Supplement

Supplementary Figure S1

Supplementary Figure S1: (A) Gating strategy. Human leukocytes were isolated by red blood cell lysis. DAPI was used to exclude dead cells. A forward-scatter and side-scatter plot served to identify the different leukocyte subsets. CD4+ T cell subsets were subdivided into Type 1 helper (T_H1) cells, Type 2 helper (T_H2) cells and IL-17- producing T helper (T_H17) cells. T_H1 cells were identified by the expression of CXCR3 in the absence of CCR4 and CCR6. T_H2 cells were defined as CCR4+CXCR3-CCR6-, while T_H17 cells co-expressed CCR4 and CCR6 in the absence of CXCR3. CD4+CD25+CD127low cells were defined as Tregs.¹ Cytotoxic T cells and B cells were identified by the expression of CD8 and CD19, respectively. (B,C) Gating strategy. CD14+ monocytes (B) and CD15+ neutrophil granulocytes (C) were sorted by magnetic cell separation. Purity of > 97% was revealed by surface staining of CD14 and CD15, respectively. Cells were gated using a forward-scatter and side-scatter plot. Doublets were excluded according to the forward-scatter area and height pattern and 7-AAD was used to exclude dead cells. (D) AMPD2 surface expression on CD14+ monocytes and CD15+ neutrophil granulocytes sorted by

magnetic cell separation. The cells were gated according to Supplementary Figures S1B and S1C. *r* gMFI represents the ratio of geometric mean fluorescence intensity of staining to secondary antibody control. (E) PBMCs were gated using a forward-scatter and side-scatter plot. Doublets were excluded according to the forward-scatter area and height pattern and 7-AAD was used to exclude dead cells. *r* gMFI represents the ratio of geometric mean fluorescence intensity of staining to streptavidin control. The staining was successfully blocked by adding 25-fold excess unconjugated antibody. Classical (CD14+ CD16-), intermediate (CD14+ CD16+) and non-classical (CD14- CD16+) monocytes were analyzed individually. The lines on scatter dot plot indicate median. Wilcoxon matched-pairs signed rank test. (F) Gating strategy. Cell lines were gated using a forward-scatter and side-scatter plot. Doublets were excluded according to the forward-scatter area and height pattern and DAPI was used to exclude dead cells.

Supplementary Figure S2

Supplementary Figure S2: (A) Flow cytometric analysis of intracellular (upper row) and surface (lower row) AMPD2 expression in HEK293, HMEC-1, Jurkat, THP-1 and U-937 cell lines. r gMFI represents the ratio of geometric mean fluorescence intensity of staining to secondary antibody control and staining to streptavidin control for intracellular and surface stainings, respectively. The surface staining was successfully blocked by adding 25-fold excess unconjugated antibody. (B) Western blot analysis of HEK293 cytosolic and membrane fractions. The samples on the right were concentrated with the help of centrifugal filters to increase to amount of protein analyzed by SDS-PAGE. AMPD2 was detected by the mouse monoclonal anti-AMPD2 antibody clone QQ13. Purity of cytosolic and membrane fractions was verified by analyzing pan Cadherin and GAPDH. Uncropped images are provided in Supplementary Figure S7. (C) Top 10 proteins enriched by IP from HEK293 whole cell lysates and membrane fractions using anti-AMPD2 antibodies QQ13 and PA5, respectively, identified by mass spectrometric analyses. Enrichment is depicted as fold change of LFQ intensity compared to isotype control and was evaluated statistically using two-sample Student's t test. (D) Characterization of HEK293 and U-937 cytosolic and membrane fractions by western blot. Uncropped images are provided in Supplementary Figure S7. (E) Western blot analysis of U-937 cells after surface biotinylation. Intact U-937 cells were biotinylated at 4°C and subsequently lyzed and subjected to streptavidin-based enrichment of biotinylated proteins. Whole cell lysates (whole) were generated by adding Laemmli sample buffer. Biotinylated cell lysates (input) and flowthrough (FT) samples of protein not captured by the NeutrAvidin beads were analyzed in parallel. "streptavidin" represents a non-biotinylated control sample that was subjected to streptavidin-based pull-down, while the "surface" sample was prepared by pull-down following surface biotinylation. (F) eAMPD2 expression and surface biotinylation of U-937 cells analyzed by flow cytometry. U-937 cells were fixed after surface biotinylation and stained an anti-AMPD2-antibody (PA5) and streptavidin. Non-biotinylated cells were measured in parallel. The gating strategy is depicted in Supplementary Figure S1F. (G) AMPD2 surface expression in HMEC-1 cells is reduced by hypoxia. Western blot analysis of HMEC-1 whole cell lysate and surface protein enriched by surface biotinylation followed by streptavidin-based pull-down. Cells were cultured under normoxic (18% O₂) or hypoxic (1% O₂) conditions for 24 hours. AMPD2 protein expression was semiguantified relative to pan Cadherin by image analysis and reduction by hypoxia is depicted in relation to normoxic control. Uncropped images are provided in Supplementary Figure S7. The bar graphs show surface expression of eAMPD2 and CD73 under hypoxic conditions analyzed by flow cytometry (n=2). Doublets and dead cells were excluded for analysis as shown in Supplementary Figure S1F. The data are depicted as change in r gMFI (geometric mean fluorescence intensity of staining to streptavidin control) in relation to samples cultured under normoxic conditions. (H) The secondary protein structure of AMPD2 was analyzed by the PSIPRED server to identify helical areas (highlighted in pink).² The graph on the right depicts the lipid-binding helix predicted by the HeliQuest webserver represented as a helical wheel with the hydrophobic face at the bottom.³ (I) Golgi inhibition by incubation with 1 μ g/mL brefeldin A and 0.5 µg/mL monensin, respectively, for 24 hours reduced AMPD2 surface expression in HEK293 and U-937 cells analyzed by flow cytometry (n=8-9). Doublets and dead cells were excluded for analysis as shown in Supplementary Figure S1F. The data are depicted as change in r gMFI (geometric mean fluorescence intensity of staining to secondary antibody control) in relation to untreated control samples. Bar graphs depict median and range. **p<0.01, compared to untreated control; Wilcoxon matched-pairs signed rank test.

BFA, brefeldin A; MN, monensin

Supplementary Figure S3: (A) Localization of AMPD2 on the cell surface of PBMCs identified by immunofluorescence microscopy. Cells were stained for AMPD2 (green), actin (red) and DAPI (blue). Polyclonal rabbit IgG served as isotype control for the AMPD2 staining antibody. (B) AMPD2 surface expression on CD15+ neutrophil granulocytes sorted by magnetic cell separation. Cells were incubated for 24 hours with 1 µg/mL LPS and expression of eAMPD2, CD39 and CD73 was measured by flow cytometry (n=1). The gating strategy from Supplementary Figure S1C was applied. r gMFI represents the ratio of geometric mean fluorescence intensity of staining to secondary antibody control. (C) AMPD2 surface expression on lymphocytes following stimulation. PBMCs were treated with 10 ng/mL PMA + 1 µg/mL ionomycin for 24 hours and expression of eAMPD2, CD39 and CD73 was measured by flow cytometry (n=2). Lymphocytes were gated according to Supplementary Figure S1E for analysis. r gMFI represents the ratio of geometric mean fluorescence intensity of staining to secondary antibody control. (D) Proof of lymphocyte activation. Expression of CD25 and CD69 was measured by flow cytometry after 24-hour stimulation with 10 ng/mL PMA + 1 µg/mL ionomycin compared to untreated control. Cells were incubated in PBMC co-culture and lymphocytes were gated according to Supplementary Figure S1E for analysis. (E) Kinetics of AMPD2 surface expression in human PBMC co-culture after incubation with 1 µg/mL LPS or 5 µg/mL PHA determined by flow cytometric analysis. The gating strategy from Supplementary Figure S1E was applied. Data are expressed as mean (n=2) ratio to untreated control. (F) The effect of apoptosis on eAMPD2 staining on human monocytes from PBMC co-culture treated with LPS. Apoptotic cells were identified with the help of annexin V. The gating strategy is depicted in Supplementary Figure S1E. In the right-hand approach apoptotic cells were removed by dead cell removal (DCR) after incubation. Apoptosis does not significantly influence AMPD2 surface expression. (G) AMPD2 surface staining on primary human monocytes analyzed by flow cytometry. PBMCs were incubated for 24 hours with or without 1 µg/mL LPS. Monocytes were gated according to Supplementary Figure S1E for analysis. r gMFI represents the ratio of geometric mean fluorescence intensity of staining to secondary antibody control.

Box plots show median and range. The lines on scatter dot plot indicate median. Wilcoxon matched-pairs signed rank test.

Supplementary Figure S4: Flow cytometric analysis of eAMPD2, CD39 and CD73 expression on primary human immune cell populations at baseline. Correlation between eAMPD2 and ectonucleotidase expression in (A) lymphocytes and (B) monocytes from healthy donors after PBMC isolation. eAMPD2, CD39 and CD73 expression was determined by flow cytometry. The gating strategy from Supplementary Figure S1E was applied. Expression is depicted as ratio of geometric mean fluorescence intensity of staining to secondary antibody control. eAMPD2 correlates with CD39 surface expression in monocytes. Spearman's Rank-Order Correlation. (C) PBMCs were gated using a forward-scatter and side-scatter plot. Doublets were excluded according to the forward-scatter area and height pattern and leukocytes were identified by the expression of CD45. Lymphocytes and monocytes were gated according to their distinctive appearance in a forward-scatter and side-scatter plot. Lymphocytes were subdivided depending on the surface expression of CD4 and CD8. CD4+CD25+CD127low cells were defined as regulatory T cells. CD19+ B cells and CD14+ monocytes were evaluated separately. (D) CD73 surface expression on immune cells subdivided according to Supplementary Figure S4C. (E,F) AMPD2 surface expression on human PBMCs is reduced by Golgi transport inhibition. Cells were treated with 1 µg/mL LPS with or without 0.5 µg/mL monensin (MN) (n=2) for 21-24 hours and surface expression of AMPD2, CD39 and CD73 was measured by flow cytometry. Lymphocytes (E) and monocytes (F) were incubated in co-culture and gated according to Supplementary Figure S1E for analysis. r gMFI represents the ratio of geometric mean fluorescence intensity of staining to secondary antibody control.

All boxplots show median and minimum or maximum values, respectively.

Supplementary Figure S5: AMPD2 surface expression on human PBMCs following immunomodulation. Cells were treated with 10⁻⁸ M and 10⁻⁵ dexamethasone, respectively (n=8). Surface expression of eAMPD2, CD39 and CD73 was measured by flow cytometry. (A) Lymphocytes and (B) monocytes were incubated in co-culture and gated according to Supplementary Figure S1E for analysis. All boxplots show median, interquartile range, and minimum or maximum values, respectively. *p<0.05, **p<0.01; Wilcoxon matched-pairs signed rank test.

depicted in relation to untreated control samples.

Lines on scatter dot plot represent median. **p<0.01, ***p<0.001, ****p<0.0001, Mann Whitney test.

Supplementary Figure S6

Supplementary Figure S6: eAMPD2, CD39 and CD73 expression depending on donor age. PBMCs were isolated from heparinized blood samples of young (\leq 40 years) and old (\geq 50 years) healthy donors. (A) eAMPD2, CD39 and CD73 expression was analyzed by flow cytometry directly after isolation (n=11-12). PBMCs were gated according to Supplementary Figure S1E for analysis. (B) Flow cytometric analysis of eAMPD2, CD39 and CD73 expression after incubation with 1 µg/mL LPS for 21-24 hours in co-culture (n=11-12). PBMCs were gated according to Supplementary Figure S1E for analysis. Modification by LPS stimulation is

Supplementary Figure S7: Uncropped western blot images corresponding to (A) Figure 2B, (B) Figure 2C, (C) Supplementary Figure S2E, (D) Figure 2E, (E) Figure 3C, (F) Figure 4F, (G) Supplementary Figure S2B, (H) Supplementary Figure S2D, and (I) Supplementary Figure S2G. (J) Protein standard used for all western blots.

Supplementary Table S1: Mass spectrometric analyses of top 10 proteins immunoprecipitated from

Gene name	Peptides	Unique peptides	Student's t test Difference LFQ intensity	Student's t-test p-value (-log10) LFQ intensity	Median intensity	Intensity rank
total: IP QQ13						
AMPD2	47	1	16,303	5,516	9029000000	1
SHCBP1	3	3	7,703	2,805	338410000	60
RFC2	21	21	7,267	4,166	373610000	54
TXNRD2	11	10	6,774	0,925	3809600000	7
DMD	8	7	6,560	0,931	1460400000	15
HDLBP	81	81	5,936	3,519	18038000	319
HBZ	1	1	5,792	1,342	306520000	66
TRRAP	15	15	5,686	3,199	84882000	163
AMPD3	5	4	5,491	5,041	67224000	191
ALDH7A1	43	43	5,258	3,076	38252000	232
total: IP PA5						
AMPD2	47	1	11,237	6,215	4961800000	5
EML3	24	24	9,992	5,077	1539000000	21
MDC1	35	35	9,269	5,789	790850000	43
CLCC1	22	22	9,144	2,917	1159600000	27
C4A;C4B	7	6	8,266	4,654	452350000	84
TIMM8B	9	9	8,226	5,364	294480000	114
TIMM13	8	8	8,044	2,908	584640000	62
MAPRE1	34	31	7,755	4,784	315370000	106
PAFAH1B2	15	15	7,539	6,233	611770000	59
ALDOA	60	53	7,346	2,374	227920000	136
membrane: IP C	QQ13					
AMPD2	47	1	5,815	3,849	311700000	34
HBB;HBD	3	2	4,658	3,967	30926000	185
UBE2O	33	33	4,557	1,156	32560000	181
NOL11	22	22	4,392	1,494	18015000	257
MRPS27	27	27	4,349	1,114	81540000	89
ARFGEF1	4	4	4,204	1,158	35380000	164
RBMX	40	15	4,179	2,062	43027000	147
MRPS9	29	29	4,114	2,713	54771000	124
MRPS26	23	23	4,086	0,811	23443000	221
DVL2	8	6	4,041	1,285	45793000	142

HEK293 samples using anti-AMPD2 antibodies

IP from HEK293 whole cell lysates (total) and membrane fractions (membrane) was performed using anti-AMPD2 antibodies QQ13 and PA5, respectively. Differential protein abundance compared to isotype control was calculated using two-sample Student's t test.

Supplementary Table S2: Mass spectrometric analysis of surface-enriched protein from HMEC-1

cells

							LFQ: surface enrichr	nent vs. non-biotinylated control
Protein name	Gene name	Peptides	Unique peptides	Intensity	iBAQ	Plasma membrane†	p-value (-log10)	t test Difference (log2)
Cell surface glycoprotein MUC18	MCAM	33	33	23992000000	666430000	+	4,0	10,0
CD166 antigen	ALCAM	35	35	57127000000	1680200000	+	6,1	9,3
Poliovirus receptor	PVR	9	9	9538200000	681300000	+	4,5	9,2
Dystroglycan	DAG1	20	20	8242400000	179180000	+	4,2	8,9
Beta-2-microglobulin	B2M	5	2	17015000000	2126800000	+	3,1	8,8
Receptor-type tyrosine-protein phosphatase F	PTPRF	54	51	4795000000	43198000	+	4,0	8,7
Myelin protein zero-like protein 1	MPZL1	10	6	5678400000	516220000	+	5,7	8,4
Vinculin	VCL	72	72	64726000000	752630000	+	3,7	8,4
Non-specific lipid-transfer protein	SCP2	28	28	19103000000	596960000	+	5,6	8,4
AMPD2								
Peptides	23							
Unique peptides	23							
Sequence coverage [%]	25,4							
Unique sequence coverage [%]	25,4							
Molecular weight [kDa]	100,69							
Q-value	0							
Score	30,278							
Intensity	978860000							
iBAQ	20827000							
MS/MS count	64							
LFQ: surface enrichment vs. non-biotinylated control								
t test Difference (log2)	3,6998							
p-value (-log10)	2,0048							
LFQ: surface enrichment vs. input								
t test Difference (log2)	3,1967							
p-value (-log10)	4,2404							

Top abundant proteins and enrichment of AMPD2 by surface biotinylation. Surface-enriched samples were obtained by surface biotinylation of HMEC-1 cells followed by streptavidin-based pull-down. Differential protein

abundance compared to non-biotinylated samples undergoing streptavidin-based pull-down (non-biotinylated control) and biotinylated whole cell lysate (input) was determined using two-sample Student's t test. † Plasma membrane annotation according to the Gene Ontology project.^{4, 5}

Sequence	µH z D	Sequence	µH z D	Sequence	µH z D	Sequence	µH z D
118SMDGKCKEIAEELFTRSL135	0,319 -1 -0,028864	241AKSVVRALFIREKYMALS258	0,113 3 1,096672	582RTKGQLANFQEMLENIFL599	0,419 0 0,395536	859YLYYTFANMAMLNHLRRQ676	0,116 2 0,769504
119MDGKCKEIAEELFTRSLA136	0,302 -1 -0,044912	242KSVVRALFIREKYMALSL259	0,172 3 <mark>1,152368</mark>	583TKGQLANFQEMLENIFLP600	0,396 -1 0,043824	894IHHLVSAFMLAENISHGL711	0,242 -1 -0,101552
120DGKCKEIAEELFTRSLAE137	0,249 -2 -0,424944	243SVVRALFIREKYMALSLQ260	0,148 2 0,799712	584KGQLANFQEMLENIFLPL601	0,476 -1 0,119344	895HHLVSAFMLAENISHGLL712	0,24 -1 -0,10344
121GKCKEIAEELFTRSLAES138	0,284 -1 -0,061904	244VVRALFIREKYMALSLQS281	0,148 2 0,799712	585GQLANFQEMLENIFLPLF602	0,468 -2 -0,218208	898HLVSAFMLAENISHGLLL713	0,155 -1 -0,18368
151SPIEQLEERRQRLERQIS168	0,455 0 0,42952	245VRALFIREKYMALSLQSF282	0,173 2 0,823312	586QLANFQEMLENIFLPLFE603	0,503 -3 -0,515168	897LVSAFMLAENISHGLLLR714	0,174 0 0,164256
152PIEQLEERRQRLERQISQ169	0,464 0 0,438016	246RALFIREKYMALSLQSFC263	0,181 2 0,830864	587LANFQEMLENIFLPLFEA804	0,511 -3 -0,507616	898VSAFMLAENISHGLLLRK715	0,056 1 0,382864
153IEQLEERRQRLERQISQD170	0,415 -1 0,06176	247ALFIREKYMALSLQSFCP284	0,097 1 0,421568	588ANFQEMLENIFLPLFEAT605	0,441 -3 -0,573696	899SAFMLAENISHGLLLRKA716	0,025 1 0,3536
154EQLEERRQRLERQISQDV171	0,391 -1 0,039104	361VLMALIINGPIKSFCYRR378	0,099 3 1,083456	589NFQEMLENIFLPLFEATV608	0,409 -3 -0,603904	700AFMLAENISHGLLLRKAP717	0,018 1 0,346992
155QLEERRQRLERQISQDVK172	0,407 1 0,714208	362LMALIINGPIKSFCYRRL379	0,077 3 1,062688	590FQEMLENIFLPLFEATVH607	0,382 -3 -0,629392	701FMLAENISHGLLLRKAPV718	0,056 1 0,382864
158LEERRQRLERQISQDVKL173	0,378 1 <mark>0,686832</mark>	363MALIINGPIKSFCYRRLQ380	0,161 3 <mark>1,141984</mark>	591QEMLENIFLPLFEATVHP608	0,332 -3 -0,676592	702MLAENISHGLLLRKAPVL719	0,058 1 0,384752
157EERRQRLERQISQDVKLE174	0,248 0 0,234112	364ALIINGPIKSFCYRRLQY381	0,153 3 1,134432	592EMLENIFLPLFEATVHPA609	0,345 -3 -0,66432	703LAENISHGLLLRKAPVLQ720	0,129 2 0,781776
158ERRQRLERQISQDVKLEP175	0,243 1 0,559392	365LIINGPIKSFCYRRLQYL382	0,219 3 1,196736	593MLENIFLPLFEATVHPAS610	0,314 -2 -0,363584	704AENISHGLLLRKAPVLQY721	0,116 1 0,439504
159RRQRLERQISQDVKLEPD176	0,25 1 0,566	366IINGPIKSFCYRRLQYLS383	0,287 3 1,260928	594LENIFLPLFEATVHPASH611	0,332 -2 -0,346592	705ENISHGLLLRKAPVLQYL722	0,19 1 0,50936
160RQRLERQISQDVKLEPDI177	0,327 0 0,308688	367INGPIKSFCYRRLQYLSS384	0,346 3 1,316624	595ENIFLPLFEATVHPASHP612	0,279 -2 -0,396624	706NISHGLLLRKAPVLQYLY723	0,177 2 0,827088
181QRLERQISQDVKLEPDIL178	0,436 -1 0,081584	368NGPIKSFCYRRLQYLSSK385	0,232 4 1,539008	596NIFLPLFEATVHPASHPE613	0,279 -2 -0,396624	707ISHGLLLRKAPVLQYLYY724	0,091 2 0,745904
162RLERQISQDVKLEPDILL179	0,366 -1 0,015504	369GPIKSFCYRRLQYLSSKF386	0,338 4 1,639072	597IFLPLFEATVHPASHPEL614	0,152 -2 -0,516512	708SHGLLLRKAPVLQYLYYL725	0,09 2 0,74496
163LERQISQDVKLEPDILLR180	0,366 -1 0,015504	370PIKSFCYRRLQYLSSKFQ387	0,346 4 1,646624	598FLPLFEATVHPASHPELH615	0,148 -2 -0,520288	791SCDMCELARNSVLMSGFS808	0,032 -1 -0,299792
164ERQISQDVKLEPDILLRA181	0,306 -1 -0,041136	371IKSFCYRRLQYLSSKFQM388	0,329 4 1,630576	599LPLFEATVHPASHPELHL616	0,143 -2 -0,525008	792CDMCELARNSVLMSGFSH809	0,036 -1 -0,296016
185RQISQDVKLEPDILLRAK182	0,296 1 0,609424	372KSFCYRRLQYLSSKFQMH389	0,248 4 1,554112	800PLFEATVHPASHPELHLF617	0,143 -2 -0,525008	790DMCELARNSVLMSGFSHK810	0,118 0 0,111392
166QISQDVKLEPDILLRAKQ183	0,255 0 0,24072	373SFCYRRLQYLSSKFQMHV390	0,319 3 1,291136	801LFEATVHPASHPELHLFL618	0,09 -2 -0,57504	794MCELARNSVLMSGFSHKV811	0,158 1 0,479152
167ISQDVKLEPDILLRAKQD184	0,264 -1 -0,080784	374FCYRRLQYLSSKFQMHVL391	0,246 3 1,222224	802FEATVHPASHPELHLFLE819	0,116 -3 -0,880496	795CELARNSVLMSGFSHKVK812	0,126 2 0,778944
168SQDVKLEPDILLRAKQDF185	0,264 -1 -0,080784	375CYRRLQYLSSKFQMHVLL392	0,249 3 1,225056	803EATVHPASHPELHLFLEH620	0,07 -3 -0,92392	796ELARNSVLMSGFSHKVKS813	0,211 2 0,859184
169QDVKLEPDILLRAKQDFL186	0,282 -1 -0,063792	376YRRLQYLSSKFQMHVLLN393	0,156 3 1,137264	845PEAWVEEDNPPYAYYLYY862	0,2 -4 -1,1312	797LARNSVLMSGFSHKVKSH814	0,231 3 1,208064
192SDLQLYKEQGEGQGDRSL209	0,142 -2 -0,525952	377RRLQYLSSKFQMHVLLNE394	0,119 2 0,772336	846EAWVEEDNPPYAYYLYYT683	0,183 -4 -1,147248	798ARNSVLMSGFSHKVKSHW815	0,254 3 1,229776
193DLQLYKEQGEGQGDRSLR210	0,196 -1 -0,144976	378RLQYLSSKFQMHVLLNEM395	0,011 1 0,340384	847AWVEEDNPPYAYYLYYTF664	0,091 -3 -0,904096	837DIRVGYRYETLCQELALI854	0,166 -1 -0,173296
194LQLYKEQGEGQGDRSLRE211	0,197 -1 -0,144032	379LQYLSSKFQMHVLLNEMK396	0,012 1 0,341328	848WVEEDNPPYAYYLYYTFA885	0,091 -3 -0,904096	838IRVGYRYETLCQELALIT855	0,219 0 0,206736
195QLYKEQGEGQGDRSLRER212	0,072 0 0,067968	380QYLSSKFQMHVLLNEMKE397	0,139 0 0,131216	849VEEDNPPYAYYLYYTFAN668	0,127 -3 -0,870112	839RVGYRYETLCQELALITQ856	0,291 0 0,274704
196LYKEQGEGQGDRSLRERD213	0,102 -1 -0,233712	381YLSSKFQMHVLLNEMKEL398	0,185 0 0,17464	850EEDNPPYAYYLYYTFANM867	0,128 -3 -0,869168	840VGYRYETLCQELALITQA857	0,262 -1 -0,082672
197YKEQGEGQGDRSLRERDV214	0,107 -1 -0,228992	382LSSKFQMHVLLNEMKELA399	0,165 0 0,15576	851 EDNPPYAYYLYYTFANMA888	0,164 -2 -0,505184	841GYRYETLCQELALITQAV858	0,262 -1 -0,082672
234FTDLLDAAKSVVRALFIR251	0,426 1 0,732144	383SSKFQMHVLLNEMKELAA400	0,239 0 0,225616	852DNPPYAYYLYYTFANMAM880	0,107 -1 -0,228992	842YRYETLCQELALITQAVQ850	0,263 -1 -0,081728
235TDLLDAAKSVVRALFIRE252	0,295 0 0,27848	515GKYFAHIIKEVMSDLEES532	0,522 -2 -0,167232	853NPPYAYYLYYTFANMAML870	0,054 0 0,050976	843RYETLCQELALITQAVQS860	0,317 -1 -0,030752
236DLLDAAKSVVRALFIREK253	0,332 1 0,643408	516KYFAHIIKEVMSDLEESK533	0,494 -1 0,136336	854PPYAYYLYYTFANMAMLN871	0,054 0 0,050976	844YETLCQELALITQAVQSE861	0,325 -3 -0,6832
237LLDAAKSVVRALFIREKY254	0,275 2 0,9196	517YFAHIIKEVMSDLEESKY534	0,392 -2 -0,289952	855PYAYYLYYTFANMAMLNH872	0,085 0 0,08024	845ETLCQELALITQAVQSEM862	0,338 -3 -0,670928
238LDAAKSVVRALFIREKYM255	0,251 2 0,896944	518FAHIIKEVMSDLEESKYQ535	0,411 -2 -0,272016	856YAYYLYYTFANMAMLNHL673	0,095 0 0,08968	846TLCQELALITQAVQSEML863	0,262 -2 -0,412672
239DAAKSVVRALFIREKYMA258	0,249 2 0,895056	580VYRTKGQLANFQEMLENI597	0,436 0 0,411584	857AYYLYYTFANMAMLNHLR874	0,068 1 0,394192	947LCQELALITQAVQSEMLE864	0,304 -3 -0,703024
240AAKSVVRALFIREKYMAL257	0,126 3 1,108944	581YRTKGQLANFQEMLENIF598	0,455 0 0,42952	858YYLYYTFANMAMLNHLRR875	0,133 2 0,785552		

Supplementary Table S3: Search for lipid-binding helices according to the HeliQuest decision tree

Helical domains present in AMPD2 protein sequence as identified by the PSIPRED server (shown in Supplementary Figure 2H) were submitted to the HeliQuest webserver.^{2, 3} D was calculated as follows: $D = 0.944(\langle \mu H \rangle) + 0.33(z)$. Lipid-binding helix were defined by D > 1.34 (highlighted in green), possible lipid-binding helices were defined by 0.68 < D < 1.34 (highlighted in yellow). μ H, hydrophobic moment; z, net charge; D, discrimination factor

Gene name	Peptides	Unique peptides	Student's t test Difference LFQ intensity	Student's t test p-value (-log 10) LFQ intensity	Intensity
RAB5C	8	6	7,833	3,858	3500500000
PRKAA1	2	2	7,738	2,826	2328900000
LPCAT2	2	2	6,740	4,248	1221300000
GNAI2	13	7	5,932	3,962	1741800000
AMPD2	8	8	4,239	2,869	195980000
SPTBN	2	2	3,969	1,921	131030000
GNPAT	1	1	3,954	2,940	219120000
TRPV2	5	5	3,876	2,898	215710000
IDH2	11	11	3,646	3,273	1720800000
CLIP1	1	1	2,899	0,368	10001000000

Supplementary Table S4: Mass spectrometric analyses of top 10 proteins immunoprecipitated from CD14+ monocyte samples by anti-AMPD2 antibody (QQ13)

CD14+ monocytes were isolated by MACS. IP from membrane fractions was performed using anti-AMPD2 antibody QQ13. Differential protein abundance compared to isotype control was calculated using two-sample Student's t test.

Supplementary Table S5: Characteristics of donors divided into age-related groups

	young	old
donors, n	12	11
age [years], median (IQR)	27 (26-31.75)	61 (55-78)
age [years], range	25-40	50-86
female, n (%)	9 (82)	7 (64)

IQR, interquartile range

References

1. Cossarizza A, Chang HD, Radbruch A, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. *European journal of immunology*. Oct 2017;47(10):1584-1797.

2. Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. *J Mol Biol.* Sep 17 1999;292(2):195-202.

3. Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: a web server to screen sequences with specific alpha-helical properties. *Bioinformatics*. Sep 15 2008;24(18):2101-2.

4. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet*. May 2000;25(1):25-9.

5. The Gene Ontology resource: enriching a GOld mine. *Nucleic acids research*. Jan 8 2021;49(D1):D325d334.