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Supplement 

S1 Benchmark Genome 
We use the hybrid mouse embryonic stem cell line F123 as a benchmark system for assessing 
the quality of reconstructed haplotypes from GAM data. The F123 line was derived from the 
F1 generation of two fully inbred homozygous mouse strains: Mus musculus castaneus (CAST) 
and Mus musculus domesticus 129S4/SvJae (J129) (Gribnau et al., 2003).  
In order to derive benchmark haplotypes of F123, whole-genome sequencing (WGS) data of 
CAST and J129 were downloaded from the European Nucleotide Archive (accession number 
ERP000042) and the Sequence Read Archive (accession number SRX037820), respectively. 
WGS reads were trimmed using Cutadapt (Martin, 2011) and mapped to the mouse reference 
genome mm10 using BWA (Li and Durbin, 2009). To determine the haplotypes of the F123 
line, SNVs of both parental strains were identified using bcftools (Li, 2011) and SNVs covered 
by < 5 reads or quality < 30 were excluded.  
With the haplotype structure thus known, this cell line serves as the benchmark for all 
downstream experiments and analyses. 

S2 GAM Dataset, pre-processing and quality control 
1281 individual GAM NuPs of the F123 line were generated from the F123 mESC cell line. 
The F123 SNVs were N-masked in the mm10 reference genome and reads were mapped using 
Bowtie2 (Langmead and Salzberg, 2012). Duplicate reads were removed using samtools (Li et 
al., 2009). After mapping, all BAM files and WGS results underwent standard quality control 
using FastQC (Andrews, 2010) and multiQC (Ewels et al., 2016). Reads were trimmed using 
BamUtil (Jun et al., 2015) with function trimBam where necessary. 
For quality assessment of each sample, the genome was split into fixed windows of size 50kb. 
For each NuP 𝑖 and each window 𝑗, the number of reads 𝑟!" and number of nucleotides covered 
𝑐!" were determined using bedtools (Quinlan and Hall, 2010). Windows were then classified as 
positive or negative based on 𝑟!" and 𝑐!" as follows: From the coverage 𝑐!∙ of all windows for 
NuP 𝑖 the empirical nucleotide coverage distribution 𝑃! was computed. From 𝑃!, the minimum 
coverage percentile 𝑀𝐶𝑃! was chosen such that every window contains three or more reads. 
The average 𝑀𝐶𝑃((((((	across all NuPs then determined the sample-specific nucleotide coverage 
thresholds 𝑡! (in bp) for each NuP. Windows 𝑤!" were called positive iff 𝑐!" > 𝑡!, i.e. if the 
number of nucleotides covered in each window was greater than the sample-specific threshold 
and negative otherwise. Positive windows flanked by negative windows on each side were 
defined as orphan windows. 
NuPs selected for further analysis had < 60% orphan windows and > 20,000 uniquely mapped 
reads. 1123 NuPs (89%) passed these quality thresholds (available under 4D Nucleome 
Consortium data portal accession number 4DNBSTO156AZ, unique 4DN identifiers in 
Supplementary Data).  
Reads were then counted at known heterozygous SNV positions using samtools mpileup (Li et 
al., 2009). Because of the frequently low coverage from independent (i.e. non-duplicate) reads 
at most positions (30% of observed SNVs are covered by 2 or fewer reads, 50% by 5 or fewer 
reads), we counted an allele as present if it was observed in at least one read at the examined 
position. 
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S3 Dataset Statistics 
Benchmark genome (F123). The F123 mouse embryonic stem cell line was derived from a 
hybrid F1 mouse resulting from the cross of the two inbred, homozygous mouse strains CAST 
(Mus musculus castaneus) and J129 (Mus musculus domesticus J129). The parental mouse 
strains are both fully sequenced, their exclusively homozygous genomic variants with respect 
to the reference mouse genome mm10, which was derived from the mouse strain C57BL/6, are 
known. The F1 generation resulting from the cross of CAST and J129 is thus heterozygous at 
all loci for which their parents have different alleles. Their haplotypes are known, making them 
an ideal model for benchmarking phasing algorithms. Relative to the mouse reference genome 
mm10, CAST and J129 show 18,892,144 and 4,778,766 germline variants respectively, in 
concordance with their estimated evolutionary distance from C57BL/6, 371,000 ± 91,000 years 
(Goios et al., 2007) and approximately 100 years (Simpson et al., 1997), respectively. After 
exclusion of 2,200,819 overlapping SNV positions and 1,119,044 SNVs located in genomic 
regions of low mappability, the F123 reference set contains 18,150,228 variants in total, all of 
which are heterozygous due to inbreeding of the parental strains. Of those, 15,810,835 variants 
(87.1%) are located on the CAST parental genome, 2,339,393 (12.9%) on J129. This yields an 
average SNV density of 1 SNV per 132bp, with a median genomic distance of 56 bp.  
 
Nuclear profiles. We obtained 1281 GAM NuPs of the F123 mESC cell line (4D Nucleome 
Consortium data portal accession number 4DNBSTO156AZ), out of which 1123 passed quality 
screening (see Supplementary Note S2). 
We extracted on average 305,377 reads from each NuP, covering 0.171% (± 0.167) of the 
18,150,228 heterozygous SNVs per nuclear slice (Figure 2A); exemplary data of genomic 
regions captured in a single NuP is shown in Figure 2B. Out of all F123 SNVs, 11,741,055 
(64.69%) were observed at least once across all 1123 NuPs and 7,605,321 SNVs (41.9%) were 
observed at least twice (Figure 2C). Due to this sparsity and the fact that homologous 
chromosome pairs occupy distinct chromosomal territories (Khalil et al., 2007), 96.54% of 
SNV observations showed counts from only one parental allele within one sample. Thus, we 
removed observed variants with read counts from both parental alleles without substantial loss 
of information. Since the slicing of nuclei in the GAM experiments is a random process, a 
balanced observation ratio of alternative and reference alleles of heterozygous SNVs is 
expected across all NuPs. We thus additionally removed all 550 variants (0.000045%) which 
significantly deviated from a balanced representation of reference and alternative alleles (p < 
0.05 after Benjamini-Hochberg adjustment, binomial test against 0.5). 

S4 Quality measures for reconstructed haplotypes 
We here provide details about the employed measures of completeness and accuracy of the 
reconstructed haplotypes. The measures were chosen to allow comparison between the 
conceptually different neighbour and graph phasing algorithms and to allow comparison with 
existing methods. We calculate all SNV-based metrics per chromosome, relative to the number 
of phasable SNVs 𝑀$ on chromosome 𝑐, i.e. the number of heterozygous SNVs observed at 
least once in all 1123 NuPs. Analogously, we calculate all metrics based on genomic range (in 
bp) relative to the phasable genome per chromosome (distance between leftmost SNV and 
rightmost SNV in bp). We omit chromosome index 𝑐 for brevity in the definitions below and 
report means and standard deviations of all measures across chromosomes in the Results 
section of the main text (Table 1). For the number of phasable SNVs and the size of the phasable 
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genome in bp see Supplementary Table 1 below. For a detailed discussion of GAM sparsity 
see Results and Discussion in the main text. 
 
Supplementary Table 1: Description of the phasable SNV set and genome per 
chromosome. Full SNV set describes the phasable SNV set (𝑀$) and genome as observed in 
the F123 cell line. Subsampled corresponds to the phasable SNV set and genome after 
employing the downsampling strategy to mimic SNV density in the human genome (Results 
section 3.3.2).  

Chr  Phasable SNV set 
(%) 

Phasable genomic range 
in bp (%) 

Chr  Phasable SNV set (%) Phasable genomic range in bp 
(%) 

 Full 
SNV set 

Sub- 
sampled 

Full SNV 
set 

Sub- 
sampled 

 Full SNV 
set 

Sub- 
sampled 

Full SNV set Sub- 
sampled 

chr1 941707 
(63.08) 

127839 
(8.37) 

192365707 
(98.41) 

192357993 
(98.41) 

chr11 640116 
(68.96) 

86657 
(9.10) 

118880794 
(97.38) 

118875736 
(97.37) 

chr2 782822 
(66.01) 

106135 
(8.60) 

178962141 
(98.27) 

178952453 
(98.26) 

chr12 533072 
(62.68) 

72156 
(8.33) 

117018721 
(97.42) 

116999097 
(97.39) 

chr3 694766 
(59.03) 

94652 
(7.83) 

156938923 
(98.06) 

156927079 
(98.06) 

chr13 588006 
(64.44) 

79840 
(8.56) 

117318662 
(97.42) 

117316342 
(97.42) 

chr4 741959 
(66.33) 

100655 
(8.77) 

153307607 
(97.96) 

153303916 
(97.95) 

chr14 553535 
(63.08) 

74866 
(8.41) 

121762587 
(97.49) 

121740416 
(97.47) 

chr5 738731 
(64.94) 

100240 
(8.54) 

148729017 
(97.96) 

148722202 
(97.95) 

chr15 494179 
(63.75) 

66861 
(8.43) 

100886142 
(96.97) 

100866521 
(96.95) 

chr6 726343 
(63.99) 

98125 
(8.51) 

146535902 
(97.86) 

146533104 
(97.86) 

chr16 455935 
(60.53) 

61556 
(7.99) 

95024075 
(96.75) 

94991322 
(96.72) 

chr7 687475 
(67.40) 

93734 
(9.03) 

142338158 
(97.87) 

142297146 
(97.84) 

chr17 431796 
(65.11) 

58301 
(8.66) 

91886960 
(96.74) 

91869956 
(96.72) 

chr8 688032 
(67.27) 

93486 
(8.88) 

126251015 
(97.59) 

126226500 
(97.55) 

chr18 474538 
(65.43) 

64371 
(8.65) 

87601865 
(96.58) 

87592598 
(96.57) 

chr9 599812 
(66.89) 

81359 
(8.81) 

121492381 
(97.51) 

121483172 
(97.50) 

chr19 303591 
(68.90) 

41486 
(9.16) 

58235870 
(94.81) 

58184777 
(94.71) 

chr10 664640 
(64.07) 

90115 
(8.44) 

127492655 
(97.55) 

127483223 
(97.54) 

sum 11741055 
(64.69) 

1553527 
(8.56) 

2403029182 
(97.58) 

2402723553 
(97.56) 

Completeness and contiguity measures 
As a first measure of completeness we report the proportion of heterozygous SNVs and the 
proportion of neighbouring transitions that have been successfully phased. Because these 
measures do not take the contiguity of the phased blocks into account we additionally employ 
metrics that assess the size of the reconstructed haplotype blocks: the S50 (Lo et al., 2011), 
N50 (Lander et al., 2001) and AN50 (Lo et al., 2011) metrics. A graphical explanation of the 
completeness measures S50, N50 and AN50 is shown in Supplementary Figure 1A. 

Number of phased SNVs / transitions 
The absolute number of phased SNVs 𝑚%&'()* and its relative counterpart 𝑝%&'()*	 =
	𝑚%&'()* 	/	𝑀 give a general overview of phasing completeness. In the case where phasing 
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yields a large number 𝐾	of small, disconnected haplotype blocks, the number of phased SNVs 
will be high, but the phase between these independent blocks is unknown. To account for this 
fragmentation, we report 𝑡%&'()* 	, the frequency of phased transitions between adjacent SNVs. 
As the number of transitions is equal to the number of SNVs 𝑀 − 1 and each additional block 
beyond the first incurs one unphased transition, this yields: 
𝑡%&'()* 	= (𝑀 − 1) 	−	(𝐾 − 1) 	= 	𝑀 − 𝐾.  

S50 
S50 (Lo et al., 2011) is a measure of contiguity, i.e. of the size distribution of phased haplotype 
blocks. To obtain the S50 value, all phased haplotype blocks are sorted by their size (number 
of SNVs phased in the block), and the S50 value is the size of the block at which 50% or more 
of SNVs are phased. For example, an S50 value of 1000 SNVs would mean that 50% of all 
SNVs are contained in haplotype blocks of size 1000 SNVs or larger. 

N50 / AN50 
Analogously, to obtain the N50 contiguity metric (Lander et al., 2001), the phased haplotype 
blocks are sorted by their genomic span (in bp) to determine the span at which 50% or more of 
the phasable genome is phased. To correct for cases where isolated haplotype blocks are 
contained within larger blocks spanning them (see Supplementary Figure 1A), we also report 
the adjusted N50 (AN50, (Lo et al., 2011)), where the genomic span of the block is adjusted 
by the fraction of SNVs phased within. Since haplotype blocks reconstructed by the neighbour 
phasing approach are never nested (Supplementary Figure 1B), N50 = AN50 for neighbour 
phasing.  

Accuracy measures 
To assess the accuracy of the reconstructed haplotypes we compare GAMIBHEAR estimates 
with the haplotypes of the F123 mouse embryonic stem cell (mESC) line obtained from whole-
genome sequencing of the parental mouse strains (see Supplementary Note S1 ‘Benchmark 
genome (F123)’). Two measures are considered: the global haplotype agreement calculated by 
direct comparison of the reconstructed and true haplotypes (i.e. alt-ref configurations) as a 
global measure of accuracy, and the Switch Error Rate (SER) as a local measure of accuracy 
(see also Supplementary Figure 1B). 

Global haplotype accuracy 
We report as global haplotype accuracy the overall agreement between haplotypes assigned to 
SNVs after phasing and their true assignment (see Supplementary Note S1). Let ℎ7 ∈ {−1,1}, 
be the inferred haplotype assigned to SNV at position 𝑖 and let ℎ ∈ {−1,1}, be the true 
haplotype assignment. The phasing error 𝑒 is then defined as: 

𝑒 =
1
𝑀=

1
2 |ℎ! − ℎ

7!|
,

!-.

 

Since the true parent of origin of a variant cannot be identified, haplotypes are equivalent to 
their full complement in terms of phasing accuracy (for example ℎ = (−1, 1, −1) is equivalent 
to ℎ′ = (1,−1, 1)). Global accuracy can thus never drop below 50% and the final global 
haplotype accuracy 𝐺 is thus: 

𝐺 = 𝑚𝑎𝑥(𝑒, 1 − 𝑒) 



5 

As the first SNV of every haplotype block is arbitrarily set to ℎ. = 1, global accuracy for 
phasing results with many blocks is highly sensitive to the true distribution of alternative alleles 
over the parental haplotypes. In the F123 dataset, 87 % of alternative alleles reside on the CAST 
haplotype. A naive phasing algorithm, which places all alternative alleles on haplotype 1 would 
thus yield a global accuracy of 𝐺 = 0.87. This is visible in the seemingly high 𝐺 = 0.86 of the 
neighbour phasing algorithm despite its low completeness and contiguity. 

Switch Error Rate (SER)  
We report the Switch Error Rate (SER, Supplementary Figure 1B) as a local accuracy metric. 
Analogous to the global haplotype accuracy, the SER is defined as the proportion of adjacent 
variant pairs that were phased incorrectly out of all phased variant pairs. For each haplotype 
block 𝑘 ∈ {1, . . , 𝐾} we transform the inferred and true haplotype vectors ℎ7(𝑘) ∈ {−1,1},! 
and	ℎ(𝑘) ∈ {−1,1},! into the inferred vector �̂�(𝑘) ∈ {−1,1},!/. and true transition vector 
𝑡(𝑘) ∈ {−1,1},!/., where 1 and -1 correspond to stay and flip transitions, respectively. The 
SER across all haplotype blocks 𝑘 is thus 

𝑆𝐸𝑅 =
1

𝑀 − 𝐾= = |𝑡(𝑘)! − �̂�(𝑘)!|
,!/.

!-.

0

1-.

 

, with: 𝑀 = ∑ 𝑀1
0
1-.  (total number of phased SNVs). 

The factor 1/(𝑀 − 𝐾) makes the SER relative to all phased transitions.  

Adjusted SER 
Transitions without phasing information that are arbitrarily assigned a stay or flip state have a 
50% chance of being correct, irrespective of the true distribution of alternative alleles over the 
parental haplotypes. To account for this, we add a SER penalty of 0.5 per unphased transition 
to define the adjusted SER: 

𝑆𝐸𝑅'*" =
1

𝑀 − 1 (0.5(𝐾 − 1) += = |𝑡(𝑘)! − �̂�(𝑘)!|
,!/.

!-.

0

1-.

) 
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Supplementary Figure 1: Graphical explanation of quality measures A) Completeness: a 
schematic graph phasing result is shown, consisting of 3 nested haplotype blocks (red, blue, 
purple). Size (number of SNVs), genomic span and genomic span adjusted by the fraction of 
phased SNVs within are exemplarily calculated for the 3 blocks respectively. When ordering 
the blocks by size, the red block contains more than 50% of the SNV set and thus its size 
corresponds to the reported S50, N50, AN50 respectively. B) Accuracy: a schematic neighbour 
phasing result is shown, consisting of multiple non-overlapping haplotype blocks. Switch Error 
Rate (SER) is calculated for the presented haplotype reconstruction, one out of 7 phased 
transitions is incorrect (circled, marked with a red X). The SER is then adjusted by unphased 
transitions (marked as ?), which are penalized by 0.5 switch errors. Global Comparison of 
assignments of alternative alleles to parental haplotypes shows 9 concordant (=) and 6 
dissenting (x) assignments, resulting in a global accuracy of 60%.  

S5 Reconstruction accuracy per chromosome  
Here we report global and local accuracy (SER) results of haplotypes reconstructed using the 
neighbour phasing, basic and proximity scaled graph phasing algorithms per chromosome in 
Supplementary Table 2. In general, the global accuracy of reconstructed haplotypes improves 
with the complexity of the used algorithms. Noticeably, the SER metric shows a smaller range 
in results over chromosomes compared to the global accuracy, which shows outliers. In general, 
SER is a more meaningful metric compared to global haplotype accuracy, where a single switch 
error in a haplotype block can lead to the following part of the haplotype block being assigned 
to the opposite haplotype, thus drastically decreasing global accuracy while maintaining high 
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local accuracy. Supplementary Figure 2 shows one such example of the high impact of switch 
errors on global haplotype accuracy on an outlier result on chromosome 17. 
 
Supplementary Table 2: Global Accuracy (GA) and switch error rate (SER) per 
chromosome. Haplotypes were reconstructed from the full data set of 1123 GAM NuPs using 
the neighbour phasing, graph phasing and scaled graph phasing approach. Final haplotype 
assignments, independent of haplotype blocks, are compared with the known F123 haplotypes. 
Percent of concordant haplotype assignments (GA, higher is better) and switch error rates of 
phased transitions (SER, lower is better) are shown per chromosome, as well as mean, median 
and standard deviation over chromosomes. 

Chr Neighbour phasing Graph phasing Scaled graph phasing  

 GA SER GA SER GA SER 

chr1 85.51 0.71 95.14 5.31 98.03 1.98 

chr2 87.22 0.74  94.92 5.80 98.00 2.08 

chr3 87.69 0.70 94.16 6.22 97.64 2.20  

chr4 84.55 0.99 94.19 6.40 97.32 2.49 

chr5 88.29 0.74 95.44 5.12 87.44 2.03 

chr6 87.50 0.67 95.93 4.64 98.08 1.89 

chr7 85.26 0.84 95.75 5.01 97.99 2.13 

chr8 79.99 0.93 95.44 5.28 84.51 2.29 

chr9 84.85 0.83 94.94 5.90 97.78 2.25 

chr10 93.56 0.51 95.87 4.56 98.45 1.53 

chr11 88.90 0.68 95.20 5.49 98.14 1.87 

chr12 85.50 0.81 94.85 5.60 85.69 2.25 

chr13 87.98 0.63 95.409 5.07 98.11 1.88 

chr14 78.16 0.92 95.505 5.12 97.65 2.33 

chr15 81.04 0.88  93.85 6.11 97.58 2.36 

chr16 88.71 0.54 95.42 5.01 98.14 1.76 

chr17 83.718 0.93 95.16 5.60 64.79 2.54 

chr18  85.19 0.74  95.39 5.22 97.96  1.98 

chr19 87.84 0.68 94.92 5.51 97.99 1.93 

mean 85.87 0.76 95.13 5.42 94.28 2.09 

median 85.51 0.74 95.20 5.31 97.96 2.08 

sd 3.53 0.13 0.57 0.50 8.45 0.26 
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Supplementary Figure 2: Outlier of decreased global accuracy caused by switch error on 
chromosome 17. The 4 panels show the location of alternative alleles of heterozygous SNVs 
along the parental chromosome copies CAST (upper band) and J129 (lower band) in a genomic 
region on chromosome 17 (61Mb - 80Mb). Each dot represents one SNV, the majority of SNVs 
is located on the CAST chromosome copies. Panel 1 shows the true haplotypes, meaning the 
true location of alternative alleles on the parental chromosome copies. Panels 2-4 show the 
predicted haplotype assignments reconstructed from neighbour phasing (panel 2), graph 
phasing (panel 3) and scaled graph phasing (panel 4). Black dots represent correct assignments, 
red dots show incorrect assignments of haplotypes. Graph phasing shows a clear improvement 
in global accuracy compared to neighbour phasing results. The last panel shows the impact of 
switch errors within haplotype blocks on the global accuracy: a switch error between 69Mb 
and 70Mb causes the subsequent haplotype assignment to switch onto the opposite haplotype, 
causing reduced global accuracy while maintaining local accuracy. The pattern formed by the 
distribution of J129 SNVs (as shown in panel 1) is still clearly visible in panel 4 after the switch 
error, only incorrectly predicted to be located on the CAST chromosome copy (highlighted in 
green boxes), thus demonstrating that the local phasing prediction is still highly accurate. 

S6 Effect of window size in graph phasing approach 
Unless indicated otherwise, all reported results are haplotype reconstructions using default 
parameter settings. In the graph phasing approach haplotypes are not reconstructed 
chromosome wide, but in overlapping windows of (default 20,000) SNVs in order to ensure 
successful completion of calculations without exceeding time and memory limits. We tested 
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the impact of changing window sizes on the quality of reconstructed haplotypes as well as time 
and memory usage from a minimum of 10,000 SNVs to a maximum of 40,000 SNVs per 
window. Reducing or increasing the window size only marginally affected the performance of 
the algorithm in terms of completeness or accuracy; however, it did show a definite impact on 
the runtime and memory usage (See Supplementary Table 3. Thus, changes to the default 
parameters should be made with care under consideration of local memory capacity.  
 
Supplementary Table 3: Comparison of different window sizes L. Concerning runtime, 
memory consumption of the algorithm, as well as completeness and accuracy of reconstructed 
haplotypes. Scaled graph phasing was used to reconstruct haplotypes from the full dataset. 

Metric L = 10.000 SNVs L = 20.000 SNVs L = 30.000 SNVs L = 40.000 SNVs 

Runtime (elapsed = wall clock time)  02:50 h 05:09 h 07:55 h 10:31 h 

Memory consumption 20 GB 30 GB 62 GB 106 GB 

Mean number of blocks 119 76 57 46 

% SNVs phased in largest block 99.90 % 99.94 % 99.95 % 99.96 % 

Global Accuracy 94.29 % 94.28 % 94.28 % 94.27 % 

SER 2.07 % 2.09 % 2.10 % 2.11 %  

S7 Lower SNV density 
The F123 mESC cell line has a relatively high SNV density (8 SNVs per 1kb) compared to 
humans (approximately 1-1.5 SNVs per 1kb, (1000 Genomes Project Consortium et al., 2015)). 
To show the effect of SNV density on the quality of haplotype reconstructions, we randomly 
subsampled the F123 SNV set to resemble human SNV density and evaluated the resulting 
haplotypes. In order to obtain an average SNV density of 1 SNV per 1kb, we retained 2,462,745 
(13.57%) out of the known 18,150,228 F123 SNVs in the 2.46 billion bp mm10 mouse 
reference genome. The distribution of SNVs along the parental chromosomes remained 
constant (full SNV set: 87.11% CAST, 12.89% J129; subsampled: 87.14% CAST, 12.86% 
J129). Variants were randomly subsampled from the true parental haplotypes irrespective of 
their observation in the GAM NuPs. Similar to the full dataset (64.69% of known SNVs 
observed), 64.66% of all SNVs were observed in the subsampled dataset. 
We explored accuracy and completeness of the best-performing proximity-scaled graph 
phasing algorithm on the subsampled dataset. All parameters, including the proximity scaling 
parameters, remained unchanged for the haplotype reconstruction. Despite the reduced SNV 
density and thus increased genomic distance between co-observed SNVs, GAMIBHEAR 
reconstructed accurate, dense, chromosome-spanning haplotypes: 99.96% of input SNVs were 
phased into haplotype blocks of minimum size 2, on average 99.95% (± 0.0096%) of those 
were phased in the main, chromosome-spanning haplotype block, covering 100% (± 0.00%) of 
the phasable genome.  
The mean global accuracy of 87.46% is still fairly high, the high standard deviation of ± 
15.21% indicates a large span in the results. The median global accuracy of 96.64% and the 
switch error rate of 4.84% (± 0.6%) show that the quality of the reconstructed haplotypes in a 
subsampled dataset is only slightly different from that of the haplotypes reconstructed from the 
full dataset, indicating that the algorithmic approach is largely independent of SNV density and 
thus applicable to human data. 
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S8 Comparison with MEC solvers WhatsHap and 
HapCHAT 
GAMIBHEAR is the first algorithm specialized in the usage of GAM data for haplotype 
reconstruction. GAM data stores phasing information differently than Hi-C data or PacBio long 
reads, which are frequently used for haplotype reconstruction with existing phasing algorithms 
such as HapCUT2 (Edge et al., 2017), WhatsHap (Patterson et al., 2015), HapCol (Pirola et 
al., 2016) and HapCHAT (Beretta et al., 2018).  
Chimeric reads from Hi-C experiments store phasing information if both chimeric parts overlap 
at least one SNV each. If this is the case, phasing information between these two genomic 
regions is captured, as intrachromosomal contacts are more likely than interchromosomal 
contacts. On the other hand, reads generated by the PacBio platform capture phasing 
information regarding all SNVs covered by one individual long read. When it comes to reads 
generated in GAM experiments, the phasing information is not stored within individual reads 
as it is the case with chimeric Hi-C reads or long reads, but the SNVs covered by all reads 
captured within one nuclear profile (NuP) convey accurate local phasing information. 
In order to explore if the spatial phasing information from GAM data could be readily 
transformed for the use in existing phasing algorithms, we decided to transform GAM data into 
pseudo long reads, since reads in GAM NuPs are sequenced from strands of DNA captured in 
physical nuclear slices. Thus, all SNVs co-observed within one GAM NuP were treated as if 
they were all covered on one continuous long read.  
For the following comparison we concentrated exclusively on chromosome 1 of the F123 GAM 
dataset. It contains 1,584,837 known heterozygous SNVs, of which 941,707 are observed in 
1110 GAM NuPs. 1087 NuPs contain at least 2 observed SNVs, which is the minimum number 
of SNVs necessary to convey phasing information. These NuPs were transformed into 1087 
pseudo long reads, each read covering between 2 and 25,776 SNVs (on average 2,486 SNVs). 
Similar to the ternary 𝑁 ×𝑀 matrix 𝐷 described in section 2.1, 𝐷′ was created from the 1087 
pseudo long reads covering 941,704 SNVs in total. 𝐷′ was built to meet the tools’ internal 
representation of reference, alternative and not observed alleles as {0, 1, −}, respectively, and 
then used as direct input to the wMEC and k-constrained MEC solvers WhatsHap and 
HapCHAT, using default parameters.  
 
WhatsHap is fixed parameter tractable in the coverage and sets a default coverage threshold of 
15x (maximum 23x) since PacBio long read data is characterized by uniform read and SNV 
coverage. However, unlike in PacBio long read data, SNV coverage in the sparse GAM data is 
usually low (chr1: on average 2.87x) but not uniform and varies, up to 37x on chr 1.  
Thus, a few SNVs in 𝐷′ (0.23%) exceed the default coverage of 15x, and 0.0073% exceed even 
the maximum coverage threshold (23x).  
To ensure the compliance of its coverage threshold, WhatsHap uses a read selection heuristic 
to select suitable reads that are most informative for phasing. The read selection process of 
WhatsHap resulted in a loss of the majority of long reads, 69 reads (6.35%) remained. As the 
coverage of GAM data is usually low and most SNVs are only observed once, this stringent 
read selection resulted in a loss of the majority of considered SNVs. 11,039 SNVs (1.17% of 
input SNVs) were retained for subsequent phasing, but haplotypes containing approximately 
1% of input SNVs would not be useful. In conclusion, as WhatsHap's read selection heuristic 
was designed for data sets where SNV coverage is uniform, GAM data cannot be readily 
transformed for its use in WhatsHap as it does not meet coverage requirements. 
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HapCHAT, based on WhatsHap and HapCol, was precisely developed to allow the 
consideration of datasets composed of higher coverages, as well as to improve the accuracy of 
computed haplotypes. In a preprocessing step, reads that are likely to originate from the same 
chromosome copy are merged. It was shown that, using read merging, HapCHAT can 
effectively handle datasets with approximately 60x coverage.  
In our comparison, the 1087 pseudo long reads were merged into 691 reads. To fulfil the default 
coverage threshold of 15x, merged reads were downsampled using the same selection process 
as employed by WhatsHap. The 63 remaining merged pseudo long reads covered 604,358 
SNVs (64.18% of input SNVs), all of which were subsequently phased into 5 haplotype blocks 
of minimum size 2. The largest block contained 604,350 SNVs (S50, 64.18%) and spanned 
192,334,685 bp (99.993% of the phasable genomic range), creating a chromosome-spanning 
haplotype block. Adjusting its span for the fraction of phased SNVs yields 123,434,304 bp 
(AN50), which is equivalent to 64.17% of the phasable genomic range.  
The haplotypes reconstructed by HapCHAT, which eventually phased 64.18 % of input SNVs 
show a global accuracy of 81.36%, with a SER of 11.38%. The MEC cost was reported as 
307,734. A side-by-side comparison is shown in Supplementary Table 4. 
 
Supplementary Table 4: Side-by-side comparison of HapCHAT and GAMIBHEAR 
phasing results on F123 chromosome 1. 

Metric HapCHAT GAMIBHEAR 

  Absolute Percent Absolute Percent 

Phased variants 604,358 SNVs 64.18 % 941,400 SNVs 99.97 % 

Number of Blocks 5 - 125 - 

S50 604,350 SNVs 64.18 % 941,060 SNVs 99.93 % 

N50 192,334,685 bp 99.99 % 192,348,818 bp 100 % 

AN50 123,434,304 bp 64.17 % 192,216,665 bp 99.93 % 

Global Accuracy - 81.36 % - 98.03 % 

SER - 11.38 % - 1.98 % 

We were curious on how these results would improve by increasing the default coverage 
threshold to the maximum possible coverage of 23x. While 2,187 SNVs (0.23%) of 
chromosome 1 show a higher coverage than 15x, only 69 SNVs (0.0073%) show a higher 
coverage than 23x. Unfortunately, while providing 400G of memory and no time limit, we 
were not able to finish the computation of results, as after approximately 30h the computation 
was aborted due to the excess of the memory limit. We believe that the high number of SNVs 
was responsible for this situation. Due to the high SNV density of F123 compared to human 
data, the set of 941,704 heterozygous SNVs on chromosome 1 is 19.6 fold larger than one of 
the benchmark SNV sets used in the HapCHAT paper. There a set of 48,023 heterozygous 
SNV on chromosome 1 of the individual NA24385, with a coverage of 60x, was phased in 1.5 
h using 3.9 GB RAM, thus not exceeding the 64G memory and 24h runtime limits. 

S9 Comparison with HaploSeq 
 

In 2013 Selvaraj et al. presented HaploSeq, a method that combines Hi-C on the experimental 
side, and HapCUT on the algorithmic side, to reconstruct accurate haplotypes genome-wide. 
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HaploSeq, as well as GAMIBHEAR, were developed and validated on the F123 mESC line, 
which makes their results comparable. The authors of HaploSeq present quality metrics with 
respect to the largest haplotype block, defined as the block with the most variants phased (MVP 
block). To enable direct comparison between the approaches, we report here the same metrics 
as reported by Selvaraj et al (see Supplementary Table 5). Since GAMIBHEAR was developed 
to enable haplotype-specific analysis of GAM data without the need of further experiments, we 
primarily report our results with respect to the set of SNVs observed in the GAM data set, but 
additionally with respect to the full set of known heterozygous SNVs in F123. 
Selvaraj et al., 2013 report > 99.9% of each phasable chromosome spanned by the MVP block, 
phasing about 95% of variants into the largest block, and > 99.5% accurately phased SNVs. 
 
Supplementary Table 5: GAMIBHEAR metrics comparable to HaploSeq. 

Chr Phasable span of chr Variants spanned in 
MVP block 

% chr spanned in 
MVP block 

% variants 
phased in MVP 

block  

% accuracy 
in MVP 
block 

 observed all observed all observ
ed 

all observ
ed 

all same 

chr1 192348817 192365707 941707 1492978 100 100 99.93 63.03 98.04 

chr2 178961691 178962141 782822 1185899 100 100 99.94 65.97 98.01 

chr3 156935404 156938923 694766 1177038 100 100 99.91 58.97 97.65 

chr4 153307607 153307607 741959 1118621 100 100 99.94 66.29  97.33 

chr5 148722916 148729017 738730 1137578 100 100 99.94 64.90 87.44 

chr6 146535718 146535902 726343 1135114 100 100 99.94 63.95 98.09 

chr7 142338158 142338158 687475 1019994 100 100. 99.95 67.37 98.00 

chr8 126223967 126251015 688032 1022728 100 99.98 99.95 67.24 84.51 

chr9 121472177 121492381 599812 896751 100 99.98 99.94 66.85 97.78 

chr10 127492655 127492655 664640 1037319 100 100 99.94 64.03 98.48 

chr11 118880794 118880794 640116 928226 100 100 99.95 68.93 98.15 

chr12 117017998 117018721 533072 850430 100 100 99.92 62.63 85.71 

chr13 117317721 117318662 588006 912425 100 100 99.93 64.40 98.15 

chr14 121475018 121762587 553535 877497 100 99.76 99.94 63.04 97.68 

chr15 100886010 100886142 494179 775168 100 100 99.94 63.71 97.60 

chr16 94993997 95024075 455935 753275 100 99.97 99.93 60.48 98.15 

chr17 91886804 91886960 431796 663159 100 100 99.94 65.07 64.79 

chr18 87601477 87601865 474538 725320 100 100 99.94 65.38 97.99 

chr19 58234352 58235870 303591 440643 100 100 99.95 68.86 97.99 

 
When downsampling the F123 SNV set to human SNV density, Selvaraj et al. still report 
complete (>99.2 % of the phasable chromosomes spanned) and only marginally less accurate 
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(> 98.9%) MVPs, which, however, show a drastically lower resolution as the MVP blocks only 
phased approximately 32 % of SNVs. 
In contrast, GAMIBHEAR was able to phase 99.96% of downsampled input SNVs, of which 
99.95% are contained within the main, chromosome-spanning haplotype block. This block 
spans 100% of the phasable genome (97.56 % of the full genome) with a comparable global 
accuracy of 96.64%. 

References 
1000 Genomes Project Consortium et al. (2015) A global reference for human genetic variation. 

Nature, 526, 68–74. 
Andrews,S. (2010) FastQC - A quality control tool for high throughput sequence data. Babraham 

Bioinformatics. 
Beretta,S. et al. (2018) HapCHAT: adaptive haplotype assembly for efficiently leveraging high 

coverage in long reads. BMC Bioinformatics, 19, 252. 
Edge,P. et al. (2017) HapCUT2: robust and accurate haplotype assembly for diverse sequencing 

technologies. Genome Res., 27, 801–812. 
Ewels,P. et al. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single 

report. Bioinformatics, 32, 3047–3048. 
Goios,A. et al. (2007) mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res., 

17, 293–298. 
Gribnau,J. et al. (2003) Asynchronous replication timing of imprinted loci is independent of DNA 

methylation, but consistent with differential subnuclear localization. Genes Dev., 17, 759–773. 
Jun,G. et al. (2015) An efficient and scalable analysis framework for variant extraction and 

refinement from population-scale DNA sequence data. Genome Res., 25, 918–925. 
Khalil,A. et al. (2007) Chromosome territories have a highly nonspherical morphology and 

nonrandom positioning. Chromosome Res., 15, 899–916. 
Lander,E.S. et al. (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921. 
Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 

357–359. 
Li,H. (2011) A statistical framework for SNP calling, mutation discovery, association mapping and 

population genetical parameter estimation from sequencing data. Bioinformatics, 27, 2987–2993. 
Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–

2079. 
Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. 

Bioinformatics, 25, 1754–1760. 
Lo,C. et al. (2011) Strobe sequence design for haplotype assembly. BMC Bioinformatics, 12 Suppl 1, 

S24. 
Martin,M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. 

EMBnet.journal, 17, 10–12. 
Patterson,M. et al. (2015) WhatsHap: Weighted Haplotype Assembly for Future-Generation 

Sequencing Reads. J. Comput. Biol., 22, 498–509. 
Pirola,Y. et al. (2016) HapCol: accurate and memory-efficient haplotype assembly from long reads. 

Bioinformatics, 32, 1610–1617. 
Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics, 26, 841–842. 
Selvaraj,S. et al. (2013) Whole-genome haplotype reconstruction using proximity-ligation and 

shotgun sequencing. Nat. Biotechnol., 31, 1111–1118.  
Simpson,E.M. et al. (1997) Genetic variation among 129 substrains and its importance for targeted 

mutagenesis in mice. Nat. Genet., 16, 19–27. 

 


