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Abstract
Formalin fixation and paraffin-embedding (FFPE) is the most common method to preserve human tissue for clinical
diagnosis, and FFPE archives represent an invaluable resource for biomedical research. Proteins in FFPE material are
stable over decades but their efficient extraction and streamlined analysis by mass spectrometry (MS)–based prote-
omics has so far proven challenging. Herein we describe a MS-based proteomic workflow for quantitative profiling of
large FFPE tissue cohorts directly from histopathology glass slides. We demonstrate broad applicability of the work-
flow to clinical pathology specimens and variable sample amounts, including low-input cancer tissue isolated by laser
microdissection. Using state-of-the-art data dependent acquisition (DDA) and data independent acquisition (DIA)
MS workflows, we consistently quantify a large part of the proteome in 100 min single-run analyses. In an adenoma
cohort comprising more than 100 samples, total workup took less than a day. We observed a moderate trend towards
lower protein identification in long-term stored samples (>15 years), but clustering into distinct proteomic subtypes
was independent of archival time. Our results underscore the great promise of FFPE tissues for patient phenotyping
using unbiased proteomics and they prove the feasibility of analyzing large tissue cohorts in a robust, timely, and
streamlined manner.
© 2020 The Authors. The Journal of Pathology published by JohnWiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Hospitals routinely archive biopsied tissue specimens
that are collected for diagnostic purposes through forma-
lin fixation and paraffin‐embedding (FFPE). FFPE is an
economical archival choice, as tissues can be stored at
great density at room temperature (RT) for years or
decades while maintaining integrity for pathology ana-
lyses [1]. An estimated 500 million FFPE cancer tissues
are stored to date, and this number is rapidly rising [2];
these present an invaluable resource for studying molec-
ular mechanisms underlying diseases and testing poten-
tial biomarkers and discovering new ones. The long-

term storage of FFPE specimens implies that they are
often associated with a plethora of clinical data, includ-
ing histology reports, treatment, and patient outcomes.
Such metadata are of particular importance for integra-
tion of retrospective clinical and molecular data to
improve patient phenotyping and stratification. FFPE
sample preparation involves tissue fixation and embed-
ding in an inert matrix, which makes oligonucleotide-
based analysis difficult and often impossible [3,4].
Antibody-based histological methods are routinely per-
formed but rely on the preservation of the relevant
epitopes, which can also be very challenging and influ-
ence quantitation [5]. Because of these difficulties and
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the fact that mass spectrometry (MS)–based proteomics
demands clean peptide samples to be introduced to the
mass spectrometer, it came as a surprise when we and
others showed that FFPE samples are indeed very well
suited to this technology, including the analysis of
post-translational modifications (PTMs) [6,7]. Further-
more, carcinomas could be analyzed at great complexity,
in excess of 10 000 expressed proteins [8]. These and
other studies together established that FFPE tissues
show similar qualitative and quantitative proteomic
properties as fresh frozen (FrFr) tissues, further
highlighting the potential of FFPE tissue analysis for
biomedical research [6,9,10].

Recent technological progress of MS-based proteo-
mic methods now enables the unbiased and large-scale
investigation of proteomes at ever greater depth
[11]. As a result, in-depth proteomic analysis of FFPE
tissues in a clinical context has now become feasible.
Using MS-based proteomics on archived FFPE tissues,
we recently profiled more than 9000 protein groups from
metastatic ovarian cancer (OvCa) FFPE tissues and iden-
tified a novel prognostic disease biomarker, ‘CT45’,
causally linked to patient long-term survival [12]. Using
biobanked frozen tissue samples, studies from the Clini-
cal Proteomic Tumor Analysis Consortium (CPTAC)
highlighted the importance of integrating proteomic
and phosphoproteomic data with genomic information
to uncover functional consequences of genomic muta-
tions and identify proteogenomic subtypes linked to
patient outcome [13,14]. Despite these promising MS
technology developments and improved protein extrac-
tion protocols from FFPE tissues, streamlined work-
flows for efficient processing of hundreds of tissue
samples in a highly parallelized and robust manner are
not yet available. Hence, most proteomic studies includ-
ing our own have so far focused on relatively small
patient cohorts (fewer than 60 samples) and required
large amounts of biological starting materials, often
serial tissue sections (5- to 10-μm thick). Typically,
strong detergents such as sodium dodecyl sulfate
(SDS) are used in lysis buffers, combined with boiling
times up to a few hours, to efficiently reverse formalin
crosslinks and extract and solubilize proteins [15]. These
methods, however, come with some caveats as deter-
gents are incompatible with LC–MS/MS downstream
analysis and therefore require detergent removal steps
that can cause sample loss and also lower reproducibil-
ity. Therefore, most detergent-based protocols are
incompatible with ultra-low sample input, such as
laser-capture microdissected (LCM) samples, which
often range from only a few hundred to a few thousand
cells. These sub-microgram protein amounts are easily
lost in detergent clean-up steps and highlight the need
for alternative protocols optimized for low sample
amounts. Thus, a workflow enabling the processing of
both low-input and high-input samples would be highly
desirable. This is further illustrated from a pathologist’s
perspective; depending on disease stage, anatomic loca-
tion, and pharmacologic intervention or due to surgical
circumstances, tissue availability can be highly variable

and often limited. Although pre-cancerous lesions can
comprised only hundreds of cells, primary and meta-
static tumors are typically available in larger quantities.
Workflows that are not biased towards either end would
therefore be of great clinical value for the investigating
of disease mechanisms at the global proteome level.
Herein we report the development of a robust, scal-

able, and high-throughput workflow for quantitative
proteomic profiling of patient-derived FFPE tissue sam-
ples. Consistent with previous observations [16,17], we
show that detergent-free protocols are excellent for pro-
teomic profiling of FFPE tissues in a time- and cost-
effective manner. Sample preparation is carried out with
MS-compatible buffers to facilitate tissue lysis, protein
extraction, and tryptic digestion in the same tube
[18–20]. We developed this approach into a generic
strategy applicable to large clinical sample cohorts and
provide a detailed ‘how-to’ guide, from sample collec-
tion and preparation to MS measurement. We success-
fully applied our workflow to an adenoma cohort of
more than 100 samples, thereby validating its suitability
for large sample cohorts and its ability to reveal new
insights into disease biology.

Materials and methods

Sample collection
All samples were human FFPE tissues collected with
informed consent (University of Chicago Institutional
Review Board-approved protocol [13372] for ovarian
cancer (OvCa), Charité University Hospital Berlin for
glioma [EA2/101/08], University Hospitals Jena for
acute myeloid leukemia (AML) [Vote 3477–3406/12],
University Medical Centre Mannheim for urachal carci-
noma [2015-540-MA], Health Research Ethics Commit-
tee of the Capital Region of Denmark for colorectal
adenomas [H-16022392]), and in accordance with the
Declaration of Helsinki.

Sample preparation for MS analysis
A detailed sample collection and preparation protocol
for FFPE tissues is provided in the supplementary mate-
rial, Supplementary materials and methods. For AML
cell collection, newly diagnosed untreated de novo
AML patient cells were obtained from peripheral blood
samples. Samples were enriched for mononuclear cells
using density-gradient centrifugation for 30 min at
400 × g using BIOCOLL separating solution (Density
1.077, Biochrom, Berlin, Germany). The blast-enriched
peripheral blood mononuclear cells (PBMCs) were
washed in 1X phosphate-buffered saline once and cryo-
preserved at −150 �C.

Liquid chromatography-mass spectrometry
(LC–MS/MS) analysis
Nanoflow LC–MS/MS analysis of tryptic peptides was
conducted on a quadrupole Orbitrap mass spectrometer
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(Q Exactive HF-X, Thermo Fisher Scientific, Bremen,
Germany) [21] coupled to an EASY nLC 1200 ultra-
high-pressure system (Thermo Fisher Scientific) via a
nano-electrospray ion source. About 300 ng of peptides
were loaded onto a 50 cm high performance liquid chro-
matography (HPLC)-column (75 μm inner diameter,
New Objective, Woburn, MA, USA; in-house packed
using ReproSil-Pur C18-AQ 1.9-μm silica beads; Dr
Maisch GmbH, Ammerbuch, Germany) and measured
over a total gradient length of 100 min with increasing
buffer B (80% acetonitrile [ACN] and 0.1% formic acid;
Merck, Darmstadt, Germany) concentration. The mass
spectrometer was operated in data dependent acquisition
(DDA) and data independent acquisition (DIA) mode, as
specified in the supplementary material.

MS data analysis
In brief, DIA raw files were analyzed with Spectronaut
Pulsar X software (Biognosys, Schlieren, Switzerland,
version 12.0.20491.17) under default settings for tar-
geted DIA analysis with ‘mutated’ as decoy method.
DDA raw files were processed in theMaxQuant environ-
ment [22] (version 1.5.0.38 and 1.6.7.0). The human
UniProtKB database (October 2017 and 2019,
UP000005640_9606) was used as the forward database
and the automatically generated reverse database for
the decoy search.

Statistical analysis
All statistical and bioinformatic analyses were per-
formed using Perseus [23] or the R framework
(https://www.r-project.org/). Missing values (those dis-
played as 0 or ‘NaN’ in the MaxQuant output) were
imputed based on a normal distribution (width = 0.3;
downshift = 1.8). To calculate the percentage of miss-
ing values per data matrix, the number of valid values
(those not displayed as 0 or ‘NaN’ in the MaxQuant
output) was divided by the total number of possible
values (samples x proteins) for a given matrix. Con-
sensus clustering was performed based on the Consen-
susClusterPlus R library [24]. The 1000 most variably
expressed protein groups (calculated by median abso-
lute deviation) were used for consensus clustering.
The number of clusters, k, was varied from 2 to 8 with
1000 resamplings. Hierarchical clustering was used
based on Pearson correlations as a distance metric.
The Consensus Cumulative Distribution Function
(CDF) plot and Delta Area plot were used to assess
the optimal number of clusters.

Immunohistochemistry
Immunohistochemistry was carried out as described
previously [25]. All antibodies were validated with
negative and positive control tissue as described in sup-
plementary material, Supplementary materials and
methods.

Results

Proteomic sample preparation of archived biobank
tissue in 96-well format
To be useful for large and diverse FFPE tissue cohorts,
we optimized our recently described workflow for
laser-capture microdissected (LCM) FFPE samples
[26] to a 96-well format (Figure 1A). We further com-
pared our workflow to two widely applied protocols
for FFPE tissue proteomics [9,27] (FASP and
RapiGest-based). We worked with macrodissected and
microdissected FFPE sections on glass slides to test the
applicability to varying FFPE tissue amounts. We here
refer to ‘macrodissections’ as razor-blade scraped areas
from FFPE sections, whereas by ‘microdissection’ we
mean LCM tissue from glass membrane slides
(Figure 1B, supplementary material, Figure S1A). We
first macrodissected similar tumor areas (~5 x 5 mm)
by scraping from two consecutive 10 μm thick sections
of the same high-grade serous ovarian cancer (OvCa)
specimen. We then processed the collected tissues with
our organic solvent (2, 2, 2-trifluoroethanol; TFE) or
previously described SDS-based workflow [12] for rela-
tive comparison of the two methods. We noticed that
long heating times (90 min) in the SDS buffer fully
resolved FFPE tissue in contrast to the TFE-based lysis.
After overnight tryptic digestion, however, the tissue
was fully resolved in both conditions, with no noticeable
undigested material. Following peptide clean-up, we
found a 2.3-fold higher peptide yield using the TFE-
based protocol (supplementary material, Figure S1B),
indicating both improved protein and peptide recovery
[16,28] and less protein loss during detergent clean-up
steps. We injected 0.3 μg of each peptide sample on a
quadrupole Orbitrap mass spectrometer (Q Exactive
HF-X) and analyzed them in 100 min single-run DDA
mode (top15). Of the 5041 identified protein groups,
92% were found with both protocols, indicating that pro-
tein extraction was highly comparable despite the notice-
able differences in tissue dissolving directly after heating.
The average proteome correlation was 0.95 (Pearson r)
based on label-free quantification (MaxLFQ) values
[29] (supplementarymaterial, Figure S1C), showing high
proteome similarity. For the protocol comparison (FASP
and RapiGest based), we macrodissected three identical
areas from three consecutive 10 μm sections of a glioma
sample and processed them in parallel (Figure 1C,
Figure S1D). LC–MS/MS analysis showed uniform total
ion chromatograms for all three protocols (Figure 1D),
resulting in high proteome correlations (Pearson
r = 0.97–0.98, Figure 1F) with >90% of the proteins
quantified with all three methods (Table 1). Notably, the
TFE-based protocol resulted in the highest average and
total number of peptide and protein identifications while
also being the most time- and cost-effective of the three
methods (Figure 1C, E and Table 1). To assess differ-
ences in protein extraction across protocols, we calcu-
lated the proportion of quantified proteins annotated to
originate from different cellular compartments. This
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revealed almost identical cellular compartment propor-
tions for the different preparations of the sameOvCa or gli-
oma specimen (� 0.4%), and only minor differences
(1–4%) compared to fresh frozen tissue (supplementary
material, Figure S1E). Likewise, we did not observe any
differences in the abundance of DNA and chromatin
bound proteins, which represent a particular challenge for
formaldehyde-fixed samples due to stable DNA–protein
crosslinks that may hinder peptide identification (supple-
mentary material, Figure S1F). Together, these data dem-
onstrate efficient protein extraction using our organic
solvent-based workflow, including chromatin-bound
proteins.

Formaldehyde crosslinking of FFPE tissue preserves tis-
sue architecture, predominantly via stablemethylene bridges
between basic amino acid residues [30,31]. High proteome
coverage of FFPE tissue therefore requires efficient formal-
dehyde de-crosslinking to reverse unwanted and variable
chemical modifications that may obscure peptide identifica-
tion. We used pFind, an ‘open modification search’ algo-
rithm [32], to screen for the most abundant protein
modifications present in the analyzed FFPE tissues. In line
with previous reports [17,33], methionine oxidation and
lysine methylation were the most abundant variable modifi-
cations compared to FrFr tissue (supplementary material,
Figure S1G). Lysine methylation is a frequent protein mod-
ification in FFPE tissue, accounting for around 2–6% of all
identified peptides [33]. To ensure most efficient de-cross-
linking, we opted for long heating times (90 min) in combi-
nation with ultrasound homogenization (supplementary
material, Figure S2A) and high Tris concentrations
(300 mM) in the lysis buffer [34]. Independent of the proto-
col (FASP, RapiGest or TFE), 4–6% of all peptides were
lysine methylated, indicating similar de-crosslinking effi-
ciencies. Among the lysine methylation sites that were iden-
tified as methylated and unmethylated, the methylated state
was in median 70% less abundant than the unmodified state
in the OvCa tissue and 90% less for glioma, respectively
(supplementarymaterial, Figure S1H), indicating that differ-
ences in lysinemethylation across samples should onlymar-
ginally affect global proteome quantification.

Despite its beneficial chemical properties for improved
protein and peptide extraction [16,28], TFE is a hazard-
ous substance posing a higher safety risk compared to
most other protein extractionmethods.ACN is an alterna-
tive organic solvent, which shares similar physico-
chemical properties while being less hazardous. Repla-
cing TFE with ACN in our FFPE workflow resulted in
similar peptide and protein yield, further reflected by high
proteome correlations (Pearson r = 0.97) (supplementary
material, Figure S1I–K). Taken together, these results
demonstrate that our sample-processing protocol enables
robust proteomic profiling of FFPE tissues based on a
streamlined ‘single-tube’ workflow.

FFPE tissue workflow is broadly applicable to various
tumor types
We next applied our workflow to FFPE sections from
different tissue types (OvCa, glioma, colorectal

adenoma, and urachal carcinoma). We chose these four
tissue types because they strongly vary in their origin
and prevalence while showing different grades of stroma
content. This allowed us to test the broad applicability of
our workflow to various tumor types. Before collection,
all tissue sections were H&E stained and subjected to
microscopic inspection to identify neoplastic regions of
interest that were subsequently macrodissected or sub-
jected to LCM (Figure 1B and supplementary material,
Figure S1A). Excised tissue pieces were transferred into
polymerase chain reaction (PCR) tubes, allowing highly
parallelized ‘single-tube’ sample preparation in a
96-well format (Figure 1A, B, supplementary material,
Figure S2A). MS analysis revealed excellent chromato-
graphic signal for micro- and macrodissected samples
with comparable total ion currents (TICs), independent
of cancer origin or collection type (supplementary mate-
rial, Figure S2B). We identified a similar number of pep-
tides (on average 37 321) and protein groups
(on average 4933) for micro- and macrodissected sam-
ples in 100 min DDA single-run analysis, demonstrating
the broad applicability of our workflow (Figure 2A). To
assess quantitative reproducibility, we compared the
proteomes of five LCM FFPE tissues obtained from
two advanced-stage high-grade serous OvCa (HGSOC)
patients. We hypothesized that proteomic differences
across patients would be larger than differences across
anatomic sites from the same patient. Indeed, Pearson
correlation coefficients were high for three biological
replicates of the same patient (0.94–0.97), including
primary (ovarian, OV) and metastatic (omental, OM)
OvCa, and somewhat lower between patients (0.86–
0.88) (supplementary material, Figure S2D). This result
is consistent with our recent data demonstrating that
the HGSOC tumor proteome is driven by patient-
specific protein signatures independent of anatomic site
[26]. Principal component analysis (PCA) of glioma,
colorectal adenoma, OvCa, and urachal carcinoma
clearly grouped them according to their tissue of origin
in the first and second components (Figure 2B and sup-
plementary material, Figure S2C). The segregation was
driven by known marker proteins such as the epithelial
OvCa markers PAX8, MSLN, FOLR1, and MUC1.
Brain-specific proteins like MBP, PLP1, and SLC1A2
were most abundant in glioma, and the adenoma/urachus
group showed high expression of the proteins AGR2,
LGALS4, S100P, and CDH17, which are known intesti-
nal cell-signaling and adhesion proteins (supplementary
material, Figure S2C).
Quantitative completeness is an important aspect of

proteomics and represents a particular analytical chal-
lenge in DDA strategies due to partially stochastic pep-
tide sequencing. This is particularly true for single-run
approaches that aim to quantify a large proportion of
the cellular proteome without additional peptide pre-
fractionation (which may not be appropriate for very
low-input sample amounts or for reasons of limited total
measurement time). To tackle this challenge, we evalu-
ated different MS acquisition modes that could be com-
bined with our workflow and increase our overall
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identification rates. We first used the recently described
‘BoxCar’ scan mode, which allocates dynamic MS1
injection times basedon precursor abundance [35].Using
BoxCar acquisition, the number of quantified protein
groups increased on average by 7% in 100 min single-
shot analysis resulting in 5419 and 5257 protein groups
quantified in adenoma and glioma tissues, respectively
(supplementary material, Figure S2E).

With the recent increased scan speed of Orbitrap ana-
lyzers, this platform has become very attractive for DIA
strategies [36]. In DIA, the entire sample complexity is
in principle captured by cycling of the quadrupole selec-
tion window over the entire m/z range in pre-defined
segments, thereby recording MS2 information irrespec-
tive of precursor intensity. Although proteome coverage
was previously a major bottleneck for DIA single-run

Figure 1. Overview of the mass spectrometry-based workflow for FFPE tissue analysis in 96-well format. (A) Streamlined FFPE workflow. FFPE
tissues are collected from glass slides either by scraping or laser-capture microdissection (LCM), followed by ‘single-tube’ sample processing
and MS-based proteomic analysis. (B) FFPE tissue collection techniques. Minute sample amount can be either collected by (A) LCM or
(B) scraping from a histopathology glass slide. Images before and after LCM are shown in the first two lower panels. The third lower panel
shows the collected LCM tissue regions, corresponding to an estimated number of 10 000 cancer cells, calculated based on the total volume
of dissected tissue. (C) Upper panel: Glioma FFPE tissue used for protocol comparison (FASP, RapiGest, TFE [this study]). For each protocol,
three areas (labeled 1–3) from three consecutive 10 μm sections of the same tissue were collected by macrodissection, processed, and ana-
lyzed by LC–MS/MS. Lower panel: Overview of protocols (FASP, RapiGest, TFE [this study]) used for comparison. (D) Total ion chromatogram of
glioma tissue prepared with the three protocols. (E) Number of identified peptides reported by MaxQuant for 100 min single-run measure-
ments. Each tumor area was measured as injection triplicates and mean values for each method were plotted with standard deviations as
error bars. Identifications are shown with and without the ‘match-between-runs’ (MBR) feature of MaxQuant. (F) Quantitative comparison
of glioma proteomes obtained by the FASP, RapiGest or TFE (this study) method. R correlations are Pearson correlation values.
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workflows, more than 7000 quantified protein groups
have been reported from human cell lines in single 2 h
measurements [36]. This prompted us to combine our
streamlined tissue workflow with state-of-the-art DIA
analysis based on the same 100 min LC gradient as in
DDA analysis (see supplementary material, Supplemen-
tary materials and methods). Using high pH reversed-
phase peptide fractionation [37], we generated a
project-specific spectral FFPE tissue library using our
workflow, resulting in 197 622 identified precursors,
corresponding to 10 707 protein groups (Figure 2C,
D). The library covered a large number of known onco-
genes and tumor suppressors with 108 members of the
135 Tumor Alterations Relevant for Genomics-driven
Therapy (TARGET) set reported as ‘actionable’ genes
[38]. By definition, alteration of these genes or their
expression levels can influence clinical decisions—
making them particularly interesting in oncology.

Across tissue samples, we consistently quantified
>5000 protein groups in FFPE material (Figure 2E) with
a low number of single peptide hits per sample
(in average of 150), which led to a grouping according
to tissue of origin (Figure 2F). We also included FrFr
AML cells, where we quantified up to 7268 protein
groups to show the applicability of our workflow to other
patient material (Figure 2E). Of the 135 TARGET listed
genes, almost half (44%, N = 59) were quantified on
average in each sample.

We conclude that our workflow provides a robust
framework for proteomic profiling of FFPE tissue sam-
ples in a 96-well format and was applicable to diverse
tissue types, sample input amounts, andMS-based prote-
omics strategies.

FFPE tissue workflow shows high quantitative
reproducibility
In addition to the robust analysis of laser microdissected
samples, which showed high proteome correlations

between biological tissue replicates (Figure 2B and sup-
plementary material, Figure S2D), we assessed the
reproducibility of our entire FFPE workflow for macro-
dissected tissues. To this end, we collected tissue areas
from glass slides, as routinely used in histopathology.
Of note, LCM workflows require tissue mounting on
specialized glass membrane slides (e.g. polyethylene
naphthalate or terephthalate (PEN or PET) that generally
are not used in routine pathology.We focused on macro-
dissections from colorectal adenomas to reduce biologi-
cal complexity within and between sections, as cancer
lesions have high cellular heterogeneity at multiple
levels [39]. Colorectal adenomas are benign precursor
lesions to colorectal cancer. They are genetically less
complex and show chromosomal stability despite their
large size [40]. To assess quantitative reproducibility,
we repeated the entire workflow from sample collection
and processing to MS measurement and data analysis.
We mounted three consecutive tissue sections obtained
from four different colorectal adenomas samples, all
from the same patient, on glass slides and stained them
with H&E. Based on histology, we collected the same
tissue areas from all three adenoma sections using razor
blade scraping. We reasoned that our biological inter-
section comparison between consecutive 5 μm thick sec-
tions should be minor, allowing accurate estimation of
the reproducibility of the entire workflow (Figure 3A,
left panel). In addition, we collected three different areas
from the same section to also assess intra-section prote-
ome variability (Figure 3A, right panel). Thus, we col-
lected 19 different tissue samples that were processed
on different days. In total, 6110 protein groups were
quantified in single-shot 100 min DIA analyses, with
an average of 5274 per sample and a data completeness
of 86%. Single peptide hits comprised 345 protein
groups on average, representing 6% of all quantified pro-
tein groups. To evaluate quantitative reproducibility, we
calculated the coefficient of variation (CV) for all protein
groups that were quantified in at least 70% of all samples

Table 1. Proteomic results for glioma tissue prepared with three different sample preparation protocols (related to Figure 1)
Peptides identified Proteins quantified

Recovered peptide (μg) no MBR MBR no MBR MBR

Area 1 15.9 20 074 31 573 3307 4294
FASP method Area 2 16.1 23 958 35 606 3658 4513

Area 3 17.5 31 941 41 076 4297 4717
Combined 36 206 44 048 4497 4780

Area 1 15.9 19 493 31 348 3341 4327
RapiGest method Area 2 14.6 23 116 34 564 3726 4513

Area 3 16.1 28 992 39 075 4193 4690
Combined 33 667 42 268 4424 4772

Area 1 16.6 21 653 32 459 3478 4365
TFE method Area 2 15.8 27 463 38 168 4051 4638

Area 3 15.7 34 430 42 664 4405 4721
Combined 39 178 45 224 4588 4788

Area 1 13 100 23 456 2869 3956
Overlap Area 2 15 758 27 376 3275 4280

Area 3 20 480 33 326 3842 4560
Combined 48 310 48 310 4841 4841

Samples were measured in 100 min single-shot DDA analysis and raw files were analyzed using MaxQuant. Recovered peptide yield (μg) after sample clean-up by Stage-
Tips was measured using a Nanodrop instrument. The number of peptides and proteins identified are shown with and without match-between-runs (MBR).
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(4983 protein groups). CVs were calculated across sim-
ilar regions from three consecutive sections of the
same FFPE block (intersection comparison) or
from three different areas of the same tissue
section (intrasection comparison, Figure 3A, C). The
intersection variability was slightly lower than

intrasection variability for all analyzed adenomas (aver-
age %CV of 18.9 and 20.1, respectively), whereas tech-
nical replicates of injections had a CV of 7.9%
(Figure 3C). Pearson correlations were correspondingly
high, with 0.91–0.95 for inter- and replicates and 0.97
for technical replicates (Figure 3B and supplementary

Figure 2. Evaluation of the FFPE tissue workflow in various tumor types. (A) Bar chart of the total number of identified peptides (upper panel)
and quantified proteins (lower panel) by MS/MS (dark green) and matching (light green) in invasive fallopian tube (FT) cancer, omental OvCa
metastasis (OM), invasive OvCa (Ov), glioma, and urachal carcinoma (urachus). The first five tissues were collected by laser-capture microdis-
section (LCM) and the remaining five by macrodissection. All samples were analyzed using 100 min single-shot DDA runs. (B) Principal com-
ponent analysis (PCA) of the 10 tissue samples based on their proteomic expression profiles. The proteomes of glioma and OvCa samples are
depicted by replicate number (patient 1–3 and collection 1–2, respectively). The first and second components segregate the samples and account
for 50.1 and 15% of the variability, respectively. Ellipses encircle samples of same tissue origin. Reproducibility between two microdissected tis-
sue samples from the same OvCa patient is depicted in the right panel (Pearson r = 0.96). (C) Overview of the samples used for the generation of
the spectral library by high pH reversed-phase fractionation. (D) Dynamic range of the MS signal of all identified proteins in the spectral library
after high pH reversed-phase fractionation. Proteins belonging to the TARGET database, referred as actionable genes, are highlighted. (E) Average
number of quantified protein groups per tissue, including acute myeloid leukemia (AML), glioma, and OvCa. Error bars show SD, minimum N = 3
replicates. (F) PCA of tissue samples measured with 100 min DIA runs. Ellipses indicate samples of same tissue origin.
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material, Figure S3A). As about 8% of total variation
originates from the LC–MSmeasurement alone, we esti-
mated that sample collection and processing should con-
tribute no more than about 10% to the total observed
variation, neglecting any true biological variation.
Known markers of adenoma or colorectal cancer such
as E-Cadherin (CDH1), which is used clinically for diag-
nosis and stratification, was robustly quantified with our
workflow, with CVs below or close to 20%
(Figure 3D). Of note, even though EGFR was ~100-fold
less abundant than COX-2 (MT-CO2), its variation was
somewhat lower (17.7% versus 24.5%), indicating robust
protein quantification even for lower abundant proteins.
CV values across adenomas of the same patient (N = 9)
and across adenomas of different patients (N = 9) showed
higher proteome variations including known pathology
markers (Figure 3E, F). Of interest, β-catenin
(CTNNB1) and CDH1 showed the lowest expression dif-
ferences between sections within the same and different
patients, highlighting their homogeneous expression pat-
terns in adenomas as previously reported [41,42]. Con-
versely, EGFR and CDX2 were variably expressed
between adenomas within and between patients, again
in-line with previous reports [43,44]. We further con-
firmed our proteomic results by immunohistochemistry
(IHC) using validated antibodies (supplementary mate-
rial, Figure S3). Low and high CDX2 or CD44 levels,
quantified by proteomics, showed similar relative expres-
sion levels using IHC (Figure 3G, H) in adenoma tissues,
thereby demonstrating the quality of our quantitative pro-
teomic read-out. Taken together, these data demonstrate
good workflow reproducibility and high proteome con-
sistency within and across tissue sections of the same
adenomas.

Streamlined FFPE workflow applied to a cohort of
118 adenomas of different archival time
Having developed a scalable FFPE workflow applicable
to diverse sample input amounts and cancer types, we
next investigated if it would allow for streamlined pro-
cessing of larger tissue cohorts within a single day and
with minimal hands-on pipetting time. As a proof-of-
concept, we analyzed an additional set of 118 FFPE
adenoma tissues collected from 101 patients. After histo-
pathological examination, samples were collected into
8-strip PCR tubes as before. All samples could indeed
be readily processed in parallel within 1 day of sample
preparation and subsequently scheduled for measure-
ment within 10 days using the single-shot 100 min
DIA MS method. A total of 6254 protein groups were
quantified with a median of 5147 protein groups per ade-
noma sample (Figure 4A and supplementary material,
Figure S3B). This relatively large number of adenoma
tissue proteomes prompted us to investigate the molecu-
lar differences across adenomas and the impact of archi-
val time on the proteome. The latter is of particular
relevance for the design of large discovery-based studies
to avoid potential sampling biases. Tissues had been col-
lected and archived between the years 1998 and 2008

with a median archival time of 11 years and a maximum
of 20 years. Samples were grouped by archival time into
14–20 years (N = 14), 10–13 years (N = 41), and
6–9 years (N = 43). We first compared the total number
of quantified peptides across archival time groups, which
revealed a somewhat higher number of quantified pep-
tides for the short-term group versus the mid-term
(−10%) and long-term groups (−16%) (Figure 4B),
independent of sample amount as reflected in the total
ion current (supplementary material, Figure S4F). This
trend was also apparent when we plotted the number of
peptides against archival time as a continuous variable
(supplementary material, Figure S4G). At the protein
level, however, this trend was less pronounced, with
losses of only 4 and 6%, respectively. To investigate
whether the lower identification rates are related to
increased methionine oxidation and lysine methylation
over time (the two most abundant variable peptide mod-
ifications in FFPE tissue), we included lysine methyla-
tion as a variable modification in the spectral library
search and re-analyzed the DIA data. This revealed a
general trend towards a higher peptide modification rate
in the long-term storage samples, indicative of progres-
sive protein modification over time [17]. However, at
1% this difference was much too small to explain the
reduction of 16% in peptide identifications in the oldest
samples (Figure 4B). A previous study reported lower
identification rates in tissue samples stored more than
20 years, and linked it to compromised retrieval of low
abundant proteins [45].
We likewise found that the peptides exclusively quan-

tified in the short-term storage group (2719 peptides cor-
responding to 8% of all peptides), were of significantly
lower abundance than the peptides shared across groups
(Figure 4C, supplementary material, Figure S4E). A
similar abundance trend was observed at the protein
level but to a much lower extent (−6%, 189 protein
groups unique to the short-term group) (Figure 4C, sup-
plementary material, Figure S4E). Filtering for the 3000
most-abundant protein groups in our data set resulted in
only 1% less protein quantifications in the long-term
storage group (supplementary material, Figure S4H).
The impact on global protein quantification was also
minor, as judged by the high proteome correlations
between different archival age groups (Pearson correla-
tions 0.95–0.99) (Figure 4D). Our data are consistent
with previous proteomic studies showing that protein
quantification is generally not perturbed, even after
30 years of storage [6,10,45]. Based on these findings,
we next analyzed how different archival times affected
clustering into distinct proteomic subgroups. To identify
the optimal number of proteomic subgroups in our data
set, we applied a consensus clustering approach [24]
based on the 1000 most variably expressed protein
groups across adenomas as measured by median abso-
lute deviation. Three samples were excluded from the
analysis due to low protein identifications. This resulted
in four major proteome clusters of similar size, differing
in their protein expression profiles (Figure 4E, G, and
supplementary material, Figure S4C, D). We observed
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some overlap across the four clusters, indicative of
shared biological features (Figure 4G). For instance, pro-
teins related to mitochondria and cellular respiration
were significantly higher in clusters 1, 3, and 4 versus
cluster 2, whereas cell adhesion and immune system
related proteins were higher in clusters 2, 3, and 4 versus
cluster 1. Reassuringly, biological variability between
samples was more dominant than variability caused by
archival time, and as a result archival groups were sub-
divided into the four separate clusters (Figure 4F, G).
This further illustrates the general applicability of FFPE
tissues for proteomics-centered disease phenotyping and
patient stratification.

Discussion

FFPE blocks are the most commonly used format for
storing tissues in pathology due to its long-storage abil-
ity at room temperature, simplicity, and low-cost. Hun-
dreds of millions of FFPE samples exist worldwide in
tissue biobanks, potentially available for analysis. These
immense archives represent an invaluable resource and
opportunity to study molecular mechanisms of the
diverse diseases for which tissue samples are taken.
MS-based proteomics has been used increasingly over
the last years to investigate FFPE samples at the prote-
ome level, but this typically required tedious workflows,

Figure 3. Evaluation of the reproducibility of the FFPE tissue workflow. (A) Schematic representation of the H&E-stained adenoma tissue
sections used for overall workflow reproducibility assessment. Inter- and intrasection proteomic variability assessment is depicted in the
upper and lower panels, respectively. Circles indicate the tissue regions manually collected by macrodissection. (B) Proteome correlation
matrix of inter- (A1–A3) and intrasection (A–C) replicates of the same FFPE adenoma tissue. Depicted values are Pearson correlations.
(C) Box plots and violin plots show the coefficient of variations (CVs in %) of protein quantification across injection replicates (N = 3), inter-
section replicates (four sections of three replicates each), and intrasection replicates (three sections of three replicates each) based on 4983
protein groups. For simplicity, values above 50% were excluded from the plots. CVs were calculated based on non-logarithmic values.
(D) Median CV values are plotted for eight known adenoma and colorectal cancer (CRC) markers across inter- (four values) and intra- (three
values) section replicates. The average abundance for each protein across all sections is shown as a black line. Median CV values (%) for each
protein across all sections are displayed above the plot. CVs were calculated based on non-logarithmic values. (E) CV values of protein quan-
tification across adenoma sections (N = 4, same adenoma), adenoma tissues (N = 9, same patient), and patients (N = 9, different patients).
(F) CV values of nine quantified adenoma and CRC marker proteins across different sections, tissues, and patients. (G) Comparison between
relative protein quantification based on proteomics (orange) and IHC (H-score, purple) for CDX2 and CD44 in four adenoma patients. (H) IHC
staining of CDX2 or CD44 for four adenoma tissues. Black boxes show representative regions that are enlarged in the right panels (E–H). Scale
bars, 400 μm (A,B,D), 500 μm (C), and 50 μm (E–H).
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and lacked reproducibility, throughput, and analytical
depth. This prompted us to develop a streamlined and
robust MS-based workflow for the proteomic investiga-
tion of many FFPE samples.

With our new workflow in hand, we demonstrated the
practicality of analyzing relatively large clinical FFPE

cohorts from pathology glass slides with good proteomic
depth in single-run analysis using state-of-the-art DDA
and DIA acquisition methods. Based on a single-tube
workflow in 96-well format and using MS compatible
protein extraction buffers, we demonstrated high prote-
ome similarity to detergent-based sample preparation

Figure 4. Streamlined proteomic analysis of 118 adenoma tissues of varying archival time. (A) Heat map of protein abundance across 118 ade-
noma tissues encompassing 5230 protein groups. Missing values are shown in white. Unsupervised hierarchical clustering was performed
column-wise with Pearson correlations as distance metric. (B) Box plots displaying the total number of quantified peptides and proteins,
as well as lysine methylation and methionine oxidation in FFPE tissues archived with storage time ranging from 6 to 20 years, grouped into
three intervals: 14–20 years (N = 14), 10–13 years (N = 41), and 6–9 years (N = 43). For each group, a minimum of 50% quantified values
was required. (C) UpSet plots showing intersections of peptide (upper panel) and protein (lower panel) quantification across archival time
groups. (D) Scatterplot of pairwise proteomic comparisons between archival groups on peptide (upper panels) and protein level (lower panels).
(E) Consensus clustering of the proteomic expression data determined by Pearson correlation as distance metric, where k represents the total
number of clusters. Consensus scores are indicated using a color scale from white (samples never cluster together) to blue (samples always
cluster together). (F) PCA of 101 colorectal adenoma samples based on their proteomic expression profiles, encompassing 5169 proteins. The
first and second dimensions segregate the samples and account for 7.4 and 5.4% of the total variability, respectively. The color code corre-
sponds to the four adenoma subclusters identified in (E) whereas symbol types indicate the three archival groups. Point concentration ellipses
are shown for each cluster with a 95% confidence interval. (G) Co-regulated pathways across the four adenoma clusters. Heat map of
z-scored protein abundances of the 416 differentially expressed proteins (ANOVA, FDR < 0.01, s0 = 0.5) after unsupervised hierarchical clus-
tering. Up- and downregulated proteins are represented in red and blue, respectively. Significantly enriched pathways (Benjamini-Hochberg
FDR < 0.05, GOCC, and GPBP terms) are shown exemplarily for co-expressed protein clusters across the four patient groups. Archival and
cluster groups are indicated as color bar.
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and achieve a proteomic depth of 5000–6500 protein
groups per single sample and in diverse tissue types.
As tissue amounts are often highly variable in histopa-
thology, it was critical to make our workflow applicable
also to low sample amounts. To this end, we showed
that laser-microdissected samples, encompassing less
than 10 000 cells, can be analyzed in a reproducible
fashion. We also demonstrated that FFPE tumor types
of different entities can be reproducibly processed with
our workflow as required in pathology practice. We
retrieved known biological differences between OvCa,
glioma, and urachal carcinoma, validating the overall
quality of our workflow. Using unbiased MS-based
proteomics, we investigated the cancer proteomes on
a large scale and showed their potential to detect and
quantify a large proportion of known ‘actionable’ pro-
teins. In contrast to antibody-based methods that
require prior knowledge of the proteins of interest, we
here investigate thousands of additional proteins for a
better understanding of the underlying disease mecha-
nisms. We envision that the proteomic analysis of
FFPE tissues will be clinically relevant in the future,
in particular when sequence and splice variants are also
considered. Our short sample preparation time of less
than 1 day, followed by prompt MS measurement and
data analysis, highlights the promise of our FFPE
workflow in future clinical pathology practice, where
fast sample analysis for diagnosis and target identifica-
tion in patients is key. It is pertinent that our workflow
can be well integrated with routine tissue preparation in
pathology, where direct tissue collection from glass
slides of H&E-stained sections offers several important
advantages. Separate de-paraffinization, which usually
comes at the cost of throughput and sample preparation
time, is not needed, as it is already part of standardized
H&E-staining procedures. Furthermore, the availability
of image data, collected routinely in histopathology for
patient diagnosis, can be integrated to guide sample
collection and to avoid contamination from nondi-
seased tissue areas, which is often a major limitation
for bulk tissue analysis. This is illustrated in our analy-
sis of adenoma tissues where we observed a high
degree of proteomic similarity between overlapping tis-
sue areas across sections of the same FFPE block. In
this tissue type, we further investigated the impact of
archival time on several proteome quality parameters
including peptide and protein quantifications, as well
as peptide modifications. Although the literature reports
conflicting results on the impact of archival time on the
number of identified peptides and protein groups
depending on different archival times, we noticed a
drop of 16% in peptide identifications in long-term
storage samples (14–20 years), compared to 6- to
9-year-old samples. However, one 15-year-old sample
showed a similar number of peptide identifications
compared to the average of the 6- to 9-year-old samples
(supplementary material, Figure S4G), suggesting that
good tissue processing and storage could alleviate this
effect [17,46]. In any case, we observed a ‘buffer’
effect on the protein level as the decrease in peptide

quantification translated only to a drop of 6% at the
protein level, which sustains global proteome integrity
of old samples. This highlights the advantage of shot-
gun proteomic approaches that typically integrate infor-
mation from multiple peptides for protein
quantification. Our data further demonstrate that the
quantitative protein information was not perturbed by
storage time as we observed high global proteome cor-
relations between storage groups. This suggests that
previously published conflicting results might have
arisen from differences in proteome coverage due to
the workflows employed. Filtering our data set for the
most abundant proteins revealed a drop of only 1% of
protein quantifications between the different storage
groups. Although additional investigation will be
required to fully address the impact of archival time
on the proteome, we found that biological differences
across adenoma tissues drive the segregation of sam-
ples independently of archival times. Our analysis
revealed previously unknown adenoma clusters, reflect-
ing potential new subtypes that could lead to a novel
classification. This speculation, however, will require
a more thorough molecular analysis to validate these
preliminary data.

In the future, our proteomic FFPE workflow could be
extended to phospho-proteomics that will require
streamlined analyses at the PTM level, as well as even
greater sensitivity. Information at the phosphorylation
level is often crucial to understand disease biology, in
particular to reflect kinase activity driving tumor devel-
opment. Furthermore, combined with genomic informa-
tion, multi-omics data could further improve current
molecular diagnosis [47]. This combination would con-
firm whether a reported kinase mutation leads to kinase
activation or inactivation to better understand its role in
cancer development and progression.

To this end, promising developments of high-
throughput enrichment methods, using robotic assis-
tance, have been developed and are becoming more
practical. For instance, automated phospho-peptide
enrichment can be achieved in only 1 h [48],
representing a promising avenue for FFPE tissues analy-
sis. Finally, single-cell technologies are becoming
increasingly important to profile genetic, epigenetic,
spatial, proteomic, and lineage information of individual
cells [49]. We believe that a variation of such single-cell
approaches could also be developed for FFPE analyses.
For all these reasons, streamlined, robust, and scalable
workflows for FFPE tissue analysis, such as the one
introduced here, will be of immense value.

In conclusion, we demonstrated a high-throughput
and reproducible proteomic workflow that now enables
researchers to analyze large clinical FFPE tissue cohorts
with wide-ranging sample amounts in a robust, timely,
and streamlined manner. We hope that will help trigger-
ing the proteomic analysis of thousands of valuable
FFPE tissues. This information can then be combined
with other ‘omic’ data, with the ultimate goal of unco-
vering tissue biomarkers for better patient classification,
diagnosis, or treatment.
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