
Swarm Learning for decentralized and
confidential clinical machine learning

In the format provided by the
authors and unedited

Nature  |  www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-021-03583-3

1

Swarm Learning for decentralized and confidential clinical machine learning

Stefanie Warnat-Herresthal1,2,*, Hartmut Schultze3,*, Krishnaprasad Lingadahalli Shastry3,*,

Sathyanarayanan Manamohan3,*, Saikat Mukherjee3,*, Vishesh Garg4,*, Ravi Sarveswara3,*, Kristian

Händler1,5,*, Peter Pickkers6,*, N. Ahmad Aziz7,8,*, Sofia Ktena9,*, Florian Tran10,11, Michael Bitzer12,

Stephan Ossowski13,14, Nicolas Casadei13,14, Christian Herr15, Daniel Petersheim16, Uta Behrends17,

Fabian Kern18, Tobias Fehlmann18, Philipp Schommers19, Clara Lehmann19,20,21, Max Augustin19,20,21,

Jan Rybniker19,20,21, Janine Altmüller22, Neha Mishra11, Joana P. Bernardes11, Benjamin Krämer23,

Lorenzo Bonaguro1,2, Jonas Schulte-Schrepping1,2, Elena De Domenico1,5, Christian Siever3, Michael

Kraut1,5, Milind Desai3, Bruno Monnet3, Maria Saridaki9, Charles Martin Siegel3, Anna Drews1,5,

Melanie Nuesch-Germano1,2, Heidi Theis1,5, Jan Heyckendorf23, Stefan Schreiber10, Sarah Kim-

Hellmuth16, COVID-19 Aachen Study COVAS, Jacob Nattermann24,25, Dirk Skowasch26, Ingo Kurth27,

Andreas Keller18,28, Robert Bals15, Peter Nürnberg22, Olaf Rieß13,14, Philip Rosenstiel11, Mihai G.

Netea29,30, Fabian Theis31, Sach Mukherjee32, Michael Backes33, Anna C. Aschenbrenner1,2,5,29, Thomas

Ulas1,2, German COVID-19 OMICS Initiative (DeCOI), Monique M.B. Breteler7,34,#, Evangelos J.

Giamarellos-Bourboulis9,#, Matthijs Kox6,#, Matthias Becker1,5,#, Sorin Cheran3,#, Michael S.

Woodacre3,#, Eng Lim Goh3,#, Joachim L. Schultze1,2,5#

Affiliations:

1 Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

2 Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of

Bonn, Bonn, Germany

3 Hewlett Packard Enterprise, Houston, Texas, USA

4 Former employee of Hewlett Packard Enterprise

5 PRECISE Platform for Single Cell Genomics and Epigenomics at German Center for

Neurodegenerative Diseases (DZNE) and the University of Bonn, Bonn, Germany

6 Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI),

Radboud University Medical Center, Nijmegen, The Netherlands

7 Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn,

Germany

8 Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany

9 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical

School, Athens, Greece

10 Department of Internal Medicine I., Christian-Albrechts-University and University Hospital

Schleswig-Holstein, Campus Kiel, Kiel, Germany

11 Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital

Schleswig-Holstein, Campus Kiel, Kiel, Germany

12 Department of Internal Medicine I, University Hospital, University of Tübingen, Tübingen,

Germany

13 Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany

14 NGS Competence Center Tübingen, Tübingen, Germany

15 Department of Internal Medicine V, Saarland University Hospital, Homburg, Germany

16 Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich,

Munich, Germany

17 Children’s Hospital, Medical Faculty, Technical University Munich, Munich, Germany

18 Clinical Bioinformatics, Saarland University, Saarbrücken, Germany

19 Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne,

University of Cologne, Cologne, Germany

20 Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany

2

21 German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany

22 Cologne Center for Genomics and West German Genome Center, University of Cologne, Cologne,

Germany

23 Department Division of Clinical Infectious Diseases, Research Center Borstel and German Center

for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany

24 Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany

25 German Center for Infection Research (DZIF), Braunschweig, Germany

26 Department of Internal Medicine II - Cardiology/Pneumology, University of Bonn, Bonn,

Germany

27 Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany.

28 Department of Neurology and Neurological Sciences, Stanford University School of Medicine,

Stanford, USA

29 Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud

University Medical Center, Nijmegen, The Netherlands

30 Immunology & Metabolism, Life and Medical Sciences (LIMES) Institute, University of Bonn,

Bonn, Germany

31 Institute of Computational Biology, Helmholtz Center Munich (HMGU), Neuherberg, Germany

32 Statistics and Machine Learning, German Center for Neurodegenerative Diseases (DZNE), Bonn,

Germany

33 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

34 Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine,

University of Bonn, Bonn, Germany

* shared first authors
shared last authors

 corresponding author: joachim.schultze@dzne.de

3

Supplementary Information

Medicine is a prime example to illustrate the advantages of Swarm Learning (SL). Without any

doubt, numerous medical features including radiograms or computed tomographies,

proteomes, metagenomes or microbiomes derived from body fluids including nasal or throat

swaps, blood, urine or stool are all excellently suitable medical data for the development of AI-

based diagnostic or outcome prediction classifiers. We here chose to evaluate the cellular

compartment of peripheral blood, either in form of peripheral blood mononuclear cells (PBMC)

or whole blood-derived transcriptomes, since blood-derived transcriptomes include important

information about the patients’ immune response during a certain disease, which in itself is an

important molecular information35. In other words, in addition to the use of blood-derived high-

dimensional molecular features for a diagnostic or outcome classification problem, blood

transcriptomes could be further utilized in the clinic to systematically characterize ongoing

pathophysiology, predict patient-specific drug targets and trigger additional studies targeting

defined cell types or molecular pathways, making this feature space even more attractive to

answer a wide variety of medical questions34,36. Here, we illustrate that newly generated blood

transcriptome data together with data derived from more than 16,400 samples in 127 studies

combined with AI-based algorithms in a SL environment can be successfully applied in real-

world scenarios to detect patients with leukemias, tuberculosis or active COVID-19 disease in

an outbreak scenario across distributed datasets without the necessity to negotiate and

contractualize data sharing.

Concept of Swarm Learning

SL supports different functions for parameter merging including average, weighted average,

minimum, maximum, or median functions. The various merge techniques and merge

frequencies enable SL to efficiently work with imbalanced and biased data. The parameter

merging algorithm is executed using a blockchain smart contract thus protects it from semi-

honest or dishonest participants (Extended Data Fig.1c). As currently developed, SL works

with parametric models with finite sets of parameters, such as linear regression or neural

network models. The process of learning rounds is repeated until stopping criterions are

reached, which are negotiated between the Swarm nodes/members. The leader is dynamically

elected using a blockchain smart contract for merging the parameters and there is no need for

a central coordinator in this Swarm network (Extended Data Fig.1b-c). This has two

4

advantages; it reduces the potential for dataset reconstruction attacks as there is no central node

with global models and it provides better resilience and load balancing by distributing the job

of parameter merging.

For deployment of a Swarm Network, each node is provided with a software package that

contains 2 containers, the Swarm Network container, and the Swarm ML container. The Swarm

Network container includes 1) software to setup and initialize the Swarm Network, 2)

management commands to control the Swarm Network, and 3) start/stop SL tasks. This

container also encapsulates the blockchain software. The Swarm ML container includes

software to support 1) decentralized training, 2) integration with ML frameworks, and 3) it

exposes APIs for ML models to interact with SL. For any ML model to be decentralized and

applied to SL, it needs to be modified using the Swarm API. This Swarm API is synonymously

named Swarm callback API hereafter. The callback API provides options to control the SL

processes. The application layer consists of the content, which are the models for the respective

domain, here medicine (Extended Data Fig.1d), for example models for analysis of blood

transcriptome data from patients with leukemias, tuberculosis and COVID-19 (Fig.1f-k) or

radiograms (Fig.1l). We chose diseases as use cases that are both heterogeneous and life-

threatening to illustrate the immediate medical value of SL. Collectively, SL allows for

completely decentralized ML, and therefore enables a democratized, secure, confidentiality-

enabling, hardware-independent and scalable machine learning environment, removing the

central parameter server (custodian). It is applicable to many scenarios and domains, which we

demonstrate with four medical examples.

Swarm Learning predict leukemias from peripheral blood mononuclear cells

In a first scenario, we randomly distributed samples per node as well as cases and controls

unevenly at the nodes and between nodes (dataset A2) (Fig.2b). Sample distribution between

sample sets was permuted 100 times (Extended Data Fig.2a) to determine the influence of

individual samples on overall performance. Among the nodes, the best test results were

obtained by node one (with an even distribution between cases and controls) with a mean

accuracy of 97.1%, mean sensitivity of 97.8%, mean specificity of 96.5%, and a mean AUC of

0.996, albeit this node had the smallest number of overall training samples (8% of all samples).

Node 2 did not produce any meaningful results, which was due to a too low ratio of cases to

controls (1:99) for training. Surprisingly, node three with the largest number of samples, but

5

an uneven distribution (70% cases : 30% controls) did not perform as good as node one with a

mean accuracy of 94.6%. Most importantly, however, when comparing accuracy values, SL

outperformed each of the nodes resulting in higher test accuracy (mean accuracy 97.5%) and

AUC (mean AUC 0.998) (Fig.2b, lower panel, Supplementary Table 4). The accuracy of SL

was significantly higher (p < 0.01, Supplementary Table 5) when compared to the

performance of each of the three nodes, despite the fact that information from the poorly

performing node 2 was integrated. An alternative to SL would be to centralize data in cases

where data can be shared, and data privacy regulations would be fulfilled. In this first scenario,

the central model performed slightly better (Extended Data Fig.2b, Supplementary Table

4).

To test whether more evenly distributed samples at the nodes would improve individual node

performance, we distributed similar numbers of samples to each of the nodes (⅓ of training

samples per node) but kept case:control ratios similar to scenario 1 (Fig.2c, Extended Data

Fig.2f-g). While there was a slight increase in test accuracy at nodes 1 and 2, node 3 performed

worse with also higher variance. More importantly, SL still resulted in the best performance

metrics (mean 98.5% accuracy, mean AUC 0.998) with slightly but significantly (p<0.001)

increasing performance compared to the first scenario and accuracy of SL in this scenario was

almost at par with a central model (Extended Data Fig.2h). Results derived from datasets A1

and A3 echoed these findings (Extended Data Fig.2f,i-j).

In a third scenario, we distributed the same number of samples across all three nodes, but

increased potential batch effects between nodes, by siloing training samples of a particular

clinical study, independently performed and published in the past, to a dedicated training node

(complete workflow in Extended Data Fig.3a). In this scenario, cases and control ratios varied

between nodes and left out samples (independent samples) from the same published studies

were combined for testing at the test node. First, we tested the performance of the three nodes

and SL on the global test node. Node performances were very comparable, but never reached

SL results (mean 98.8% accuracy, Swarm outperformed all nodes with p<0.001, Fig.2d,

Extended Data Fig.3b, Supplementary Tables 4,5). Here, the central model performed

slightly better (Extended Data Fig.3c). Together, these results suggested that the individual

nodes cannot cope with the batch effects between the nodes, which is not the case for SL. This

is further substantiated by significantly improved node-internal performance, when each node

is tested using node-internal independent training and test datasets (Extended Data Fig.3d).

Comparable results were also achieved for datasets A1 and A3 (Extended Data Fig.3e-f).

6

Along these lines, we designed a real-world scenario with siloing samples from independent

previous studies not only to the training nodes, but also the global test node (Extended Data

Fig.3g). For example, three consortia with their own independent studies would build the

Swarm and then test their results on independent data provided for testing by a fourth

consortium. Clearly, in this scenario batch effects are further increased. Although the variance

in the results was increased both at the training nodes and for SL, SL clearly outperformed the

individual nodes (mean 95.3% accuracy, Extended Data Fig.3g-h).

In a fourth scenario, we further optimized the nodes by increasing the overall sample size at

node 3 and keeping case:control ratios even at all nodes (Extended Data Fig.4a-f). Clearly,

node performance further improved with little variance between permutations, however, even

under these ‘node-optimized’ conditions, SL led to higher performance parameters and

accuracy and AUC were at par with the central model (both AUC 0.998, Extended Data

Fig.4d).

In a fifth scenario, we tested whether or not SL was ‘immune’ against the impact of the data

generation procedure (microarray versus RNA-seq) (Fig.2e, Extended Data Fig.4g-i). We

recently demonstrated that classifiers trained on data derived by one technology (e.g.,

microarrays) do not necessarily perform well on another (e.g., RNA-seq)3. To test this influence

on SL, we siloed the training samples from the three different datasets (A1-A3) to one node

each, e.g., dataset A1 was used for training only at node 1. We used 20% of the data

(independent non-overlapping to the training data) from each dataset (A1-A3) and combined

them to form the test dataset. Node 3, trained on RNA-seq data, performed poorly on the

combined dataset due to the fact that two-thirds of the data in the test dataset were microarray-

derived data. Nodes 1 and 2 performed reasonably well with mean accuracies of 96.0% (node

1) and 97.5% (node 2), however did not reach the test accuracy of SL (98.7%, AUC 0.999),

which also indicated that SL is much more robust toward effects introduced by different data

production technologies in transcriptomics (Fig.2e, Extended Data Fig.4g-i) and almost

reached accuracy of the central model. (Extended Data Fig.4i).

Since RNA-seq can be performed using numerous different techniques, we assessed the impact

of different RNA-seq protocols on predictive performance and if SL could overcome these

limitations. In a sixth scenario, we split the data accordingly (Extended Data Fig.4j-k). While

samples at node 1 were sequenced with 50 bp paired end reads using an Illumina HiSeq 2500

instrument, the AML cases from node 2 were sequenced with 100 bp paired end reads on an

Illumina HiSeq 2000 instrument. Library preparation was performed using TruSeq library

7

preparation kit in both cases. (Extended Data Fig.4j-k, details on all included studies are listed

in Supplementary Table 6). We illustrate that SL outperforms the nodes with unequal

distribution of the data.

Next, we repeated several of these scenarios but this time using the second most prevalent

disease, acute lymphoblastic leukemia (ALL), as cases (Extended Data Fig.5a-b and data not

shown) and demonstrated very similar results with SL outperforming the classifiers built at the

nodes. Also here, samples were siloed at nodes according to their study origin. In addition, we

tested how SL would perform in a test dataset with low prevalence for ALL (10%, 5% and 1%)

(Extended Data Fig.5c-e). While node performance dropped with decreasing prevalence, SL

outperformed the nodes in all measures with the strongest effect being present at the lowest

prevalence.

We next extended SL to a multi-class prediction problem, identifying patients with all four

major classes of leukemias (ALL, AML, CLL and CML). We split the A2 dataset into three

training and one test node with different prevalence per disease and node (Extended Data

Fig.5f). The test node was balanced for AML, ALL and CLL, but had a low prevalence of CLL.

SL outperformed the nodes or was at par with the best nodes in accuracy, sensitivity and

specificity for the overall prediction as well as for the prediction of the individual diseases

(Extended Data Fig.5g, Supplementary Table 4).

Another likely scenario for SL in medicine is the usage of data from many individual smaller

medical centers. To assess such a scenario, we siloed the training data in 32 smaller nodes

(Extended Data Fig.5h). While node prediction varied between nodes due to different

distributions of case and controls, SL outperformed the nodes in all measures (Extended Data

Fig.5i, Supplementary Tables 4,5). When increasing nodes, one can also envision that

additional nodes might onboard at a later time point. Such an onboarding scenario was

simulated with an initial three-node Swarm with subsequent onboarding of three additional

nodes during the training cycle. Interestingly, accuracy increased immediately after onboarding

of the additional nodes (Extended Data Fig.5j). To further illustrate the applicability of SL,

we assessed whether simpler models such as LASSO could also be applied to predict leukemia

(Extended Data Fig.6a). Again, SL outperformed the nodes, however LASSO presented with

higher overall variance than the DNN trained on the same data (Extended Data Fig.6b-c).

Collectively, these different use cases and scenarios, using real-world transcriptome data

collected from 127 individual studies, illustrate that SL would not only allow data to be kept at

8

the place of generation and ownership, but it also outperforms every individual node in

numerous scenarios, even in those with nodes included that cannot provide any meaningful

classifier results, and reaches central model performance when training data are large enough.

Swarm Learning to identify patients with tuberculosis

To apply SL, we generated a dataset based on full blood transcriptomes derived by PaxGene

blood collection followed by bulk RNA-seq. We also generated new blood transcriptomes and

added existing studies to the dataset compiling a total of 1,999 samples from nine individual

studies including 775 active and 277 latently infected Tb cases (Fig.1i, Extended Data Fig.7a,

Supplementary Table 2). These data are more challenging, since infectious diseases show

more variety due to biological differences with respect to disease severity, phase of the disease

or the host response. But also, the technology itself is more variable with numerous different

approaches for full blood transcriptome sample processing, library production and sequencing,

which can introduce technical noise and batches between studies.

As a first scenario, we used all Tb samples (latent and active) as cases and divided Tb cases

and controls evenly among the nodes (Extended Data Fig.7a-b, Supplementary Table 1).

Similar to AML and ALL, in detecting Tb, SL outperformed the individual nodes in accuracy

(mean 93.5%), sensitivity (mean 96.1%) and specificity (mean 91.0%) (Extended Data

Fig.7b). These values were slightly better when comparing the performance to the central

model (Extended Data Fig.7b). To increase the challenge, we decided to assess prediction of

active Tb cases only. In this scenario, latently infected Tb cases are not treated as cases but

rather as controls (Extended Data Fig.7a). For the first scenario, we kept cases and controls

even at all nodes but further reduced the number of training samples (Fig.3a). As expected in

this more challenging scenario, distinguishing active Tb from the control cohort (including

latent Tb samples), overall performance (mean accuracy 89.1%, mean sensitivity 92.2%, mean

specificity 86.1%) dropped, but still SL performed better than any of the individual nodes

(p<0.01 for Swarm vs. each node, Fig.3a, Supplementary Table 5). To determine whether

sample size impacts on prediction results in this scenario, we reduced the number of samples

at each training node (1-3) by 50% but kept the ratio between cases and controls (Extended

Data Fig.7c). Still, SL outperformed the nodes, but all statistical readouts (mean accuracy

86.4%, mean sensitivity 87.9%, mean specificity 85.0%) at all nodes and SL showed lower

performance, following general observations of AI with better performance when increasing

9

training data19. Interestingly, SL was at par with the central model here (Extended Data

Fig.7c). We next altered the scenario by dividing up the three nodes into six smaller nodes

(Fig.3b, samples per node reduced by half in comparison to Fig.3a), a scenario that can be

envisioned in the domain of medicine in many settings, for example, if several smaller medical

centers with less cases would join efforts (Fig.3b). Clearly, each individual node performed

worse, but for SL the results did not deteriorate (mean accuracy 89.3%, mean sensitivity 90.6%,

mean specificity 88.1% with significant difference to each of the nodes in all performance

measures, see Supplementary Table 5), again illustrating the strength of the joined learning

effort, while completely respecting each individual node’s data confidentiality.

Albeit aware of the fact that active Tb is rather a disease with endemic characteristics and does

not tend to develop towards a rapidly spreading pandemic such as the current COVID-19

pandemic, we utilized the Tb blood transcriptomics dataset to simulate potential outbreak and

epidemic scenarios to determine benefits, but also potential limitations of SL and how to

address them (Extended Data Fig. 7d-j). The first scenario reflects a situation in which three

independent regions (simulated by the nodes), would already have sufficient but different

numbers of disease cases. Furthermore, cases and controls were kept even at the test node

(Fig.3c, Extended Data Fig.7d-f). Overall, compared to the scenario described in Fig.3a,

results for the Swarm were almost comparable (mean accuracy 89.1%, mean sensitivity 91.2%,

mean specificity 87.0%, mean AUC 0.95), while the results for the node with the lowest

number of cases and controls (node 2) dropped noticeable (mean accuracy 81.2%, mean

sensitivity 85.1%, mean specificity 77.3%, mean AUC 0.90; Fig.3c, Supplementary Table 4).

When reducing the prevalence at the test node by increasing the number of controls (Extended

Data Fig.7d), this effect was even more pronounced, while the performance of SL was almost

unaffected (mean accuracy 88.0%, mean AUC 0.94).

We decreased the number of cases at a second training node (node 1) (Extended Data Fig.7e),

which clearly reduced test performance for this particular node (Extended Data Fig. 7e), while

test performance of the Swarm was only slightly inferior to the prior scenario (mean accuracy

85.2%, mean AUC 0.94; Supplementary Table 4), no significant difference to the prior

scenario). Only when reducing the prevalence at the test node (Extended Data Fig.7f), we saw

a further drop in mean specificity for the Swarm (81.9%), while sensitivity stayed similarly

high (90.2%) as well as AUC (0.93). Finally, we further reduced the prevalence at two training

nodes (node 2: 1:10; node 3: 1:5) as well as the test node (Extended Data Fig.7g,h). Lowering

10

the prevalence during training resulted in very poor test performance at these two nodes

(accuracy node 2: 67,7%, accuracy node 3: 78.7%), while specificity was high (node 2: 98.5%,

node 3: 93.9%). SL showed highest accuracy (mean accuracy 87.4%) and F1 score (83.5%) but

was outperformed for sensitivity by node 1 (Swarm: 80.0%, node1: 87.9%), which showed

poor performance concerning specificity (Swarm: 92.4%, node1: 84.6%). Vice versa, node 2

outperformed the Swarm for specificity (98.4%), but showed very poor sensitivity (21.2%)

(Extended Data Fig.7h). When lowering prevalence at the test node (Extended Data Fig.7i-

j), it became clear that all performance parameters including the F1 score were more resistant

for the SL compared to individual nodes. Taken together, using whole blood transcriptomes

instead of PBMC and active Tb as the disease instead of leukemia, we present a second use

case illustrating that SL integrating several individual nodes outperforms each node.

Furthermore, we gained initial insights into the potential of SL to be utilized in a disease

outbreak scenario.

Application of Swarm Learning on chest X-ray images

To further examine potential applications and data spaces, we generated a third use case and

applied the SL concept to one of the largest publicly available chest X-ray datasets32 with over

110,000 X-ray images. We included X-rays from patients with atelectasis, effusion and

infiltration as the three most frequent radiological findings in this dataset as well as images

without any pathological finding, which resulted in a total of 95,831 X-ray images in dataset C

(Fig.1l, Fig.3d, Methods). In line with our previous setup, we split the data into independent

training and test datasets and siloed the training data in three training nodes. We simulated

different prevalences at the nodes: While node 1 had a low prevalence in infiltration, node 2

was low in cases of atelectasis and node 3 was a low-prevalence node for images classified as

effusion. Also here, SL and single nodes were tested on the global test dataset. Generally,

prediction on images of the class “effusion” resulted in better test performances than the

prediction of atelectasis and infiltration. Most important however, SL outperformed each of the

nodes in prediction of all radiological findings included (AUCAtelectasis: 0.76, AUCEffusion: 0.86.

AUCInfiltration: 0.68) as well as the prediction of lack of pathological finding in the control

images (AUCno finding: 0.81).

Identification of COVID-19

11

We assessed if the Swarm network of six nodes would also predict data from completely

independent external nodes (E7, E8; Extended Data Fig.9e, Methods). Node performance on

E7 was very variable between datasets / centers, while SL clearly outperformed all nodes in

AUC (0.98) and accuracy (96.2%, Extended Data Fig.9f). Interestingly, when testing on E8,

including 45 samples of convalescent COVID-19 patients, four patients were classified as cases

by most individual nodes as well as SL, indicating that a subgroup of COVID-19 patients still

seem to contain blood transcriptomes reminiscent of acute disease (data not shown), which - in

light of long COVID-19 - opens additional avenues for SL. To generate a situation for which

only a small number of centers (here three) would be available for SL during an early outbreak

scenario, which then would be capable to provide a predictor to a fourth independent center

with acute COVID-19 patients, we assessed whether the centers E1, E2 and E3 can predict

patients in E4. While all nodes show high AUC and accuracy, SL shows the highest sensitivity

(1.0), again illustrating the advantage of SL over individual nodes (Extended Data Fig.9h).

Finally, we assessed how SL would cope with biased age and sex distributions, the influence

of co-infections as well as the potential to distinguish mild from severe cases (Extended Data

Fig.10). Distributing solely male cases to node 1 and solely female cases to node 2 did not

affect node prediction performance. However, SL was also here outperforming the nodes

(Extended Data Fig.10a). When distributing only samples from patients older than 65 to node

1, younger than 65 to node 2 and both age groups to node 3, SL outperformed nodes 1 and 2

(Extended Data Fig.10b). Co-infections seemed to have less impact. Biased distribution with

node 1 only harboring samples from patients with co-infections, node 2 only cases without co-

infections and node 3 both groups results in only slightly better performance of SL (Extended

Data Fig.10c).

Supplementary Discussion

The introduction of precision medicine based on high-resolution molecular and imaging data

will heavily rely on trustworthy ML algorithms in compute environments that are characterized

by high accuracy and efficiency, confidentiality-, privacy- and ethics-preserving, secure, and

fault-tolerant by design23,24. At the same time, privacy legislation is becoming increasingly

strict, as risks of cloud-based and central data-acquisition are recognized. Here, we introduce

SL, which combines blockchain technology and machine learning environments organized in

a Swarm network architecture with independent Swarm edge nodes that harbor local data,

12

compute infrastructure, and execute the shared learning models that make central data

acquisition obsolete. During iterations of SL, one of the nodes is chosen to lead the iteration,

which does not require a central parameter server anymore thereby restricting centralization of

learned knowledge and at the same time increasing resiliency and fault tolerance. In fact, these

are the most important improvements over current local, central (i.e. cloud-based) and

federated computing models. Furthermore, private permissioned blockchain technology,

harboring all rules of interaction between the nodes, is Swarm Learning’s inherent

confidentiality-enabling strategy. This technological advancement is of particular interest to

medical data and could be adapted by other federated learning systems. To understand whether

the concept of SL would also be characterized by high efficiency and high accuracy, we built

four medical use cases including heterogeneous diseases such as leukemias, Tb and COVID-

19, for which classification is a non-trivial task13. Further, we apply SL to two different data

spaces, blood transcriptome data, which are high-dimensional data derived from blood, one of

the major tissues used for diagnostic purposes in medicine, as well as X-ray imaging. First,

utilizing three previously compiled datasets (A1-3) of peripheral blood mononuclear cells

derived from patients with acute myeloid leukemia, we provide strong evidence that SL-based

classifier generation using a well-established neural network algorithm outperforms individual

nodes, even in scenarios where individual contributing Swarm nodes were performing rather

poorly. Surprisingly, it was not necessary to fine tune with applying weights to individual nodes

to improve overall performance of Swarm in most scenarios, indicating that access to an

enlarged dataset prevails over optimization of the AI model. Future studies will address

whether the combination of better models and access to enlarged datasets can further improve

SL. Most striking, SL even improved performance parameters when training of individual

nodes was based on technically different data, a situation that was previously shown to

deteriorate classifier performance3. With these promising results, we generated a more

challenging use case in infectious disease patients, detecting Tb based on full blood

transcriptomes. Also, in this case, SL outperformed individual nodes. Furthermore, using X-

rays, we illustrate that SL also performs well in a different data space.

Using Tb to simulate scenarios that could be envisioned for building blood transcriptome

classifiers for patients during an outbreak situation, we further illustrate the power of SL over

individual nodes. Considering the difficulty to quickly negotiate data sharing protocols or

contracts during an epidemic or pandemic outbreak, we deduce from these findings that SL

would be an ideal strategy for independent producer of medical data to quickly team up to

13

increase the power to generate robust and reliable machine learning-based disease or outcome

prediction classifier without the need to share data or relocate data to central cloud storages.

Further, we generated disease prediction classifiers for COVID-19 in an outbreak scenario

building on knowledge that blood transcriptomes in COVID-19 are significantly altered

including gene expression changes in hundreds of genes34,36. Here, we provide evidence that

classifiers with high accuracy, sensitivity, specificity and F1 scores can be generated to identify

patients with COVID-19 based on their blood transcriptomes. Since current test strategies are

intended to identify every individual infected with SARS-CoV-2 (PCR tests, antigen tests), but

do not provide any information concerning the disease (asymptomatic to severe courses), blood

transcriptomics could be envisioned as a complementary approach identifying patients who

will require further medical attention. Moreover, we illustrate the capacity of SL allowing to

quickly increase the power of classifier generation even under very early outbreak scenarios

with very few cases used at the training nodes, which could be e.g., collaborating hospitals in

an outbreak region. Since data do not have to be shared, additional hospitals could benefit from

such a system by applying the classifiers to their new patients and once classified, one could

even envision an onboarding of these hospitals for an adaptive classifier improvement schema.

Albeit technically feasible, we are fully aware that such scenarios require further classifier

testing and confirmation, but also an assessment of how this could be integrated in existing

legal and ethical regulations at different regions in the world4,8. Furthermore, we appreciate

that other currently less expensive data might be suitable for generating classifiers to identify

COVID-19 patients6. For example, if highly standardized clinical data would become available,

SL could be used to interrogate the clinical feature space at many clinics worldwide without

any need to exchange the data to develop high performance classifiers for detecting COVID-

19 patients. Similarly, recently introduced AI-systems using imaging data15,16 might be more

easily scaled if many hospitals with such data could be connected via SL. Our example using

a publicly available X-ray dataset clearly points towards this direction. Irrespective of these

additional opportunities using other parameter spaces, we would like to suggest blood

transcriptomics as a promising new alternative due to its very strong signal in COVID-19. A

next step will be to determine whether blood transcriptomes taken at early time points could be

used to predict severe disease courses, which might allow physicians to introduce novel

treatments at an earlier time point. Furthermore, we propose to develop an international registry

of blood transcriptomes that could be utilized for the development of predictive classifiers in

other infectious and non-infectious diseases as well. It could be envisioned that such an SL-

based learning scheme could be deployed as a permanent monitoring or early warning system

14

that runs by default, looking for unusual movements in molecular profiles. Collectively, SL

together with transcriptomics but also other medical data is a very promising approach to

democratize the use of AI among the many stakeholders in the domain of medicine while at

the same time resulting in more data confidentiality, privacy, data protection and less data

traffic.

Supplementary Methods

Datasets

Peripheral blood mononuclear cell (PBMC)-derived transcriptome dataset (dataset A)

We used a previously described dataset containing over 12,000 transcriptomes derived from

peripheral blood mononuclear cells (PBMC), deposited at the National Center for

Biotechnology Information Gene Expression Omnibus (GEO) under SuperSeries GSE122517

or via the individual SubSeries GSE122505 (dataset A1), GSE122511 (dataset A2) and

GSE122515 (dataset A3). Briefly, this dataset was generated by inspection of all publicly

available datasets at GEO on September 20th, 2017. Inclusion criteria were cell type (PBMCs)

and species (Homo sapiens). Existing GEO SuperSeries were excluded to avoid duplicated

samples. According to the data generation method, three datasets were established; dataset A1,

generated with Affymetrix HG-U133 A microarrays (n=2,500), dataset A2 with Affymetrix

HG-U133 2.0 microarrays (n=8,348), and dataset A3 with high-throughput RNA sequencing

(RNA-seq) (n=1,181). Data were curated as previously described3. All sample information is

listed in Supplementary Table 2.

Whole blood-derived transcriptomes for the prediction of tuberculosis (dataset B)

To establish a dataset based on whole blood transcriptomes, we generated new data from

healthy controls (Rhineland Study) and combined these with previously generated data that had

been deposited in Gene Expression Omnibus (GEO). We screened for transcriptome datasets

derived from human whole blood samples, which were collected using the PAXgene Blood

RNA System. In total, nine independent datasets were selected to be included in the present

study (GSE101705 (n=44); GSE107104 (n=33), GSE112087 (n=120), GSE128078 (n=99),

GSE66573 (n=14), GSE79362 (n=355), GSE84076 (n=36); GSE89403 (n=914)). The newly

generated 384 whole blood samples were sampled in context of the Rhineland Study led by the

15

German Center for Neurodegenerative Diseases (DZNE), which is an extensive longitudinal

study monitoring healthy individuals over 2 decades. Approval to undertake the Rhineland

Study was obtained from the ethics committee of the University of Bonn, Medical Faculty. The

study is carried out in accordance with the recommendations of the International Conference

on Harmonization (ICH) Good Clinical Practice (GCP) standards (ICH-GCP). Written

informed consent was obtained from all participants in accordance with the Declaration of

Helsinki. Overnight fasting blood was collected from all participants, including a PAXgene®

tube for RNA extraction and RNA-seq analysis. In total, dataset B contained 1999 samples

from patients with active tuberculosis (n=775), latent tuberculosis (n=277), fatigue (n=55),

autoimmune diseases (n=68), HIV (n=16) and controls (n=808). Sample information is listed

in Supplementary Table 2.

X-ray dataset (dataset C)

To evaluate whether Swarm learning can also be applied to other medical data types, we

included a publicly available dataset on chest X-ray images. We used the National Institutes of

Health (NIH) Chest X-ray dataset available on Kaggle – https://www.kaggle.com/nih-chest-

xrays/data32. It is one of the largest publicly available real-world anonymized chest X-ray

datasets with annotations that can be used to perform clinically relevant computer-aided

detection and diagnosis (CAD). The image labels are extracted from the associated radiological

reports using Natural-Language-Processing (NLP) with more than 90% labelling accuracy. The

study was IRB approved (personal communication by Dr. Summers, Senior Investigator,

Clinical Image Processing Service, NIH CC).

The NIH Chest X-ray dataset consists of 112,120 X-ray images of size 1024 x 1024 with

pathophysiological findings from 30,805 unique patients. There are in total 15 classes (14

pathophysiological findings and 1 control): atelectasis, consolidation, infiltration,

pneumothorax, edema, emphysema, fibrosis, effusion, pneumonia, pleural thickening,

cardiomegaly, nodule, mass, hernia, and no finding (control). It is a multi-class multi-label

dataset, i.e., images can be classified as either one or more classes or only control. Images are

present in 12 zip files of ~ 2-4 GB each. In our experiment, we have included the

pathophysiological findings atelectasis, effusion, and infiltration as the 3 most frequent classes

as well as the control images, which totals 95,831 X-ray images from the dataset.

Whole blood-derived transcriptome dataset for the prediction of COVID-19 (dataset D)

https://www.kaggle.com/nih-chest-xrays/data
https://www.kaggle.com/nih-chest-xrays/data

16

To develop classifiers based on whole blood transcriptomes able to predict COVID-19 patients

we collected an additional 134 PAXgene® tubes for RNA extraction and RNA-seq analysis

from patients with acute COVID-19, of which 41 samples were either collected at the Sotiria

Athens General Hospital (Ethics Committee of Sotiria Athens General Hospital, IRB

23/12.08.2019) or the ATTIKON University General Hospital in Athens (Ethics Committee of

ATTIKON University General Hospital, IRB 26.02.2019), Greece, and 93 whole blood

samples were collected at the Intensive Care Unit of the Radboud University Medical Centre

in Nijmegen, the Netherlands. The protocol was reviewed by the local ethics committee (CMO

Arnhem-Nijmegen, registration no. 2016-2923) and the study was carried out in accordance

with the applicable rules concerning the review of research ethics committees and informed

consent in the Netherlands. All patients or legal representatives were informed about the study

details and could decline to participate. COVID-19 was diagnosed by a positive SARS-CoV-2

RT-PCR test in nasopharyngeal or throat swabs and/or by typical chest CT-scan finding. Blood

for RNA-seq analysis was sampled on day 0 to 11 after admission. In the cohort in Athens,

blood samples from ten healthy donors who were tested negative on SARS-CoV-2 were

included as controls. The newly generated samples from the COVID-19 patients and the

controls from Athens were combined with dataset B (see above) to establish dataset D. As a

result, in addition to the 1999 samples derived from dataset B, dataset D included further 10

healthy controls and 134 COVID-19 samples, which makes a total of 2,143 samples. Sample

information is listed in Supplementary Tables 2 and 6.

Extension of the transcriptome dataset for the prediction of COVID-19 (dataset E1-8)

To extend the COVID-19 analysis to even more realistic scenarios, we collected additional

samples from additional medical centers in Germany and generated the new dataset E. Most

centers focused on sampling COVID-19 patients with an underrepresentation of controls. To

reach a realistic outbreak situation (low prevalence), we kept COVID-19 cases always at the

center of origin and increased the number of controls at each node by adding control samples

(Extended Data Fig.9e).

In total, 250 PAXgene samples from patients with acute COVID-19 and 177 samples from

convalescent COVID-19 patients were collected including the 93 samples from Nijmegen and

the 41 samples from Athens from dataset D. The additional whole blood PAX-gene samples

were derived from Kiel (COVIDOM, Ethics Committee of the University of Kiel, IRB

D466/20; 41 acute COVID-19, 4 healthy controls), Saarbrücken (CORSAAR, Ethics

17

Committee Medical Association of the Saarland, IRB 62/20; 50 acute COVID-19), Munich

(Ethics Committee of the LMU Munich, IRB 20-263; 17 acute COVID-19, 1 convalescent

COVID-19, 17 healthy controls and 15 controls with other infections), Tübingen (DeCOI Host

Genomes, Ethics Committee of the Medical Faculty of the University of Tübingen, IRB

286/2020B01; 45 convalescent COVID-19), Aachen (COVAS, Ethics Committee of the

Medical Faculty of the Technical University Aachen, IRB 20-085; 4 acute and 12 convalescent

COVID-19), Cologne (Ethics Committee of the University of Cologne, IRB 20-1187_1; 116

convalescent COVID-19). Furthermore, we collected granulocyte-derived transcriptomes from

Bonn (Ethics Committee of the Medical Faculty of the University of Bonn, IRB 073/19,

134/20; 89 acute COVID-19, 8 healthy controls and 2 controls with other infectious diseases).

Briefly, granulocytes were isolated from peripheral blood collected in EDTA tubes by density

centrifugation, followed by red blood cell lysis, RNA extraction and library preparation for

RNA-seq.

Furthermore, we collected 1,444 healthy PAXgene control samples from Saarbrücken (Ethics

Committee Medical Association of the Saarland, IRB 20200597). Diagnostics testing for

SARS-CoV-2 was carried out as for patients in Athens and Nijmegen. Samples from acute

COVID-19 patients were collected until day 46 after admission to the hospital or during

ambulant hospital visits. Some medical centers provided longitudinal samples, in which gene

expression of the same patient was measured at different time points. For training, we included

only the first two time points per individual. For testing also other time points were included.

Samples from convalescent patients were collected at least 46 days post symptoms. Since not

all medical centers could provide healthy controls, we simulated low prevalences for COVID-

19 in the scenarios described here by distributing control samples from Bonn and Saarbrücken

to the data derived by the other centers so that we had a total of 300 samples per dataset E1-E8

(Extended Data Fig.9e). Dataset E1 contained 39 acute COVID-19 patients from Athens and

261 healthy controls, dataset E2 contained 50 acute COVID-19 patients from Saarbrücken and

250 healthy controls, dataset E3 contained 70 acute COVID-19 patients from Nijmegen, as

well as 144 controls with acute sepsis and 86 healthy controls, dataset E4 contained 32 acute

COVID-19 patients from Kiel and 268 healthy controls, dataset E5 contained 12 acute COVID-

19 samples from Munich, 272 healthy controls, 15 samples with other diseases and 1 patient

with convalescent COVID-19, dataset E6 contained 4 acute COVID-19 cases from Aachen and

128 convalescent COVID-19 patients from Cologne as well as 168 healthy controls, dataset E7

contained 89 acute COVID-19 samples, 2 samples with other infectious diseases and 209

healthy controls (89 granulocyte-derived transcriptomes and 201 whole-blood transcriptomes)

18

and dataset E8 contained 45 convalescent COVID-19 patients and 255 healthy controls. In total

2,400 samples were included in dataset E and sample information is listed in Supplementary

Table 2.

Application Layer and scenarios

The application layer (see also Extended Data Fig.1d) consists of disease models for which

definitions are given, which samples are cases and which samples are controls. For example, if

the classifier is supposed to detect all patients with tuberculosis (Tb), the model includes

patients with latent and active tuberculosis as cases and all other samples as controls (Extended

Data Fig.7). However, if only patients with active tuberculosis are intended to be detected as

cases, the model is changed in that cases are now only patient samples derived from patients

with active Tb, while samples from patients with latent Tb are now treated as controls, similar

to all other non-Tb samples. In case of COVID-19, we focused on classification of acute

COVID-19 patients, while samples of convalescent patients were only used at test nodes and

never for training purposes. For one prediction scenario (Extended Data Fig.10d-e), we

stratified COVID-19 patients according to their disease severity. Patients with a WHO disease

severity score of 5 or higher were classified as “severe” COVID-19 patients and used as cases

opposed to controls, which were COVID-19 cases with severity scores from 1-4. Further, we

provide multi-class predictions for the leukemia dataset distinguishing between ALL, AML,

CLL, CML, and control (Extended Data Fig.5f-g). Here five different labels are used. This is

similarly true for the X-ray dataset, where we used the pathophysiological findings atelectasis,

effusion, infiltration and no finding (normal X-rays), where several images had more than one

label (Fig.3d). The cases and controls used for each scenario are given in the result section in

more detail. For each node, classifiers are generated by applying neural networks (for

description see below) with the exception of Extended Data Fig.6b, where we used the

LASSO algorithm (for description see below). All prediction results are given in

Supplementary Table 3.

Scenarios for prediction of leukemias

We previously demonstrated that ML on PBMC transcriptomes can be utilized to predict

AML3. Based on this experience, we generated sample sets within three independent

transcriptome datasets (dataset A1-A3, see above) to assess different scenarios in a three-node

19

setting for training and an independent test node only used for testing. As indicated in Fig.2

and Extended Data Fig.2-4, six main scenarios with varying numbers of samples per node

and varying ratios between cases and controls at each node where defined. For predicting AML,

all samples derived from AML patients were classified as cases, while all other samples were

labeled controls. For each scenario (Fig.2, Extended Data Fig.2-4) and each dataset, we

permuted the sample distribution 100 times, resulting in a total of 9,600 individual predictions.

The different scenarios were chosen to address the influence of sample numbers per node, the

case control ratio, study design-related batch effects, sequencing protocols and transcriptome

technologies used on classifier performance at the nodes, but more importantly on SL

performance. Furthermore, we compared SL performance to the central model, which was

trained by generating a central dataset on all samples, which was then split into training and

test dataset according to the sample distribution within the SL model. Lastly, we used one

scenario to apply LASSO as an alternative to develop an AML classifier under SL conditions

(Extended Data Fig.6a-c).

When predicting ALL, all samples derived from ALL patients were classified as cases and all

others as controls (Extended Data Fig.5a-e). Furthermore, we provide a scenario for multi-

class prediction (Extended Data Fig.5f-g).

Sample distributions for all permutations within all scenarios are listed in Supplementary

Table 1 and all used tuning parameters are listed in Supplementary Table 8.

Scenarios for detecting patients with active TB

In line with the experience we gained from the prediction of AML, we used dataset B to

generate scenarios for the prediction of tuberculosis in various settings, again using different

scenarios in a three-node setting for training and an independent test node only used for testing.

In one scenario, all patients with tuberculosis (Tb) including patients with latent and active Tb

were treated as cases, while all others were defined as controls (Extended Data Fig.7b). In all

other scenarios, cases were restricted to active Tb patients’ samples, while patients with latent

Tb were defined as controls together with all other non-Tb samples. Here, the question to be

answered was whether the classifiers can identify patients with active Tb and could distinguish

them from latent Tb and other conditions.

20

In one scenario (Fig.3b), we added three additional training nodes to test dependency of

classifier performance by the number of nodes. As indicated in Fig.3a, Fig.3c and Extended

Data Fig.7d, three scenarios with varying numbers of samples per node and varying ratios

between cases and controls at each node where defined. For scenarios described within

Extended Data Fig.7e and Extended Data Fig.7f we tested two prevalence scenarios in the

test dataset. For each scenario we permuted the sample distribution 5-10 times, resulting in a

total of 325 individual predictions. To mimic an outbreak scenario, we reduced cases also at

the testing nodes to determine the effects on SL performance (Extended Data Fig.7g-j).

Sample distributions for all permutations within all scenarios are listed in Supplementary

Table 1.

Scenarios for detecting pathophysiological findings in X-ray images

In order to generalize and see whether the SL approach would also be applicable to other data

spaces, we included a scenario on publicly available chest X-ray images (Fig.3d). Here, we

focused on the prediction of three pathophysiological findings, namely effusion, atelectasis,

and infiltration. Since many images contained multiple labels, this was a multiclass-multilabel

classification setup, and we report the results for each predicted class separately. We permuted

the scenario 10 times.

Simulation of outbreak scenarios to detect COVID-19 patients

Based on the promising results obtained with tuberculosis, we intended to simulate classifier

building and testing for the prediction of COVID-19 in a SL setting. We used dataset B and

added 143 additional samples, of which 134 samples were derived from acute COVID-19

patients (see above). We applied a three-node setting for training and an independent test node

only used for testing.

In one scenario (Extended Data Fig.8a-d), we kept cases (n=30) and controls (n=30) evenly

distributed among the three training nodes and tested three different prevalence scenarios at the

test node (22:25; 11:25; 1:44). In a second scenario (Extended Data Fig.8e-g) we changed the

ratio of cases and controls at each node (node 1: 40:60, node 2: 30:70, node 3: 20:80) and tested

21

two prevalence scenarios at the test node (22:25; 11:25). In a third scenario (Extended Data

Fig.8h-j) we further reduced the number of cases at the training nodes (node 1: 30:70, node 2:

20:80, node 3: 10:90) and tested two prevalence scenarios at the test node (37:50; 37:75). Next,

we tested an outbreak scenario (Fig.4a,b, Extended Data Fig.8k,l) with very few cases at the

outbreak node 1 (20:80), an early secondary node (10:90) and a later secondary node (5:95)

and three prevalence scenarios at the test node (1:1, 1:2, 1:10), resulting in a total of 220

individual predictions.

To design even more realistic scenarios, we recruited further samples from a total of eight

different medical centers. In a first scenario six medical centers (nodes) teamed up as the

Swarm (Fig.4c). Each center provided 20% held-out data and contributed these data to the

independent test node T. The remaining 80% of the data are used for local learning at each

node and for SL. COVID-19 predictors derived by SL or individual nodes of the Swarm are

then tested on the test node T. Further, we used two independent medical centers (E7, E8) as

additional independent test nodes (Extended Data Fig.9g). As outlined above, these nodes

were very different in that one provided transcriptomes from blood-derived granulocyte-

enriched COVID-19 samples (different technology), the other only transcriptomes from

convalescent patients (no acute cases) (Extended Data Fig.9e). This scenario was permuted

20 times. Second, three of the centers with acute COVID-19 cases became members of the

Swarm, but for testing, a fourth external medical center is used (E4) (Extended Data Fig.9h).

Sample distributions for all permutations within all scenarios are listed in Supplementary

Table 1.

For all use cases and scenarios, non-overlapping training and test datasets were always

guaranteed.

The Swarm Learning framework, library, distributed ML and blockchain technologies

SL builds on top of two proven technologies — distributed ML and blockchain. Distributed

ML is leveraged to train a common model across multiple nodes with a subset of the data

located at each node — commonly known as the data parallel paradigm in ML — though

without a central parameter server. Blockchain lends the decentralized control, scalability, and

fault-tolerance aspects to the Swarm Network system to enable the framework to work beyond

the confines of a single enterprise.

22

The SL Library is a framework to enable decentralized training of ML models without sharing

the data. The SL framework is designed to make it possible for a set of nodes — each node

possessing some training data locally — to train a common ML model collaboratively without

sharing the training data itself. This can be achieved by individual nodes sharing parameters

(weights) derived from training the model on the local data. This allows local measures at the

nodes to maintain confidentiality and privacy of the raw data. Importantly, in contrast to many

existing federated learning models, a central parameter server is omitted in SL.

The inherent trade-off between the effectiveness of a ML system and the privacy guarantees it

can offer is subject to lively ongoing research. In this paper, we therefore decided not to

integrate specific data privacy mechanisms in the design for use with our SL framework, but

to make it compatible with previously used underlying ML models, including models that rely

on privacy-enhancing technologies such as obfuscation and anonymization. The goal was to

enable their seamless integration in the SL framework. Furthermore, SL can inherit

developments to further preserve privacy such as differential privacy algorithms40, functional

encryption41, or encrypted transfer learning approaches42. The framework itself does not rely

on a fixed central aggregator, but instead implements a dynamic selection of changing

aggregators for every merge cycle by means of smart contracts. The framework moreover

implements state-of-the-art security technologies (trusted execution environment, secure

containment, network encryption) to protect data from direct unauthorized access. To ensure

equal conditions even at the early stages of building a Swarm Network (low number of nodes),

we suggest using the SL infrastructure also at its lower boundary, namely with two nodes

already.

The nodes that participate in SL, register themselves with the Swarm Network implicitly using

the callback API. Here, the Swarm Network interacts with other peers using blockchain for

sharing parameters and for controlling the training process. On each node, a simple Swarm

callback API must be used to enable the ML model with SL capacities (see also code presented

below). The Swarm container must be configured to interact with the Swarm Network (network

IP and port configuration). All other complexities of setting up network, registration, parameter

sharing, and parameter merging are taken care of by the Swarm callback API and the Swarm

Network infrastructure.

Parameters shared from all the nodes are merged to obtain a global model. Moreover, the merge

process is not done by a static central coordinator or parameter server, but rather a temporary

23

leader chosen dynamically among the nodes is used to perform the merge, thereby making the

Swarm network decentralized. This provides a far greater fault-tolerance than traditional

centralized-parameter-server-based frameworks. All the nodes can perform the role of training

and merging, thereby maximizing the usage of local compute. The Swarm Network implicitly

controls this.

The HPE SL Library consists of two containers, the Swarm Network container, and the Swarm

ML container.

The Swarm Network container includes 1) software to setup and initialize the Swarm Network,

2) management commands to control the Swarm Network, and 3) start/stop SL tasks. This

container also encapsulates the blockchain software.

The Swarm ML container includes software to support 1) decentralized training, 2) integration

with ML frameworks, and 3) it exposes APIs for ML models to interact with SL.

For any ML model to be applied to SL, it needs to be modified using the Swarm callback API.

The callback API provides options to control the SL processes. To convert a ML program into

a Swarm ML program the following steps have to be performed:

1. Import the SwarmCallback class from the Swarm Library

from swarm ‘import SwarmCallback’

SwarmCallback is a custom callback class that is built on the Keras Callback class.

2. Instantiate an object of the SwarmCallback class:

swarm_callback = SwarmCallback(min_peers = <peer count>,

sync_interval = <interval>,

use_adaptive_sync = <bool>,

val_batch_size = <batch size>,

val_data = <either a (x_val, y_val) tuple or a generator>

node_weightage = <relative weightage of node’s model weights>).

24

In this context, ‘min_peers’ specifies the minimum number of network peers required to

synchronize the insights, ‘sync_interval’ specifies the number of batches after which a

synchronization is performed, ‘use_adaptive_sync’ specifies whether the adaptive sync

interval feature should be used for tuning the sync interval. This feature is turned off by default;

‘ val_batch_size’ specifies the size of each validation batch; ‘val_data’ specifies the validation

dataset. It can be either a (x_val, y_val) tuple or a generator;

3. Pass the object to the list of callbacks in Keras training code: model.fit(..., callbacks =

[swarm_callback]). SwarmCallback can be included along with other callbacks also:

es_callback = EarlyStopping(...);

model.fit(..., callbacks = [es_callback, swarm_callback])

The Swarm Learning architecture principles

The SL framework has two major components, 1) the Swarm ML component runs a user-

defined Machine Learning algorithm, and 2) the Swarm Network component forms the Swarm

Network based on a blockchain network.

The Swarm ML component is implemented as an API available for multiple popular

frameworks such as TensorFlow, Keras, PyTorch. This API provides an interface that is similar

to the training APIs in the native frameworks familiar to data scientists. Calling this API

automatically inserts the required hooks for SL so that nodes seamlessly exchange parameters

and subsequently continue the training after setting the local models to the globally merged

parameters. With a few simple code changes, the entire network learns as one cohort, with all

the complexities of control and data flow taking place in an automated fashion.

Within the Swarm Network component each Swarm ML component interacts with each other

using the Swarm Network component’s blockchain platform to maintain global state

information about the model that is being trained and to track the training progress. The Swarm

Network components use this state and progress information to coordinate the working of the

SL. The Swarm Network is responsible for keeping the decentralized Swarm network in a

globally consistent state. The Swarm Network ensures that all operations and the corresponding

state transitions are performed in a synchronous manner. Both, state and supported operations

25

of the system are encapsulated in a blockchain smart contract. The Swarm Network contains

the logic to elect the leader of the Swarm for every synchronization, implement fault-tolerance,

and self-healing mechanisms, along with signaling among nodes for commencement and

completion of various phases.

The SL framework is designed to run on both commodity and high-end machines, supporting

a heterogeneous set of infrastructures in the network. It can be deployed within and across data

centers. We also want to mention that currently SL has some limitations, e.g., all nodes within

a Swarm use the same model, every node needs to use the same ML platform and SL works

only for models that can be parameterized. Further, application of differential privacy

algorithms have not been formally tested in this study. However, in principle, there are no

differences between current ML settings and SL when applying such methods for data privacy

protection. More important, in contrast to federated learning with star topology and a

centralized coordinator, SL can support multiple topologies including fully connected, mesh,

star, tree and hybrid topologies. This flexibility provides multiple options to cater into different

use cases.

The Swarm Learning process

SL provides a callback API to enable swift integration with multiple frameworks. This API is

incorporated into the existing ML code to quickly transform a stand-alone ML node into a SL

participant in a non-intrusive way. It offers a set of commands (APIs) to manage the Swarm

Network and control the training.

The SL process is as follows:

The SL process begins with enrollment of nodes with the Swarm Network, which is done

implicitly by the Swarm callback function when the callback is constructed. During this

process, the relevant attributes of the node are stored in the blockchain ledger. This is a one-

time process.

Nodes will train the local copy of the model iteratively using private data over multiple epochs.

During each epoch, the node trains its local model using one or more data batches for a fixed

number of iterations until a merging criterion is reached. The merging criterion is defined by

26

the number of batches used and can be specified by the user using the sync_interval parameter

in the Swarm callback API.

At the end of every synchronization interval, when it is time to share the learnings from the

individual models, one of the Swarm nodes is dynamically elected as a leader. For the Swarm

networks shown in this work, the leader election logic is implemented as follows: the nodes

that finish the local training checks in for the merge process. The first node to check-in is the

leader. The elected leader node collects the model parameters from each peer node and merges

them. The framework supports multiple merge algorithms such as mean, weighted mean,

median (see below), which is selected by the Swarm initiator when setting up the Swarm. Each

node then uses these merged parameters to calculate various validation metrics, such as

precision, F1 score, or AUC. These results are compared against the stopping criterion and if

it is found to be met, the SL process is halted. The stopping criterion for the training is

configurable within the callback API (such as precision to be reached). Else the nodes use the

merged parameters to start the next training batch. The merged parameters can then be used by

the nodes to test new, local datasets. The SL Library uses blockchain smart contracts to define

the leader election logic and the merge algorithm. The blockchain smart contracts prevents

attacks from semi-honest or dishonest participants.

The Swarm Learning implementation

SL implementation is divided into these phases

(1) Initialization and onboarding. Onboarding is an offline process that involves multiple

entities interested in Swarm-based ML to come together and formulate the operational and

legal requirements of the decentralized system. This includes aspects such as parameter sharing

agreements, arrangements to ensure node visibility across organizational boundaries of the

entities, and a consensus on the expected outcomes from the model training process.

Configurable parameters, such as the initial node, which is necessary to span up the network,

are supplied during boot-up and the synchronization frequency among nodes are finalized. The

common model to be trained is defined and if applicable a reward system is agreed upon.

(2) Installation and configuration: all the consortium members download and install the Swarm

platform on their respective systems (nodes), during which the configuration of the SL network

27

finalized during initialization and onboarding step is also supplied. Afterwards, the SL platform

boots-up and initiates the node’s connection to the Swarm network, as well as the blockchain

network overlay upon the underlying IP network connection between the nodes. The boot-up

is an ordered process in which the set of participant nodes designated as peer-discovery nodes

(during the initialization phase) are booted-up first, followed by the rest of the nodes in the

network.

(3) Integration and training: After integration of the SL API into the common model is agreed

upon by all Swarm members, a node joins SL. The model training itself has the following steps:

a. Enrollment: The Swarm Learning training begins with the enrollment in the Swarm

smart contract by each node in a one-time process. Each node subsequently records its relevant

attributes in the contract such as the uniform resource identifier (URI) from which its own set

of trained parameters can be downloaded by other nodes.

b. Local model training: Nodes next proceed to train the local copy of the model iteratively

over multiple rounds / epochs. During each epoch, every node trains its local model using one

or more data batches for a fixed number of iterations. After the number is reached, it exports

the parameter values and shares them to the other nodes and signals the other nodes that it is

ready for parameter-sharing.

c. Parameter sharing commences once the number of nodes that are ready for parameter

sharing reaches a certain minimum threshold value specified during initialization. The elected

epoch leader merges the parameters derived after local training on all nodes after each epoch.

The leader uses the URI information of all the participants, to retrieve the parameters from each

node to merge the parameters.

d. Parameter merging and update: The SL framework merges the parameters according to

the configured merging algorithm (see below) and signals to the other nodes that new

parameters are available. Each node then downloads the new parameters from the leader and

updates its local model with the new set of parameter values.

e. Stopping criterion check: Finally, the nodes evaluate the model with the updated

parameter values using their local data to calculate the validation metrics. The values obtained

from this step are shared using the smart contract state. Each node signals to the network that

the update and validation step is complete. The leader keeps checking for the update complete

28

signal from each node. When it discovers that all merge participants have signaled completion,

the leader merges the local validation metric numbers to calculate the global metric numbers

and marks the synchronization complete.

(4) Testing: After training has been completed the trained model is applied for testing and

inference.

An evaluation license for SL can be used for research purposes and initial testing. Such license

will also come with the respective instructions for the use of the SL Library so that interested

researchers will be able to create the Swarm network environment, including setup of a Swarm

node, the Swarm node network, onboarding of Swarm nodes and training rounds within the

Swarm network.

Preparation and adaptation of code to be used in a Swarm Learning environment

A Swarm callback is introduced to integrate the model with the SL Library. Minimum number

of nodes for synchronization, synchronization interval, validation dataset and batch size are

passed as parameters to Swarm callback. The Swarm callback API is

swCallback = SwarmCallback(sync_interval = <number of training batches between

syncs>,

min_peers = <minimum peers>,

val_data = <validation dataset>,

val_batch_size = <validation batch size>,

node_weightage = <relative weightage of node’s model weights>)

sync_interval specifies the synchronization interval,

min_peers specifies the minimum number of nodes for model synchronization,

val_data specifies the validation dataset,

val_batch_size specifies the validation batch size,

29

model_name specifies the name of the model,

node_weightage specifies the relative weightage to be given to model weights of this node

Data visualization

The classification report and confusion matrix were generated with scikit-learn APIs for each

permutation. Measurements of sensitivity, specificity, accuracy, and F1 score of each

permutation run was read into a table in Excel (Microsoft Excel for Microsoft 365 MSO:

Version: 2008 13127.21348, 16.0.13127_21336 64-bit) using Power Query (Microsoft Excel

for Microsoft 365 MSO: Version: 2008 13127.21348, 16.0.13127_21336 64-bit) and used for

visualization for the different scenarios in Power BI [Version: 2.81.5831.821 64-bit (Mai

2020)] with Box and Whisker chart by MAQ Software (https://appsource.microsoft.com/en-

us/product/power-bi-visuals/ WA104381351, version 3.2.1). AUC, positive predictive value,

all confidence intervals and statistical tests were calculated using R (version 3.5.2) and the R

packages MKmisc (version 1.6) and ROCR (version 1.0.7).

30

Bibliography

1. Aronson, S. J. & Rehm, H. L. Building the foundation for genomics in precision medicine. Nature

526, 336–342 (2015).

2. Haendel, M. A., Chute, C. G. & Robinson, P. N. Classification, ontology, and precision medicine.

N. Engl. J. Med. 379, 1452–1462 (2018).

3. Warnat-Herresthal, S. et al. Scalable Prediction of Acute Myeloid Leukemia Using High-

Dimensional Machine Learning and Blood Transcriptomics. iScience 23, 100780 (2020).

4. Wiens, J. et al. Do no harm: a roadmap for responsible machine learning for health care. Nat.

Med. 25, 1337–1340 (2019).

5. Price, W. N. & Cohen, I. G. Privacy in the age of medical big data. Nat. Med. 25, 37–43 (2019).

6. Berlin, D. A., Gulick, R. M. & Martinez, F. J. Severe Covid-19. N. Engl. J. Med. 383, 2451–2460

(2020).

7. Gandhi, R. T., Lynch, J. B. & Del Rio, C. Mild or Moderate Covid-19. N. Engl. J. Med. 383, 1757–

1766 (2020).

8. He, J. et al. The practical implementation of artificial intelligence technologies in medicine. Nat.

Med. 25, 30–36 (2019).

9. Kels, C. G. HIPAA in the era of data sharing. JAMA 323, 476–477 (2020).

10. McCall, B. What does the GDPR mean for the medical community? Lancet 391, 1249–1250

(2018).

11. Cho, A. AI systems aim to sniff out coronavirus outbreaks. Science 368, 810–811 (2020).

12. Luengo-Oroz, M. et al. Artificial intelligence cooperation to support the global response to

COVID-19. Nat. Mach. Intell. (2020). doi:10.1038/s42256-020-0184-3

13. Peiffer-Smadja, N. et al. Machine Learning for COVID-19 needs global collaboration and data-

sharing. Nat. Mach. Intell. (2020). doi:10.1038/s42256-020-0181-6

14. Ge, Y. et al. A data-driven drug repositioning framework discovered a potential therapeutic agent

targeting COVID-19. BioRxiv (2020). doi:10.1101/2020.03.11.986836

15. Mei, X. et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat. Med.

26, 1224–1228 (2020).

16. Zhang, K. et al. Clinically Applicable AI System for Accurate Diagnosis, Quantitative

Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell 182,

1360 (2020).

17. Council of Europe: Convention for the Protection of Individuals with Regard to Automatic

Processing of Personal Data. International Legal Materials 20, 317–325 (1981).

31

18. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

19. Kaissis, G. A., Makowski, M. R., Rückert, D. & Braren, R. F. Secure, privacy-preserving and

federated machine learning in medical imaging. Nat. Mach. Intell. (2020). doi:10.1038/s42256-

020-0186-1

20. Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–

1358 (2019).

21. Savage, N. Machine learning: Calculating disease. Nature 550, S115–S117 (2017).

22. Ping, P., Hermjakob, H., Polson, J. S., Benos, P. V. & Wang, W. Biomedical informatics on the

cloud: A treasure hunt for advancing cardiovascular medicine. Circ. Res. 122, 1290–1301 (2018).

23. Char, D. S., Shah, N. H. & Magnus, D. Implementing Machine Learning in Health Care -

Addressing Ethical Challenges. N. Engl. J. Med. 378, 981–983 (2018).

24. Finlayson, S. G. et al. Adversarial attacks on medical machine learning. Science 363, 1287–1289

(2019).

25. Konečný, J. et al. Federated Learning: Strategies for Improving Communication Efficiency. arXiv

(2016).

26. Shokri, R. & Shmatikov, V. Privacy-preserving deep learning. in 2015 53rd Annual Allerton

Conference on Communication, Control, and Computing (Allerton) 909–910 (IEEE, 2015).

doi:10.1109/ALLERTON.2015.7447103

27. Dove, E. S. et al. Genomic cloud computing: legal and ethical points to consider. Eur. J. Hum.

Genet. 23, 1271–1278 (2015).

28. Chollet, F. Keras. Github Keras (2015). at <https://github.com/keras-team/keras>

29. Zhao, Y. et al. Federated Learning with Non-IID Data. arXiv (2018).

30. Leong, S. et al. Existing blood transcriptional classifiers accurately discriminate active

tuberculosis from latent infection in individuals from south India. Tuberculosis (Edinb) 109, 41–

51 (2018).

31. Zak, D. E. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study.

Lancet 387, 2312–2322 (2016).

32. Wang, X. et al. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-

Supervised Classification and Localization of Common Thorax Diseases. in 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) 3462–3471 (IEEE, 2017).

doi:10.1109/CVPR.2017.369

33. Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR.

Euro Surveill. 25, (2020).

32

34. Aschenbrenner, A. C. et al. Disease severity-specific neutrophil signatures in blood transcriptomes

stratify COVID-19 patients. Genome Med. 13, 7 (2021).

35. Chaussabel, D. Assessment of immune status using blood transcriptomics and potential

implications for global health. Semin. Immunol. 27, 58–66 (2015).

36. Schulte-Schrepping, J. et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell

Compartment. Cell 182, 1419–1440.e23 (2020).

37. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks.

Nature 542, 115–118 (2017).

38. Kaissis, G. et al. A machine learning algorithm predicts molecular subtypes in pancreatic ductal

adenocarcinoma with differential response to gemcitabine-based versus FOLFIRINOX

chemotherapy. PLoS One 14, e0218642 (2019).

39. Elshafeey, N. et al. Multicenter study demonstrates radiomic features derived from magnetic

resonance perfusion images identify pseudoprogression in glioblastoma. Nat. Commun. 10, 3170

(2019).

40. Abadi, M. et al. Deep Learning with Differential Privacy. in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security - CCS’16 308–318 (ACM Press, 2016).

doi:10.1145/2976749.2978318

41. Ryffel, T., Dufour-Sans, E., Gay, R., Bach, F. & Pointcheval, D. Partially Encrypted Machine

Learning using Functional Encryption. arXiv (2019).

42. Salem, M., Taheri, S. & Yuan, J.-S. Utilizing transfer learning and homomorphic encryption in a

privacy preserving and secure biometric recognition system. Computers 8, 3 (2018).

43. Kędzior, M. The right to data protection and the COVID-19 pandemic: the European approach.

ERA Forum (2020). doi:10.1007/s12027-020-00644-4

	Swarm Learning for decentralized and confidential clinical machine learning

