature (Figure S5;

McCullough et al., 2015) and used CHMP1B and other available

structures as guides (Bajorek et al., 2009; Huber et al., 2020;

Nguyen et al., 2020; Tang et al., 2015). The hairpin motif, which

is formed by helix a1 and conjoined helices a2/a3, was observed

to be a conserved hallmark of Vipp1, PspA, and ESCRT-III pro-

teins (Figure 4A). In addition, helix a4 was separated from hairpin

helices a2/a3 by a linker region that corresponded to the ESCRT-

III elbow (McCullough et al., 2015). Helix a5was then angled from

helix a4 in both Vipp1 and ESCRT-III proteins. In addition to

these core common helices a1–a5 between Vipp1, CHMP1B,

and other ESCRT-III polymers, the Vipp1 monomer includes an

N-terminal helix a0 (aa 1–22) that extends perpendicular to the

hairpin and mediates membrane binding in both PspA and

Vipp1 systems (Heidrich et al., 2016; McDonald et al., 2015,

2017; Otters et al., 2013). Helix a0 is not observed in CHMP1B,

but it is shared by ESCRT-III proteins such as Vps2/CHMP2,

Vps24/CHMP3, and Snf7/CHMP4, where it is reported to also

mediate membrane binding (Figures 1A and S5; Buchkovich

et al., 2013). Vipp1 is distinguished from PspA by an additional

C-terminal extension (aa 220–258) comprising a flexible linker

and predicted helix a6 (Zhang et al., 2016). Although the C-termi-

nal extension has been shown to negatively regulate Vipp1 self-

association in vivo (Zhang et al., 2016) and might constitute a

second lipid binding domain capable of modulating membrane

fusion (Hennig et al., 2017; 2015), it did not yield a density in
Cell 184, 3660–3673, July 8, 2021 3663



Figure 2. Main chain structures of Vipp1C11–C17 rings

(A) Structure of Vipp1C14. The ring comprises a stack of six rungs. Dome-shaped curvature is observed from the side and in the central slice. The ring is widest at

the equatorial plane both internally and externally.

(B) Side view gallery of Vipp1C11–C17 rings. Bar chart indicates maximal outer diameter (OD) and maximal inner diameter (ID) as measured at the external and

internal equator. Note that Vipp1C16–C17 have seven rungs whereas Vipp1C11 has just five.

See also Figures S2, S3, S4, and S5 and Table S1.
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the Vipp1C14 map, suggesting that this region is highly flexible

(Figures 4A and S4). The same is true for C-terminal extensions

in ESCRT-III proteins, which serve as flexible regulatory and/or

protein-protein interaction domains (McCullough et al., 2018).

Vipp1 rungs form ESCRT-III-like filaments
Vipp1C14 rings are assembled from six rungs stacked on top of

each other (Figure 2A). Each rung differs in conformation so

that an asymmetric dome-shaped curvature is achieved when

rings are viewed from the side. Rungs are maximally constricted

at the top and bottomwith internal lumen diameters of 14 nm and

15.7 nm, and widest at the ring equator between rungs 3 and 4

with an internal diameter of 17.5 nm (Figures 2A and 2B). This

unique asymmetric curvature is a feature of all Vipp1C11–C17
ring symmetries (Figure 2B).

Within each rung, Vipp1 subunits form a staggered polymer

with subunit j contacting neighboring subunits j+1 and j+3 (Fig-

ure 4B). Hairpin motifs pack side by side so that helices a1, a2,

and a3 of subunit j form an extended interface underneath the

hairpin of neighboring subunit j+1. Concurrently, the helix a5 C

terminus (a5C) of subunit j binds across the hairpin tip of subunit

j+3 forming a contact termed here Interface 1. Importantly,

similar hairpin stacking and the equivalent hairpin/helix a5 inter-

face is observed within the CHMP1B filament between subunit j

and subunit j+4 (Figure 4B; McCullough et al., 2015; Nguyen

et al., 2020). The hairpin-helix a5 contact constitutes a domain

swap in polymerized CHMP1B that is also observed in other

ESCRT-III proteins (Huber et al., 2020). Interface 1 is conserved

and was predicted for Vipp1 by our co-evolutionary and rate of

variance analyses (Figures 1B, 1G, and S5). To probe the contri-

bution of Interface 1 in polymer assembly, Vipp1 truncations

were generated by removing either the helix a6C-terminal exten-
3664 Cell 184, 3660–3673, July 8, 2021
sion (Vipp1Da61–219) or helices a5 and a6 (Vipp1Da5/61–191).

Based on the Vipp1C11–C17 models, where helix a5C is posi-

tioned at the tip of the spike (Figure 2A), a6 helices likely coat

the ring outside surface and do not contribute directly to polymer

formation. Accordingly, both native Vipp1 and Vipp1Da61–219
formed rings and filaments as assayed using gel filtration and

NS EM. By contrast, both ring and filament formation was abol-

ished in the Vipp1Da5/61–191 mutant (Figure 3B-D). These results

indicate that helix a5 and Interface 1, both of which are

conserved in ESCRT-III systems, are essential for Vipp1 filament

and ring assembly.

Conserved hinge regions facilitate dome-shaped
curvature within Vipp1 rings
The basic building block (or asymmetric unit) of Vipp1C14 is a

stack of six monomers, each one located in a different rung,

which when repeated forms a ring (Figure 5A). Intriguingly, the

six subunits within each asymmetric unit have distinct conforma-

tions, which is made possible by three hinge regions that provide

Vipp1 with conformational versatility (Figure 5B; Videos S1, S2,

and S3). The hinges are located at the C terminus of helix a2

(hinge 1 or shoulder) between helix a3 and a4 (hinge 2 or elbow)

and between helix a4 and a5 (hinge 3 or wrist). Within each ring,

the flex in subunit structure is progressive, curling the ends of the

asymmetric unit to give rise to the dome-shaped curvature.

Importantly, similar subunit flexibility is seen in ESCRT-III, where

the equivalent hinge regions are used to enable polymers to as-

sume different filament lattices, curvatures, and to drive helical

filament constriction (Nguyen et al., 2020; Huber et al., 2020).

We note that hinge 1 has not previously been reported yet ac-

counts for �6� of the observed flexibility in both Vipp1 and

CHMP1B, albeit along a different axis (Figure 5B).



Figure 3. Vipp1 structure validation and polymer assembly

(A) Vipp1monomer structure sequence register validation based oncysteine cross-linking. Zoombox indicates position of L193C and L86Cmutants (Vipp1L86C/L193C)

with the sulfur atoms predicted to be �6 Å within the Vipp1C14 structure. Vipp1L86C/L193C forms an inter-rung connection between helix a5 and the hairpin motif

(Interface 3). Disulfide bond formation is observedonly in the presenceof oxidizing agentCu(II)-phenanthroline (CuP) andMTS4cross-linker. Disulfidebond formation

can be rescued upon subsequent DTT incubation. *Indicates uncleaved MBP-Vipp1 fusion protein. Vipp1L86C showed higher levels of proteolysis and resistance to

full MBP cleavage than normal, presumably due to the sensitive position of the mutation.

(B) Vipp1 subunit cartoon schematics showing wild-type (WT), Vipp1Da61–219, and Vipp1Da5/61–191 secondary structure.

(C and D) Filament assembly assay. In (C), comparison of WT, Vipp1Da61–219, and Vipp1Da5/61–191 size exclusion profiles using a sephacryl S-500 resin.

Associated SDS-PAGE is shown analyzing the column exclusion limit (void volume), Peak 1 containing high molecular weight species greater than Ferritin

(440 kDa) and usually associated with Vipp1C11–C17 rings, and peak 2 associated with low molecular weight proteins such as maltose-binding protein (42 kDa).

Negative stain EManalysis is shown in (D) for void volume, peak 1, and peak 2.WT and Vipp1Da61–219 behave similarly, with filaments observed in the void volume

and Vipp1C11–C17 rings observed in peak 1. In contrast, Vipp1Da5/61–191 does not form filaments or rings and instead runs as a low molecular weight species

consistent withmonomer or dimer. This experiment shows that helix a5 is essential for polymer formationwhile helix a6 is not. It also broadly validates the helix a5

and a6 domain assignment within the Vipp1 structures.
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Figure 4. Vipp1 has a similar fold and assembly mechanism as ESCRT-III

(A) Vipp1 has the same helical domain organization as ESCRT-III proteins, such as CHMP1B. The hairpin motif is a hallmark of the Vipp1, PspA, and ESCRT-III

families.

(B) Vipp1 and CHMP1B form similar polymers based on hairpin packing and helix a5 domain swap. A single circular polymer forms each rung of the Vipp1 ring.

Zoom boxes show Interface 1 where the helix a5 domain swap binds the hairpin tip of a neighboring subunit in both Vipp1 (j+3) and CHMP1B (j+4).
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How rung stacking induces dome-shaped curvature
Within Vipp1 rings, each rung associates with its neighbor

through just four interfaces. At the Vipp1 N terminus, helices

a0 stack axially so that they line the ring lumen (termed Interface

2), where they are well positioned to bindmembrane (Figures 2A,

5A, and S4A). As well as binding rungs together, Interface 2 also

serves as a fulcrum mediating the sequential tilting of each helix

a0 that defines the curvature of the ring lumen (Figure 5A). Inter-

face 3 forms between the N terminus of helix a5 (a5N) and the

hairpin tip from the rung below (Figure 6A). Although the amino

acids implicated in Interface 3 are highly conserved in both

Vipp1 and PspA family members, they are missing in ESCRT-III

proteins, which do not possess an a5 N-terminal helical exten-

sion (Figure S5). The remaining inter-rung contacts, Interfaces

4 and 5, form smaller packing interfaces between helix a4 and

helix a2 and between hinge 2 and helix a1, respectively (Fig-

ure 6A). As dome-shaped curvature increases toward the top

of the ring, helix a5 rotates from being oriented at 40� relative

to the horizontal in rung 5 (Figures 6B and S6A) to a maximum

of 80� in rung 2. Due to Interfaces 1 and 3, the two hairpins bound

to helix a5 co-rotate with the effect that they are pulled inward

pivoting around Interface 2 (Figure S6B). This suggests the hy-

pothesis that rung stacking causes lattice tension to build until

a maximum bending limit is reached. At this point, additional

bound subunits cannot flex sufficiently to form Interface 1 and/

or 3, impeding further rung stacking.

Modeling dome-shaped curvature in Vipp1 rings
To test whether the dome-shaped curvature observed in Vipp1

rings depends on a combination of inter-rung contacts and geo-

metric constraints, as suggested by these data, an idealized

elastic-networkmodel of the Vipp1C11 ringwas constructed. First,
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an ‘‘average rung’’ was defined that represented the average

shape of a single isolated Vipp1C11 rung. Then, we defined inter-

actions between neighboring rungs based on the contacts be-

tween rungs 3 and 4 of the Vipp1C11 structure (Figures 2B and

6C). Finally, Vipp1 ringswere initialized as cylindrical stacks of be-

tween 2 and 10 average rungs, which were then minimized sub-

ject to the elastic network (Video S4). The model rings formed

Vipp1-like dome-shaped curvature with helix a5 rotation (D4i)

increasing with rung distance from the ring equator (Figure 6D).

Strikingly, the cumulative helix a5 rotation (D4) between all rung

interfaces plateaued near 40�, indicating a strict geometrical

bending limit. Remarkably, this maximal rotation within the simu-

lated stacks closely matched the measured experimental D4 in

Vipp1C11 (Figure 6E), as well as the cumulative �40� helix a5 ro-

tations observed for Vipp1C14 (Figure 6B). Thus, the simulations

suggest a simple self-regulatorymechanism for limiting ring stack

size where stress from inter-rung rotation builds up until the for-

mation of Interfaces 1 and 3 is no longer favorable beyond a

geometrical limit of�40�, after which further stacking is impeded.

Consistent with this, Interfaces 1 and 3 linking the top two rungs

were poorly resolved in Vipp1C11–C17 rings, indicating a weak

interaction once the limiting geometry is reached. To test the

importance of Interface 3 for dome-shaped curvature formation,

we mutated two conserved residues, F197K and L200K

(Vipp1F197K/L200K), within this interface. Although this severely in-

hibited self-assembly, indicating that Interface 3 was important

for both rung formation and ring stability, a minor fraction of

Vipp1F197K/L200K still formed rings and filaments. Strikingly, these

filaments tended to have a broadly uniform diameter along their

length consistent with a loss of inter-rung tilt (Figure S7A). These

data suggest that Interface 3 forms a tensile connection between

rungs that facilitates the formation of dome-shaped rings.



Figure 5. Analysis of the Vipp1C14 ring asymmetric unit

(A) The ring asymmetric unit comprises an axial stack of six subunits each in its own distinct conformation. The position of helices a4–a6 in rungs 1 and 6 could not

be assignedwith certainty in themap sowere omitted from themodel. Zoombox shows Interface 2 formed from helix a0 contacting neighboring helix a0 and helix

a1 N terminus.

(B) Vipp1 and CHMP1B share conserved flexible joints called hinge 1–3 (shoulder, elbow, and wrist). Superposition of Vipp1 asymmetric unit subunits from rungs

2–5 aligned onto hairpin helices a1 and a2. Subunits transition between negatively and positively curved conformations from the top (rung 2) to the bottom

(rung 5).

See also Videos S1, S2, and S3.
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Vipp1 polymers and membrane remodeling
As well as rings, we observed native Vipp1 and Vipp1Da61–219
proteins to form multiple types of polymeric assemblies

including filaments (Figures S2B, S2D, and S7C). Fourier Bessel

analysis suggested that Vipp1 filaments are helical with variable

diameters and lattices. For the 14-nm diameter filament, one of

the dominant layer lines corresponds to a 30.5 Å repeat, which

fits closely to the average axial rise between hairpins within

neighboring rungs (Figures 5 and S2D). Given the Vipp1 subunit

is >16 nm in length when maximally curved, significant confor-

mational changes or lattice rearrangements may be required to

build the 14 nm filament. In this case, Vipp1 may be forming a

filament similar to ESCRT-III Vps24, which constitutes a 16-nm

diameter double-stranded filament (Huber et al., 2020). Vipp1

stack arrays were also observed morphing from discrete rings

into ribbons then filaments, particularly with Vipp1Da61–219 (Fig-

ure S7C). Overall, these micrographs indicate that Vipp1 and

Vipp1Da61–219 can transition between lattices in an extraordinary

display of assembly versatility reminiscent of ESCRT-III filaments

(Bertin et al., 2020; Chiaruttini et al., 2015; von Filseck et al.,

2020; Lata et al., 2008; McCullough et al., 2015, 2018).

To determine how N. punctiforme Vipp1 rings interact with

lipids, we first used a spin pelleting assay to demonstrate binding

to E. coli liposomes (Figure S7E). We then directly observed the

interplay between Vipp1 and liposomes by NS EM. Vipp1 rings

decorated the liposome surface (Figures 7A and S7F). Side views

of Vipp1 bound to liposome edges clearly showed the rings

attached to the membrane surface. Tilt and side views, which

were only observed associated with a liposome edge, also re-

vealed how dome-shaped rings preferentially attach to the mem-

brane via their wider opening rather than their sides. This suggests

that helix a6, which coats the outer surface of the ring, does not

mediate membrane binding in this instance (Hennig et al., 2017).
Ring stacks were often observed protruding from liposome edges

(Figure S7F), together with cones that formed from stacks of rings

with decreasing diameters. Rings, stacks, and cones also formed

tethers that connected liposomes via their openings (Figures 7A

and S7F). In support of a role for the ring lumen inmembrane bind-

ing, when we added Vipp1 polymers to E. coli lipid monolayers

(Figures 7B, 7C, and S7G–S7I), rings were only observed bound

to the monolayer via their openings. Intriguingly, these rings often

had occluded lumens demarcated by white centers (Figure 7C),

consistent with a model in which the monolayer was adsorbed

onto the inner ring wall forming an encapsulated vesicle-like bud

that excludes the negative stain. This model was further sup-

ported by side views of Vipp1 rings attached to liposomes in vitre-

ous ice where the positive curvature of the lipid bilayer surface

was remodeled to form an open neck of negative curvature as

the membrane enters the Vipp1 ring base (Figures 7D and 7E).

DISCUSSION

Here, we show that Vipp1, PspA, and ESCRT-III constitute an

ancient superfamily of related membrane remodeling proteins

that are conserved across archaea, bacteria, and eukaryotes.

Excitingly, this adds ESCRT-III to the growing list of universal

cytoskeletal proteins, like actin and tubulin (van den Ent et al.,

2001), which, although once thought to be defining features of

eukaryotes, are now known to have their origins in prokaryotes.

Further studies are required to determine which features of these

ESCRT-III-like polymers (including archaeal PspA, euryarchaeal

ESCRT-III-like proteins, as well as bacterial Vipp1/PspA) are

generic and which are likely to be domain-, phylum-, or spe-

cies-specific. For example, it is not clear whether the ATPase

PspF (Data S1C; Elderkin et al., 2005) performs a similar role to

Vps4 in the control of PspA-dependent membrane remodeling
Cell 184, 3660–3673, July 8, 2021 3667



Figure 6. Mechanism for Vipp1 axial or dome-shaped curvature

(A) Analysis of inter-rung contacts. Zoom boxes show Interfaces 3–5, which combined with Interface 2 (Figure 5A), define all inter-rung contacts.

(B) Exploded side view of Vipp1C14 shows how each ring comprises a stack of discrete rungs. Each rung constitutes a circular Vipp1 polymer with a distinct

conformation. Helix a5 is sandwiched between an intra-rung hairpin (Interface 1) and an inter-rung hairpin (Interface 3), which rotate collectively to induce ring

constriction and curvature. Geometric constraint ultimately limits constriction.

(C–E) MD simulations based on Vipp1C11 show that inter-rung interfaces define dome-shaped curvature.

(C) Overlay of the Vipp1C11 structure with a four-rung simulation resulting in an equilibrium structure with dome-shaped curvature.Dfi = inter-rung rotation of helix

a5. Df = cumulative rotation of helix a5 over all rungs.

(D) Dfi plots from simulations with 2, 4, 6, and 8 rung stacks with C11 symmetry. Dfi for Vipp1C11 rungs 2–5 (blue). The largest rotations are observed at the ring

top and bottom.

(E) Df as a function of rung stack size. Geometric constraints limit the total Df to near 40� regardless of stack size. The limit inDf from simulated stacks matches

the Df from Vipp1C11.

See also Figure S6 and Video S4.
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nor whether there is an equivalent ATPase that assists Vipp1 in

its membrane remodeling activities.

In addition to homology between PspA/Vipp1 and ESCRT-III

at the primary amino acid sequence level (Figure S1), our ana-

lyses show that Vipp1 homologs share a similar secondary struc-

ture (Figure 1A) and overall fold with ESCRT-III proteins (Fig-

ure 4A). Furthermore, when polymerized, Vipp1 shares core

assembly features with ESCRT-III polymers like CHMP1B

(McCullough et al., 2015; Nguyen et al., 2020), which includes re-

gions of flex that allow both polymers to assume different forms

(Figure 5). Notably, Vipp1 contains a similar hairpin motif, elbow,

and wrist joints (hinges 2 and 3) as reported for CHMP1B

(McCullough et al., 2015; Nguyen et al., 2020). Vipp1 and

CHMP1B also share a shoulder joint located at the C terminus

of helix a2 (hinge 1). Collectively, these conserved hinges enable

the polymers to assume forms that differ widely in curvature and

tilt, including a broad variety of complex 3D structures (Bertin

et al., 2020; Pfitzner et al., 2020). In addition, both Vipp1 and

CHMP1B form polymers through side-by-side packing of the

hairpinmotif and through helix a5 contacting the hairpin of neigh-

boring subunits j+3 or j+4, respectively. This helix a5 contact,

which forms Interface 1, is conserved in multiple ESCRT-III pro-

teins and represents a defining feature that explains how this su-

perfamily of proteins generates polymers.
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Although both Vipp1 and ESCRT-III proteins form helical fila-

ments, here, we have focused our analysis on the architecture

of seven 1.6–3.4 MDa Vipp1 rings from the cyanobacterium

N. punctiforme. The analysis of different ring symmetries,

ranging from C11–C17, provides us with a view of the structural

flexibility that enables Vipp1, PspA, and ESCRT-III family

members to perform their functions. Furthermore, as each ring

comprises between 5–7 rungs stacked together to build a

dome-shaped architecture, these asymmetric structures pro-

vide us with a glimpse of the structural features that enable fila-

ment tilt in the context of an ESCRT-III-like polymer. This is

important because simulations have shown that filament tilt

may facilitate ESCRT-III transition from a planar spiral to a

three-dimensional cone to generate force and drive membrane

deformation (Harker-Kirschneck et al., 2019; Pfitzner

et al., 2020).

Although the physiological role of Vipp1 within the cell is not

fully understood, the results of many cell biological studies indi-

cate that this protein family functions to mitigate stress in photo-

synthetic membranes (Bryan et al., 2014; Zhang and Sakamoto,

2015; Zhang et al., 2012, 2016) as well as in thylakoid membrane

biogenesis and repair (Aseeva et al., 2007; Fuhrmann et al.,

2009b; Gao and Xu, 2009; Gutu et al., 2018; Kroll et al., 2001;

Lo and Theg, 2012; Nordhues et al., 2012; Walter et al., 2015;



Figure 7. Mechanism of Vipp1 membrane repair and fusion

(A) Negative stain electron micrograph showing Vipp1 rings decorating and tethering liposomes together. Individual rings or ring stacks form bridges between

liposomes. Scale bar, 100 nm.

(B) Vipp1 rings decorate a lipid monolayer (ML). Zoom panels compare rings in the presence or absence of lipid monolayer. Lipid monolayer is drawn into the ring

and occludes the lumen (white central density). In the absence of lipid monolayer, rings have an empty lumen (black central density).

(C) Class averages of Vipp1 rings in the presence (top) and absence (bottom) of lipid monolayer. Scale bar, 10 nm.

(D) Cryo-electron micrographs showing Vipp1 rings decorating liposomes (lipo). Scale bar, 50 nm.

(E) Zoom panels of red dotted boxes shown in (D). In contrast to the positively curved liposome surface (orange wedge), negative curvature (blue wedge) is

observed as an open neck curling into the base of the bound Vipp1 ring (I–III). An example of an undecorated liposome (IV). Scale bar, 50 nm.

(F) A membrane tube comprising 4-nm lipid bilayer is modeled into Vipp1C17/C14/C11 rings to show constriction progression. Membrane hemifusion is expected to

be achieved within Vipp1C11.

(G) Schematic showing how Vipp1 may repair damaged or perturbed membrane on a single lipid bilayer. Ring stacks and cones facilitate membrane tubule

formation and increasing constriction toward the cone apex.

See also Figure S7.
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Westphal et al., 2001; Zhang and Sakamoto, 2015). In addition,

some studies have shown that Vipp1 can seal and repair leaky

membranes in vitro (Junglas et al., 2020; Siebenaller et al.,

2020). Similarly, the closely related bacterial PspA is known to

mediate inner membrane repair in response to stress (Joly

et al., 2010; Kobayashi et al., 2007; McDonald et al., 2015,

2017), whereas the PspA homolog LiaH in Bacillus subtilis pro-

tects the cell against oxidative stress and cell wall-targeted anti-

biotics (Wolf et al., 2010), and the homolog Rv2744c inMycobac-

terium tuberculosis re-locates to the membrane surface of lipid

droplets (Datta et al., 2015).
Although the previous reconstructions of both Vipp1 and PspA

rings (Hankamer et al., 2004; Saur et al., 2017) do not readily

show how such structures might mitigate membrane stress,

the Vipp1C11–C17 rings presented here suggest a potential mech-

anism for stabilizing or repairing localized sections of breached

or perturbed membrane. They also provide a mechanism for

Vipp1-mediated membrane curving and tubulation. When mem-

brane was modeled into the Vipp1C11–C17 structures as a 4-nm

bilayer, sequential constriction was observed with the mem-

brane lumen reaching �3 nm within Vipp1C11 (Figure 7F). This

is close to the biophysical limit required to induce membrane
Cell 184, 3660–3673, July 8, 2021 3669
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fusion/fission (Chernomordik et al., 1995; Kozlovsky and Kozlov,

2003). Our biochemical experiments also suggest how Vipp1

rings might help seal membrane breaches or local bilayer pertur-

bations (Figures 7B, 7C, and S7G) by binding to membranes

through the lumenal amphipathic a0 helices (Heidrich et al.,

2016; McDonald et al., 2015, 2017; Otters et al., 2013). As mem-

brane is drawn into the Vipp1 ring lumen via capillary action (Fig-

ure 7D and 7E), since Vipp1 rings are most constricted at their

top, the membrane will become increasingly squeezed as it as-

cends so that breached or perturbed membrane leaflets could

converge to a point of stabilization or fusion at the ring apex (Fig-

ure 7G). Although it is not clear how ESCRT-III polymers repair

membrane (Jimenez et al., 2014; Sønder et al., 2019), the

Vipp1 structures suggest a potential mechanism for ESCRT-III

polymers acting in this role when bound to the outside of posi-

tively curved membranes. Such capillary action could also

explain the entry of lipids into the central lumen of pre-formed

Chlamydomonas reinhardtii Vipp1 helical filaments (Theis

et al., 2019).

It is also possible that ensembles of Vipp1 ring-like structures

mediate more complex membrane remodeling events similarly

to ESCRT-III polymers (Bertin et al., 2020; Nguyen et al., 2020;

Pfitzner et al., 2020). This could be achieved by ring stacking,

cone, or filament formation, which could support the establish-

ment of membrane tubules (Figure 7G). It is possible that such

structures tether and bridge opposed membranes (Figures 7A

and S7F) as a precursor to membrane fusion as has been re-

ported in vitro (Hennig et al., 2015, 2017; Saur et al., 2017). In

any bridging event, it is possible that Vipp1 rings, stacks, or fila-

ments extend from both opposing membranes so that a seam of

opposing handedness is created where the polymers meet, as

was observed in C. reinhardtii Vipp1 protein-lipid tubes (Theis

et al., 2019).

In summary, our study shows that PspA, Vipp1, and ESCRT-III

constitute an ancient membrane repair/remodeling machine that

was likely present in the last universal common ancestor of all

cells (LUCA). Building on this evolutionary insight, our structural

analysis of Vipp1 reveals the conserved architecture of these

proteins, including three hinge regions. Such architecture pro-

vides these polymers with the flexibility required to remodel

membrane across all domains of life.

Limitations of the study
The N. punctiforme Vipp1C11–C17 models (Figure 2) are broadly

consistent with concurrently reported Synechocystis Vipp1 and

PspA structures (Gupta et al., 2021; Junglas et al., 2021, this

issue of Cell). Future cryo-EM studies using N. punctiforme

Vipp1 may facilitate higher resolution maps to be resolved with

improved accuracy of main chain position and showing side

chain detail. Although Vipp1 rings and filaments have been puri-

fied from cyanobacteria, algae, and plants, it is still unclear how

these polymers relate to cellular Vipp1 forms and membrane re-

modeling activities. Note similar difficulties arise when trying to

reconcile the in vitro structures of ESCRT-III polymers associ-

ated with membranes (McCullough et al., 2015; Nguyen et al.,

2020) with their in vivo functions, where in many cases these

same proteins are known to function in the reverse topology.

Finally, it remains uncertain whether Vipp1 functions as a com-
3670 Cell 184, 3660–3673, July 8, 2021
posite co-polymer with Vipp2 and/or is remodeled via its associ-

ation with an external ATPase, analogous to the way ESCRT-III

polymers work. These outstanding questions represent an

exciting frontier for future studies.
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Jan Löwe for acting as collaboration catalyst. We thank BBSRC for a doctoral

training program PhD to O.B. T.A.W. is supported by a Royal Society Univer-

sity Research Fellowship (UF140626). This work was funded by a Wellcome

Trust Senior Research Fellowship (215553/Z/19/Z) and previously by a Well-

come Trust Career Development Fellowship (200074/Z/15/Z) to H.H.L. This

work was also funded by Wellcome Trust funding to B.B., which supported

D.P.S. (203276/Z/16/Z), and via MRC support for the Baum team.

AUTHOR CONTRIBUTIONS

D.P.S. identified Vipp1/IM30/PspA as ESCRT-III homologs and undertook all

bioinformatics and evolutionary analyses under the supervision of B.B., with

input and advice from T.A.W., who carried out the evolutionary rate inferences

and helped generate the trees. O.B., J.L., andM.T. generated clones. J.L. pro-

cessed cryo-EM data and generated reconstructions. J.L. built models with

H.H.L. J.L. purified dynamin. J.L. processed negative stain EM filaments.

M.T. purified proteins and undertook structure cross-linking validation, helix

a5 and a6 truncation study, and Interface 3 mutagenesis all with associated

EM studies. S.N. undertook in vitro functional studies of Vipp1 with liposome

https://doi.org/10.1016/j.cell.2021.05.041
https://doi.org/10.1016/j.cell.2021.05.041


ll
OPEN ACCESSArticle
and lipid monolayer using negative stain and cryo-EM. O.B. first purified pro-

teins and obtained Vipp1 cryo-EM data. J.K.N. undertook molecular dynamic

simulations. H.H.L. and M.B. supervised O.B. H.H.L., D.P.S., and B.B. wrote

the manuscript with contributions from all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 14, 2020

Revised: November 24, 2020

Accepted: May 25, 2021

Published: June 23, 2021

REFERENCES

Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., and Lin-
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Woutersen, S., Bonn, M., Weidner, T., Markl, J., and Schneider, D. (2015).

IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat. Com-

mun. 6, 7018.

Hennig, R., West, A., Debus, M., Saur, M., Markl, J., Sachs, J.N., and

Schneider, D. (2017). The IM30/Vipp1 C-terminus associates with the lipid

bilayer and modulates membrane fusion. Biochim. Biophys. Acta Bioenerg.

1858, 126–136.

Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., and Vinh, L.S.

(2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol.

Biol. Evol. 35, 518–522.

Huber, S.T., Mostafavi, S., Mortensen, S.A., and Sachse, C. (2020). Structure

and assembly of ESCRT-III helical Vps24 filaments. Sci. Adv. 6, eaba4897.

Jimenez, A.J., Maiuri, P., Lafaurie-Janvore, J., Divoux, S., Piel, M., and Perez,

F. (2014). ESCRT machinery is required for plasma membrane repair. Science

343, 1247136.

Joly, N., Engl, C., Jovanovic, G., Huvet, M., Toni, T., Sheng, X., Stumpf,

M.P.H., and Buck, M. (2010). Managing membrane stress: the phage shock

protein (Psp) response, from molecular mechanisms to physiology. FEMS Mi-

crobiol. Rev. 34, 797–827.

Junglas, B., Huber, S.T., Heidler, T., Schlösser, L., Mann, D., Hennig, R.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

E. coli C43 (DE3) Lucigen 60345-1

E. coli C43 (DE3) pspA- Chernyatina and Low, 2019;

Datsenko and Wanner, 2000

N/A

E. coli BL21 (DE3) Lucigen 60300-1

Chemicals, peptides, and recombinant proteins

Tris- Base Sigma CAS 77-86-1

Tris- HCl Sigma CAS 1185-53-1

HEPES sodium salt Sigma CAS 75277-39-3

NaCl Sigma CAS 7647-14-5

KCL Sigma CAS 7447-40-7

EDTA Sigma CAS 6381-92-6

DTT Melford CAS 3483-12-3

IPTG Melford CAS 367-93-1

Ampicillin Melford CAS 69-52-3

MgCl2 Sigma CAS 7786-30-3

GMPPCP Sigma CAS 10470-57-2

LB-Agar Miller 1102830500

Lysozyme from chicken egg white Sigma CAS 12650-88-3

Deoxyribonuclease I from bovine pancreas Sigma CAS 9003-98-9

2xYT Broth Melford 38210000

Dichloro(1,10-phenanthroline)copper(II) (CuP) Sigma CAS 14783-09-6

Ethanol absolute Sigma CAS 64-17-5

Chloroform Sigma CAS 67-66-3

N-ethylmaleimide Sigma CAS 128-53-0

1,4-Butanediyl Bismethanethiosulfonate (MTS4) Santa Cruz Biotechnology CAS 55-99-2

TEV protease In-house purification N/A

Dynamin 1 In-house purification N/A

D-(+)- Maltose monohydrate Fluorochem CAS 6363-53-7

Amylose Resin NEB E8021L

E. coli total lipid extract Avanti polar lipids CAS 1240502-50-4

Sodium dodecyl sulfate (SDS) Fisher Scientific CAS 151-21-3

Llithium dodecyl sulfate (LDS) sample buffer (4X) Invitrogen B0007

cOmplete, EDTA-free protease inhibitor cocktail tablets Roche 11873580001

Precision Plus Protein Unstained Protein

Standards, Strep-tagged recombinant

Biorad 1610363

Deposited data

Vipp1 C11 This paper EMDB-11468, PDB 6ZVR

Vipp1 C12 This paper EMDB-11469, PDB 6ZVS

Vipp1 C13 This paper EMDB-11470, PDB 6ZVT

Vipp1 C14 This paper EMDB-11478, PDB 6ZW4

Vipp1 C15 This paper EMDB-11481, PDB 6ZW5

Vipp1 C16 This paper EMDB-11482, PDB 6ZW6

Vipp1 C17 This paper EMDB-11483, PDB 6ZW7

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CHMP3 Bajorek et al., 2009 3FRT

CHMP1B McCullough et al., 2015 3JC1

CHMP1B Nguyen et al., 2020 6TZ4

PspA Osadnik et al., 2015 4WHE

Oligonucleotides

P1_F TTCCAGGGCTCCCATATGGGA

TTATTCGATCGCATTAAG

Eurofins N/A

P2_B ATGATGATGGGATCTTTATAGTTG

ATCCAATTGCTTGCG

Eurofins N/A

P2_F ATGCTACCATAAAAGC

TTGGTACCACGCGTGC

Eurofins N/A

P2_R AAGCTTTTATGGTAGCATT

TGCGCTTTCAAAGC

Eurofins N/A

P3_F GCAGGTGCATAAAAGCTT

GGTACCACGCGTGC

Eurofins N/A

P3_R AAGCTTTTATGCACCTGCT

AACTCTCCTAGTGC

Eurofins N/A

P4__F GAGAATTGTGCACGACAAGCTTTAGAGCG Eurofins N/A

P4__R TTGTCGTGCACAATTCTCAT

CACCTTTTTGTAGGGCG

Eurofins N/A

P5_F GCAGATTGTGAAACCCAATTTGCCCAGTTGG Eurofins N/A

P5_R TTGGGTTTCACAATCTGCAC

CTGCTAACTCTCCTAG

Eurofins N/A

P6_F CAAAAAGCCCAGAAAGAAGGT

GGTAGCGATGTTGATGATGAATTA

Eurofins N/A

P6_R TTCTTTCTGGGCTTTTTGG

GTTTCTAAATCTGCACCTGC

Eurofins N/A

Recombinant DNA

pOPTM/Vipp1 This work N/A

pOPTM/Vipp1Da61-219 This work N/A

pOPTM/Vipp1Da5/61-191 This work N/A

pOPTM/Vipp1L86C This work N/A

pOPTM/Vipp1L193C This work N/A

pOPTM/Vipp1L86C/L193C This work N/A

pOPTM/Vipp1F197K/L200K This work N/A

Software and algorithms

HHMER Finn et al., 2011 http://hmmer.org/

HHPred Zimmermann et al., 2018 https://toolkit.tuebingen.mpg.de/tools/hhpred

Phyre2 Kelley et al., 2015 http://www.sbg.bio.ic.ac.uk/

phyre2/html/page.cgi?id=index

Psipred Buchan and Jones, 2019 http://bioinf.cs.ucl.ac.uk/psipred/

Gremlin Anishchenko et al., 2017;

Ovchinnikov et al., 2014

https://gremlin2.bakerlab.org/

exceptions.php

AnnoTree Mendler et al., 2019 http://annotree.uwaterloo.ca/

mafft 7.3.1 Katoh and Standley, 2013 https://sbgrid.org/software/titles/mafft

trimAl 1.3 Capella-Gutiérrez et al., 2009 http://trimal.cgenomics.org/

IQ-Tree 1.6.10 Nguyen et al., 2015 http://www.iqtree.org/release/v1.6.10

Relion 3.1 Scheres, 2012 https://www3.mrc-lmb.cam.ac.

uk/relion/index.php?title=Main_Page

I-Tasser Zhang, 2008 https://zhanglab.dcmb.med.umich.edu/I-TASSER/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

COOT Emsley et al., 2010 https://www2.mrc-lmb.cam.

ac.uk/personal/pemsley/coot/

Rosetta Wang et al., 2016 https://www.rosettacommons.org/software

Chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

ISOLDE Croll, 2018 https://isolde.cimr.cam.ac.uk/

PHENIX Adams et al., 2010 https://phenix-online.org/

Molprobity Chen et al., 2010 http://molprobity.biochem.duke.edu/

Imagic van Heel et al., 1996 https://www.imagescience.de/imagic.html

Ximdisp Smith, 1999 https://www2.mrc-lmb.cam.ac.uk/

research/locally-developed-software/

image-processing-software/

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Harry Low

(h.low@imperial.ac.uk).

Materials availability
All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

Data and code availability
3D cryo-EM density maps produced in this study have been deposited in the Electron Microscopy Data Bank with accession code

EMD-11468, EMD-11469, EMD-11470, EMD-11478, EMD-11481, EMD-11482 and EMD-11483 for Vipp1C11-C17, respectively.

Atomic coordinates have been deposited in the Protein Data Bank (PDB) under accession code 6ZVR, 6ZVS, 6ZVT, 6ZW4,

6ZW5, 6ZW6 and 6ZW7 for Vipp1C11-C17, respectively.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All Vipp1 proteinswere overexpressed and purified from E. coliC43 (DE3) electro-competent cells (Lucigen)modified to incorporate a

pspA gene knockout. Dynamin 1 was overexpressed and purified from E. coli BL21 (DE3) electro-competent cells (Lucigen). Further

details including culture conditions are outlined below in Method details.

METHOD DETAILS

ESCRT-III and PspA/Vipp1 evolutionary analyses
To search for ESCRT-III relatives, we used sensitive protein sequence searches (HHMER [Finn et al., 2011], HHPred [Zimmermann

et al., 2018] and Pfam [El-Gebali et al., 2019]) based on Hidden Markov Models (HMMs). Several individual eukaryotic ESCRT-III

proteins, multiple sequence alignments and HMM profiles were used as queries in these searches. These analyses consistently

identified PspA/Vipp1 proteins as the only ESCRT-III homologs in sequence, domain and structural databases (Uniprot [UniProt Con-

sortium, 2019], GenBank [Sayers et al., 2019], Pfam [El-Gebali et al., 2019] and PDB [Burley et al., 2019]). This observation was

corroborated by the fact that these protein families share a common Pfam clan which only includes PspA and ESCRT-III (Pfam

CL0235). Secondary structure predictions were performed using HHPred (Zimmermann et al., 2018), Phyre2 (Kelley et al., 2015)

and Psipred (Buchan and Jones, 2019) software. To obtain a statistical model of the PspA/Vipp1 family that captures patterns of res-

idue co-evolution, Gremlin (Anishchenko et al., 2017; Ovchinnikov et al., 2014) was used. For this analysis, a total of 2844 homolo-

gous proteins were obtained usingN. punctiforme Vipp1 as a query, four iterations of JackHHMER searches, E-value% 1e-10, using

a coverage filter of 50% and gap removal of 75%.

Phylogenetic analyses
The phylogenetic distribution of the PspA/Vipp1 and ESCRT-III families was generated using AnnoTree (Mendler et al., 2019)

searches in Pfam (El-Gebali et al., 2019) and an E-value% 1e-05. Over 27000 bacterial and 1500 archaeal genomes were analyzed.

For the generation of a phylogenetic tree of the Vipp1-ESCRT-III superfamily, homologs of these proteins were retrieved fromUniprot

(UniProt Consortium, 2019) by HMMER (Finn et al., 2011) searching and from InterPro (Mitchell et al., 2019) database, followed by
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manual inspection. Eukaryotic, archaeal and bacterial PspA and ESCRT-III proteins were selected to achieve a broad distribution of

homologs across the tree of life. In total, 264 PspA and 332 ESCRT-III sequences were selected, aligned using the l-INS-I mode in

mafft 7.3.1 (Katoh and Standley, 2013), and poorly-aligned regions were identified and removed using the ‘‘gappyout’’ mode in trimAl

1.3 (Capella-Gutiérrez et al., 2009). The phylogeny was inferred in IQ-Tree 1.6.10 (Nguyen et al., 2015) under the LG+C30+G+F

model, which was the best-fittingmodel according to the BIC criterion. Thismodel accounts for differences in exchange rates among

amino acids (LG), different site compositions (C30+F), and models across-site rate variation using a discretized Gamma distribution

with 4 rate categories. Branch supports are ultrafast (UFBoot2 [Hoang et al., 2018]) bootstraps. The same steps above were used for

the generation of the phylogenetic tree of ATPases, with the only differences being that 194 ATPase sequenceswere selected and the

best-fit model chosen by BIC was LG+R8, i.e., with across-site rate variation modeled using a mixture of eight rates that were not

constrained to be drawn from a Gamma distribution. Site-specific evolutionary rates, measured in units of expected number of sub-

stitutions per site, were inferred using the empirical Bayes method in IQ-TREE (–rate) from subfamily-specific (ESCRT-III and PspA/

Vipp1) sequence alignments. The analysis of the number of copies per genome of PspA/Vipp1 and ESCRT-III/Snf7 genes were per-

formed inspecting a variable number of genomes per taxonomic group, using HHMER searches and the following proteins as queries

(species and protein name, Uniprot code): PspA/Vipp1 - 133 bacterial genomes (N. punctiforme Vipp1, B2J6D9; this analysis ex-

cludes cyanobacterial genes), 421 archaea (Haloferax volcanii PspA, D4GUW2), 180 eukaryotes containing chloroplasts

(C. reinhardtii Vipp1, A8JC26), 502 cyanobacteria (N. punctiforme Vipp1, B2J6D9); ESCRT-III/Snf7 - 40 Euryarchaeota (Halomi-

crobium mukohataei ESCRT-III-like, C7P4W4), 13 Asgard archaea (Candidatus Odinarchaeota archaeon LCB_4 Vps2/24/46 and

Vps20/32/60 homologs, A0A1Q9N7Y8 and A0A1Q9N7Y5) and 165 TACK archaea (Sulfolobus acidocaldarius CdvB, Q4J924).

Vipp1 cloning, expression and purification
Plasmid mutagenesis and all clones were generated using the Gibson isothermal DNA assembly protocol (Gibson et al., 2009). Plas-

mids and primers used in this study are listed in Table S2. The coding sequence forN. punctiforme vipp1 (Uniprot code B2J6D9) was

cloned into pOPTM (a pET derivative) to yield an N-terminal MBP fusion with a TEV cleavage site in the linker. An N-terminal hexa-

histidine tag was included on the MBPmoiety. For the purification of both native and mutant Vipp1, clones were co-transformed into

E. coliC43 (DE3) electro-competent cells (Lucigen) modified to incorporate a pspA gene knockout using a Lambda Red recombinase

strategy (Chernyatina and Low, 2019; Datsenko andWanner, 2000). Cells were grown on selective LB-agarose plates with ampicillin

(100 mg/ml). 2xYT media was inoculated and cells grown at 37�C until induction at OD600 = 0.8 with 1 mM isopropyl b-D-1- thioga-

lactopyranoside (IPTG). Cells were grown for�15 h at 18�Cand shaken at 220 rpm. All the further stepswere carried out at 4�Cunless

otherwise specified. Purification of Vipp1L86C, Vipp1L193C and Vipp1L86C/L193C were performed in the presence of 2 mM dithiothreitol

(DTT). Pellets were re-suspended in ice-cold buffer 50 mM Tris- HCl pH 7.5, 300 mM NaCl, treated with 2 mM MgCl2, 0.1 mg/ml

DNase I, 0.5 mg/ml lysozyme and sonicated on ice. The lysate was clarified by centrifugation at 16,000 3 g for 20 min. The super-

natant was incubated with gentle shaking for 1 h with 10 mL of amylose resin (NEB) pre-equilibrated in 50 mM Tris- HCl pH 7.5,

300 mM NaCl (wash buffer). The resin was washed with 100 mL and purified MBP-Vipp1 eluted with wash buffer supplemented

with 15 mM maltose. The sample was incubated for 24 h at room temperature with TEV and then dialysed (12-14 kDa MW cut-

off) overnight in 25 mM Tris- HCl pH 8.4, 40 mM NaCl. The sample was concentrated and injected onto a sephacryl 16/60 S500

gel filtration column equilibrated in 25 mM Tris- HCl pH 8.4, 50 mM NaCl. A typical elution profile for Vipp1 consisted of three peaks

containing 1) Vipp1 superstructures such as filaments eluting at �40 mL within the column size exclusion limit or void volume, 2)

Vipp1 rings eluting at �65 mL, 3) non-polymerized low molecular weight Vipp1 species consistent with monomer or dimers, MBP

and TEV eluting at�100 mL. Fractions from peak 1 and 2 were pooled and concentrated up to 1 mg/mL. Where necessary, the sam-

ple was gel filtrated a second time to reduce residual MBPor TEV contamination. LC-MS/MS confirmed the identity of the Vipp1 band

identified by SDS-PAGE. Note that native Vipp1 migrates at �38 kDa and not at its expected molecular weight of 28.7 kDa. As

Vipp1Da5/61-191 gel filtrates only in peak 3, the removal ofMBP and TEVwas necessary for a clean SDS-PAGE analysis. An additional

affinity chromatography stepwas therefore included directly before gel filtration using 23 5mLHisTraps (GEHealthcare). As both the

MBP and TEV proteins incorporate a hexahistidine tag, the flow through containing Vipp1Da5/61-191 was collected for subse-

quent steps.

Dynamin cloning, expression and purification
The rat dynamin 1 gene (Uniprot code P21575) with the PRD domain truncated was cloned into pOPTM vector yielding an N-terminal

MBP fusion with a TEV cleavage site in the linker. A C-terminal hexahistidine tag was included on Dynamin 1. E. coli thioredoxin was

inserted at the Dynamin 1 N terminus through Gibson assembly. The role of the thioredoxin, which was not cleaved off, was to stop

the large-scale clumping of Dynamin 1 filaments in solution and to facilitate a broad distribution of filaments on the EM grid. Trans-

formed E. coli BL21 (DE3) cells were grown on selective LB-agarose plates with ampicillin (100 mg/ml). 2xYT media was inoculated

and cells grown at 37�C until induction at OD600 = 0.6 with 1 mM isopropyl b-D-1- thiogalactopyranoside (IPTG). Cells were grown for

�15 h at 19�C and shaken at 220 rpm. All the further steps were carried out at 4�C unless otherwise specified. For purification, pellets

were re-suspended in 50 mM Tris- HCl pH 8.0, 500 mM NaCl, 2 mM DTT, 2 mM EDTA and sonicated on ice. The lysate was clarified

by centrifugation in a Ti45 rotor (Beckman Coulter) at 98,000 3 g at 4 �C for 45 min and the supernatant loaded onto a self-packed

column with �10 ml of amylose resin (NEB) pre-equilibrated in 50 mM Tris- HCl pH 9.0, 500 mM NaCl, 1 mM DTT, 1 mM EDTA

and 20% glycerol (wash buffer). The resin was washed with 200 mL of wash buffer and the MBP-Dynamin 1 eluted with wash buffer
Cell 184, 3660–3673.e1–e7, July 8, 2021 e4
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supplemented with 15 mMmaltose. The sample was incubated overnight at room temperature with TEV and the products separated

by gel filtration using a HiPrep 26/60 Sephacryl S300 column in buffer 20 mM Tris- HCl pH 9.0, 1mM EDTA and 1 mMDTT. Fractions

of Dynamin 1 were concentrated to �10 mg/ml, flash frozen in liquid nitrogen and stored at �80 �C.

Cryo-EM preparation and data collection
Under cryogenic conditions N. punctiforme Vipp1 exhibits significant preferred orientation so that essential side views for deter-

mining the structure were absent. To solve this issue, preformed Dynamin 1 filaments with 37 nm diameter were mixed with

Vipp1 prior to vitrification. Rat Dynamin 1 filaments appear equivalent to human Dynamin 1 filaments in the super constricted state

(Sundborger et al., 2014). The Dynamin 1 filaments formed a network on the grid that helped to maintain ice thickness around Vipp1

rings so that positioning at the air-water interface was reduced and side views captured. 37.5 mM Dynamin 1 was incubated with

20 mM HEPES-NaOH pH 7.2, 50 mM NaCl, 1 mM DTT, 2mM GMPPCP and 5 mM MgCl2 at room temperature for 2 hours to form

filaments. 35 mM Vipp1 was then mixed with the pre-formed dynamin filaments. 4 mL of the mixture was incubated for 30 s on

glow discharged holey R2/2 Quantifoil grids before vitrification in liquid ethane using a Vitrobot Mark IV (FEI). Data were collected

at 300 kV on a Titan Krios (M02 beamline at eBIC Diamond, UK) equipped with a Gatan Quantum K2 Summit detector. 3206 movies

were acquired at a magnification of 35,971 yielding 1.39�A/pixel using EPU software. Defocus was between�1.25 and�3.0. Movies

were dose-weighted over 40 frames with 10 s exposures. Total dose was 50 e/�A2.

Cryo-EM image processing
Individual movie frames were aligned with MotionCor2 (Zheng et al., 2017) and the contrast transfer function estimated using

CTFFIND4 (Rohou and Grigorieff, 2015). All subsequent processing was carried out using Relion 3.0 (Scheres, 2012). Particles

were pickedmanually to generate initial 2D class averages that were subsequently used for reference-based auto-picking. Extracted

particles were subjected to five rounds of 2D classification resulting in a cleaned stack of 109,715 particles. To generate the initial 3D

model, a subset of 2D classes comprising C14 symmetry top views and side views with diameter range from 28 nm to 32 nm were

selected (24,355 particles). 3D classification was carried out in C1 using a featureless hollowed cylinder as the initial reference. One

class containing 9,991 particles yielded a ring with distinct C14 symmetry, which was chosen for high-resolution reconstruction first.

These particles were then 3D autorefined with C14 symmetry applied reaching 8.5�A resolution. The resulting map (Intermediate map

1) showed clear secondary structure features and was used as the new C14 reference volume for a second round of processing. In

round two, side views only of 2D class averages were selected and 3D classified iteratively in C1 using Intermediate map 1 as a refer-

ence volume. In this way 15,767 side views with C14 symmetry were isolated. These side views were combined with 3,663 C14 top

view particles obtained during 2D classification. A 3D autorefinement was undertaken with C14 symmetry applied to yield a recon-

struction at 7.0�A resolution (Intermediate map 2). Individual particles were then corrected for beam-inducedmotion for a third round

of processing. One round of 3D classification was undertaken in C1 using Intermediatemap 2 as the reference volume. A final stack of

17,114 particles was then used for 3D autorefinement with C14 symmetry applied reaching 6.8�A resolution. Post-processing yielded

6.5�A resolution with an auto-estimated B-factor (Rosenthal and Henderson, 2003) of�291.9�A2 applied to sharpen the final 3Dmap.

Resolutions reported are based on gold standard Fourier shell correlations (FSC) = 0.143. Once the Vipp1C14 structure was built and

targeted masks of asymmetric units or individual rungs could readily be generated, multiple subtraction based local refinements

including symmetry expansion strategies were attempted but no improvement in resolution was observed. A similar strategy as im-

plemented for Vipp1C14 was carried out to generate all other ring symmetries including Vipp1C11-C13 and Vipp1C15-C17. A B-factor of

�320�A2 was applied to these maps. The hand of the electron density maps was unambiguously determined by fitting the PspA crys-

tal structure (PDB: 4WHE), which has a distinct axial twist and asymmetry. Statistics for data collection and 3D refinement for all maps

are included in Table S1.

Model building and refinement
Rung 3 of the Vipp1C14 structure was built first. A secondary structure prediction was obtained using Psipred (Buchan and Jones,

2019). A partial Vipp1 homology model based on PspA (PDB: 4WHE) was generated using I-Tasser (Zhang, 2008). The model

was trimmed to include amino acids 24-142, which represents the hairpin motif. Importantly for obtaining an accurate sequence reg-

ister in the Vipp1 structure, Vipp1 aligns robustly with PspA in this region with 32.5% sequence identity, 59% similarity and crucially

0% gaps. The hairpin readily fitted into the Vipp1C14 map requiring only minor adjustments. Overall, the hairpin from Vipp1C14 rung

number 3 (PDB: 6ZW4) and PspA hairpin motifs have a Ca RMSD = 2.2 Å (Figure S4E). The hairpin homology model provided an

important anchor for subsequently building the N-terminal helix a0 and C-terminal helices a4 and a5. The resolution for the bulk

of Vipp1C14 within rungs 3 and 4 was�5 Å so that the main chain could be easily traced and helices a0-a5 clearly assigned and built

using COOT (Emsley et al., 2010). Significant attention was paid to regions of high sequence conservation as a guide for sequence

register within predicted interfaces. Similarly, our co-evolutionary contact maps (Figure 1B) were used to confirm interfaces and ex-

pected sequence register. Ultimately, the accuracy of the sequence register was experimentally assessed by the introduction of a

cysteine pair within Interface 3 and tracking cross-links (Figure 3A). Rosetta (Wang et al., 2016) was used to improve the geometry.

The subunit from rung 3 was copied and rigid body fitted into all other rungs within the asymmetric unit using Chimera Fit in map

command (Pettersen et al., 2004). COOT and ISOLDE (Croll, 2018) were used to adjust for rung specific conformational changes.

Using PHENIX (Adams et al., 2010), non-crystallographic symmetry (NCS) was applied to each asymmetric unit to generate a
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complete Vipp1C14 84 chain model. This model was truncated to main chain and rigid body and B factor refined in PHENIX. For all

other ring symmetries, the Vipp1C14 asymmetric model was fitted using Chimera Fit in map command. COOT and ISOLDE (Croll,

2018) were used to adjust for conformational changes specific to ring symmetry. For each ring, NCS was applied to generate com-

plete ringmodels. All subsequent stepswere as for Vipp1C14. The finalmodels were assessed usingMolprobity and statistics outlined

in Table S1 (Chen et al., 2010). The correlation between map and model (CCmask) as generated by the phenix.map_model_cc com-

mand was C11- 0.8, C12- 0.82, C13- 0.77, C14- 0.84, C15- 0.8, C16- 0.67, C17- 0.58.

Helical filament processing
For Vipp1F197K/L200K and Vipp1Da61-219 filaments (Figures S7A–S7D), a dataset comprising 100 and 121 micrographs, respectively,

were collected manually on a Tecnai F20 microscope equipped with Falcon II direct electron detector. Single frames were collected

with 1 s exposure, total dose �15 e/A2, a magnification of 68,293 and a pixel size = 2.05 Å. For Vipp1F197K/L200K, using the

helical processing module in Relion 3.1, 20,745 segments were extracted and binned to a final pixel size = 6.15 Å. After 2D classi-

fication, an aligned stack from a selected class average was created containing 780 segments. The stack was summed using Imagic

(van Heel et al., 1996), padded in Ximdisp (Smith, 1999) and ImageJ used for Fourier Transform analysis (Schneider et al., 2012). For

Vipp1Da61-219, 20,745 segments were extracted and binned to a final pixel size = 6.15 Å. 226 segments were used for the aligned

stack and subsequent processing. For native Vipp1 14 nm and 24 nm filaments (Figures S2D and S2E), 14,292 segments were ex-

tracted from the Vipp1 ring dataset and binned to a final pixel size = 4.17 Å. 9820 and 429 segments contributed to the final class

average for the 14 nm and 24 nm filaments, respectively.

Elastic network model
To understand the relationship between inter-rung stacking and the creation of dome-shaped curvature in Vipp1 rings, molecular

modeling was used focused on the smallest ring system- Vipp1C11 for simplicity. Each residue was represented by a single bead

at the position of the Ca atom. The potential energy of the structure was defined by an elastic network model (ENM), meaning

that interactions between residues nearby in the experimental structure were restrained by harmonic springs. Nearby in the contact

map was defined by Ca distances within 10 Å. All springs were given the same stiffness.

The elastic network for each rung was identical, both internally (intra-rung) and in the interactions made with the rungs above it and

below it (inter-rung). While the experimental Vipp1C11 structure enforced each monomer to be identical within a rung, the monomers

between rungs showed small differences. To create the intra-rung network, the contact map for all monomers in rungs with a com-

plete structure (11*4monomers in Vipp1C11 rungs 2-5) was compared and a springwas created for each contact provided it existed in

> 50% of the monomers. As the conformational changes in the monomers between different rungs are small, only a few contacts

were removed in this process. Those removedwere localized to the regions showing the largest shifts between rungs, namely Hinges

2 and 3 within the Vipp1 monomer (Figure 5B). Removing these outlier contacts allows the network to better model the inherent flex-

ibility of the Vipp1 monomer. Note that the intra-rung contacts included contacts between monomers within the same rung. The nat-

ural length of each spring was defined as the average of its contact distances over the monomers. In this way, an ENM for an average

rung was created. The average rung best matched rung 3, with a Ca RMSD of 0.5 Å. The inter-ring contact map was defined by the

interactions between Vipp1C11 rungs three and four (Figure 2B) as rung 5 at the bottom is incomplete.

We then computed the equilibrium structure for different stack sizes by minimizing the elastic energy. This minimization was per-

formed bymolecular dynamics (MD) at a low temperature followed by a steepest decent minimization. SMOG2 (Noel et al., 2016) with

the template ‘‘ENM’’ was used to create topology files for theMD software GROMACS (Abraham et al., 2015) using the Vipp1C11 PDB

structure as input (PDB: 6ZVR). These topology files were processed as described in the previous paragraph. Initial structures for

minimization were created in VMD bymanually copying rung three and translating it N times, where N is the desired number of rungs.

The equilibrium structures resulted from balancing the competing effects of 1) the inter-rung interactions driving curvature and 2)

the geometrical constraints of doming. While in principle some of the strain could be alleviated by breaking links, this is not allowed in

the ENM. This constraint is not present in the experimental system, which may explain why map densities for parts of the upper and

lower rungs are less resolved. The rotations between rungs in the equilibrium structures were analyzed by measuring the angle

formed by helix a5 with the ring central axis (Figures 6B and 6C). The axis is defined by the z axis in the experimental structure.

The line along the direction of helix a5 is defined by two points taken as the centers of mass of residues 194-202 and residues

211-219.

Vipp1 cysteines crosslinking assay
DTT was removed from 1 mg/mL Vipp1L86C, Vipp1L193C or Vipp1L86C/L193C using PD MiniTrap G-25 columns (GE Healthcare) equil-

ibrated in 25mMTris- HCl pH 8.4, 50mMNaCl. Sampleswere diluted to 5 mMand incubatedwith either 10mMDTT, ortho-Cu(II)1,10-

phenanthroline (CuP, stock 10 mM in 20% ethanol) or 5 mM 1,4-Butanediylbismethanethiosulfonate (MTS-4, stock 50 mM in chlo-

roform) for 1 h at room temperature. Vipp1L86C/L193C cross-linked samples were rescuedwith 10mMDTT for 1 h at room temperature.

Non-reacted cysteines were blocked by the addition of 10mMN-ethylmaleimide (NEM, stock 0.5M in 100% ethanol). Samples were

evaluated by SDS-PAGE.
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Liposome preparation
Liposomes were prepared using E. coli total lipid extract (Avanti polar lipids, US). Lipid extract was dissolved in chloroform at 25 mg/

mL in a glass vial (Thermo Fisher Scientific). Chloroform was evaporated and the lipid dried for 1 h in a vacuum desiccator. The re-

sidual lipid film coating the bottom of the vial was hydrated using liposome reaction buffer (20mMHEPES, pH 8.0 and 80mMKCl) at a

concentration of 6 mg/ml. The lipid was resuspended by vortexing and gentle sonication with a needle tip for 2 min on ice. The sus-

pension was extruded through polycarbonate membranes with 1 or 0.2 mm pore size using a mini-extruder (Avanti Polar Lipids) to

create large or small unilamellar vesicles (LUV/SUV). LUV and SUV were stored at 4�C for subsequent use.

Vipp1 liposome binding assays and EM
Liposome binding assays were performed by incubating freshly prepared 2 mM SUV with and without purified 5 mM Vipp1 for 2 h at

room temperature in liposome reaction buffer. For negative stain EM, 5 mL of each sample was loaded onto glow-discharged 200-

mesh carbon coated copper grids and stained with 2% uranyl acetate (UA). Images were acquired using a FEI Tecnai Spirit

microscope equipped with a 2 K Eagle camera. For cryo-EM, 4 mL of sample was loaded onto plasma-cleaned ultrathin lacey carbon

supported grids (Agar Scientific) and incubated for 90 s before vitrification in liquid ethane using a Vitrobot Mark IV (FEI). Cryo-EM

images were collected manually on a Tecnai F20 microscope equipped with Falcon II direct electron detector. Single frames were

collected with 1 s exposure, total dose �15e/A2, a magnification of 109,375 and a pixel size = 1.28 Å.

Spin Assay
To detect Vipp1membrane binding a spin assaywas used. 10.5 mMVipp1was ultra-centrifuged at 50,000 x g at 20�C for 15min using

a TLA100 rotor to remove any initial aggregation. The supernatant from this first spin was collected and incubated with and without

2mg/ml LUV for 1 h at room temperature. Sampleswere subjected to a second spin at 30,000 x g at 20�C for 30min. The pellet (P) and

the supernatant (S) were harvested, made up to equal volumes in LDS sample buffer and analyzed by SDS-PAGE.

Vipp1 monolayer assays
Lipid monolayers were prepared using E. coli total lipid extract (Avanti Polar Lipids). A custom-made Teflon block containing 4 mm x

4 mm diameter wells were filled with 50 mL of assay buffer (20 mM Tris-HCl, pH 8 and NaCl 50 mM). A 5 mL drop of 0.1 mg/ml lipid

dissolved in chloroform was applied to the top of the buffer solution and the chloroform left to evaporate for 1 h. A non-glow

discharged carbon coated copper grid was gently placed on top of the lipid layer with the carbon side faced toward the lipid layer.

Subsequently, 14 mM Vipp1 was injected into the well using a side port. The control wells containing either monolayer (no protein) or

protein only (a drop of chloroform but no lipid) were set up in parallel. Sampleswere incubated for 2 h before grids were recovered and

immediately stained with 2% UA and imaged using a FEI Tecnai Spirit microscope equipped with a 2 K Eagle camera. Images were

taken at amagnification of 40,059 and 3.37 Å pixel size. 263 and 156 imageswere collected of Vipp1with andwithout lipidmonolayer,

respectively, as described above. Gctf1.06 (Zhang, 2016) was used for estimating the contrast transfer function. Processing steps

including particle picking and extraction, and 2D classification were carried out using Relion 3.1 (Scheres, 2012). The final class av-

erages were generated from stacks comprising 11,972 and 2,165 particles for Vipp1 with and without lipid monolayer.

QUANTIFICATION AND STATISTICAL ANALYSIS

In Figures S3C–S3I and Table S1, the resolution of the Vipp1C11-C17 cryo-EMmaps was derived from the FSC = 0.143 criterion (Chen

et al., 2013).
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Supplemental figures

Figure S1. Evolutionary relationship of ESCRT-III/Snf7/CdvB and PspA/Vipp1 proteins, related to Figure 1

ESCRT-III/Snf7/CdvB and PspA/Vipp1 protein families are homologs based on an analysis performed using HHPred (Zimmermann et al., 2018); as indicated by

HHPred probability, E-value and Score. The alignment of human CHMP3 (ESCRT-III) and N. punctiforme Vipp1 is based on their HMM profiles. Only highly

conserved (uppercase) and moderately conserved (lowercase) HMM consensus positions are displayed. Vertical lines and plus signs indicate identical and

similar HMMpositions, respectively. CHMP3 and Vipp1 residues are color-coded according to their chemical properties: polar – green; positively charged – blue;

negatively charged – red; and hydrophobic - black. Secondary structure (ss) predictions are shown with helices numbered based on both CHMP3 (PDB: 3FRT)

and CHMP1B (PDB: 3JC1) structures.
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Figure S2. Purification and electron microscopy of N. punctiforme Vipp1, related to Figure 2

(A) SDS-PAGE showing purified Vipp1. Note that Vipp1 migrates at ~38 kDa whereas its true mass is 28.7 kDa. (B) Gallery of negative stain EM micrographs

showing Vipp1 forming rings, helical ribbons, filaments and stacks. Scale bar = 100 nm. (C) Cryo-EM micrographs showing Vipp1 rings mixed with human

Dynamin 1 filaments. Left panels- low magnification overview of the holey grid showing the Dynamin 1 filament network used to maintain ice thickness and

promote Vipp1 side views. Red rectangle outlines zoom panel below. Right panel- example micrograph showing Vipp1 rings including side views together with

the Dynamin 1 filaments. Scale bar = 100 nm. (D) Vipp1 filaments were sometimes observed among Vipp1 rings. The cryo-EMmicrograph shows an example of a

14 nm diameter Vipp1 filament (left) with associated class average (middle) and Fourier Bessel analysis (right). The filament shows a helical repeat at 30.5 Å and

15.5 Å. 30.5 Å is consistent with the axial rise between the hairpin motif of neighboring rungs. Scale bar = 100 nm (left) and 10 nm (left inset). (E) The cryo-EM

micrograph shows an example of a 24 nm diameter Vipp1 filament (left) with associated class average (middle) and Fourier Bessel analysis (right). Scale bar =

100 nm (left) and 10 nm (left inset). The filament shows a helical repeat at 46.4 Å and 23.7 Å. (F) Gallery of Vipp1C11-C17 2D class averages from the cryo-EMdataset

showing end and side views.
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(legend on next page)
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Figure S3. Vipp1C11–C17 processing strategy with local resolution maps and FSC curves, related to Figure 2

(A) Vipp1 C14 processing strategy for 3D reconstruction and refinement. * End views derived from 2D classification (orange box). (B) Table showing total particle

number included in final 3D refinements for each Vipp1 ring symmetry. (C-I) Gallery of sharpened maps contoured between 4-6s showing local resolution es-

timates and associated gold standard FSC curves. In Vipp1C14, 4.8 Å resolution was reached around the ring equator.

ll
OPEN ACCESS Article



(legend on next page)
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Figure S4. Vipp1C11–C17 map quality and model building, related to Figure 2

(A) Gallery of Vipp1C11-C17 EM densitymaps contoured between 4-6s. (B) Vipp1C14map fitted with 84 Vipp1 subunits. Subunits in rungs 1 and 6were partially built

with helices a4, a5 and a6 omitted due to disordered or absent density. Density for helix a6 was never observed. Map contoured at 4s. (C) Isolated Vipp1

monomer showing quality of map, build and fit. The subunit extracted is indicated in the rectangular box in (B). (D) Select regions of Vipp1C14 showing quality of

map, build and fit. Left panel- hairpin motif. Middle panel- end view of a hairpin motif forming both intra-rung Interface 1 and inter-rung Interface 3 with helix a5.

Right panel- helix a0 stacking forms Interface 2. (E) Left panel- pairwise alignment ofN. punctiforme Vipp1 (Uniprot code B2J6D9) with E. coli PspA (Uniprot code

P0AFM6) amino acids 24-142 (hairpinmotif). Right panel- superposition of Vipp1C14 amino acids 24-142 (rung number 4) with PspApartial structure (PDB: 4WHE).

RMSD = relative mean square deviation.
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Figure S5. Vipp1 secondary structure assignment and sequence alignment with PspA and ESCRT-III, related to Figure 2

Sequences were aligned using Clustal Omega and include Vipp1/IM30 Nostoc punctiforme (Uniprot code B2J6D9), Vipp2 Nostoc punctiforme (Uniprot code

B2J6E0), Escherichia coli PspA (Uniprot code P0AFM6), Synechocystis sp. Vipp1 (Uniprot code A0A068MW27), Yersinia pestis PspA (Uniprot code Q0WEH0),

human CHMP2A (Uniprot code O43633), yeast SNF7 (Uniprot code P39929), human CHMP1B (Uniprot code Q7LBR1), human CHMP4A (Uniprot code Q9BY43)

and human CHMP3 (Uniprot code Q0Y3E7). Cartoon shows Vipp1 (top) and CHMP1B (bottom, PDB: 6TZ4) secondary structure.
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Figure S6. Mechanism for Vipp1 axial or dome-shaped curvature, related to Figure 6

(A) Exploded top view of Vipp1C14 shows how each ring comprises a stack of discrete rungs. Each rung constitutes a circular Vipp1 polymer with a distinct

conformation. Ring diameters weremeasured at the helix a1N terminus so as to highlight hairpin constriction between rungs. (B) Comparison of rung 5 and rung 2

to highlight the conformational changes required to drive dome-shaped curvature. For each rung only those subunits are shown (j and j+3) that interconnect via

Interface 1 to form one turn. Polymer tilt involves hairpin and helix a5 rotation (Interface 1 and 3) around Interface 2, which appears to represent a fulcrum within

the center of each subunit. Helix a0 within Interface 2 also rotates to create the dome-shaped curvature of the inner lumen. Increasing polymer or filament tilt and

rotation builds subunit tension until ultimately geometric constraint limits the formation of Interface 3 and/or Interface 1 along with further rung stacking and

constriction.
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Figure S7. Negative stain EM analyses of Vipp1 and Vipp1 mutants in the presence and absence of lipids, related to Figure 7

(A) Vipp1F197K/L200K forms unusually long filaments with broadly uniform diameter suggesting that loss of Interface 3 impedes filament tilt and axial curving. Zoom

panel shows close up of the filament outlined by the dotted rectangle. Filament diameter is 25.5 nm nm. Scale bar = 50 nm (left) and 100 nm (right). (B) Vipp1F197K/

L200K filament class average with associated Fourier Bessel analysis. Scale bar = 10 nm. (C) Vipp1Da61-219 forms individual rings, ring stacks and filaments.

Compared to native Vipp1, Vipp1Da61-219 has a significantly greater propensity to form ring stacks and filaments. Zoom panel shows region outlined by dotted

red rectangle where ring stacks can be observedmorphing into filaments and acting as nucleation points for filament formation and lattice transitions. Scale bar =

50 nm. (D) Vipp1Da61-219 filament (dotted blue box in (C) class average with associated Fourier Bessel analysis. Filament diameter is 27.5 nm. Scale bar = 10 nm.

(E) Native Vipp1 spin assay in the presence and absence of E. coli liposomes. Vipp1 is observed in the pellet fraction only in the presence of the liposomes,

indicative of lipid binding. * indicates Vipp1 proteolysis. (F) Gallery of micrographs showing how Vipp1 rings decorate and tether liposomes (L) together. Individual

rings or ring stacks form bridges between liposomes. Vipp1 is rarely observed unattached to a liposome and resting on the carbon surface. Vipp1 stacks may

reduce in diameter to form cones (white arrows). Scale bar = 50 nm. (G) Left panel - Vipp1 rings decorate a lipid monolayer (ML). Scale bar = 100 nm. Zoom panel

shows region outlined by dotted rectangle. Monolayer is drawn into the ring and occludes the lumen (white central density). Right panels- example class averages

with scale bar = 10 nm. (H) In the absence of monolayers, Vipp1 rings have empty lumens (black central density). Right panels- example class averages with scale

bars as in (G). (I) Monolayers only. Scale bar = 100 nm.
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