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Integrative proteomic profiling of ovarian cancer
cell lines reveals precursor cell associated proteins
and functional status
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E. Lengyel2,** & M. Mann1,**

A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not

only resemble its tumour of origin at the molecular level, but also demonstrate functional

utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26

ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and

fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth

quantification of 410,000 proteins results in three distinct cell line categories: epithelial

(group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line

signature, which separates our entire proteomic data set, as well as a confirmatory publicly

available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and

mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal

stratification of cell lines and human tumours indicates a possible origin of HGSOC either

from the fallopian tube or from the ovarian surface epithelium.
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I
nvasive ovarian cancer (OvCa) is a highly heterogeneous
disease divided into four major histologic subtypes, namely
serous, endometrioid, mucinous and clear cell OvCa.

High-grade serous ovarian cancer (HGSOC) is the most
common (70%) and aggressive subtype and is primarily
responsible for the low survival rate1. Until recently, HGSOC
was thought to originate exclusively in the ovaries, as tumours
almost invariably involve the ovary. However, the discovery of a
possible precursor lesion, serous tubal intraepithelial carcinoma
(STIC), in the fallopian tube fimbria of BRCA-mutation carriers,
as well as in HGSOC patients, provides strong evidence for the
fallopian tube fimbria as the probable site of origin2–5. HGSOC is
characterized by ubiquitous somatic TP53 mutations6 and genetic
instability7, and frequently evolves to a chemo-resistant state.
From a molecular standpoint, it is classified into sub-groups
based on characteristic gene expression signatures–differentiated,
immunoreactive, proliferative and mesenchymal7,8.

Given that it is difficult to perform mechanistic studies with
primary tissue, the necessity for cellular models for in vitro and
in vivo experiments is apparent. However, these models should be
as representative of the tumour as possible, as there is little
clinical utility for experimental data obtained in cell lines that do
not reflect the disease being studied; these results might be, at
best, misleading and, at worst, harmful to patients. The time
that has elapsed since many OvCa cell lines were established
(some were created more than 30 years ago), coupled with the
risk of switching or cross-contamination when propagated for a
long time, and the only recent introduction of genomic
‘fingerprinting’ techniques, has led to the incorrect assignment
of the tissue origin of many OvCa cell lines9. The recent
establishment of The Cancer Genome Atlas (TCGA)7 has opened
the door for researchers to begin to address these uncertainties
and should allow selection of the most representative cell lines on
the basis of genomic and transcriptomic information. A number
of recent studies have integrated these HGSOC genomic
characteristics into their assessment of suitable cell lines, to
better understand OvCa biology and find novel treatment targets.
Domcke et al.9 evaluated data from the Cancer Cell Line
Encyclopedia (CCLE)10 by comparing a panel of 47 OvCa cell
lines to HGSOC tissue data available through the TCGA
consortium7 by means of copy number alterations (CNA),
mutation frequency and gene expression data. The authors
cautioned against the use of some of the more commonly used
OvCa cell lines due to their poor overall resemblance to HGSOC
in patients at the genomic level. Mitra et al.11 and Elias et al.12

recently highlighted some of the limitations of the newly
described HGSOC cell lines in pre-clinical studies, including
their limited and inconsistent ability to form tumours in
immuno-deficient mice. Interestingly, the cells with less genetic
resemblance to the TCGA tumours had a metastatic pattern
that was very similar to that of human HGSOC (for example,
disseminated abdominal tumour nodules and omental
involvement, but no extra-abdominal metastasis)11,12.

It is as yet unknown to what extent the molecular
characteristics reported by all these studies are represented at
the protein level. Genomic and transcriptomic level analyses do
not necessarily reflect the phenotype-defining proteomic profile.
So far, there has been no direct and in-depth proteomic
comparison between OvCa cellular models and tumour tissues.
However, given that proteins represent the functional and
phenotype-defining units of a cell, a quantitative proteomics
approach should be superior to gene expression-driven
comparisons alone. We therefore hypothesized that an
integrated and streamlined mass-spectrometry (MS)-based
proteomics approach13–15 is a promising methodology for
molecular subtype characterization. We here demonstrate that

directly integrating proteomic profiles from cell lines, tumour
tissues and primary cells adds a highly informative level to
the evaluation of OvCa cellular model systems. A cell line-derived
67-protein signature classifies OvCa tumours potentially arising
in the ovarian surface epithelium (OSE) or fallopian tube
epithelial cells (FTECs) and predicts functional properties of
these cells. We also provide a user-friendly resource of the
quantitative protein expression of 30 ovarian cell lines.

Results
Deep single-run proteomics of OvCa tissues and cell lines. To
the extent that proteomics has reached a reasonable depth
of quantification, this has usually involved multi-step workflows
with extensive fractionation and correspondingly long
measurement times. Since we sought to compare a large number
of OvCa proteomes, we instead adapted and applied a recently
described method based on a single-run workflow15,16. Briefly, we
performed tryptic digestion of the entire proteome followed by
chromatographic separation using relatively long (4 h) HPLC
gradients coupled to online mass spectrometric analysis on
high-resolution quadrupole Orbitrap mass spectrometers (see the
‘Methods’ section). Using this workflow, we quantified the
proteomes of eight HGSOC tumour tissues, 30 cell lines
(26 OvCa; two cervical cancer; two immortalized ovarian
surface epithelial (IOSE)) and three primary FTEC isolates
(Fig. 1a).

In total, our analysis resulted in 229,004 unique peptide
sequences corresponding to 11,070 distinct protein groups at a
peptide and protein false-discovery rate (FDR) of less than 1%
(refs 17,18; see the ‘Methods’ section). This remarkable depth,
considering the absence of any fractionation step, was
accompanied by a median protein sequence coverage of 43.6%
by the identified peptides. Label-free protein quantification (LFQ)
using the MaxLFQ algorithm19 resulted in a median depth of
7,828 protein quantifications per single measurement. The LFQ
values were highly reproducible as cell line replicates had median
Pearson correlation coefficients of 0.95 (Supplementary Fig. 1a),
whereas comparison of the two different IOSE cell lines and
FTECs from two different healthy donors had only somewhat
lower correlations of 0.93 each. Interestingly, HGSOC tumours
from the left and right ovaries from a single patient featured a
very high correlation of 0.95 at the proteome level (see also below;
Fig. 1b). These results demonstrate high experimental repro-
ducibility and cell-type homogeneity.

When we required quantification in at least two of three cell line
replicates, we obtained a filtered data set of, in total, 10,926 proteins
containing an average of 7,810 protein quantifications per cell line,
8,143 per HGSOC tumour tissue and 7,609 for the primary FTEC
replicates (Fig. 1c). A total of 8,397 were present in all three filtered
data sets (77%; Fig. 1d). More than 99% of the FTEC proteins were
also detected in OvCa cell lines or tumour tissues and, likewise,
nearly all proteins detectable in the tumour tissue at our depth of
analysis were also found in the cell line proteomes (97%). The few
unique proteins in the tumour data set were enriched for plasma
proteins and these were filtered out in subsequent analyses (see the
‘Methods’ section). There was even a high representation of the
OSE proteome as represented by IOSE cell lines in the combined
cancer cell line proteome (99%) and a very high overlap with the
FTECs (91%). Furthermore, protein intensities were comparably
distributed between these systems, as were the percentages of total
protein mass attributable to major cellular compartments
(Supplementary Fig. 1b, Supplementary Fig. 1c).

Protein expression is heterogeneous in OvCa cell lines. We first
analysed commonalities and differences in protein expression
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across 30 cell lines. Average filtered quantification depth and
expression levels from the triplicate analyses of each cell line are
shown in Fig. 2a and Supplementary Data 1. We asked
which proteins and pathways were constant or differentially
regulated across the cell lines and, to that end, calculated the
protein level variability (Sd of logarithmized protein intensity)
and plotted it against the estimated absolute protein abundance
(sum of the intensity-based absolute quantification [iBAQ]20

values calculated by MaxQuant, Fig. 2b). Proteins involved in
household functions, such as ribosome biogenesis, were stably
expressed across cell lines (median Sdo0.18), whereas
proteins known to be frequently lost, amplified or over-
expressed in diverse OvCa subtypes7,9,21 showed strong
expression differences (shown in blue in Fig. 2b). To investigate
this in more detail, we focused on known cell line-specific
genomic alterations, such as the amplification of the receptor
tyrosine kinase ERBB2 in SKOV3IP1 or the proto-oncogene
KRAS in KURAMOCHI9. Indeed, our data clearly reflected the
amplification of these two genes in the expression profiles of
those cell lines. Our data also indicated higher expression of
KRAS in the carboplatin-resistant TOV112DR, compared with its
parental cell line (Fig. 2c). Of note, the proteomic approach can
detect protein upregulation regardless of the mechanism
responsible. For instance, the transcription factor hepatocyte
nuclear factor 1-beta (HNF1B), often over-expressed in clear
cell ovarian cancer (CCC)22 showed the strongest expression in
the CCC OVISE cell line and the IGROV1 cell line, which,
according to its genomic profile, may be of clear cell or
endometrioid origin9. Furthermore, as shown previously, the
proteomic data allow investigation of the expression status of all
proteins in the amplicon23.

The complete data set covered a large proportion of the
KEGG-annotated members of major biological processes and
cancer-related signalling pathways, such as all 35 members of the
DNA replication pathway and 470% of the p53 pathway
(Fig. 2d). Pathway enrichment analysis across the cell lines
identified the biological pathways that were most differentially
regulated (Fig. 2e). For the quantified proteins that varied the
most (Sd40.5, 13% of all proteins; above dashed line in Fig. 2b),
significantly enriched annotations revealed major differences in
the expression of proteins related to the categories ‘Extracellular’,
‘Metabolism’, ‘Immunity’ and ‘Adhesion’, suggesting pronounced
cell line heterogeneity for a variety of biological processes (Fig. 2e,
Supplementary Data 2).

A discriminating 67-protein cell line signature. Unsupervised
hierarchical clustering based on the expression of 8,487 distinct
proteins quantified in at least 10 of 30 cell lines resulted in three
main groups (Fig. 3a). Group I cell lines comprised OVKATE,
SNU119, JHOS4, OVCAR3, COV318, OVSAHO, KURAMOCHI,
CAOV3, OVCA433, JHOS2 and the cell line pair PEO1/4, which
was derived from primary and recurrent tumours of the same
patient and clustered together in the dendrogram. Much of group
I consisted of cell lines that were previously reported to likely
represent HGSOC cell lines based on features of their genomic
profiles such as TP53 mutational status, mutation frequency and
DNA copy number alterations9. Group II contained OVCAR5,
the cervical cancer cell line pair ME180/C13, the CCC cell line
OVISE and the IGROV1 and SKOV3IP1 cell lines; the latter two
lines have been previously described as hypermutated and
‘unlikely HGSOC’ cell lines9. In group III, the two IOSE cell
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Figure 1 | Deep single-run proteomics of cell lines and human ovarian cancer tissue. (a) Summary of the shotgun proteomics workflow for OvCa cellular

models and high-grade serous ovarian cancer (HGSOC) tissues. Following lysis, protein purification, and tryptic digest, peptides were separated by

ultra-high performance liquid chromatography and measured in single runs using a quadrupole Orbitrap mass spectrometer. Label-free proteome

quantification was performed using the MaxQuant software environment. (b) Workflow reproducibility for cell lines (n¼ 30), HGSOC tissues (n¼ 8) and

primary FTEC cells (n¼ 3). Pearson correlations (r) were calculated for biological replicates of cell lines, primary FTEC isolates from different healthy

donors, and ovarian tumour tissues from both ovaries from a woman with HGSOC. (c) Average number of quantified proteins from each sample type.

Error bars represent standard deviations. (d) Number of proteins common to FTECs, HGSOC tumours and cell lines. FTEC, fallopian tube epithelial cell;

LC-MS/MS, liquid chromatography tandem mass spectrometry; m/z, mass-to-charge ratio; uHPLC, ultra-high performance liquid chromatography.
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lines, IOSE-397 and IOSE-7576, clustered closely together
suggesting that proteomic profiles accurately reflected tissue of
origin and/or subtype-specific molecular signatures (Fig. 3a).
The IOSE cell lines and the OvCa cell lines HEYA8, DOV13 and
59M had very high proteome similarities (Pearson correlation

0.85–0.92) and they grouped together in a sub-cluster of group
III. This group also contained the TOV112D and A2780 cell line
pairs, previously described as endometrioid in origin9,24,25. In
each of their respective groups, the corresponding members of the
isogenic cell line pairs were all located directly next to each other
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in the clustering analysis. Noticeably absent from group I, and
instead clustered within group III, based on their proteomic
signature, were the TYKNU and 59M cell lines, both of
which display high genomic similarity to HGSOC tumours9.
The clustering of these two cell lines within group III indicated
that certain discriminating features were detectable only at the
protein level, and suggested the presence of two distinct HGSOC
proteomes.

Independent of the unsupervised hierarchical clustering, we
used a principal component analysis (PCA) on the basis of
whole-proteome levels, which confirmed the presence of the three
main cell line groups (Fig. 3b). Figure 3c depicts the proteins
driving the segregation into the three groups: group I proteins
included known HGSOC markers such as PAX8, MSLN,
KRT7 and MUC16 (CA-125); group II, which contained the
OVISE CCC cell line, showed the highest expression of AKR1C1
and HNF1B, known CCC-associated proteins22,26; while
group III drivers included the mesenchymal proteins HMOX1,
VIMENTIN, FN1 and ITGA5 (ref. 7), a protein detected in
B20% of serous OvCa tumours27.

With the aim of determining a small group of proteins with the
strongest discriminating power between the groups, we used
feature selection in combination with Support Vector Machines
(SVMs) classification, as previously described28,29. This identified
a set of 67 proteins, which included many known OvCa markers
as well as novel ones (Supplementary Fig. 2, Supplementary
Table 1).

Integrative analysis of HGSOC tissue and cell line proteomes.
Given the distinct proteome characteristics of the cell line groups,
we reasoned that group I cell lines would most closely resemble
HGSOC human cancer tissue. To first assess the quantitative
robustness of our workflow for tumour tissue analysis, we
analysed eight HGSOC tumour proteomes from five patients.
This revealed that the proteomes were very similar between
bilateral ovarian tumours from the same patient (mean Pearson
correlation 0.95), compared with the inter-patient variation
(Pearson correlation 0.72–0.87; Supplementary Fig. 3a).
Consistently, tumours from the same patient tightly grouped
together in the PCA (Fig. 4a). Adding the cell line proteomes to
the PCA indicated a slight gravitation of the group I cell lines
towards the HGSOC tumours and the FTECs in component 1
(Fig. 4b), suggesting underlying proteomic similarities with both
the OvCa tumours and the primary FTECs. Of note, group III cell
lines, which included the two IOSE cell lines, clustered furthest
away from both the HGSOC and FTEC proteomes on component
1, but closest to the HGSOC tumours on component 2. Further
analysis of component 2 revealed that it represented epithelial/
mesenchymal protein levels (Supplementary Fig. 3b). Application
of the discriminating 67-protein cell line signature to the PCA

and hierarchical clustering analyses then resulted in three groups
and two main clusters (Fig. 4c,d, Supplementary Fig. 3c). The first
cluster was exclusively composed of the group I cell lines, with
seven of the eight HGSOC tumours and the primary FTEC
samples. In particular, the cell lines COV318, KURAMOCHI and
OVSAHO clustered closest to the tumour samples, whereas the
PEO1 cell line clustered with the FTEC isolates. The second
cluster contained groups II and III cell lines, organized into
distinct sub-clusters, and HGSOC-5, which clustered closest to
the group III cell lines.

Known epithelial HGSOC markers such as MSLN, PAX8 and
KRT7 were higher in the FTEC isolates, HGSOC tumours and
group I cell lines compared with groups II and III cell lines
(including IOSEs; Fig. 4d). Other proteins with a similar trend in
expression included proteins such as the retinoic acid transporter
CRABP2, a protein important in cancer-relevant arginine
metabolism, ASS1 (ref. 30), and the p53 target gene CRYAB31.
Conversely, groups II and III cell lines had higher expression of
ITGA5, a protein detected in B20% of serous OvCa tumours27.
Interestingly, while HGSOC-5 expressed similar levels of the
above-mentioned epithelial proteins, it had higher levels of
ITGA5, indicating that ITGA5 contributed to its cluster location
with group III cell lines.

Cluster-specific protein levels were validated for selected
proteins: cluster 1, CRABP2 and PAX8; cluster 2, ITGA5. We
confirmed cell type-specific expression of CRABP2 in human
HGSOC tumours and normal OSE using immunofluorescence
(Fig. 4e), as well as in normal FTECs, fallopian tube HGSOC and
omentum HGSOC (Supplementary Fig. 4a). The absence of
CRABP2 staining in normal OSE was consistent with its low
protein levels in the proteomic profiles of the IOSE cell lines.
Furthermore, we confirmed the levels of PAX8, CRABP2 and
ITGA5 by western blot (Supplementary Fig. 4b).

The signature separates HGSOC from TCGA into two groups.
The above analyses established two very robust, distinct clusters
based on the 67-protein signature, with cluster 1 containing the
group I cell lines, which had an FTEC-type profile and harboured
mostly epithelial proteins and cluster 2 containing the group III
cell lines, which had an IOSE-type profile with mostly
mesenchymal proteins. To validate our finding in a larger patient
cohort, we made use of the publicly available data from the
Clinical Proteomic Tumor Analysis Consortium (CPTAC)32,33.
The PNNL proteomics data set was downloaded and we applied
our 67-protein signature to the 84 tumour proteomes alone, and
then in conjunction with our own proteome data. This confirmed
the presence of two main tumour clusters, which we
denoted TCGA-A and TCGA-B, and which were enriched for
group I/epithelial and group III/mesenchymal proteins,
respectively (Fig. 5a, Supplementary Fig. 5). The group I cell

Figure 2 | Proteomic analysis reveals proteome diversity across frequently used OvCa cell lines. (a) Total number of quantified proteins in 26 OvCa cell

lines, two immortalized ovarian surface epithelial cell lines (IOSE) and two cervical cancer cell lines (n¼ 3 measurements for each cell line). A median

depth of 7,812 quantified proteins across all the samples was obtained. (b) Quantification of proteins with low and high standard deviation (s.d.) across all

the 30 cell lines identified constantly or variably expressed proteins. Protein level variability (s.d., log10) and protein intensity (sum of the intensity-based

absolute quantification (iBAQ) values, log10, calculated by MaxQuant) were compared for each protein in all cell lines. An s.d. cut-off of 0.5 was used to

identify proteins with the highest variability (13% of total proteins; s.d.40.5; dashed line). Proteins frequently altered in OvCa are highlighted in blue.

Proteins associated with ribosome biogenesis (Gene Ontology Biological Process), shown in green, display small differences in expression across cell lines.

CDKN2A is depicted twice, representative of two different isoforms. (c) Known genomic alterations are captured at the protein level. The relative protein

intensities (MaxLFQ) for proteins whose genes have known amplification events in OvCa cell lines are depicted in red. HNF1B, an ovarian CCC marker, is

shown in orange. (d) Coverage of cancer-related KEGG pathways. KEGG annotations, including cancer-related pathways, were applied to the data.

Percentages of pathway coverage in the indicated cancer-related KEGG categories are shown. Pathways involved in DNA replication and DNA repair, as

well as metabolic annotations such as the citric acid cycle or fatty acid metabolism were almost completely covered (480%). Signalling pathways such as

mTOR, p53 or TGF-b signalling are largely covered by 460%. (e) Pathway enrichment analysis using Fisher’s exact test (Benjamini–Hochberg false

discovery rate o2%) was performed for the proteins with the highest expression variability (proteins above dashed line in b).
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lines and the FTECs clustered with the TCGA-A tumours, and
the group III cell lines and the IOSEs clustered with the TCGA-B
tumours. TCGA-A tumours showed higher expression of most
group I/FTEC epithelial proteins such as KRT7, MSLN, CDH6,
ASS1 and EPCAM, while TCGA-B tumours had higher
expression of the group III/IOSE mesenchymal proteins ITGA5,
HMOX1, SMTN and GJA1 (refs 7,34; Fig. 5b). Kaplan–Meier
analysis of the overall survival of the two TCGA groups revealed
that patients in the TCGA-B group had a significantly lower
overall survival than those in the TCGA-A group (P¼ 0.0048;
Fig. 5c). We then utilized a publically available messenger RNA
(mRNA) data set that had identified two different primary
ovarian cancer cell line clusters. In that study, the gene expression
profiles of these clusters correlated with different survival
outcome in patients35. Figure 5d shows that mRNA levels of
our group I and group III proteins were higher in the good
survival- and poor survival-associated sets, respectively. Thus, the
two cell-type clusters established in our integrated cell line,
primary cell and tumour proteome analyses are independently
validated by the TCGA and Ince35 data sets.

Utility of the proteomic resource in functional assay design. A
cell line representative of human HGSOC should not only
resemble its tumour of origin at the molecular level, but more
importantly, also demonstrate functional utility in pre-clinical
investigations. To exploit our global protein expression data, we
first determined all proteins that were significantly different
between the cluster 1 and cluster 2 cell lines identified in our
study and then bioinformatically determined annotation terms
that were statistically enriched in either cluster36 (Fig. 6a,b).
Interestingly, this revealed that the vitamin A and retinal
binding pathways were the two most enriched pathways in the
group I cell lines compared with groups II and III cell lines.
In contrast, groups II and III cell lines expressed higher levels
of proteins associated with cell proliferation (mitosis, DNA
replication, Fig. 6a), in line with a previous study25. The volcano
plot demonstrates the protein expression fold change between
the two clusters. As expected, members of the 67-protein
signature showed strong expression differences (Fig. 6b),
and the levels of the retinoic acid pathway proteins differed
by up to 30-fold. Mean expression of the five vitamin A
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Figure 3 | Proteomic clustering reveals three distinct cell line groups. (a) Unsupervised hierarchical clustering was carried out on the basis of the relative

expression of 8,487 proteins, delineating three major cell line groups (group I, green; group II, blue; group III, red). The relative expression levels of 15

frequently altered proteins in OvCa are plotted for each of the 30 cell lines. Levels of known OvCa-related proteins (VIM, FN1, EPCAM, CDH1 and

CDKN2A) are also plotted. Relative protein levels are depicted by circle size. Relative ACTB levels are included for reference. * ‘likely HGSOC’ (teal) and

‘unlikely HGSOC’ (red) refer to the descriptions of these cell lines based on their genomic profiles as reported by Domcke et al.9; ‘unknown’ cell lines in grey

were not analysed in that study. (b) The presence of three major cell line groups was confirmed by principal component analysis (PCA) of the 30 cell lines.

(c) Proteins driving the PCA separation. The driver proteins from the three groups are identified on the PCA. Known HGSOC proteins MUC16, PAX8, KRT7

and MSLN are highlighted in black.
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pathway proteins likewise showed a large difference
between group I and groups II and III cell lines,
however, no pronounced differences were present between
FTECs, HGSOC tissues and group I cell lines (Supplementary
Fig. 6a).

On the basis of the results of this pathway analysis, we
hypothesized that group I cell lines would be more susceptible to
the known CRABP2-mediated anti-oncogenic effect of all-trans
retinoic acid (ATRA)37, the predominant physiological form of
retinoic acid, than groups II and III cell lines. This was supported
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by the inverse correlation between CRABP2 and FABP5, an
intracellular lipid binding protein that binds to retinoic acid in
the presence of a low CRABP2/FABP5 ratio38. The majority of
groups II and III cell lines had a low CRABP2/FABP5 ratio
(Fig. 6c). To test the hypothesized differential response to ATRA,
we treated representative groups I, II and III cell lines with ATRA
for 7 days and measured proliferation. Cell proliferation of group
I cell lines was inhibited by 26±2% revealing that ATRA induced
an anti-oncogenic effect in these cell lines (Fig. 6d). The only
exception was the group I KURAMOCHI cell line; however, in
these cells, ATRA treatment induced a more differentiated
phenotype with long spindle-like protrusions (Supplementary
Fig. 6b) consistent with the ATRA-induced differentiation
previously reported in other cancers39,40. As predicted,
ATRA had no inhibitory effect on cell proliferation in the
tested groups II and III cell lines; in fact, ATRA-treated HEYA8
and 59M cells showed an increase in proliferation compared with
their non-treated counterparts (Fig. 6d).

Discussion
It is evident by now that the most commonly used HGSOC cell
lines are among those with the least genomic similarity to
HGSOC tumours9,11,12. Nevertheless, these ‘bad’ cell lines still
closely recapitulate the metastatic distribution of human HGSOC
in pre-clinical animal models11.

Here we used MS-based proteomics to offer a more phenotype-
associated characterisation of OvCa cell lines than that of
genomic and gene expression characterization alone. Our
streamlined, single-run workflow allowed us to characterize a
large number of cancer proteomes in a relatively short time (4 h).
Importantly, the absence of fractionation did not unduly
compromise depth of coverage of the proteome as we detected
B8,000 proteins in cell lines, primary cells and tumours, with a
total number of B11,000. To put this in perspective, a recent
proteomic study of cancer tissues using a different platform
consistently detected 2,000 proteins41 and our own laboratory
previously achieved the numbers detected here only after using
fractionation techniques, which greatly add to measurement time
and sample requirements29. On the basis of the broad and
quantitative coverage, the 30 cell lines unambiguously separated
into three specific cell line groups: group I, containing a number
of HGSOC cell lines, expressed higher levels of many known
epithelial HGSOC proteins; group II, containing the CCC cell line
OVISE, expressed a number of CCC-associated proteins26,27; and
group III, containing the IOSE cell lines, expressed relatively
lower levels of known epithelial HGSOC markers and higher
levels of several mesenchymal proteins. A novel, maximally
discriminating 67-protein signature faithfully segregated the
groups and contained interesting group-enriched proteins in

addition to known OvCa markers. Of note, while group II cell
lines were all cultured in DMEM, the culture media for group I
and group III cell lines, both of which contain HGSOC cell lines,
consisted of a variety of different media, suggesting that the
signature is not dependent on the culture media.

We integrated the cell line proteomes with our primary FTEC
and HGSOC tumour data and, in a second step, with the CPTAC
proteomic data from 84 patients. Application of the 67-protein
cell line signature divided the entire data set into two core
clusters, clearly placing the primary FTEC isolates in the epithelial
cluster and the IOSEs in the other, more mesenchymal, cluster.
The FTEC cluster expressed high levels of known HGSOC
proteins such as MUC16 (CA-125), PAX8 and MSLN. It also
revealed novel markers for FTEC-derived HGSOC cell lines such
as CRABP2 and ASS1, which are highly expressed in serous OvCa
compared with the clear cell, endometrioid and mucinous
subtypes30,42; CRYAB, a p53 target gene31, which is associated
with patient outcome in serous, but not non-serous, OvCa43; and
CAPS and MX1, which have not been previously described as
potential markers of HGSOC (see summary in Supplementary
Table 1). The defining feature of the IOSE cluster was the high
expression of a small set of mesenchymal proteins: GJA1,
HMOX1, ITGA5, SMTN and SACS7,34. GJA1 facilitates cell
adhesion, invasion and metastasis in a number of other
cancers44–46; its high expression in the IOSE cluster indicates
that it may play a similar role in these cell lines and tumours.
a5-integrin (ITGA5), which we previously reported to be an
important mediator of early OvCa metastasis47, was a strong
discriminator between the FTEC and IOSE clusters, with high
expression in the latter. a5-integrin is regulated by the epithelial
differentiation marker E-cadherin (CDH1; ref. 48) and the
absence of CDH1 is a predictor of poor survival in OvCa
patients49. Although CDH1 was not in the discriminating
67-protein signature, its expression was drastically lower in
group III cell lines compared to group I cell lines (Fig. 3a).
In addition, OSE lacks, or inconsistently expresses, CDH1
(ref. 50). This suggests that the ITGA5/CDH1 axis may be an
important distinguishing feature of our newly defined HGSOC
sub-groups.

Group II cell lines were the least HGSOC-like cell lines in this
study and, interestingly, the ITGA5/CDH1 axis does not appear
to apply to this group. In general, group II lines express high
levels of epithelial proteins such as CDH1 and EPCAM, which
contributes to their clustering with the group I (epithelial) cell
lines in component 1 of the cell line PCA (Fig. 3b,c). However,
they also express high levels of ITGA5, which may contribute to
their clustering with group III in the integrated tumour and cell
line analysis (Fig. 4d). At least four of the seven cell lines in group
II contain an ARID1A mutation9; previous studies have reported
an association between these mutations and the transformation of

Figure 4 | Integrative analysis of HGSOC tissue and cell line proteomes. (a) Proteomic clustering of eight HGSOC tissue specimens. PCA was performed

on the ovarian tumour specimens (n¼ 8) based on the proteomic profiles to evaluate inter-patient heterogeneity and intra-patient homogeneity.

Component 1 and component 2 account for 51.5% of the total data variation. (b) PCA clustering of cell lines (n¼ 30), FTEC (n¼ 3) and HGSOC tissue

proteomes (n¼ 8). Groups I (green), II (blue) and III (red) are as defined in Fig. 3. The juxtaposition of the IOSE cell lines, red circles outlined in black,

relative to the rest of the group III cell lines is indicated. Component 1 and component 2 account for 28.1% of the total data variation. (c) PCA segregation

and clustering of all samples based on the 67-protein signature. The juxtaposition of the IOSE cell lines, red circles outlined in black, relative to the rest of

the group III cell lines is indicated. Component 1 and component 2 account for 54.8% of the total data variation. The dendrogram below the PCA

summarizes the hierarchical clustering analysis of all samples based on the 67-protein signature. Two main clusters were obtained based on this signature

(detailed in Supplementary Fig. 3c). (d) Relative levels of the 67 proteins used for PCA clustering in c. Relative protein levels (MaxLFQ intensities, log2) are

depicted by circle size. Colours indicate protein sequence coverage per sample. MSLN is depicted twice, representative of two different isoforms (shown in

parentheses). (e) Immunofluorescence staining for CRABP2 and p53 in formalin-fixed paraffin-embedded (FFPE) sections of normal OSE and ovary HGSOC

tumour. FFPE sections were stained with an anti-CRABP2 antibody and an anti-p53 antibody, and detected with Alexa Fluor 488- and Alexa Fluor

647-labelled antibodies, respectively. Merged images on the bottom show invasive HGSOC, normal OSE and normal ovarian stroma in the same frame.

Scale bar, 50mM.
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endometriosis into ovarian CCC51. In addition, the high levels of
CCC proteins, AKR1C1 and HNF1B22,26, that are low or
undetected in the other cell line groups, is further evidence of a
potential CCC background for most of group II cell lines.

A 219 microRNA (miRNA)-associated mesenchymal gene
signature separated OvCa cases in different data sets into two
subtypes: an integrated epithelial subtype and an integrated

mesenchymal subtype34. In line with this, the proteomes of group
I HGSOC cell lines, which clustered with the FTECs, contained a
mix of epithelial and mesenchymal proteins, while those of group
III, which contained the IOSE cell lines, were predominantly
mesenchymal (high VIM, low CDH1 and EPCAM, Fig. 3a). This
is also consistent with data from a study showing that the gene
expression profile of the mesenchymal HGSOC subtype is similar
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Figure 5 | Clustering of the TCGA tumours based on the 67-protein cell line signature. Hierarchical clustering summary of 84 TCGA tumours with the

cell lines, FTECs, IOSEs and HGSOC-1 to -5. (a) Hierarchical clustering based on the 67-protein signature was applied to the publically available proteomic

profiles of 84 TCGA tumours, and our own data set comprises the cell lines, FTECs, IOSEs and HGSOC-1 to -5 (Supplementary Fig. 5). The average protein

levels for each sample group are shown. (b) Group I and group III proteins are higher in TCGA-A and TCGA-B tumours, respectively. Z-scored protein levels

of group I and group III proteins were plotted as box plots for TCGA-A and TCGA-B tumours. (c) TCGA-B tumours (maroon line) are associated with a

poorer overall survival compared with TCGA-A tumours (black line). Kaplan–Meier overall survival curves were plotted for patients in TCGA-A or TCGA-B.

Survival associated with TCGA-B was significantly lower than that associated with TCGA-A (43.5 months versus 58 months, Mantel–Cox P

value¼0.0048). (d) The mRNA levels of group I and group III proteins were analysed in a publically available mRNA data set containing two different

primary ovarian cancer cell line clusters35. Box plots show higher median mRNA levels of group I proteins in the favourable (Ince Set 2) and relatively lower

in the unfavourable (Ince Set 1) survival-associated sets, while the converse is true for group III proteins.
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Figure 6 | Proteomic profiles predict functional cell line properties. (a) Pairwise comparison of enriched annotations for group I (cluster 1) and groups II

and III (cluster 2) cell lines. Pathway enrichment analysis was calculated on the basis of the protein expression fold change between group I and groups II

and III cell lines. Green and orange bars denote the strongest enriched pathways (Benjamini–Hochberg FDRo0.02) in group I and groups II and III cell lines,

respectively. Annotation enrichment position score, between � 1 and 1, indicates the centre of the protein distribution for each significant category, relative

to the overall distribution of values. Dendrogram shows sample clustering, based on the 67-protein signature. (b) Volcano plot of the pairwise comparison

between group I and groups II and III cell line proteomes. Expression fold changes (t-test difference, log2) were calculated and plotted against the t-test

P value (� log10). Vitamin A pathway-associated proteins are highlighted in green. Their position on the left side of the plot indicates their higher

expression in group I cell lines (P¼0.003). Strongest outlier proteins for both groups are marked in black. (c) Relative protein levels of the retinoic acid

transporter proteins CRABP2 and FABP5 were compared between FTECs, HGSOC, group I cell lines and groups II and III cell lines. The CRABP2/FABP5

ratios are shown. Groups II and III cell lines show significantly lower levels of CRABP2 expression relative to FABP5 (two-sided t-test, P valueo0.001). The

cell lines used in subsequent proliferation experiments (d) are indicated. (d) ATRA treatment induces growth arrest or differentiation in group I cell lines.

Group I (green) and groups II and III (orange) cell lines were treated with 7 mM ATRA daily for 7 days. On day 8, MTTassays were performed. Results are

plotted as the proliferation rate of ATRA-treated cells relative to that of untreated cells. Values o100% indicate growth arrest; values 4100% indicate

growth promotion. Error bars represent standard errors for two to four replicates per cell line. A simplistic model of the ATRA pathway is shown. ATRA, all-

trans retinoic acid; PPAR, peroxisome proliferator-activated receptor; RAR, retinoic acid receptor.
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to that of normal ovarian tissue52. Our separation of HGSOC
tumours into two groups on the basis of the 67-protein signature
was solidly confirmed in a validation set from the CPTAC as it
grouped their 84 HGSOC tumours into two main clusters,
reflective of group I and group III cell line proteomes, also
providing further evidence for a dualistic precursor model of
HGSOC. Importantly, there is a clear survival difference between
the two TCGA groups, with the TCGA-B (mesenchymal) patients
demonstrating a significantly worse overall survival than that of
the TCGA-A (epithelial) patients. In addition, the juxtaposition
of our tumour specimen HGSOC-5 with group III cell lines, the
IOSEs and TCGA-B in the integrated analysis strongly indicates
that this tumour represents the mesenchymal HGSOC
subtype7,52.

Clustering of group I cell lines and HGSOC-1 to -4 tumours
with the FTECs provides support for the fallopian tube
epithelium as their cell of origin, while the clustering of group
III cell lines and HGSOC-5 with the IOSEs, and their lower
expression of epithelial proteins, suggests that they may be
OSE-derived. This suggests the potential presence of an inherent
level of stratification in HGSOC tumours based on their protein
expression and cell of origin. Regarding the precursor cell of
HGSOC, there are convincing arguments for both FTECs and
OSE3,4,53,54. Supporters of the ‘fallopian tube theory’ argue that
the HGSOC protein PAX8 is a marker of the tubal epithelium55

and that STICs in the fallopian tube fimbria of BRCA1-mutation
carriers4 and HGSOC patients3 represent part of the serous
carcinogenic sequence; supporters of the ‘ovarian theory’ argue
that OSE expresses multiple stem cell markers56, and that
OSE-lined inclusion cysts can undergo tubal metaplasia56,57

followed by transition to carcinoma58. There is support for
both hypotheses from animal models54,59. However, aside from
the investigation of STICs, distinct biologic, clinical or molecular
features capable of categorical differentiation between the two
have not yet been identified60. Our proteomics results now
suggest a potential new level of simple stratification in HGSOC
into mesenchymal and epithelial subtype HGSOC. However, this
is, as yet, only hypothesis-generating; more detailed molecular,
immuno-histochemical and clinico-pathologic studies will be
necessary to substantiate or reject this concept.

The underlying differences between the cell lines in the two
different clusters were also reflected in the biological pathways
associated with their respective proteins. The vitamin A and
retinol pathways were highly enriched in group I cell lines, with
more than 10-fold expression level differences. Retinoic acid has
been used successfully in the treatment of acute promyelocytic
leukemia and neuroblastoma and its limited success in other
cancers may be due to different cellular responses. On the basis of
the proteomic profiling alone, we correctly predicted that group I
cell lines would be sensitive to the anti-proliferative, differentiat-
ing effects of ATRA, while groups II and III cell lines would be
either ATRA-resistant, or responsive to its pro-oncogenic effects.
Future investigation into these different mechanisms of action of,
and cellular response to, ATRA in group I and group III HGSOC
cell lines may inform the investigation of retinoic acid in OvCa.

In summary, the integrated level of cell line proteomic profiling
introduced here provides the OvCa research community with an
additional resource to select the most appropriate model for their
research. The described 67-protein signature may shed more light
on the cell of origin and respective driver proteins of HGSOC and
contribute to the further investigation of important clinical
problems such as chemotherapy resistance. Apart from opening
the door for systematic and routine interrogation of proteome-
wide differences in cancer models, our streamlined and high-
sensitivity proteomics workflow will be especially attractive in
in vivo contexts, where only small numbers of cells are available.

Methods
Patient samples. All patient samples were collected at the University of Chicago
Medical Center, with approval from the Institutional Review Board. All the patients
provided informed consent.

Frozen tumour samples. Ovarian tumours from five chemo-naive patients with
serous-papillary high-grade, FIGO Stage IIIB/C, OvCa were collected by EL under an
IRB-approved protocol at the University of Chicago during the primary debulking
surgery or laparoscopy before neo-adjuvant treatment. In some cases, tumours were
collected from both ovaries (n¼ 3 patients). Tumours were immediately snap frozen
and stored at � 80 �C until sample processing for MS analysis. Serous histology was
confirmed by two gynaecologic pathologists (A.M., R.R.L.).

Primary FTEC isolation. Fallopian tubes were removed from three patients with
benign gynaecological conditions not affecting the fallopian tube. Primary fallopian
tube secretory epithelial cells (FTECs) were isolated61 and cultured62 as previously
described.

Cell lines. Thirty cell lines were included in this study; their sources and respective
media are detailed in Supplementary Data 3. All the cell lines were genotyped to
confirm their authenticity; cell lines were authenticated by using the commercial
service CellCheck (IDEXX Bioresearch). The samples were confirmed to be of
human origin and no mammalian inter-species contamination was detected. The
alleles for nine short tandem repeat markers were determined and the results were
compared with the profiles from DSMZ, ATCC, JCRB and RIKEN short tandem
repeat databases. All the cell lines were mycoplasma-negative. The cells were grown
under recommended culture conditions and the samples were collected from three
consecutive passages for n¼ 3 replicates for each line.

Sample preparation for MS analysis. Cell lysis was performed in lysis buffer
(4% SDS, 10mM Hepes pH 8.0) at 99 �C for 10min and by 15min sonication (level
5, Bioruptor, Diagenode). HGSOC tissues were first homogenized in lysis buffer
using an Ultra Turbax blender. Proteins in the lysate were reduced with 10mM
DTT for 30min and alkylated with 55mM iodoacetamide for an additional 30min.
Remaining SDS detergent was removed by acetone precipitation. Briefly, acetone
(� 20 �C) was added to 100 mg of proteins to a final concentration of 80% v/v and
the proteins were precipitated overnight at � 20 �C. After centrifugation (15min,
4 �C, 16,000 g), the detergent-containing supernatant was removed and the protein
pellet was washed with 80% acetone (� 20 �C). Protein pellets were then resolved
in 100 ml 6M urea/2M thiourea (in 10mM Hepes pH 8.0) and digested with 1 mg of
LysC for 3 h at room temperature. After adding four volumes of 50mM
ammonium bicarbonate, 1 mg trypsin was added and tryptic digestion carried out
overnight. The next day, digestion was stopped by adding 1% TFA. Peptides were
finally desalted on C18 StageTips and kept at � 20 �C until MS analysis.

Liquid chromatography-MS analysis. MS analysis was performed using
Quadrupole Orbitrap mass spectrometers63,64 (Q Exactive and Q Exactive HF,
Thermo Fisher Scientific, Rockford, IL, USA) coupled to an EASY-nLC 1000 HPLC
system (Thermo Fisher Scientific) via a nano electrospray source. Columns (75 mm
inner diameter, 50 cm length) were in-house packed with 1.9 mm C18 particles (Dr
Maisch GmbH, Germany). Peptides were separated over a 250min gradient from
2% to 60% (5min to 5%, 180min to 25%, 45min to 35%, 20min to 60%) in buffer
B (80% acetonitrile, 0.5% formic acid) at 200 nlmin� 1. The column temperature
was constantly set to 50 �C by using an in-house-made column oven. The survey
scans (300 to 1,650m/z) were acquired with a resolution of 70,000 (60,000 for Q
Exactive HF), at m/z 200. A top-five method was used to select up to the five most
abundant precursor ions with a charge Z2. Selected precursor ions were subjected
to high-energy collisional dissociation fragmentation at a normalized collision
energy of 25 (27 for Q Exactive HF), an isolation window of 2.2 Th (1.4 Th for Q
Exactive HF) and a resolution of 17,500 at m/z 200 (15,000 for Q Exactive HF). For
survey scans, ion injections times were set to 20ms (target value 3E6) and 120ms
(target value 1E5) for MS/MS scans. Dynamic exclusion of sequenced peptides was
set to 30 s. Data were acquired using Xcalibur software (Thermo Scientific).

MS data analysis. MS raw files were analysed with MaxQuant software18 (version
1.5.0.38). MS/MS-based peptide identification was carried out with the Andromeda
search engine in MaxQuant17. Briefly, Andromeda uses a target-decoy approach to
identify peptides and proteins at an FDR o1%. As a forward database, the human
UniProtKB database (Oct 2014) was used. A reverse database for the decoy search
was generated automatically in MaxQuant. Enzyme specificity was set to ‘Trypsin’,
and a minimum number of seven amino acids were required for peptide
identification. Default settings were used for variable and fixed modifications
(variable modification, acetylation (N terminus) and methionine oxidation; fixed
modification, carbamidomethylation). Proteins and protein isoforms that could not
be discriminated by unique peptides were grouped into protein groups18. For
label-free protein quantification, the MaxLFQ algorithm was used as part of the
MaxQuant environment19. Briefly, quantitative information was retrieved on the
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basis of high-resolution three-dimensional peptide profiles in mass-to-charge,
retention time and intensity space. The algorithm first calculated pairwise protein
ratios by taking the median of all pairwise peptide ratios per protein. Only shared
identical peptides were considered for each pairwise comparison. A minimum
number of one ratio count was required for each pairwise comparison. To retrieve
quantitative information for all possible sample comparisons, a least-squares
analysis was used to reconstruct the relative abundance profile for each protein.
This step preserved the total summed intensity for a protein over all the samples.
To maximize the number of quantification events across samples, we enabled the
‘Match Between Runs’ option in MaxQuant, which allowed the quantification of
high-resolution MS1 features that were not identified in each single measurement.

Isobaric tag for relative and absolute quantification (ITRAQ)-based TCGA
proteome raw files (PNNL study) generated by the Clinical Proteomic Tumor
Analysis Consortium (NCI/NIH) were downloaded from the CPTAC data portal
(https://cptac-data-portal.georgetown.edu/cptacPublic/) and analysed with
MaxQuant. Logarithmic reporter intensities were normalized against the control
reporter channel (channel 117, pooled sample of 84 TCGA ovarian tumour tissue
samples) and each sample median normalized before data analysis.

Statistical analysis. All statistical and bioinformatics analyses were performed
using the freely available software Perseus65 (as part of the MaxQuant
environment) or the R framework66. Proteins identified only by site modification
or found in the decoy reverse database were not considered for data analysis. For
the analysis of LFQ cell line data, we first filtered out proteins that were only
quantified in one of three replicates and took the average expression per cell line for
the remaining protein quantifications. To calculate protein level variability across
cell lines (standard deviation of MaxLFQ intensity, Fig. 2b) we required a
minimum of 10 quantified values. Pathway enrichment analysis for categorical data
(Fig. 2e) was performed based on a Fisher’s exact test with a Benjamini–Hochberg
FDR threshold of 0.02. GOBP, GOCC, KEGG and Uniprot Keyword annotations
were used for enrichment analysis and required a minimum category size of at least
four proteins. For numerical data such as protein expression fold change between
two groups (Fig. 6b) we used a one-dimensional enrichment analysis36 with a
Benjamini–Hochberg FDR threshold of 0.02. For hierarchical clustering of cell lines
(Fig. 3a), a minimum of 10 valid values (one-third of all samples) was required.
Missing values were imputed on the basis of a normal distribution (width¼ 0.15,
down-shift¼ 1.8). MaxLFQ intensities were first z-scored and the samples
clustered according to Spearman rank correlations as a distance measure for
column and row clustering.

We used the classification framework implemented in Perseus and, in
particular, SVMs combined with feature selection methods to identify a subset of
proteins that act as strong discriminators between the three cell line groups. This
should allow deeper insight into the underlying biological processes, while keeping
the selected subset small enough to allow follow-up studies (Supplementary Fig. 2,
Fig. 4c,d).

The SVMs implementation in Perseus is an adaptation of the well-established
and commonly used LIBSVM library67, which uses sequential minimal
optimization to solve the quadratic problems during model training. We used a
One-versus-All implementation of SVMs classification, which resulted in three
distinct ranked lists of proteins—one for each of the cell line groups. Feature
selection was embedded in a cross-validation procedure to avoid overfitting and
random sampling using 85% of the data for training and the other 15% for testing;
this was repeated 250 times. Proteins were ranked by the P value computed using a
modified test statistic68 with an s0¼ 4 parameter. For the final list of 67
discriminating proteins, the top-ranked ones from each of the three ranked lists
that offered a good tradeoff between minimal sets and the smallest error rates were
combined (Group I, 53 proteins; Group II, 10 proteins; Group III, 10 proteins; with
six proteins overlapping). This feature selection method resembles that of a domain
expert (biologist) selecting a small subset of proteins that can conveniently be
followed up. Furthermore, the required large differences between the groups should
allow more robust classification in a clinical setup. The method is conceptually
analogous to the standard analysis of variance test and, in fact, performing analysis
of variance identifies the selected proteins as significantly differentially expressed.
However, using feature selection avoids the need for an FDR cutoff and allows for
selecting smaller subsets.

For PCA of cell lines, primary cells and HGSOC tissues (Fig. 4b), we first
filtered out the roughly 200 most abundant plasma proteins69. A minimum
number of 30 valid values out of 41 was required, resulting in 6,649 proteins.
Missing values were imputed as described above.

For the clustering of ITRAQ and label-free data (Fig. 5a,b, Supplementary
Fig. 5), z-scoring was performed group-wise for ITRAQ and label-free data.

For pairwise comparison of proteomes (Fig. 6b), a two-sided t-test statistic was
used, including a permutation-based FDR of 5% and an s0 value68 of 2.

ATRA treatment and proliferation assay. The following cell lines were treated
(or untreated) with 7 mM ATRA daily for 7 days in 96-well plates: SNU119,
TYKNU, KURAMOCHI, HEYA8, PEO4, 59M, SKOV3IP1 and COV318. On day
8, MTT assays were carried out. Proliferation rates were calculated for
ATRA-treated and untreated cells and plotted as percentage relative to untreated
cells.

Western blot. The cells were grown in six-well plates and treated with 7 mM
ATRA daily for 7 days. The cell lysates were collected in RIPA buffer and 20 mg
protein was electrophoresed on 4–20% resolving gels. The following antibodies
were used in western blots: anti-rabbit ITGA5 (1/1,000 dilution, #sc-10729, Santa
Cruz Biotechnology, Dallas, TX, USA), anti-rabbit PAX8 (1/1,000 dilution, #9857,
Cell Signaling Technology, Danvers, MA, USA), anti-rabbit CRABP2 (1/3,000
dilution, #PA5-27451, Thermo Fisher Scientific) and anti-rabbit GAPDH
(1/1,000 dilution, #2118, Cell Signaling Technology).

Immunofluorescence. Formalin-fixed paraffin-embedded HGSOC and normal
tissue sections (5 mm) were deparaffinized in xylene and rehydrated in graded
alcohol solutions. One FFPE section of normal (OSE and FTEC) or tumour
(omental tumour and fallopian tube tumour) tissue was used for immuno-
fluorescence. Antigen retrieval was carried out in 0.01M sodium citrate buffer with
0.05% Tween 20 (pH 6.0) for 30min at 95 �C. Briefly, slides were washed 3� with
PBS, blocked with 10% goat serum in phosphate-buffered saline/0.05% Tween
(PBST), and incubated overnight with anti-rabbit CRABP2 antibody (1:200
dilution, #PA5-27451, Thermo Fisher Scientific) or anti-mouse p53 (1:200 dilution,
pantropic, #OP42, Millipore, Billerica, MA, USA). Following five PBST washes,
sections were incubated with Alexa Fluor 488 goat anti-rabbit IgG (1:500 dilution,
#A11008, Thermo Fisher Scientific) or Alexa Fluor 647 goat anti-mouse IgG (1:500
dilution, #A21235, Thermo Fisher Scientific) and Hoechst (1/200 dilution, #H1399,
Thermo Fisher Scientific) for 1 h, washed 5� with PBST, 2� with PBS, and
mounted with Prolong Gold Antifade Reagent (P36934, Molecular Probes, Thermo
Fisher Scientific). The images were obtained with a Zeiss 510 LSM confocal
microscope, using the LSM 510 software. As a negative control, the primary
antibody was omitted for one section in each set of samples.

Data availability. The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org/
cgi/GetDataset) via the PRIDE70 partner repository with the data set
identifier PXD003668. The data set is also accessible via the user-friendly MaxQB
database (http://maxqb.biochem.mpg.de/mxdb/project/list). All other data
supporting the findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon
reasonable request.
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