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Supplementary Information 

Medicine is a prime example to illustrate the advantages of Swarm Learning (SL). Without any 

doubt, numerous medical features including radiograms or computed tomographies, 

proteomes, metagenomes or microbiomes derived from body fluids including nasal or throat 

swaps, blood, urine or stool are all excellently suitable medical data for the development of AI-

based diagnostic or outcome prediction classifiers. We here chose to evaluate the cellular 

compartment of peripheral blood, either in form of peripheral blood mononuclear cells (PBMC) 

or whole blood-derived transcriptomes, since blood-derived transcriptomes include important 

information about the patients’ immune response during a certain disease, which in itself is an 

important molecular information35. In other words, in addition to the use of blood-derived high-

dimensional molecular features for a diagnostic or outcome classification problem, blood 

transcriptomes could be further utilized in the clinic to systematically characterize ongoing 

pathophysiology, predict patient-specific drug targets and trigger additional studies targeting 

defined cell types or molecular pathways, making this feature space even more attractive to 

answer a wide variety of medical questions34,36. Here, we illustrate that newly generated blood 

transcriptome data together with data derived from more than 16,400 samples in 127 studies 

combined with AI-based algorithms in a SL environment can be successfully applied in real-

world scenarios to detect patients with leukemias, tuberculosis or active COVID-19 disease in 

an outbreak scenario across distributed datasets without the necessity to negotiate and 

contractualize data sharing. 

 

Concept of Swarm Learning 

SL supports different functions for parameter merging including average, weighted average, 

minimum, maximum, or median functions. The various merge techniques and merge 

frequencies enable SL to efficiently work with imbalanced and biased data. The parameter 

merging algorithm is executed using a blockchain smart contract thus protects it from semi-

honest or dishonest participants (Extended Data Fig.1c). As currently developed, SL works 

with parametric models with finite sets of parameters, such as linear regression or neural 

network models. The process of learning rounds is repeated until stopping criterions are 

reached, which are negotiated between the Swarm nodes/members. The leader is dynamically 

elected using a blockchain smart contract for merging the parameters and there is no need for 

a central coordinator in this Swarm network (Extended Data Fig.1b-c). This has two 
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advantages; it reduces the potential for dataset reconstruction attacks as there is no central node 

with global models and it provides better resilience and load balancing by distributing the job 

of parameter merging. 

For deployment of a Swarm Network, each node is provided with a software package that 

contains 2 containers, the Swarm Network container, and the Swarm ML container. The Swarm 

Network container includes 1) software to setup and initialize the Swarm Network, 2) 

management commands to control the Swarm Network, and 3) start/stop SL tasks. This 

container also encapsulates the blockchain software. The Swarm ML container includes 

software to support 1) decentralized training, 2) integration with ML frameworks, and 3) it 

exposes APIs for ML models to interact with SL. For any ML model to be decentralized and 

applied to SL, it needs to be modified using the Swarm API. This Swarm API is synonymously 

named Swarm callback API hereafter. The callback API provides options to control the SL 

processes. The application layer consists of the content, which are the models for the respective 

domain, here medicine (Extended Data Fig.1d), for example models for analysis of blood 

transcriptome data from patients with leukemias, tuberculosis and COVID-19 (Fig.1f-k) or 

radiograms (Fig.1l). We chose diseases as use cases that are both heterogeneous and life-

threatening to illustrate the immediate medical value of SL. Collectively, SL allows for 

completely decentralized ML, and therefore enables a democratized, secure, confidentiality-

enabling, hardware-independent and scalable machine learning environment, removing the 

central parameter server (custodian). It is applicable to many scenarios and domains, which we 

demonstrate with four medical examples.  

 

Swarm Learning predict leukemias from peripheral blood mononuclear cells 

In a first scenario, we randomly distributed samples per node as well as cases and controls 

unevenly at the nodes and between nodes (dataset A2) (Fig.2b). Sample distribution between 

sample sets was permuted 100 times (Extended Data Fig.2a) to determine the influence of 

individual samples on overall performance. Among the nodes, the best test results were 

obtained by node one (with an even distribution between cases and controls) with a mean 

accuracy of 97.1%, mean sensitivity of 97.8%, mean specificity of 96.5%, and a mean AUC of 

0.996, albeit this node had the smallest number of overall training samples (8% of all samples). 

Node 2 did not produce any meaningful results, which was due to a too low ratio of cases to 

controls (1:99) for training. Surprisingly, node three with the largest number of samples, but 
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an uneven distribution (70% cases : 30% controls) did not perform as good as node one with a 

mean accuracy of 94.6%. Most importantly, however, when comparing accuracy values, SL 

outperformed each of the nodes resulting in higher test accuracy (mean accuracy 97.5%) and 

AUC (mean AUC 0.998) (Fig.2b, lower panel, Supplementary Table 4). The accuracy of SL 

was significantly higher (p < 0.01, Supplementary Table 5) when compared to the 

performance of each of the three nodes, despite the fact that information from the poorly 

performing node 2 was integrated. An alternative to SL would be to centralize data in cases 

where data can be shared, and data privacy regulations would be fulfilled. In this first scenario, 

the central model performed slightly better (Extended Data Fig.2b, Supplementary Table 

4).  

To test whether more evenly distributed samples at the nodes would improve individual node 

performance, we distributed similar numbers of samples to each of the nodes (⅓ of training 

samples per node) but kept case:control ratios similar to scenario 1 (Fig.2c, Extended Data 

Fig.2f-g). While there was a slight increase in test accuracy at nodes 1 and 2, node 3 performed 

worse with also higher variance. More importantly, SL still resulted in the best performance 

metrics (mean 98.5% accuracy, mean AUC 0.998) with slightly but significantly (p<0.001) 

increasing performance compared to the first scenario and accuracy of SL in this scenario was 

almost at par with a central model (Extended Data Fig.2h). Results derived from datasets A1 

and A3 echoed these findings (Extended Data Fig.2f,i-j).  

In a third scenario, we distributed the same number of samples across all three nodes, but 

increased potential batch effects between nodes, by siloing training samples of a particular 

clinical study, independently performed and published in the past, to a dedicated training node 

(complete workflow in Extended Data Fig.3a). In this scenario, cases and control ratios varied 

between nodes and left out samples (independent samples) from the same published studies 

were combined for testing at the test node. First, we tested the performance of the three nodes 

and SL on the global test node. Node performances were very comparable, but never reached 

SL results (mean 98.8% accuracy, Swarm outperformed all nodes with p<0.001, Fig.2d, 

Extended Data Fig.3b, Supplementary Tables 4,5). Here, the central model performed 

slightly better (Extended Data Fig.3c). Together, these results suggested that the individual 

nodes cannot cope with the batch effects between the nodes, which is not the case for SL. This 

is further substantiated by significantly improved node-internal performance, when each node 

is tested using node-internal independent training and test datasets (Extended Data Fig.3d). 

Comparable results were also achieved for datasets A1 and A3 (Extended Data Fig.3e-f). 
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Along these lines, we designed a real-world scenario with siloing samples from independent 

previous studies not only to the training nodes, but also the global test node (Extended Data 

Fig.3g). For example, three consortia with their own independent studies would build the 

Swarm and then test their results on independent data provided for testing by a fourth 

consortium. Clearly, in this scenario batch effects are further increased. Although the variance 

in the results was increased both at the training nodes and for SL, SL clearly outperformed the 

individual nodes (mean 95.3% accuracy, Extended Data Fig.3g-h).  

In a fourth scenario, we further optimized the nodes by increasing the overall sample size at 

node 3 and keeping case:control ratios even at all nodes (Extended Data Fig.4a-f). Clearly, 

node performance further improved with little variance between permutations, however, even 

under these ‘node-optimized’ conditions, SL led to higher performance parameters and 

accuracy and AUC were at par with the central model (both AUC 0.998, Extended Data 

Fig.4d).  

In a fifth scenario, we tested whether or not SL was ‘immune’ against the impact of the data 

generation procedure (microarray versus RNA-seq) (Fig.2e, Extended Data Fig.4g-i). We 

recently demonstrated that classifiers trained on data derived by one technology (e.g., 

microarrays) do not necessarily perform well on another (e.g., RNA-seq)3. To test this influence 

on SL, we siloed the training samples from the three different datasets (A1-A3) to one node 

each, e.g., dataset A1 was used for training only at node 1. We used 20% of the data 

(independent non-overlapping to the training data) from each dataset (A1-A3) and combined 

them to form the test dataset. Node 3, trained on RNA-seq data, performed poorly on the 

combined dataset due to the fact that two-thirds of the data in the test dataset were microarray-

derived data. Nodes 1 and 2 performed reasonably well with mean accuracies of 96.0% (node 

1) and 97.5% (node 2), however did not reach the test accuracy of SL (98.7%, AUC 0.999), 

which also indicated that SL is much more robust toward effects introduced by different data 

production technologies in transcriptomics (Fig.2e, Extended Data Fig.4g-i) and almost 

reached accuracy of the central model. (Extended Data Fig.4i).  

Since RNA-seq can be performed using numerous different techniques, we assessed the impact 

of different RNA-seq protocols on predictive performance and if SL could overcome these 

limitations. In a sixth scenario, we split the data accordingly (Extended Data Fig.4j-k). While 

samples at node 1 were sequenced with 50 bp paired end reads using an Illumina HiSeq 2500 

instrument, the AML cases from node 2 were sequenced with 100 bp paired end reads on an 

Illumina HiSeq 2000 instrument. Library preparation was performed using TruSeq library 
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preparation kit in both cases. (Extended Data Fig.4j-k, details on all included studies are listed 

in Supplementary Table 6). We illustrate that SL outperforms the nodes with unequal 

distribution of the data. 

Next, we repeated several of these scenarios but this time using the second most prevalent 

disease, acute lymphoblastic leukemia (ALL), as cases (Extended Data Fig.5a-b and data not 

shown) and demonstrated very similar results with SL outperforming the classifiers built at the 

nodes. Also here, samples were siloed at nodes according to their study origin. In addition, we 

tested how SL would perform in a test dataset with low prevalence for ALL (10%, 5% and 1%) 

(Extended Data Fig.5c-e). While node performance dropped with decreasing prevalence, SL 

outperformed the nodes in all measures with the strongest effect being present at the lowest 

prevalence.  

We next extended SL to a multi-class prediction problem, identifying patients with all four 

major classes of leukemias (ALL, AML, CLL and CML). We split the A2 dataset into three 

training and one test node with different prevalence per disease and node (Extended Data 

Fig.5f). The test node was balanced for AML, ALL and CLL, but had a low prevalence of CLL. 

SL outperformed the nodes or was at par with the best nodes in accuracy, sensitivity and 

specificity for the overall prediction as well as for the prediction of the individual diseases 

(Extended Data Fig.5g, Supplementary Table 4).  

Another likely scenario for SL in medicine is the usage of data from many individual smaller 

medical centers. To assess such a scenario, we siloed the training data in 32 smaller nodes 

(Extended Data Fig.5h). While node prediction varied between nodes due to different 

distributions of case and controls, SL outperformed the nodes in all measures (Extended Data 

Fig.5i, Supplementary Tables 4,5). When increasing nodes, one can also envision that 

additional nodes might onboard at a later time point. Such an onboarding scenario was 

simulated with an initial three-node Swarm with subsequent onboarding of three additional 

nodes during the training cycle. Interestingly, accuracy increased immediately after onboarding 

of the additional nodes (Extended Data Fig.5j). To further illustrate the applicability of SL, 

we assessed whether simpler models such as LASSO could also be applied to predict leukemia 

(Extended Data Fig.6a). Again, SL outperformed the nodes, however LASSO presented with 

higher overall variance than the DNN trained on the same data (Extended Data Fig.6b-c).  

Collectively, these different use cases and scenarios, using real-world transcriptome data 

collected from 127 individual studies, illustrate that SL would not only allow data to be kept at 
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the place of generation and ownership, but it also outperforms every individual node in 

numerous scenarios, even in those with nodes included that cannot provide any meaningful 

classifier results, and reaches central model performance when training data are large enough. 

 

Swarm Learning to identify patients with tuberculosis 

To apply SL, we generated a dataset based on full blood transcriptomes derived by PaxGene 

blood collection followed by bulk RNA-seq. We also generated new blood transcriptomes and 

added existing studies to the dataset compiling a total of 1,999 samples from nine individual 

studies including 775 active and 277 latently infected Tb cases (Fig.1i, Extended Data Fig.7a, 

Supplementary Table 2). These data are more challenging, since infectious diseases show 

more variety due to biological differences with respect to disease severity, phase of the disease 

or the host response. But also, the technology itself is more variable with numerous different 

approaches for full blood transcriptome sample processing, library production and sequencing, 

which can introduce technical noise and batches between studies. 

As a first scenario, we used all Tb samples (latent and active) as cases and divided Tb cases 

and controls evenly among the nodes (Extended Data Fig.7a-b, Supplementary Table 1). 

Similar to AML and ALL, in detecting Tb, SL outperformed the individual nodes in accuracy 

(mean 93.5%), sensitivity (mean 96.1%) and specificity (mean 91.0%) (Extended Data 

Fig.7b). These values were slightly better when comparing the performance to the central 

model (Extended Data Fig.7b). To increase the challenge, we decided to assess prediction of 

active Tb cases only. In this scenario, latently infected Tb cases are not treated as cases but 

rather as controls (Extended Data Fig.7a). For the first scenario, we kept cases and controls 

even at all nodes but further reduced the number of training samples (Fig.3a). As expected in 

this more challenging scenario, distinguishing active Tb from the control cohort (including 

latent Tb samples), overall performance (mean accuracy 89.1%, mean sensitivity 92.2%, mean 

specificity 86.1%) dropped, but still SL performed better than any of the individual nodes 

(p<0.01 for Swarm vs. each node, Fig.3a, Supplementary Table 5). To determine whether 

sample size impacts on prediction results in this scenario, we reduced the number of samples 

at each training node (1-3) by 50% but kept the ratio between cases and controls (Extended 

Data Fig.7c). Still, SL outperformed the nodes, but all statistical readouts (mean accuracy 

86.4%, mean sensitivity 87.9%, mean specificity 85.0%) at all nodes and SL showed lower 

performance, following general observations of AI with better performance when increasing 
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training data19. Interestingly, SL was at par with the central model here (Extended Data 

Fig.7c). We next altered the scenario by dividing up the three nodes into six smaller nodes 

(Fig.3b, samples per node reduced by half in comparison to Fig.3a), a scenario that can be 

envisioned in the domain of medicine in many settings, for example, if several smaller medical 

centers with less cases would join efforts (Fig.3b). Clearly, each individual node performed 

worse, but for SL the results did not deteriorate (mean accuracy 89.3%, mean sensitivity 90.6%, 

mean specificity 88.1% with significant difference to each of the nodes in all performance 

measures, see Supplementary Table 5), again illustrating the strength of the joined learning 

effort, while completely respecting each individual node’s data confidentiality.  

Albeit aware of the fact that active Tb is rather a disease with endemic characteristics and does 

not tend to develop towards a rapidly spreading pandemic such as the current COVID-19 

pandemic, we utilized the Tb blood transcriptomics dataset to simulate potential outbreak and 

epidemic scenarios to determine benefits, but also potential limitations of SL and how to 

address them (Extended Data Fig. 7d-j). The first scenario reflects a situation in which three 

independent regions (simulated by the nodes), would already have sufficient but different 

numbers of disease cases. Furthermore, cases and controls were kept even at the test node 

(Fig.3c, Extended Data Fig.7d-f). Overall, compared to the scenario described in Fig.3a, 

results for the Swarm were almost comparable (mean accuracy 89.1%, mean sensitivity 91.2%, 

mean specificity 87.0%, mean AUC 0.95), while the results for the node with the lowest 

number of cases and controls (node 2) dropped noticeable (mean accuracy 81.2%, mean 

sensitivity 85.1%, mean specificity 77.3%, mean AUC 0.90; Fig.3c, Supplementary Table 4). 

When reducing the prevalence at the test node by increasing the number of controls (Extended 

Data Fig.7d), this effect was even more pronounced, while the performance of SL was almost 

unaffected (mean accuracy 88.0%, mean AUC 0.94).  

We decreased the number of cases at a second training node (node 1) (Extended Data Fig.7e), 

which clearly reduced test performance for this particular node (Extended Data Fig. 7e), while 

test performance of the Swarm was only slightly inferior to the prior scenario (mean accuracy 

85.2%, mean AUC 0.94; Supplementary Table 4), no significant difference to the prior 

scenario). Only when reducing the prevalence at the test node (Extended Data Fig.7f), we saw 

a further drop in mean specificity for the Swarm (81.9%), while sensitivity stayed similarly 

high (90.2%) as well as AUC (0.93). Finally, we further reduced the prevalence at two training 

nodes (node 2: 1:10; node 3: 1:5) as well as the test node (Extended Data Fig.7g,h). Lowering 
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the prevalence during training resulted in very poor test performance at these two nodes 

(accuracy node 2: 67,7%, accuracy node 3: 78.7%), while specificity was high (node 2: 98.5%, 

node 3: 93.9%). SL showed highest accuracy (mean accuracy 87.4%) and F1 score (83.5%) but 

was outperformed for sensitivity by node 1 (Swarm: 80.0%, node1: 87.9%), which showed 

poor performance concerning specificity (Swarm: 92.4%, node1: 84.6%). Vice versa, node 2 

outperformed the Swarm for specificity (98.4%), but showed very poor sensitivity (21.2%) 

(Extended Data Fig.7h). When lowering prevalence at the test node (Extended Data Fig.7i-

j), it became clear that all performance parameters including the F1 score were more resistant 

for the SL compared to individual nodes. Taken together, using whole blood transcriptomes 

instead of PBMC and active Tb as the disease instead of leukemia, we present a second use 

case illustrating that SL integrating several individual nodes outperforms each node. 

Furthermore, we gained initial insights into the potential of SL to be utilized in a disease 

outbreak scenario. 

Application of Swarm Learning on chest X-ray images   

To further examine potential applications and data spaces, we generated a third use case and 

applied the SL concept to one of the largest publicly available chest X-ray datasets32 with over 

110,000 X-ray images. We included X-rays from patients with atelectasis, effusion and 

infiltration as the three most frequent radiological findings in this dataset as well as images 

without any pathological finding, which resulted in a total of 95,831 X-ray images in dataset C 

(Fig.1l, Fig.3d, Methods). In line with our previous setup, we split the data into independent 

training and test datasets and siloed the training data in three training nodes. We simulated 

different prevalences at the nodes: While node 1 had a low prevalence in infiltration, node 2 

was low in cases of atelectasis and node 3 was a low-prevalence node for images classified as 

effusion. Also here, SL and single nodes were tested on the global test dataset. Generally, 

prediction on images of the class “effusion” resulted in better test performances than the 

prediction of atelectasis and infiltration. Most important however, SL outperformed each of the 

nodes in prediction of all radiological findings included (AUCAtelectasis: 0.76, AUCEffusion: 0.86. 

AUCInfiltration: 0.68) as well as the prediction of lack of pathological finding in the control 

images (AUCno finding: 0.81). 

 

Identification of COVID-19 
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We assessed if the Swarm network of six nodes would also predict data from completely 

independent external nodes (E7, E8; Extended Data Fig.9e, Methods). Node performance on 

E7 was very variable between datasets / centers, while SL clearly outperformed all nodes in 

AUC (0.98) and accuracy (96.2%, Extended Data Fig.9f). Interestingly, when testing on E8, 

including 45 samples of convalescent COVID-19 patients, four patients were classified as cases 

by most individual nodes as well as SL, indicating that a subgroup of COVID-19 patients still 

seem to contain blood transcriptomes reminiscent of acute disease (data not shown), which - in 

light of long COVID-19 - opens additional avenues for SL. To generate a situation for which 

only a small number of centers (here three) would be available for SL during an early outbreak 

scenario, which then would be capable to provide a predictor to a fourth independent center 

with acute COVID-19 patients, we assessed whether the centers E1, E2 and E3 can predict 

patients in E4. While all nodes show high AUC and accuracy, SL shows the highest sensitivity 

(1.0), again illustrating the advantage of SL over individual nodes (Extended Data Fig.9h).  

Finally, we assessed how SL would cope with biased age and sex distributions, the influence 

of co-infections as well as the potential to distinguish mild from severe cases (Extended Data 

Fig.10). Distributing solely male cases to node 1 and solely female cases to node 2 did not 

affect node prediction performance. However, SL was also here outperforming the nodes 

(Extended Data Fig.10a). When distributing only samples from patients older than 65 to node 

1, younger than 65 to node 2 and both age groups to node 3, SL outperformed nodes 1 and 2 

(Extended Data Fig.10b). Co-infections seemed to have less impact. Biased distribution with 

node 1 only harboring samples from patients with co-infections, node 2 only cases without co-

infections and node 3 both groups results in only slightly better performance of SL (Extended 

Data Fig.10c).  

 

Supplementary Discussion 

The introduction of precision medicine based on high-resolution molecular and imaging data 

will heavily rely on trustworthy ML algorithms in compute environments that are characterized 

by high accuracy and efficiency, confidentiality-, privacy- and ethics-preserving, secure, and 

fault-tolerant by design23,24. At the same time, privacy legislation is becoming increasingly 

strict, as risks of cloud-based and central data-acquisition are recognized. Here, we introduce 

SL, which combines blockchain technology and machine learning environments organized in 

a Swarm network architecture with independent Swarm edge nodes that harbor local data, 
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compute infrastructure, and execute the shared learning models that make central data 

acquisition obsolete. During iterations of SL, one of the nodes is chosen to lead the iteration, 

which does not require a central parameter server anymore thereby restricting centralization of 

learned knowledge and at the same time increasing resiliency and fault tolerance. In fact, these 

are the most important improvements over current local, central (i.e. cloud-based) and 

federated computing models. Furthermore, private permissioned blockchain technology, 

harboring all rules of interaction between the nodes, is Swarm Learning’s inherent 

confidentiality-enabling strategy. This technological advancement is of particular interest to 

medical data and could be adapted by other federated learning systems. To understand whether 

the concept of SL would also be characterized by high efficiency and high accuracy, we built 

four medical use cases including heterogeneous diseases such as leukemias, Tb and COVID-

19, for which classification is a non-trivial task13. Further, we apply SL to two different data 

spaces, blood transcriptome data, which are high-dimensional data derived from blood, one of 

the major tissues used for diagnostic purposes in medicine, as well as X-ray imaging. First, 

utilizing three previously compiled datasets (A1-3) of peripheral blood mononuclear cells 

derived from patients with acute myeloid leukemia, we provide strong evidence that SL-based 

classifier generation using a well-established neural network algorithm outperforms individual 

nodes, even in scenarios where individual contributing Swarm nodes were performing rather 

poorly. Surprisingly, it was not necessary to fine tune with applying weights to individual nodes 

to improve overall performance of Swarm in most scenarios, indicating that access to an 

enlarged dataset prevails over optimization of the AI model. Future studies will address 

whether the combination of better models and access to enlarged datasets can further improve 

SL. Most striking, SL even improved performance parameters when training of individual 

nodes was based on technically different data, a situation that was previously shown to 

deteriorate classifier performance3. With these promising results, we generated a more 

challenging use case in infectious disease patients, detecting Tb based on full blood 

transcriptomes. Also, in this case, SL outperformed individual nodes. Furthermore, using X-

rays, we illustrate that SL also performs well in a different data space. 

Using Tb to simulate scenarios that could be envisioned for building blood transcriptome 

classifiers for patients during an outbreak situation, we further illustrate the power of SL over 

individual nodes. Considering the difficulty to quickly negotiate data sharing protocols or 

contracts during an epidemic or pandemic outbreak, we deduce from these findings that SL 

would be an ideal strategy for independent producer of medical data to quickly team up to 
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increase the power to generate robust and reliable machine learning-based disease or outcome 

prediction classifier without the need to share data or relocate data to central cloud storages. 

Further, we generated disease prediction classifiers for COVID-19 in an outbreak scenario 

building on knowledge that blood transcriptomes in COVID-19 are significantly altered 

including gene expression changes in hundreds of genes34,36. Here, we provide evidence that 

classifiers with high accuracy, sensitivity, specificity and F1 scores can be generated to identify 

patients with COVID-19 based on their blood transcriptomes. Since current test strategies are 

intended to identify every individual infected with SARS-CoV-2 (PCR tests, antigen tests), but 

do not provide any information concerning the disease (asymptomatic to severe courses), blood 

transcriptomics could be envisioned as a complementary approach identifying patients who 

will require further medical attention. Moreover, we illustrate the capacity of SL allowing to 

quickly increase the power of classifier generation even under very early outbreak scenarios 

with very few cases used at the training nodes, which could be e.g., collaborating hospitals in 

an outbreak region. Since data do not have to be shared, additional hospitals could benefit from 

such a system by applying the classifiers to their new patients and once classified, one could 

even envision an onboarding of these hospitals for an adaptive classifier improvement schema. 

Albeit technically feasible, we are fully aware that such scenarios require further classifier 

testing and confirmation, but also an assessment of how this could be integrated in existing 

legal and ethical regulations at different regions in the world4,8. Furthermore, we appreciate 

that other currently less expensive data might be suitable for generating classifiers to identify 

COVID-19 patients6. For example, if highly standardized clinical data would become available, 

SL could be used to interrogate the clinical feature space at many clinics worldwide without 

any need to exchange the data to develop high performance classifiers for detecting COVID-

19 patients. Similarly, recently introduced AI-systems using imaging data15,16 might be more 

easily scaled if many hospitals with such data could be connected via SL. Our example using 

a publicly available X-ray dataset clearly points towards this direction. Irrespective of these 

additional opportunities using other parameter spaces, we would like to suggest blood 

transcriptomics as a promising new alternative due to its very strong signal in COVID-19. A 

next step will be to determine whether blood transcriptomes taken at early time points could be 

used to predict severe disease courses, which might allow physicians to introduce novel 

treatments at an earlier time point. Furthermore, we propose to develop an international registry 

of blood transcriptomes that could be utilized for the development of predictive classifiers in 

other infectious and non-infectious diseases as well. It could be envisioned that such an SL-

based learning scheme could be deployed as a permanent monitoring or early warning system 
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that runs by default, looking for unusual movements in molecular profiles. Collectively, SL 

together with transcriptomics but also other medical data is a very promising approach to 

democratize the use of AI among the many stakeholders in the domain of medicine while at 

the same time resulting in more data confidentiality, privacy, data protection and less data 

traffic.  

 

Supplementary Methods 

Datasets 

Peripheral blood mononuclear cell (PBMC)-derived transcriptome dataset (dataset A) 

We used a previously described dataset containing over 12,000 transcriptomes derived from 

peripheral blood mononuclear cells (PBMC), deposited at the National Center for 

Biotechnology Information Gene Expression Omnibus (GEO) under SuperSeries GSE122517 

or via the individual SubSeries GSE122505 (dataset A1), GSE122511 (dataset A2) and 

GSE122515 (dataset A3). Briefly, this dataset was generated by inspection of all publicly 

available datasets at GEO on September 20th, 2017. Inclusion criteria were cell type (PBMCs) 

and species (Homo sapiens). Existing GEO SuperSeries were excluded to avoid duplicated 

samples. According to the data generation method, three datasets were established; dataset A1, 

generated with Affymetrix HG-U133 A microarrays (n=2,500), dataset A2 with Affymetrix 

HG-U133 2.0 microarrays (n=8,348), and dataset A3 with high-throughput RNA sequencing 

(RNA-seq) (n=1,181). Data were curated as previously described3. All sample information is 

listed in Supplementary Table 2.  

Whole blood-derived transcriptomes for the prediction of tuberculosis (dataset B) 

To establish a dataset based on whole blood transcriptomes, we generated new data from 

healthy controls (Rhineland Study) and combined these with previously generated data that had 

been deposited in Gene Expression Omnibus (GEO). We screened for transcriptome datasets 

derived from human whole blood samples, which were collected using the PAXgene Blood 

RNA System. In total, nine independent datasets were selected to be included in the present 

study (GSE101705 (n=44); GSE107104 (n=33), GSE112087 (n=120), GSE128078 (n=99), 

GSE66573 (n=14), GSE79362 (n=355), GSE84076 (n=36); GSE89403 (n=914)). The newly 

generated 384 whole blood samples were sampled in context of the Rhineland Study led by the 
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German Center for Neurodegenerative Diseases (DZNE), which is an extensive longitudinal 

study monitoring healthy individuals over 2 decades. Approval to undertake the Rhineland 

Study was obtained from the ethics committee of the University of Bonn, Medical Faculty. The 

study is carried out in accordance with the recommendations of the International Conference 

on Harmonization (ICH) Good Clinical Practice (GCP) standards (ICH-GCP). Written 

informed consent was obtained from all participants in accordance with the Declaration of 

Helsinki. Overnight fasting blood was collected from all participants, including a PAXgene® 

tube for RNA extraction and RNA-seq analysis. In total, dataset B contained 1999 samples 

from patients with active tuberculosis (n=775), latent tuberculosis (n=277), fatigue (n=55), 

autoimmune diseases (n=68), HIV (n=16) and controls (n=808). Sample information is listed 

in Supplementary Table 2.  

X-ray dataset (dataset C) 

To evaluate whether Swarm learning can also be applied to other medical data types, we 

included a publicly available dataset on chest X-ray images. We used the National Institutes of 

Health (NIH) Chest X-ray dataset available on Kaggle – https://www.kaggle.com/nih-chest-

xrays/data32. It is one of the largest publicly available real-world anonymized chest X-ray 

datasets with annotations that can be used to perform clinically relevant computer-aided 

detection and diagnosis (CAD). The image labels are extracted from the associated radiological 

reports using Natural-Language-Processing (NLP) with more than 90% labelling accuracy. The 

study was IRB approved (personal communication by Dr. Summers, Senior Investigator, 

Clinical Image Processing Service, NIH CC). 

The NIH Chest X-ray dataset consists of 112,120 X-ray images of size 1024 x 1024 with 

pathophysiological findings from 30,805 unique patients. There are in total 15 classes (14 

pathophysiological findings and 1 control): atelectasis, consolidation, infiltration, 

pneumothorax, edema, emphysema, fibrosis, effusion, pneumonia, pleural thickening, 

cardiomegaly, nodule, mass, hernia, and no finding (control). It is a multi-class multi-label 

dataset, i.e., images can be classified as either one or more classes or only control. Images are 

present in 12 zip files of ~ 2-4 GB each. In our experiment, we have included the 

pathophysiological findings atelectasis, effusion, and infiltration as the 3 most frequent classes 

as well as the control images, which totals 95,831 X-ray images from the dataset. 

Whole blood-derived transcriptome dataset for the prediction of COVID-19 (dataset D) 

https://www.kaggle.com/nih-chest-xrays/data
https://www.kaggle.com/nih-chest-xrays/data
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To develop classifiers based on whole blood transcriptomes able to predict COVID-19 patients 

we collected an additional 134 PAXgene® tubes for RNA extraction and RNA-seq analysis 

from patients with acute COVID-19, of which 41 samples were either collected at the Sotiria 

Athens General Hospital (Ethics Committee of Sotiria Athens General Hospital, IRB 

23/12.08.2019) or the ATTIKON University General Hospital in Athens (Ethics Committee of 

ATTIKON University General Hospital, IRB 26.02.2019), Greece, and 93 whole blood 

samples were collected at the Intensive Care Unit of the Radboud University Medical Centre 

in Nijmegen, the Netherlands. The protocol was reviewed by the local ethics committee (CMO 

Arnhem-Nijmegen, registration no. 2016-2923) and the study was carried out in accordance 

with the applicable rules concerning the review of research ethics committees and informed 

consent in the Netherlands. All patients or legal representatives were informed about the study 

details and could decline to participate. COVID-19 was diagnosed by a positive SARS-CoV-2 

RT-PCR test in nasopharyngeal or throat swabs and/or by typical chest CT-scan finding. Blood 

for RNA-seq analysis was sampled on day 0 to 11 after admission. In the cohort in Athens, 

blood samples from ten healthy donors who were tested negative on SARS-CoV-2 were 

included as controls. The newly generated samples from the COVID-19 patients and the 

controls from Athens were combined with dataset B (see above) to establish dataset D. As a 

result, in addition to the 1999 samples derived from dataset B, dataset D included further 10 

healthy controls and 134 COVID-19 samples, which makes a total of 2,143 samples. Sample 

information is listed in Supplementary Tables 2 and 6.  

Extension of the transcriptome dataset for the prediction of COVID-19 (dataset E1-8) 

To extend the COVID-19 analysis to even more realistic scenarios, we collected additional 

samples from additional medical centers in Germany and generated the new dataset E. Most 

centers focused on sampling COVID-19 patients with an underrepresentation of controls. To 

reach a realistic outbreak situation (low prevalence), we kept COVID-19 cases always at the 

center of origin and increased the number of controls at each node by adding control samples 

(Extended Data Fig.9e).  

In total, 250 PAXgene samples from patients with acute COVID-19 and 177 samples from 

convalescent COVID-19 patients were collected including the 93 samples from Nijmegen and 

the 41 samples from Athens from dataset D. The additional whole blood PAX-gene samples 

were derived from Kiel (COVIDOM, Ethics Committee of the University of Kiel, IRB 

D466/20; 41 acute COVID-19, 4 healthy controls), Saarbrücken (CORSAAR, Ethics 
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Committee Medical Association of the Saarland, IRB 62/20; 50 acute COVID-19), Munich 

(Ethics Committee of the LMU Munich, IRB 20-263; 17 acute COVID-19, 1 convalescent 

COVID-19, 17 healthy controls and 15 controls with other infections), Tübingen (DeCOI Host 

Genomes, Ethics Committee of the Medical Faculty of the University of Tübingen, IRB 

286/2020B01; 45 convalescent COVID-19), Aachen (COVAS, Ethics Committee of the 

Medical Faculty of the Technical University Aachen, IRB 20-085; 4 acute and 12 convalescent 

COVID-19), Cologne (Ethics Committee of the University of Cologne, IRB 20-1187_1; 116 

convalescent COVID-19). Furthermore, we collected granulocyte-derived transcriptomes from 

Bonn (Ethics Committee of the Medical Faculty of the University of Bonn, IRB 073/19, 

134/20; 89 acute COVID-19, 8 healthy controls and 2 controls with other infectious diseases). 

Briefly, granulocytes were isolated from peripheral blood collected in EDTA tubes by density 

centrifugation, followed by red blood cell lysis, RNA extraction and library preparation for 

RNA-seq.  

Furthermore, we collected 1,444 healthy PAXgene control samples from Saarbrücken (Ethics 

Committee Medical Association of the Saarland, IRB 20200597). Diagnostics testing for 

SARS-CoV-2 was carried out as for patients in Athens and Nijmegen. Samples from acute 

COVID-19 patients were collected until day 46 after admission to the hospital or during 

ambulant hospital visits. Some medical centers provided longitudinal samples, in which gene 

expression of the same patient was measured at different time points. For training, we included 

only the first two time points per individual. For testing also other time points were included. 

Samples from convalescent patients were collected at least 46 days post symptoms. Since not 

all medical centers could provide healthy controls, we simulated low prevalences for COVID-

19 in the scenarios described here by distributing control samples from Bonn and Saarbrücken 

to the data derived by the other centers so that we had a total of 300 samples per dataset E1-E8 

(Extended Data Fig.9e). Dataset E1 contained 39 acute COVID-19 patients from Athens and 

261 healthy controls, dataset E2 contained 50 acute COVID-19 patients from Saarbrücken and 

250 healthy controls, dataset E3 contained 70 acute COVID-19 patients from Nijmegen, as 

well as 144 controls with acute sepsis and 86 healthy controls, dataset E4 contained 32 acute 

COVID-19 patients from Kiel and 268 healthy controls, dataset E5 contained 12 acute COVID-

19 samples from Munich, 272 healthy controls, 15 samples with other diseases and 1 patient 

with convalescent COVID-19, dataset E6 contained 4 acute COVID-19 cases from Aachen and 

128 convalescent COVID-19 patients from Cologne as well as 168 healthy controls, dataset E7 

contained 89 acute COVID-19 samples, 2 samples with other infectious diseases and 209 

healthy controls (89 granulocyte-derived transcriptomes and 201 whole-blood transcriptomes) 
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and dataset E8 contained 45 convalescent COVID-19 patients and 255 healthy controls. In total 

2,400 samples were included in dataset E and sample information is listed in Supplementary 

Table 2. 

Application Layer and scenarios 

The application layer (see also Extended Data Fig.1d) consists of disease models for which 

definitions are given, which samples are cases and which samples are controls. For example, if 

the classifier is supposed to detect all patients with tuberculosis (Tb), the model includes 

patients with latent and active tuberculosis as cases and all other samples as controls (Extended 

Data Fig.7). However, if only patients with active tuberculosis are intended to be detected as 

cases, the model is changed in that cases are now only patient samples derived from patients 

with active Tb, while samples from patients with latent Tb are now treated as controls, similar 

to all other non-Tb samples. In case of COVID-19, we focused on classification of acute 

COVID-19 patients, while samples of convalescent patients were only used at test nodes and 

never for training purposes. For one prediction scenario (Extended Data Fig.10d-e), we 

stratified COVID-19 patients according to their disease severity. Patients with a WHO disease 

severity score of 5 or higher were classified as “severe” COVID-19 patients and used as cases 

opposed to controls, which were COVID-19 cases with severity scores from 1-4. Further, we 

provide multi-class predictions for the leukemia dataset distinguishing between ALL, AML, 

CLL, CML, and control (Extended Data Fig.5f-g). Here five different labels are used. This is 

similarly true for the X-ray dataset, where we used the pathophysiological findings atelectasis, 

effusion, infiltration and no finding (normal X-rays), where several images had more than one 

label (Fig.3d). The cases and controls used for each scenario are given in the result section in 

more detail. For each node, classifiers are generated by applying neural networks (for 

description see below) with the exception of Extended Data Fig.6b, where we used the 

LASSO algorithm (for description see below). All prediction results are given in 

Supplementary Table 3. 

 

Scenarios for prediction of leukemias 

We previously demonstrated that ML on PBMC transcriptomes can be utilized to predict 

AML3. Based on this experience, we generated sample sets within three independent 

transcriptome datasets (dataset A1-A3, see above) to assess different scenarios in a three-node 
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setting for training and an independent test node only used for testing. As indicated in Fig.2 

and Extended Data Fig.2-4, six main scenarios with varying numbers of samples per node 

and varying ratios between cases and controls at each node where defined. For predicting AML, 

all samples derived from AML patients were classified as cases, while all other samples were 

labeled controls. For each scenario (Fig.2, Extended Data Fig.2-4) and each dataset, we 

permuted the sample distribution 100 times, resulting in a total of 9,600 individual predictions. 

The different scenarios were chosen to address the influence of sample numbers per node, the 

case control ratio, study design-related batch effects, sequencing protocols and transcriptome 

technologies used on classifier performance at the nodes, but more importantly on SL 

performance. Furthermore, we compared SL performance to the central model, which was 

trained by generating a central dataset on all samples, which was then split into training and 

test dataset according to the sample distribution within the SL model. Lastly, we used one 

scenario to apply LASSO as an alternative to develop an AML classifier under SL conditions 

(Extended Data Fig.6a-c).  

When predicting ALL, all samples derived from ALL patients were classified as cases and all 

others as controls (Extended Data Fig.5a-e). Furthermore, we provide a scenario for multi-

class prediction (Extended Data Fig.5f-g).  

Sample distributions for all permutations within all scenarios are listed in Supplementary 

Table 1 and all used tuning parameters are listed in Supplementary Table 8. 

 

Scenarios for detecting patients with active TB 

In line with the experience we gained from the prediction of AML, we used dataset B to 

generate scenarios for the prediction of tuberculosis in various settings, again using different 

scenarios in a three-node setting for training and an independent test node only used for testing. 

In one scenario, all patients with tuberculosis (Tb) including patients with latent and active Tb 

were treated as cases, while all others were defined as controls (Extended Data Fig.7b). In all 

other scenarios, cases were restricted to active Tb patients’ samples, while patients with latent 

Tb were defined as controls together with all other non-Tb samples. Here, the question to be 

answered was whether the classifiers can identify patients with active Tb and could distinguish 

them from latent Tb and other conditions.  
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In one scenario (Fig.3b), we added three additional training nodes to test dependency of 

classifier performance by the number of nodes. As indicated in Fig.3a, Fig.3c and Extended 

Data Fig.7d, three scenarios with varying numbers of samples per node and varying ratios 

between cases and controls at each node where defined. For scenarios described within 

Extended Data Fig.7e and Extended Data Fig.7f we tested two prevalence scenarios in the 

test dataset. For each scenario we permuted the sample distribution 5-10 times, resulting in a 

total of 325 individual predictions. To mimic an outbreak scenario, we reduced cases also at 

the testing nodes to determine the effects on SL performance (Extended Data Fig.7g-j). 

Sample distributions for all permutations within all scenarios are listed in Supplementary 

Table 1. 

 

Scenarios for detecting pathophysiological findings in X-ray images 

In order to generalize and see whether the SL approach would also be applicable to other data 

spaces, we included a scenario on publicly available chest X-ray images (Fig.3d). Here, we 

focused on the prediction of three pathophysiological findings, namely effusion, atelectasis, 

and infiltration. Since many images contained multiple labels, this was a multiclass-multilabel 

classification setup, and we report the results for each predicted class separately. We permuted 

the scenario 10 times.  

 

Simulation of outbreak scenarios to detect COVID-19 patients 

Based on the promising results obtained with tuberculosis, we intended to simulate classifier 

building and testing for the prediction of COVID-19 in a SL setting. We used dataset B and 

added 143 additional samples, of which 134 samples were derived from acute COVID-19 

patients (see above). We applied a three-node setting for training and an independent test node 

only used for testing.  

In one scenario (Extended Data Fig.8a-d), we kept cases (n=30) and controls (n=30) evenly 

distributed among the three training nodes and tested three different prevalence scenarios at the 

test node (22:25; 11:25; 1:44). In a second scenario (Extended Data Fig.8e-g) we changed the 

ratio of cases and controls at each node (node 1: 40:60, node 2: 30:70, node 3: 20:80) and tested 
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two prevalence scenarios at the test node (22:25; 11:25). In a third scenario (Extended Data 

Fig.8h-j) we further reduced the number of cases at the training nodes (node 1: 30:70, node 2: 

20:80, node 3: 10:90) and tested two prevalence scenarios at the test node (37:50; 37:75). Next, 

we tested an outbreak scenario (Fig.4a,b, Extended Data Fig.8k,l) with very few cases at the 

outbreak node 1 (20:80), an early secondary node (10:90) and a later secondary node (5:95) 

and three prevalence scenarios at the test node (1:1, 1:2, 1:10), resulting in a total of 220 

individual predictions.  

To design even more realistic scenarios, we recruited further samples from a total of eight 

different medical centers. In a first scenario six medical centers (nodes) teamed up as the 

Swarm (Fig.4c). Each center provided 20% held-out data and contributed these data to the 

independent test node T. The remaining 80% of the data are used for local learning at each 

node and for SL. COVID-19 predictors derived by SL or individual nodes of the Swarm are 

then tested on the test node T. Further, we used two independent medical centers (E7, E8) as 

additional independent test nodes (Extended Data Fig.9g). As outlined above, these nodes 

were very different in that one provided transcriptomes from blood-derived granulocyte-

enriched COVID-19 samples (different technology), the other only transcriptomes from 

convalescent patients (no acute cases) (Extended Data Fig.9e). This scenario was permuted 

20 times. Second, three of the centers with acute COVID-19 cases became members of the 

Swarm, but for testing, a fourth external medical center is used (E4) (Extended Data Fig.9h). 

Sample distributions for all permutations within all scenarios are listed in Supplementary 

Table 1.  

For all use cases and scenarios, non-overlapping training and test datasets were always 

guaranteed.  

The Swarm Learning framework, library, distributed ML and blockchain technologies 

SL builds on top of two proven technologies — distributed ML and blockchain. Distributed 

ML is leveraged to train a common model across multiple nodes with a subset of the data 

located at each node — commonly known as the data parallel paradigm in ML — though 

without a central parameter server. Blockchain lends the decentralized control, scalability, and 

fault-tolerance aspects to the Swarm Network system to enable the framework to work beyond 

the confines of a single enterprise. 
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The SL Library is a framework to enable decentralized training of ML models without sharing 

the data. The SL framework is designed to make it possible for a set of nodes — each node 

possessing some training data locally — to train a common ML model collaboratively without 

sharing the training data itself. This can be achieved by individual nodes sharing parameters 

(weights) derived from training the model on the local data. This allows local measures at the 

nodes to maintain confidentiality and privacy of the raw data. Importantly, in contrast to many 

existing federated learning models, a central parameter server is omitted in SL. 

The inherent trade-off between the effectiveness of a ML system and the privacy guarantees it 

can offer is subject to lively ongoing research. In this paper, we therefore decided not to 

integrate specific data privacy mechanisms in the design for use with our SL framework, but 

to make it compatible with previously used underlying ML models, including models that rely 

on privacy-enhancing technologies such as obfuscation and anonymization. The goal was to 

enable their seamless integration in the SL framework. Furthermore, SL can inherit 

developments to further preserve privacy such as differential privacy algorithms40, functional 

encryption41, or encrypted transfer learning approaches42. The framework itself does not rely 

on a fixed central aggregator, but instead implements a dynamic selection of changing 

aggregators for every merge cycle by means of smart contracts. The framework moreover 

implements state-of-the-art security technologies (trusted execution environment, secure 

containment, network encryption) to protect data from direct unauthorized access. To ensure 

equal conditions even at the early stages of building a Swarm Network (low number of nodes), 

we suggest using the SL infrastructure also at its lower boundary, namely with two nodes 

already.  

The nodes that participate in SL, register themselves with the Swarm Network implicitly using 

the callback API. Here, the Swarm Network interacts with other peers using blockchain for 

sharing parameters and for controlling the training process. On each node, a simple Swarm 

callback API must be used to enable the ML model with SL capacities (see also code presented 

below). The Swarm container must be configured to interact with the Swarm Network (network 

IP and port configuration). All other complexities of setting up network, registration, parameter 

sharing, and parameter merging are taken care of by the Swarm callback API and the Swarm 

Network infrastructure.  

Parameters shared from all the nodes are merged to obtain a global model. Moreover, the merge 

process is not done by a static central coordinator or parameter server, but rather a temporary 



23 
 

leader chosen dynamically among the nodes is used to perform the merge, thereby making the 

Swarm network decentralized. This provides a far greater fault-tolerance than traditional 

centralized-parameter-server-based frameworks. All the nodes can perform the role of training 

and merging, thereby maximizing the usage of local compute. The Swarm Network implicitly 

controls this.  

The HPE SL Library consists of two containers, the Swarm Network container, and the Swarm 

ML container.  

The Swarm Network container includes 1) software to setup and initialize the Swarm Network, 

2) management commands to control the Swarm Network, and 3) start/stop SL tasks. This 

container also encapsulates the blockchain software. 

The Swarm ML container includes software to support 1) decentralized training, 2) integration 

with ML frameworks, and 3) it exposes APIs for ML models to interact with SL. 

For any ML model to be applied to SL, it needs to be modified using the Swarm callback API. 

The callback API provides options to control the SL processes. To convert a ML program into 

a Swarm ML program the following steps have to be performed:  

1. Import the SwarmCallback class from the Swarm Library  

from swarm ‘import SwarmCallback’ 

SwarmCallback is a custom callback class that is built on the Keras Callback class.  

2. Instantiate an object of the SwarmCallback class:  

swarm_callback = SwarmCallback( min_peers = <peer count>,  

sync_interval = <interval>,  

use_adaptive_sync = <bool>,  

val_batch_size = <batch size>,  

val_data = <either a (x_val, y_val) tuple or a generator> 

node_weightage = <relative weightage of node’s model weights>).  
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In this context, ‘min_peers’ specifies the minimum number of network peers required to 

synchronize the insights, ‘sync_interval’ specifies the number of batches after which a 

synchronization is performed, ‘use_adaptive_sync’ specifies whether the adaptive sync 

interval feature should be used for tuning the sync interval. This feature is turned off by default; 

‘ val_batch_size’ specifies the size of each validation batch; ‘val_data’ specifies the validation 

dataset. It can be either a (x_val, y_val) tuple or a generator;  

3. Pass the object to the list of callbacks in Keras training code: model.fit(..., callbacks = 

[swarm_callback]). SwarmCallback can be included along with other callbacks also:  

es_callback = EarlyStopping(...);  

model.fit(..., callbacks = [es_callback, swarm_callback]) 

 

The Swarm Learning architecture principles 

The SL framework has two major components, 1) the Swarm ML component runs a user-

defined Machine Learning algorithm, and 2) the Swarm Network component forms the Swarm 

Network based on a blockchain network.  

The Swarm ML component is implemented as an API available for multiple popular 

frameworks such as TensorFlow, Keras, PyTorch. This API provides an interface that is similar 

to the training APIs in the native frameworks familiar to data scientists. Calling this API 

automatically inserts the required hooks for SL so that nodes seamlessly exchange parameters 

and subsequently continue the training after setting the local models to the globally merged 

parameters. With a few simple code changes, the entire network learns as one cohort, with all 

the complexities of control and data flow taking place in an automated fashion. 

Within the Swarm Network component each Swarm ML component interacts with each other 

using the Swarm Network component’s blockchain platform to maintain global state 

information about the model that is being trained and to track the training progress. The Swarm 

Network components use this state and progress information to coordinate the working of the 

SL. The Swarm Network is responsible for keeping the decentralized Swarm network in a 

globally consistent state. The Swarm Network ensures that all operations and the corresponding 

state transitions are performed in a synchronous manner. Both, state and supported operations 
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of the system are encapsulated in a blockchain smart contract. The Swarm Network contains 

the logic to elect the leader of the Swarm for every synchronization, implement fault-tolerance, 

and self-healing mechanisms, along with signaling among nodes for commencement and 

completion of various phases. 

The SL framework is designed to run on both commodity and high-end machines, supporting 

a heterogeneous set of infrastructures in the network. It can be deployed within and across data 

centers. We also want to mention that currently SL has some limitations, e.g., all nodes within 

a Swarm use the same model, every node needs to use the same ML platform and SL works 

only for models that can be parameterized. Further, application of differential privacy 

algorithms have not been formally tested in this study. However, in principle, there are no 

differences between current ML settings and SL when applying such methods for data privacy 

protection. More important, in contrast to federated learning with star topology and a 

centralized coordinator, SL can support multiple topologies including fully connected, mesh, 

star, tree and hybrid topologies. This flexibility provides multiple options to cater into different 

use cases.  

 

The Swarm Learning process  

SL provides a callback API to enable swift integration with multiple frameworks. This API is 

incorporated into the existing ML code to quickly transform a stand-alone ML node into a SL 

participant in a non-intrusive way. It offers a set of commands (APIs) to manage the Swarm 

Network and control the training.  

The SL process is as follows: 

The SL process begins with enrollment of nodes with the Swarm Network, which is done 

implicitly by the Swarm callback function when the callback is constructed. During this 

process, the relevant attributes of the node are stored in the blockchain ledger. This is a one-

time process. 

Nodes will train the local copy of the model iteratively using private data over multiple epochs. 

During each epoch, the node trains its local model using one or more data batches for a fixed 

number of iterations until a merging criterion is reached. The merging criterion is defined by 
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the number of batches used and can be specified by the user using the sync_interval parameter 

in the Swarm callback API.  

At the end of every synchronization interval, when it is time to share the learnings from the 

individual models, one of the Swarm nodes is dynamically elected as a leader. For the Swarm 

networks shown in this work, the leader election logic is implemented as follows: the nodes 

that finish the local training checks in for the merge process. The first node to check-in is the 

leader. The elected leader node collects the model parameters from each peer node and merges 

them. The framework supports multiple merge algorithms such as mean, weighted mean, 

median (see below), which is selected by the Swarm initiator when setting up the Swarm. Each 

node then uses these merged parameters to calculate various validation metrics, such as 

precision, F1 score, or AUC. These results are compared against the stopping criterion and if 

it is found to be met, the SL process is halted. The stopping criterion for the training is 

configurable within the callback API (such as precision to be reached). Else the nodes use the 

merged parameters to start the next training batch. The merged parameters can then be used by 

the nodes to test new, local datasets. The SL Library uses blockchain smart contracts to define 

the leader election logic and the merge algorithm. The blockchain smart contracts prevents 

attacks from semi-honest or dishonest participants. 

 

The Swarm Learning implementation  

SL implementation is divided into these phases 

(1)  Initialization and onboarding. Onboarding is an offline process that involves multiple 

entities interested in Swarm-based ML to come together and formulate the operational and 

legal requirements of the decentralized system. This includes aspects such as parameter sharing 

agreements, arrangements to ensure node visibility across organizational boundaries of the 

entities, and a consensus on the expected outcomes from the model training process. 

Configurable parameters, such as the initial node, which is necessary to span up the network, 

are supplied during boot-up and the synchronization frequency among nodes are finalized. The 

common model to be trained is defined and if applicable a reward system is agreed upon. 

(2)  Installation and configuration: all the consortium members download and install the Swarm 

platform on their respective systems (nodes), during which the configuration of the SL network 
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finalized during initialization and onboarding step is also supplied. Afterwards, the SL platform 

boots-up and initiates the node’s connection to the Swarm network, as well as the blockchain 

network overlay upon the underlying IP network connection between the nodes. The boot-up 

is an ordered process in which the set of participant nodes designated as peer-discovery nodes 

(during the initialization phase) are booted-up first, followed by the rest of the nodes in the 

network. 

(3)  Integration and training: After integration of the SL API into the common model is agreed 

upon by all Swarm members, a node joins SL. The model training itself has the following steps: 

a. Enrollment: The Swarm Learning training begins with the enrollment in the Swarm 

smart contract by each node in a one-time process. Each node subsequently records its relevant 

attributes in the contract such as the uniform resource identifier (URI) from which its own set 

of trained parameters can be downloaded by other nodes. 

b. Local model training: Nodes next proceed to train the local copy of the model iteratively 

over multiple rounds / epochs. During each epoch, every node trains its local model using one 

or more data batches for a fixed number of iterations. After the number is reached, it exports 

the parameter values and shares them to the other nodes and signals the other nodes that it is 

ready for parameter-sharing. 

c.  Parameter sharing commences once the number of nodes that are ready for parameter 

sharing reaches a certain minimum threshold value specified during initialization. The elected 

epoch leader merges the parameters derived after local training on all nodes after each epoch. 

The leader uses the URI information of all the participants, to retrieve the parameters from each 

node to merge the parameters. 

d. Parameter merging and update: The SL framework merges the parameters according to 

the configured merging algorithm (see below) and signals to the other nodes that new 

parameters are available. Each node then downloads the new parameters from the leader and 

updates its local model with the new set of parameter values. 

e. Stopping criterion check: Finally, the nodes evaluate the model with the updated 

parameter values using their local data to calculate the validation metrics. The values obtained 

from this step are shared using the smart contract state. Each node signals to the network that 

the update and validation step is complete. The leader keeps checking for the update complete 
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signal from each node. When it discovers that all merge participants have signaled completion, 

the leader merges the local validation metric numbers to calculate the global metric numbers 

and marks the synchronization complete. 

(4)  Testing: After training has been completed the trained model is applied for testing and 

inference.  

An evaluation license for SL can be used for research purposes and initial testing. Such license 

will also come with the respective instructions for the use of the SL Library so that interested 

researchers will be able to create the Swarm network environment, including setup of a Swarm 

node, the Swarm node network, onboarding of Swarm nodes and training rounds within the 

Swarm network.  

 

Preparation and adaptation of code to be used in a Swarm Learning environment 

A Swarm callback is introduced to integrate the model with the SL Library. Minimum number 

of nodes for synchronization, synchronization interval, validation dataset and batch size are 

passed as parameters to Swarm callback. The Swarm callback API is 

swCallback = SwarmCallback( sync_interval = <number of training batches between 

syncs>,  

min_peers = <minimum peers>,  

val_data = <validation dataset>,  

val_batch_size = <validation batch size>,  

node_weightage = <relative weightage of node’s model weights>) 

sync_interval specifies the synchronization interval, 

min_peers specifies the minimum number of nodes for model synchronization,  

val_data specifies the validation dataset, 

val_batch_size specifies the validation batch size, 
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model_name specifies the name of the model, 

node_weightage specifies the relative weightage to be given to model weights of this node 

 

Data visualization  

The classification report and confusion matrix were generated with scikit-learn APIs for each 

permutation. Measurements of sensitivity, specificity, accuracy, and F1 score of each 

permutation run was read into a table in Excel (Microsoft Excel for Microsoft 365 MSO: 

Version: 2008 13127.21348, 16.0.13127_21336 64-bit) using Power Query (Microsoft Excel 

for Microsoft 365 MSO: Version: 2008 13127.21348, 16.0.13127_21336 64-bit) and used for 

visualization for the different scenarios in Power BI [Version: 2.81.5831.821 64-bit (Mai 

2020)] with Box and Whisker chart by MAQ Software (https://appsource.microsoft.com/en-

us/product/power-bi-visuals/ WA104381351, version 3.2.1). AUC, positive predictive value, 

all confidence intervals and statistical tests were calculated using R (version 3.5.2) and the R 

packages MKmisc (version 1.6) and ROCR (version 1.0.7).  
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