Ophthalmic magnetic resonance imaging: where are we (heading to)?

Niendorf T., Beenakker J.W.M., Langner S., Erb-Eigner K., Bach Cuadra M., Beller E., Millward J.M., Niendorf T.M., Stachs O.

This is an Accepted Manuscript of an article published by Taylor & Francis in Current Eye Research on 04/02/2021, available online at http://www.tandfonline.com/doi/full/10.1080/02713683.2021.1874021.

The original article has been published in final edited form in:

Current Eye Research
2021 SEP 02 ; 46(9): 1251-1270
2021 FEB 04 (first published online: final publication)

Publisher: Taylor & Francis

Copyright © 2021 Taylor & Francis Group, LLC.
Ophthalmic Magnetic Resonance Imaging: Where Are We (Heading To)?

Thoralf Niendorf¹,², Jan-Willem M. Beenakker³, Sönke Langner⁴, Katharina Erb-Eigner⁵, Meritxell Bach Cuadra⁶, Ebba Beller⁴, Jason M. Millward¹, Thea Marie Niendorf⁷ and Oliver Stachs⁸,⁹

¹ Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
² MRI.TOOLS GmbH, Berlin, Germany
³ Department of Ophthalmology and Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
⁴ Institute of Diagnostic and Interventional Radiology, Rostock University Medical Center, Rostock, Germany
⁵ Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
⁶ Center for Biomedical Imaging (CIBM), Department of Radiology, Lausanne University and University Hospital, Lausanne, Switzerland
⁷ Rostock University Medical Center, Rostock, Germany.
⁸ Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany.
⁹ Department Life, Light & Matter, University Rostock, Rostock, Germany.
Abstract

Magnetic resonance imaging of the eye and orbit (MReye) is a cross-domain research field, combining (bio)physics, (bio)engineering, physiology, data sciences and ophthalmology. A growing number of reports document technical innovations of MReye and promote their application in preclinical research and clinical science. Realizing the progress and promises, this review outlines current trends in MReye. Examples of MReye strategies and their clinical relevance are demonstrated. Frontier applications in ocular oncology, refractive surgery, ocular muscle disorders and orbital inflammation are presented and their implications for explorations into ophthalmic diseases are provided. Substantial progress in anatomically detailed, high-spatial resolution MReye of the eye, orbit and optic nerve is demonstrated. Recent developments in MReye of ocular tumors are explored, and its value for personalized eye models derived from machine learning in the treatment planning of uveal melanoma and evaluation of retinoblastoma is highlighted. The potential of MReye for monitoring drug distribution and for improving treatment management and the assessment of individual responses is discussed. To open a window into the eye and into (patho)physiological processes that in the past have been largely inaccessible, advances in MReye at ultrahigh magnetic field strengths are discussed. A concluding section ventures a glance beyond the horizon and explores future directions of MReye across multiple scales, including in vivo electrolyte mapping of sodium and other nuclei. This review underscores the need for the (bio)medical imaging and ophthalmic communities to expand efforts to find solutions to the remaining unsolved problems and technical obstacles of MReye, with the objective to transfer methodological advancements driven by MR physics into genuine clinical value.

Keywords

Ophthalmology, eye, orbit, imaging, Magnetic Resonance Imaging
Introduction

The demand for new strategies for early detection and treatment of ocular diseases requires that we deepen our understanding of the underlying pathophysiological processes and molecular mechanisms, which in turn calls for new ways to visualize the eye and the orbit and to image ocular disease states at multiple scales of length and time. Magnetic resonance imaging (MRI) of the eye and orbit (hereafter referred to as ‘MReye’1–5) as well as the spatial arrangements of the eye segments and their masses, is increasingly being used in basic and translational research, and clinical diagnostics.

Although the ophthalmic clinic is generally equipped with a wide variety of imaging modalities including fundus photography, optical coherence tomography and ultrasound, MReye can complement these tools, and address a number of their limitations. Crucially, most ophthalmic imaging modalities use optical techniques and are therefore limited to imaging transparent tissues. MReye allows the characterization of opaque tissues, such as intra-ocular tumors. Optical images are distorted as light is refracted by the cornea and lens, which constitutes a challenge for radiotherapy planning. Unlike optical approaches, MRI can image orbital structures behind the globe, such as the eye muscles, which otherwise can only be indirectly evaluated, for example using the clinical activity scale in Graves’ Orbitopathy. MReye provides 3D volumetric imaging, whereas conventional techniques such as fundoscopy are constrained to 2D cross-sections of the eye. MReye has also enabled the quantification and mapping of parameters related to biophysics and physiology such as perfusion of intra-ocular lesions, water diffusion in uveal melanoma, and assessment of sodium content. This opens up an entirely new arena for the diagnosis of ocular lesions, which so far has primarily been based on purely descriptive assessments. With a spatial resolution close to that of computed tomography (CT), MRI can serve as a diagnostic tool for a wide range of ocular diseases including eye tumors and optic neuropathies. Ultimately, the development of ocular MRI applications aims towards image-based biometry. MReye also has a role to play in screening for ophthalmic disease, teaching, clinical trials and in virtual ophthalmology and telemedicine.

This review surveys the state-of-the-art of MReye and highlights cutting-edge technologies. Examples of novel MReye strategies and emerging applications are presented, with demonstrations of their clinical relevance, together with a perspective into future directions.

MReye in ocular oncology, refractive surgery, ocular muscle disorders and orbital inflammation

\textit{MReye for ocular oncology}
Uveal Melanoma (UM) is the most common primary eye tumor. Its distant metastases render it one of the very few life threatening ocular conditions. Conventionally, UM is diagnosed using fundus photography, fluorescence angiography and ultrasound (US). The optimal treatment approach for UM depends primarily on its size and location. Small UM, e.g. less than 8mm thickness, are generally treated with local brachytherapy, whereas larger UM generally receive external beam therapy, such as Proton Therapy (PT), or may require enucleation. In ophthalmic US the observed tumor thickness depends heavily on the orientation of the US transducer. This thickness is often overestimated as the transducer cuts obliquely through the tumor. US is constrained by the modest contrast between tumor and sclera, and therefore has a relatively high inter-observer variation of 0.6 mm. MReye can image the tumor with superior tissue contrast (Figure 1), thus providing a more accurate and reproducible evaluation of the tumor dimensions. Incorporating MReye into clinical practice has proven to be cost-effective for patients with medium-size UM, as the avoidance of tumor size overestimation using three-dimensional (3D) MR-based measurements generally results in smaller volumes, making at least 10% of these patients eligible for brachytherapy instead of the more invasive and expensive PT, or enucleation, which would otherwise have been prescribed.

3D MR-based visualization of the tumor is also beneficial for radiotherapy planning for UM. Several studies report developments in MR-based PT planning, which can not only incorporate the 3D shape of the tumor, but also the actual location of the organs-at-risk. MR-based treatment and position verification methods are developed for brachytherapy planning of ocular tumors, enabling treatment planning based on the unique tumor geometry and plaque location of the individual patient (Figure 2). These advances in ocular radiotherapy have been facilitated by the demonstration of the MR-safety of tantalum markers used in PT-planning, and the confirmation of geometric stability of the eye and tumor, between MR-images acquired in a supine position and the delivery of PT in a sitting position.

MR-based eye models for refractive surgery

Efforts in refractive surgery have expanded from central vision to include peripheral vision. In cataract surgery, a decrease in peripheral image quality was observed after implantation of an intra-ocular lens. Furthermore, studies on the development of myopia in children suggest a link between peripheral refraction and a gradual elongation of the eye. Since peripheral refraction is partly related to the retinal shape, various approaches have been explored to accurately measure the eye shape, and MReye has become instrumental for this (Figure 2). MRI revealed a less oblate shape in myopic eyes as compared to emmetropic eyes. The increased spatial resolution
available at ultrahigh magnetic field strengths has facilitated quantification of small changes in lens shape with increasing age, and has revealed submillimeter irregularities that could have an important influence on the subjects’ peripheral vision. More recently, high-resolution MReye techniques have been applied in clinical studies, for example to assess the geometric relation between the iris and intra-ocular lens in patients with Negative Dysphotopsia.

MReye of orbital inflammation

MRI is the modality of choice for the evaluation of orbital inflammation, because of its superior soft tissue contrast and spatial resolution. T₁- and T₂-weighted MRI are instrumental for tissue characterization, and can help to determine the extent of inflammation in orbital structures. In T₂-weighted images inflammatory lesions are hypointense to isointense. For T₂-weighted MRI the signal intensity of inflammatory lesions is governed by the balance between edema, which appears hyper-intense, and fibrosis, which appears hypo-intense. Incorporating fat suppression into T₂-weighted MRI makes edema even more conspicuous. MReye of optic nerve inflammation appears hyperintense on T₂-weighted images, together with unilateral optic nerve swelling in the retrobulbar/intra-orbital segment.

In addition to T₁- and T₂-weighted imaging, parametric mapping using quantitative MR-techniques has the potential to provide even greater impact for the assessment of ocular inflammation. In quantitative MRI, the effects of specific biological parameters can be probed, such as the tissue water content, water diffusion, perfusion and lesion vascularity. These biomarkers are routinely used in a wide range of applications, and have become increasingly available for MReye. For example, diffusion weighted imaging (DWI) probes the diffusion of water on a microscopic level (Figure 3) and holds the potential for enhancing diagnostic accuracy compared to morphological techniques. DWI was shown to differentiate orbital inflammatory processes from malignant lesions. Combining DWI with morphological MRI can help to reveal the underlying causes of inflammatory disorders. Without MRI, these assessments can often only be performed with biopsy when these pathologies are located behind the globe, and are therefore not accessible to optical methods. Combining morphological MRI and mapping of the apparent water diffusion coefficient (ADC) has value for the differential diagnosis of orbital lymphoma and idiopathic orbital inflammatory pseudotumors. The ADC was shown to be higher in inflammatory and benign lesions as compared to malignant lesions, resulting from an increased intracellular fraction of water rather than cellular infiltration. To advance this approach, DWI has been specifically tailored for the eye, to enable higher precision images free from geometric distortion. Other examples of quantitative MRI include mapping of the spin-spin relaxation time (T₂) and fat-water imaging (Figure 3) using...
Dixon techniques to quantify the amount of inflammation and fatty infiltration of muscles. These techniques have been translated to ophthalmic applications, providing detailed, noninvasive assessment of the extra-ocular muscles in Graves’ orbitopathy and Myastenia gravis.35,36

MReye: the intersection between ophthalmology and radiology

Technical progress has continuously improved MRI quality of the eye and orbital cavity.1,37-40 Due to the superior soft tissue contrast and the lack of ionizing radiation, MRI provides an attractive alternative to CT for the diagnosis of diseases of the eye and orbit. These diagnostic possibilities have became ever more diverse, and the range of clinical indications has broadened considerably.41 The main indications for MReye currently include ambiguous ophthalmoscopic findings such as vitreous opacification, bleeding and retinal detachment, local staging of ocular mass lesions (e.g. uveal melanoma, retinoblastoma) as well as planning for their treatment, and the assessment of injuries involving non-metallic foreign bodies. A recent addition to these indications are masses within the eyelid. Unlike with conventional ophthalmic techniques, MReye could identify which eyelid layers are affected, thus enabling more conservative surgery in a subset of patients.42 Indications for MReye of structures behind the globe and in the deeper orbital cavity include unclear protrusion of the globe, as well as staging of mass lesions with regard to dignity and entity. UM is often complicated by exudative retinal detachment, which is sometimes mistaken for a rhegmatogenous detachment and subsequently treated with vitrectomy with silicone oil (SiOil) tamponade. The latter is challenging if not impossible to image with US. MReye enables high-resolution imaging of vitrectomized eyes with SiOil tamponade, facilitating treatment planning and follow-up in UM patients.43 MRI of the orbital cavity is warranted in clinically unclear situations of thyroid associated orbitopathy such as unilateral involvement, missing thyroid disease and assessment of disease activity.44

Using MReye to achieve the correct diagnosis is crucial, since tissue sampling and surgery in the orbital cavity especially behind the globe, is technically difficult and may be associated with adverse outcomes. Nevertheless, imaging of the eye and orbit can be challenging. Involuntary movements of the eye can have a significant impact on image quality. Artifacts induced by magnetic field inhomogeneities can occur due to the adjacent air-containing paranasal sinuses and maxillary sinuses. The radiologist or interpreting physician must be experienced with assessing these artifacts since they can mimic disease indications such as orbital inflammation, especially around the orbital floor.

MRI scans of a metallic intraocular foreign body are very rare, primarily due to the magnetic susceptibility and resultant tissue damage, making the procedure contraindicated. The initial
imaging modality of choice for diagnostic evaluation of a suspected intraorbital foreign bodies is a CT scan. MReye is generally contraindicated as first-line imaging because the strong magnetic field may dislodge metallic intraocular foreign, potentially causing damage to ocular structures or even blindness.

The advent of multiparametric imaging adds functional information to standard anatomical T₁- and T₂-weighted imaging protocols, enhancing diagnostic possibilities in the eye and orbit. Being able to differentiate between benign and malignant lesions in the orbital cavity has a major impact for the patient, by avoiding tissue sampling and surgery as much as possible. DWI has great value in classifying unclear orbital lesions. An average ADC of 0.9 x 10⁻³ mm²/s was reported for malignant lesions. For benign orbital lesions, an average ADC of 1.43 x 10⁻³ mm²/s was reported. Consequently, a model containing two ADC thresholds was proposed to classify orbital lesions into 'malignant', 'benign' and 'undetermined'. With this progress DWI has proven its value for the differentiation of UM from benign lesions, and has shown strong potential as an early biomarker of radiotherapy response. Figure 4 shows an example of two patients with similar signal characteristics in the T₁- and T₂-weighted images but with different signal characteristics for DWI. The development of distortion-free DWI has been very useful in the assessment of orbital pathologies, especially when the anatomical structures are small. Figure 4 depicts optic nerve ischemia using distortion-free DWI.

Recent studies have shown the diagnostic advantages of perfusion weighted imaging (PWI). The time course of the dynamic contrast-enhanced MR signal allows conclusions to be drawn about the vascularization and the microcirculation of different lesions (Figure 3). PWI helps to classify mass lesions into 'benign' and 'malignant'. Benign mass lesions tend to show a slow increase in signal intensity over time, whereas malignant lesions typically show a fast increase of signal intensity, and after reaching a peak, a plateau or even a drop in signal intensity occurs ('washout phenomenon'). This is particularly useful in distinguishing mass lesions which may have similar signal characteristics in standard T₁- and T₂-weighted images. PWI images can provide the radiologist with more confidence in classifying these lesions (Figure 3). In ocular oncology, the visual appearance of the lesion, e.g. pigmented with orange spots, is used to provide a strong indication of the type of lesion (UM in this case). However, when a lesion is located behind the iris, or covered with blood or liquid, such a visual inspection is not always possible. In these cases, PWI can provide crucial insights into the origin of the lesion. For example, choroidal hemangioma show a significantly stronger enhancement in PWI than UM. Dedicated analysis tools have been developed for PWI of the eyes to correct these images for eye-motion and to incorporate differences in tumor pigmentation in the models used for quantification.
The application of contrast media for (dynamic) contrast enhancement should be used with caution, and the potential benefits and risks must be evaluated individually for every patient. Tissue deposits of gadolinium after the administration of MR contrast agents have become a controversial issue and a serious safety concern, with implications for patient care and clinical use. Gadolinium retention in the brain was demonstrated, especially in patients who had several contrast media applications. A recent study showed leakage of gadolinium-based contrast into the anterior chamber of the eye in children shortly after intravenous injection.

A systematic approach is required for interpreting MR images, and reports to the referring clinician should include information on location of lesions, adjacent structures, size and characteristics (such as hemorrhage and necrosis) as well as information on lesion dignity (benign versus malignant). Table 1 provides a summary of pathologies encountered in the eye and orbital cavity which warrant high-resolution MR imaging. The most common benign orbital mass lesions are hemangiomas. DWI is particularly helpful in evaluating lacrimal gland lesions. Lymphomas must be accurately discriminated from benign mixed tumors since the latter should not be biopsied due to increased recurrence rates along the biopsy pathway. Lymphomas typically show restricted diffusion whereas benign mixed tumors do not.

MReye to monitor drug delivery and ocular pharmacokinetics

The eye can be divided into the anterior segment (approximately one third of the eye volume), and the posterior segment (accounting for the remaining two thirds). The choice of drug delivery to the eye mainly depends on the affected area, mode of action and the desired therapeutic effect. The treatment of anterior eye diseases is most commonly performed via topical administration, whereas intravitreal injection is the gold standard for treating posterior eye diseases. Intravitreal injections may have severe side effects including retinal detachment, vitreous hemorrhaging, intraocular inflammation, endophthalmitis or elevated intraocular pressure. Moreover, poor patient compliance is a crucial problem for intravitreal administration. Drugs delivered to the back of the eye encounter multiple physiological barriers. The vitreous is gel-like, acellular and consists primarily of water with collagen, glycosaminoglycan and hyaluronic acid supporting the structure formation of the vitreous. In contrast to the vitreous, the retina is a complex collection of tissues consisting of multiple layers of biological barriers including Bruch’s membrane, the retinal pigment epithelium, retinal endothelia, inner- and outer-limiting membrane as well as Müller cells. The retinal pigment epithelium is part of the blood-retina barrier, and this structure is a reason why it is difficult to achieve therapeutic levels of drugs in the retina after systemic administration. Nevertheless, retinal degenerative diseases such as age-related macular
For Peer Review Only

Degeneration, diabetic retinopathy and macular edema, can lead to blindness and are increasing due to the aging population. Drug delivery to the posterior eye segment continues to pose a challenge in ophthalmology and has become an important focus for research for pharmaceutical and biotechnology companies. Given the current need for new therapeutic options, suitable imaging tools are necessary for improving disease detection, evaluation and adjustment of treatment protocols in real time and to help streamline the drug development process. Reliable ocular pharmacokinetic data are needed to ensure successful development of novel ocular drug-delivery methods and improvements of the existing methods. Patients treated with drugs via intravitreal injections need to visit the ophthalmic clinic very regularly (e.g. every month), which presents a substantial burden for the clinics and the patients. Advanced methods for controlled drug delivery and monitoring would be instrumental to offset this burden for the benefit of patient comfort and cost reduction.

Several studies have demonstrated the usefulness of MRI for providing insights into ocular transport barriers, clearance pathways, penetration routes and aqueous humor dynamics. Moreover, qualitative and quantitative longitudinal evaluations of drug delivery systems have been performed with MRI, regarding drug location and release kinetics in periocular, intrascleral, suprachoroidal and intravitreal administration, the latter also after injection of silicone oil tamponade agent within vitrectomy surgery. MRI can also be useful in the study of penetration routes and distribution of ionic permeants in the eye during and after iontophoresis, for constructing iontophoresis protocols and device testing. Conventional MRI contrast agents have been widely used, inter alia, to investigate dysfunction in the blood-retinal barrier function. Dynamic contrast-enhanced PWI is currently commonly used for preclinical and clinical evaluation of anti-angiogenesis inhibitors. PWI allows quantitative pharmacokinetic modelling, which is an additional benefit over qualitative Fluorescence angiography (FAG). Although ocular applications of PWI are still at an early development stage, preliminary findings are promising. PWI showed a strong correlation between the transfer constant from vascular to extravascular extracellular space, and tumor genetics. An alternative to traditional PWI is offered by arterial spin labeling (ASL) techniques, mostly used to measure cerebral blood flow. ASL has also been shown to have the potential to monitor and assess retinal pathologies by detecting changes in retinal and choroidal blood flow.

Owing to the development of contrast agents tailored for specific objectives, MRI has evolved into a versatile technique with multiple functions, and has become one of the most...
powerful noninvasive imaging tools in the field of molecular imaging (MI). MI integrates biology at the molecular level with in vivo imaging at the cellular and subcellular level. This allows the monitoring and measurement of biological processes in living subjects, thereby providing information similar to that obtainable from biopsy, but noninvasively and performed in real time. Here nanotechnology can serve as an ideal framework for interfacing contrast agents with molecular biomarkers in vivo, since the nanoscale is the scale at which molecular interactions occur. Among the first nanoparticle structures used for MI were superparamagnetic iron oxide nanoparticles. Distribution of the nanoparticles in the eye could be tracked in vivo at different time points after intravitreal injection by MRI. Moreover, the nanoparticles can be combined with coating proteins, such as human serum albumin. Human serum albumin bears functional groups (e.g., hydroxyls, amines, carboxylates and thiols), which can be used for conjugation of various biomolecules, and can improve the pharmacokinetics of peptide- or protein-based drugs. Albumin has low toxicity, is readily available, biodegradable (average blood half-life ~19 days) and is preferentially uptaken in tumors and inflamed tissues. For instance, albuminated polylactic-co-glycolic acid nanoparticles of bevacizumab, injected intravitreally in rabbits, were found to prolong the vitreous concentration of bevacizumab and retain the activity, protected against aggregation and instability.

Magnetic resonance spectroscopy (MRS) measures chemical shift information of individual molecules or components of molecules, thereby allowing the study of the biochemistry and metabolism of disease processes within the subject. 1H-MRS assessment of the visual system and the visual cortex suggest a significant value of this method for uncovering the processes and mechanisms of developmental and pathophysiological changes systematically along visual pathways. Moreover, 19F-MRS was used to follow the dynamics of a fluorine-containing corticosteroid in the eye, administered by intravitreal and subconjunctival injections. Notwithstanding the high specificity of 19F-MR, the relatively low sensitivity versus conventional assays remains a limitation. Improving the detection limits so that 19F-MR may be sensitive enough to evaluate the pharmacokinetics of ocular drug delivery methods will require further MR hardware improvements and pulse sequence developments.

MRI allows for the real-time visualization, localization, characterization and quantification of ophthalmic drugs after their administration, in a safe and non-invasive way. This can help foster the objective of improving the application and permanence of ophthalmic drugs in their sites of action. MReye offers great potential for the development of ophthalmic drugs and delivery systems for posterior eye diseases.
MReye microscopy

Unlike common imaging modalities in ophthalmology including Scheimpflug imaging, US, US Biomicroscopy or Optical Coherence Tomography, MReye affords distortion-free assessment of the orbit, the globe and the optic nerve. MReye is not subject to operator-dependent error. With MReye the image quality depends on the magnetic field homogeneity and the sensitivity of the radiofrequency (RF) antennae used for signal detection. Recent advances in MR technology allow ex and in vivo imaging with submillimeter spatial resolution in reasonable imaging time.

MRI of the orbit at 1.5 tesla (T) is well-established using head volume RF coils for signal detection103. With the advent of dedicated small RF surface coils104,105, spatial resolution has been significantly increased, allowing differentiation of orbital tumors from subretinal fluid. Increasing the magnetic field strength promotes the signal-to-noise ratio (SNR), the most important determinant of image quality. This boost can be used to reduce scanning time for the benefit of minimizing the impact of bulk eye motion on image quality, or to enhance spatial resolution. With the increasing availability of 3.0 T MR instruments spatial resolution has significantly improved for imaging the eye106-108 and the optic nerve109. The value of increasing magnetic field strength even further, and of tailoring RF coil designs to boost SNR and spatial resolution has been demonstrated103. These gains allowed quantitative analysis of lesions of the orbit110, the optic nerve111 and the eye lid42 using DWI and diffusion tensor imaging (DTI).

MR microscopy (MRM) refers to imaging with an in-plane spatial resolution of \(\leq 100\mu m \)112. MRM enabled differentiation of the choroid, retina and sclera of the human eye \textit{ex vivo} (Figure 6)113 and supported \textit{ex vivo} studies of the accommodation apparatus114. Ex vivo examinations of the human eye at 9.4 T permitted an in-plane spatial resolution of 32-50 \(\mu m \)34,112. Using a magnetic field strength of 9.4 T in conjunction with a cryogenically cooled RF coil to enhance signal detection affords high resolution \textit{ex vivo} anatomical imaging and DTI of the human optic nerve (Figure 6). MRM can also be used for the evaluation of orbital masses115. Recent work demonstrated the value of preclinical MRM at 9.4 T and at 17.6 T for \textit{ex vivo} evaluation of the extent and microstructural anatomy of retinoblastoma, in comparison with histopathology. This work facilitated visualization of subtle subretinal tumour seeds with a size <300 \(\mu m \).116 Although the spatial resolution of MRM is an order of magnitude inferior to that of conventional histology, the major advantages of MRM are its non-invasiveness, and the ability to acquire images in any arbitrary plane with the possibility of quantitative imaging in vivo. \textit{Ex vivo} MRM of uveal melanomas yielded an excellent correlation of the structural features obtained from imaging (Figure 6) with conventional histology and \textit{in vivo} imaging techniques55,117. MRM is also instrumental for the evaluation of the optic nerve, the central retinal artery that runs in the dura mater of the optic nerve and the extraocular muscles that control
eye motion (Figure 6). Advancements in MRM render this approach an important adjunct for clinical imaging and a vital tool in ophthalmological research.

Synergy of MR-eye with image processing and artificial intelligence

Opportunities for discovery

In an era of increasing recognition and knowledge of ocular disease, MR-eye yields new insights at the functional, physio-metabolic, molecular and cellular levels. In order to integrate these findings into a coherent picture of the eye, its tissues and the orbit for early interception of disease and treatment planning, it is becoming increasingly crucial to make use of the tools of data science. For example, access to an on-the-fly direct 3D patient-specific model of the tumor volume and the eye structures remains an unmet clinical need thus far. This clinical need provides a strong motivation for connecting MRI with advanced image processing, visualization algorithms, quantitative analysis, artificial intelligence and predictive analysis with the ultimate goal to translate MR-eye-guided computer-assisted diagnosis, treatment planning and intervention into the ophthalmic clinic.

3D imaging is opening up opportunities in the treatment of ocular tumors in children and adults. MRI with an in-plane spatial resolution of about 0.5-1.0 mm along each direction can clearly identify eye structures. Importantly, this includes the possibility of imaging the freely moving human eye, which makes fixating or administration of paralytics or anaesthetics obsolete, vastly improving patient comfort and compliance. MRI can readily distinguish between normal anatomy and pathological regions such as the gross tumor volume or retinal detachment. Furthermore, MRI provides valuable information for tumour tissue characterization, for example between enhancing and non-enhancing regions (as in retinoblastoma) or between nodular and diffuse appearance (as in UM). Adding advanced image processing with a strong data science dimension to MR-eye will expand the field into unchartered territory, with the possibility to generate patient-specific 3D models of the pathological eye, in near real-time and with minimum human assistance.

Automated segmentation of MR-eye

There is a dearth of approaches for automated segmentation of healthy ocular structures from 3D MRI or CT. Pioneering studies on this topic have reported on performing parametric modeling of the eye using pre-established shapes such as spheres and ellipsoids. EYEPLAN
presented a framework that estimates the shape of the lens, cornea and sclera by combining parametric spheres. Similarly, OCTOPUS \(^{11}\) reconstructed anatomical eye structures (e.g. lens or vitreous humor (VH)) as combinations of ellipsoids. Both of these methods were semi-automated, requiring an expert to assist with manually pre-selecting measurements and landmarks in order to initialize the respective models. The modeling capabilities of these approaches are limited to a linear eye-growing pattern, dependent on the age of the patient. Following these initial reports more sophisticated image processing techniques have explored more complex models, enabling the segmentation of more regions of interest (ROI) inside the eye. For example, 3D modeling of the eye based on MReye using spherical meshes has been suggested \(^{122}\). This approach leveraged the posterior corneal pole and a sphericity modifying parameter. An atlas-based segmentation algorithm using parametric active contours together with an ellipsoid model has also been proposed. This approach enabled more accurate segmentations of the sclera and the lens\(^{123}\).

The main shortcoming of parametric models is that they rely on strictly pre-defined geometry and lack statistical information (both related to image intensity and shape variations) that could be extracted from the anatomical variability over a given population. To this end, machine learning (ML) based Active Shape modeling (ASM) \(^{124}\) provides a robust solution for deforming the shape of a structure using a constrained statistical model-based segmentation algorithm trained upon a dataset. This development culminated in the first semi-automated method, requiring minor user interaction, to segment the sclera, the cornea and the lens on CT images of adult patients \(^{125}\). This triggered progress on statistical shape models for automated segmentation of the sclera, VH, and the lens using \(T_1\)-weighted images of eyes of healthy children, and eyes of children with unilateral or bilateral tumours, obtained at 3.0 T MR (Figure 7) \(^{126,127}\). This approach was reproduced for segmentation of eyes in awake adults using \(T_1\)-weighted images acquired at 1.5T, demonstrating the presence of pronounced motion and bias field artefacts with bigger eye volume versus asleep children \(^{128,129}\). This work also confirmed the ability to build a 3D UM patient-specific eye model with the presence of tumors and tantalum clips, and confirmed that ASM was able to accurately segment eye structures even in the presence of tumors \(^{128,129}\). ML-based MReye radiomics analysis represents a promising tool kit for discriminating between UM and other intraocular masses in adults\(^{130}\).

Semi-automated eye structure segmentation has been explored for 7.0 T MRI to measure the 3D shape of the retina to study abnormal shape changes and peripheral vision. \(^{25,26}\) Retinal topographic maps were constructed based on the segmentation of the lens and vitreous body utilizing a series of region growing, multiple threshold and connected component steps.

Deep learning is an important branch of machine learning and artificial intelligence (Al)\(^{131}\). DL holds promise to automatically pinpoint, identify and grade pathological features in ocular
A supervised DL algorithm was explored for segmenting sclera, lens and head of the optic nerve (and also the tumor, see section below) in using a 3D-Unet and additional post-processing steps. This potential invites ophthalmology to embrace the application of DL with MReye.

Automated ocular tumor segmentation

Few studies have explored automated segmentation of ocular tumors with MRI thus far. Initial methods were developed for segmentation of retinoblastoma (RB) in children. A 3D convolutional neural network (CNN) tailored for RB segmentation was reported using multi-spectral MRI sequences and patient-specific features extracted from initial ASM segmentation in 16 patients. Another deep learning method based on a 3D U-net architecture was employed for segmentation in 32 patients with RB. In addition to the patient data, healthy adults and children were included in the training data. This approach aimed at solving the dual problem of identifying eye structures and tumor segmentation simultaneously. RB segmentation was also presented in 24 patients using a combination of ASM and tumor prior location with 2D-Unet architecture to explore the performance of training and testing using multiple 2D and 3D MRI sequences including 2D T1-weighted, 2D T2-weighted and 3D balanced SSFP imaging protocols.

Automated segmentation of UM in MRI has been virtually neglected thus far. Preliminary data were reported using a fully automatic framework to obtain tumor thickness from 7.0 T MRI images, with four cases being evaluated qualitatively. A weakly-supervised deep learning framework was recently published that explored the use of 2D and 3D-Unet architectures in T1- and T2-weighted sequences in 24 patients with UM. This approach demonstrated the ability of weak labels (presence or absence of tumor) to generate further training data for segmentation purposes.

Unmet needs of ocular tumour segmentation

The automatic extraction of quantitative and reliable information on patient-specific eye structures and ocular tumors (location, size, texture, morphology and distribution of pathological tissues) would be a breakthrough for current diagnosis, follow-up and therapy planning. Robust and accurate MReye analysis methods would help integrate multiple ophthalmic image modalities covering different scales in space (such as MRI, funduscopy, OCT and ultrasound) in support of patient care. Specifically, a precise characterization of ocular tumor features would boost developments in the emerging field of radiogenomics where the link between genetic information of tumor tissue and image-based features could provide new insights into patient response to therapy, and further support patient-specific treatment. Furthermore, accurate 3D eye...
and ocular tumor segmentation would directly benefit current targeting procedures such as radiation therapies applied in UM in adults. In this context, the 3D segmentation of the gross tumor volume would certainly increase the acceptance of MRI for therapy planning and could subsequently drive a shift away from the current standard of invasive surgery, towards non-invasive procedures.

Overall, current image processing methods tailored for automated eye MR image analysis are limited. The methods developed thus far are not yet ready to be seamlessly integrated into routine clinical practice as ready-to-use solutions. A major bottleneck in MReye analysis research is the lack of available datasets with ground truth annotations, contrary to other research areas such as brain tumours or multiple sclerosis, where tremendous efforts have been made to collect and share data publicly to further machine learning approaches. Nevertheless, the increasing adoption of MReye in research and clinical studies, together with the expanding embrace of novel machine learning techniques promises to close this gap.

Pushing the boundaries of MReye technology

(Ultra)high field MReye

MReye has progressed rapidly, with new research directions often being driven by the sensitivity gain afforded by high field (B₀≥3.0 T) and ultrahigh field (UHF) MRI (B₀≥7.0 T). An in-plane spatial resolution of 100 μm, and a voxel resolution of 200 μm x 200 μm x 400 μm were achieved in vivo for gradient echo imaging at 7.0 T within clinically acceptable scan times. Ex vivo examinations of the human eye at 9.4 T achieved an in-plane spatial resolution of 32-50 μm.

Arguably, the potential of ultrahigh field MReye remains untapped. However, this potential can be restricted by a number of concomitant physics-related phenomena and practical obstacles associated with magnetic field inhomogeneities at higher field strengths. These include off-resonance artifacts, dielectric effects and RF non-uniformities, as well as localized tissue heating and RF power deposition constraints. These effects pose serious challenges to compete with the capabilities of MReye at 1.5 T. If these practical impediments can be overcome, UHF-MReye promises to become a springboard for bridging critical gaps in space in time: from the near molecular level to the anatomic structures of the ocular system, and from microseconds in tracking Brownian motion of water, to potentially years in population imaging studies. This opens a window into the eye, and into (patho)physiological processes that have, to date, been largely inaccessible.
Development of novel MR detector technology

MRI of subtle ocular structures requires sub-millimeter spatial resolution over a small field of view (FOV). Figure 8 shows a clinical set-up comprising a volume head RF coil in conjunction with a small surface receive RF coil. Using this approach has even more impact on improving SNR than increasing the magnetic field strength. The correct positioning of the surface RF coil is crucial. This requires highly experienced medical staff in the MR operater room, since the RF coil must be positioned in direct contact with the patient’s face and may not be well tolerated. Despite this, the use of a small surface RF coil and a volume head RF coil together in one examination can be beneficial to obtain high-resolution anatomical images and functional images in a single session.

The SNR gains inherent to UHF MRI can be translated into enhanced spatial resolution. To meet this goal various RF antenna configurations used for MR signal excitation or/and signal reception have been proposed. Pioneering developments include a six-element transceiver RF coil array (Figure 9) that covers both eyes. This design meets the RF power deposition limit requirements of MRI, is duly certified and approved for clinical use by a notified body and provides image quality suitable for in vivo use together with optimized patient comfort and ease of use (Figure 9). To foster swift translation of this enabling RF coil technology into the clinical realm, patients with ocular masses and/or retinal detachment were examined in clinical feasibility studies. These investigations demonstrated enhanced spatial resolution at 7.0 T compared to clinical counterparts at 1.5 T and 3.0 T. For example, a voxel size of approximately 0.1 mm3 was achieved for diffusion weighted imaging (DWI) of the eye using a single average acquisition. This corresponds to a factor of forty improvement in spatial resolution compared to clinical protocols used at 1.5 T, and approaches the resolution of ex vivo MR microscopy at 9.4 T, which permits a voxel size of 0.003 mm3 for DWI. For comparison, in vivo DWI-MReye at 1.5 T reported using 8-10 averages to support a spatial resolution with a voxel size of 4 mm3, while a 3.0 T setup afforded a voxel size of 1.2 mm3 in a single average DWI acquisition. Owing to the water diffusion sensitivity inherent to DWI together with the spatial resolution enhancement, MReye at 7.0 T showed clear benefits for the differentiation between ocular tumors and retinal detachment.

Progress in gradient coil technology

MRI of subtle ocular structures requires sub-millimeter spatial resolution over a small FOV, which is constrained by the magnetic field gradients. Magnetic field gradient strength limitations on clinical scanners require long echo times (TE) for DWI of the eye and orbit to accommodate the increased diffusion encoding times needed for higher b-values, exponentially lowering the SNR of the acquisition. The advent of high performance gradient coil systems ($G_{max}=300$ mT/m) for clinical
MR instruments enable smaller FOVs, substantially reduces TE and boosts SNR, compared to conventional gradient systems, as demonstrated for ultrahigh b-value DWI of the brain. This progress in gradient coil technology has triggered the implementation of high performance clinical gradients offering $G_{\text{max,combined}}=100 \, \text{mT/m}$ or $G_{\text{max}}=113 \, \text{mT/m}$. This technology has multiple benefits for high resolution imaging, rapid imaging and DWI of the eye and orbit.

Advancing rapid MR imaging techniques

The quality of high spatial resolution ocular imaging can be hampered by involuntary eye motion, and especially eye blinking. Scanning while the subject’s eyes are closed is not a solution, since unintentional eye movement may corrupt the imaging data. Possible solutions to reduce bulk motion induced imaging artifacts include automated eye blink detection, external eye motion tracking guidance or the use of rapid or accelerated imaging techniques. Echo planar imaging (EPI) techniques are the most widely applied rapid MRI techniques. Notwithstanding its ubiquity, EPI is prone to magnetic susceptibility artefacts that result in signal voids and image distortion. These effects increase with magnetic field strength, and are especially pronounced in cranial regions proximal to air filled cavities, including the paranasal sinuses and maxillary sinuses, and in close proximity to skin/muscle/bone/brain boundaries including the orbit, which is particularly susceptible to geometric distortions. This constitutes a severe challenge for EPI of the eye and orbit. RARE techniques provide an alternative for rapid MReye with high anatomic fidelity. RARE uses a train of refocusing RF pulses, resulting in a handicap of imaging speed and RF power deposition compared to EPI. To address these constraints, Combined Acquisition Techniques (CAT) employ a RARE-EPI hybrid that integrates the anatomical integrity of RARE with the imaging speed and RF power deposition advantages of EPI. RARE-EPI maintains the immunity to B_0 inhomogeneities reported for RARE imaging and has the capability to acquire high fidelity, distortion-free images of the eye and the orbit. This is beneficial for the assessment of ocular masses and pathologic changes of the eye and the orbit. Owing to the reduced RF power deposition, RARE-EPI was demonstrated to enhance the spatial coverage and to promote imaging speed for MReye using simultaneous multi-slice (multiband) imaging techniques.

Dynamic techniques are an intriguing alternative for rapid MReye. The feasibility of near-real-time oculodynamic MRI was demonstrated for depicting the extraocular muscles. Eye movements were tracked in the horizontal and sagittal plane with a temporal resolution of 180 ms per image. Analysis of real-time MRI data obtained from patients with diplopia correlated with clinical testing, and may render real time MRI of the eye suitable to examine bulb motility and extraocular muscle structural or functional deteriorations. A frame rate of 18 images per second
was achieved for dynamic imaging of the eye, optic nerve, and extraocular muscles using golden angle radial MRI. This approach facilitated analysis of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles.

MR safety

Pushing to higher magnetic field strengths with UHF-MReye presents the same safety challenges as the advent of UHF imaging technology for other systems, and must be thoroughly tested for potential physiological impact and physical effects. Deepening our understanding of the interactions between passively conducting implants and RF fields will be key to clinical applications. An increasing number of patients have implants that might limit their access to UHF-MR, until it has been conclusively demonstrated that these are safe at \(B_0 \geq 7.0 \) T. Many such implants have already been deemed MR-safe at lower magnetic fields, but still require collecting extra data at UHF-MR. Assessment of MR safety and MR compatibility at \(B_0 \geq 7.0 \) T has been carried out on tantalum markers used in proton beam therapy (PRT) for intraocular tumors and for intra-ocular lenses used for the treatment of cataract. These studies revealed that all ocular tantalum markers commercially available today with CE certification for PT can be considered safe for MR at field strengths of up to and including 7.0 T. It was also concluded that all the tested intraocular lenses currently in clinical use are considered safe for MRI up to and including 7.0 T. Meanwhile, a large body of literature exists on the MR safety of passive conductive implants at 7.0 T.

Looking Beyond the Horizon

Google Maps for Ocular Health

Breaking new spatial and temporal boundaries and lowering detection levels with UHF-MReye are some of the elements inspiring the concept of "Google Maps for Ocular Health." Considering how Google Maps works, one can start with a very high level view of a city, zoom in to smaller neighborhoods and even view it at the scale of individual houses. However, this static spatial view is not sufficient to predict what will happen in the future because other kinds of dynamic information are needed. Keeping with the city example, if one wants to predict how the weather will change, a static map is not sufficient. Other kinds of quantitative information, for example maps of wind speed and barometric pressure, need to be integrated with the spatial views, to make a weather forecast or storm alert. Analogously, predicting ocular health outcomes requires zooming in to view the ophthalmic system at multiple spatial scales, and going beyond MR imaging to the level of molecules, where events that are crucial to health take place. However this cannot be easily done...
because different scales of images and imaging modalities (from the macro- and mesocopic MR to the micro- and sub-microcopic) need to be integrated and connected using the tools of data science.

This requires combining different types of information, for example about water diffusion and ion concentration in the eye, in order to integrate multi-scale imaging into a coherent picture to develop new approaches for diagnosis and for early interception of ocular disease.

Electrolyte Mapping

Each new MReye approach adds another dimension to our view of the eye that helps integrate our knowledge of events at the molecular scale with effects at higher levels. The sensitivity gain of UHF-MReye helps to move beyond conventional \(^1\)H-MRI to study other MR nuclei that are relevant to physiology and metabolism. For example, sodium (Na\(^+\)) ions are an important component of the VH, and play a key role in various physiological processes in the eye. The VH functions as a metabolic buffer and a diffusion barrier between the anterior and the posterior segments of the eye, adjoining the retina and ciliary body. The concentration of Na\(^+\) in the VH is close to that of plasma (~150 mmol/l). Changes in concentration of substances in the vitreous body likely reflect pathological processes in adjoining tissues. A recent study demonstrated the feasibility of millimeter-scale spatial resolution Na\(^+\) imaging in vivo at 7.0 tesla using a dedicated six-channel transceiver array tuned to the resonant frequency of \(^{23}\)Na. Three most important eye compartments in the context of Na\(^+\) physiology were clearly delineated in the sodium images: the VH, the aqueous humor and the lens (Figure 9). These results provide encouragement for \(^{23}\)Na-MRI research into eye diseases including ocular melanoma, cataract and glaucoma. Other x-nuclei ophthalmic MRI applications emerging from basic research include fluorine (\(^{19}\)F) MRI for probing inflammation, for tracking orbital immune cell infiltration and for monitoring the bioavailability of fluorinated drugs. Potassium (\(^{39}\)K) MRI is also conceptually appealing for eye research since it facilitates probing the potassium ion homeostasis *in vivo*.

Looking towards the future of ultrahigh field MReye

Each increase in magnetic field strength pushes the boundaries of MReye, and will help to translate the discoveries from basic research into the clinic. Pioneering reports on brain MRI at 10.5 T provide a powerful stimulus for MReye at extreme magnetic field strengths. The UHF-MR community has already taken further steps into the future by demonstrating the feasibility of human MR at 14.0 T and at 23.5 T (f=1 GHz) using numerical simulations. For example, the sensitivity gain at 20.0 T is expected to reduce scan times for sodium MReye by a factor of 8 versus current 7.0 T capabilities, and promises \(^{23}\)Na imaging with an isotropic sub-millimeter spatial resolution in 5 min.
scan time 187,188. Newer horizontal preclinical MR systems operating at 15.2 - 17.2 T indicate the imminent need to move towards extreme field MR (eMR). Recent reports have also emphasized the value of preclinical MR at 17.6 T 189-195 and at 21.1 T 181,196-205.

Conclusion

Ophthalmic imaging takes advantage of a broad spectrum of modalities, each offering a multitude of benefits: tissue contrast, resolution, wave length, investigation time, invasiveness, surgical compatibility, cost, etc. MReye has proven its usefulness in preclinical and clinical research applications, and will come to have a role in routine clinical practice, complementing existing diagnostic and prognostic tools, and even going beyond their limitations. MReye has opened an unprecedented window into novel aspects of the ocular system that will help to reveal new dimensions of physiology and disease.
Acknowledgements

Thoralf Niendorf wishes to thank the team at the Berlin Ultrahigh Field Facility (B.U.F.F.) at the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany for providing examples of their pioneering work, for technical assistance, support and numerous fruitful discussions. Jan-Willem Beenakker thanks the researchers at the C.J. Gorter Center for High Field MRI (Leiden, The Netherlands) for their contributions, and the radiologists and ophthalmologists of the Leiden University Medical Center (Leiden, The Netherlands) for their enthusiasm and support to explore new clinical applications of MReye. Oliver Stachs acknowledges the contributions of the team at the Core Facility Multimodal Small Animal Imaging of the University Medical Center and at the Department Life, Light & Matter at the University Rostock (Rostock, Germany). Meritxell Bach Cuadra wishes to thank A. Pica, P. Maeder, C. Ciller, H. Nguyen, R. Snitzmann, H. Kebiri, the Swiss Cancer Research foundation and the Hasler foundation.

Declaration of Interest Statement

Thoralf Niendorf is founder and CEO of MRI.TOOLS GmbH, Berlin, Germany.

Jan-Willem M. Beenakker reports research support from Philips Healthcare, Best, The Netherlands.
Table 1.

Survey of the pathologies encountered in the eye and orbital cavity warranting high-resolution MR imaging.

<table>
<thead>
<tr>
<th>Ocular pathologies</th>
<th>Orbital pathologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemangioma</td>
<td>Capillary and cavernous hemangioma</td>
</tr>
<tr>
<td>Leiomyoma</td>
<td>Optic pathway glioma</td>
</tr>
<tr>
<td>PHPV, persistent hyperplastic primary vitreous</td>
<td>Optic nerve sheath meningioma</td>
</tr>
<tr>
<td>Uveal melanoma</td>
<td>Optic nerve neuritis</td>
</tr>
<tr>
<td>Choroidal metastasis</td>
<td>Benign mixed tumor</td>
</tr>
<tr>
<td>Coloboma/Staphyloma</td>
<td>Dacryoadenitis</td>
</tr>
<tr>
<td></td>
<td>Dacryocystitis</td>
</tr>
<tr>
<td></td>
<td>Eye lid tumours</td>
</tr>
<tr>
<td></td>
<td>Cellulitis</td>
</tr>
<tr>
<td></td>
<td>Subperiosteal abscess</td>
</tr>
<tr>
<td></td>
<td>Mucocele & Pyocele</td>
</tr>
<tr>
<td></td>
<td>Myasthenia Gravis</td>
</tr>
<tr>
<td></td>
<td>Dermoid cyst</td>
</tr>
<tr>
<td></td>
<td>Lymphoma</td>
</tr>
<tr>
<td></td>
<td>Lymphangioma</td>
</tr>
<tr>
<td></td>
<td>Schwannoma</td>
</tr>
<tr>
<td></td>
<td>Orbital metastasis</td>
</tr>
<tr>
<td></td>
<td>Idiopathic inflammatory orbital disease (Pseudotumor orbitae)</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1:
A) MRI of ocular tumors. Left: Two-dimensional T_1-weighted and T_2-weighted imaging of retinoblastoma using a magnetic field strength of 3.0 tesla and radiofrequency head coil for signal reception (courtesy of Prof. P. Maeder, Lausanne University Hospital, Switzerland). Right: T_1-weighted and T_2-weighted imaging of uveal melanoma using a magnetic field strength of 1.5 tesla and a surface radiofrequency coil for signal reception (courtesy of Dr. A. Pica, Paul Scherrer Institute, Switzerland).

B) Three-dimensional MReye and ophthalmic imaging of a Uveal Melanoma patient. Top row: T_2 (left), T_1 (middle) and Gadolinium contrast enhanced T_1 (right) weighted images, showing the tumor (*), retinal detachment (white arrow) and sclera (black arrow) with high contrast. Bottom row: Examples of Ultrasound (left), fundus photography (middle) and whole eye coverage 3D MReye (right) used for tumor visualisation.

Figure 2:
Three dimensional patient-specific MReye models for proton beam therapy and for refractive surgery planning. A) 3D 7.0 tesla MReye model (left) from a patient with Uveal Melanoma which is used for Proton Therapy dose planning (right). (courtesy of E. Fleury, Erasmus Medical Center, Rotterdam and HollandPTC, The Netherlands). B) MR-based eye-model used for optical ray-tracing simulations in which MReye is used to personalize the retinal shape (purple), pupil plane (green) and intra-ocular lens location (red).

Figure 3:
Quantitative MReye: A) Apparent diffusion coefficient (ADC) map of a healthy subject obtained from a series of diffusion weighted (DWI) images. B) Water content (left) and fat-quantification (right) of a Graves’ Orbitopathy patient, showing not only the enlarged extra-ocular muscles (white arrow, left), but also an increased fat-fraction in the right lateral muscle (black arrow, right). C) Perfusion Weighted Imaging (PWI) using T_1-weighted contrast enhancement, showing a contrast agent wash-out curve for a uveal melanoma patient.

Figure 4:
A) Two patients with a mass lesion behind the globe. The standard T_1-weighted images revealed similar signal characteristics of the mass whereas slightly different signal characteristics in the T_2-weighted images were observed. Both lesions show increased signal after contrast injection. Although the DWI image of the top row patient is distorted, it indicates no or little restricted diffusion. The DWI image of the patient at the bottom row indicates marked restricted diffusion,
confirmed by ADC-measurements, which suggests a malignant pathology. Follow-up and histopathology revealed a cavernous hemangioma for top row the patient and an orbital metastasis due to breast cancer for the bottom row patient below.

B) T_2-weighted images (top), DWI (center) and ADC-map (bottom) of a patient with giant cell arteritis and acute onset of vision loss. Distortion-free DWI depicted restricted diffusion in the right optic nerve (center, arrow), indicating ischemia.

Figure 5

Contrast distribution in a pig eye ex vivo after administration of gadolinium-based contrast agent. All images were acquired at 7.0 tesla (T_1-weighted spin-echo sequence, TR=550 ms, TE=14 ms, slice thickness=0.7 mm, FOV=40 x 40 mm2, matrix size=1024 x 1024, acquisition time 8:42min) after administration of gadolinium-based contrast agent (0.5 mmol/l; 1:128 with 0.9% saline). a) after subcorneal injection of 50 µl contrast agent, b) immediately after installation of 2ml of contrast agent in the anterior chamber, c) the same as in b) but 45 min after contrast application; the eye was imaged placed on the cornea leading to deformity and d) after continuous flushing of the anterior chamber with contrast agent for 30 min and artificial drainage in the posterior chamber.

Figure 6

Examples of MR microscopy.

A) Left: Axial T_2-weighted image of a human eye ex vivo at 7.0 T; MR microscopy allows the depiction of the three layers of the globe: sclera – arrow, choroid – dotted arrow, retina – arrowhead; x – lens. Right: Axial T_2-weighted image of a human optic nerve ex vivo at 9.4T; MR microscopy at this field strength depicts the layers of the optic nerve and the central artery (x); sclera – arrow, choroid – dotted arrow, retina – arrowhead. The corresponding diffusion tensor image (DTI) of the human optic nerve ex vivo at 9.4T is shown below using colour coding (green: anterior-posterior; blue: cranial-caudal; red: right-left).

B) MR microscopy of uveal melanoma ex vivo. Left: Sagittal T_2-weighted image demonstrating the posterior extend of the tumor (x) with subsequent retinal (arrow) and choroidal (dotted arrow) detachment. The tumor infiltrates the ciliary body (arrowhead). Right) Coronal T_2-weighted image demonstrating the extension of the tumor (x) from 10 – 2 o’clock with infiltration of the iris (arrow). Low intensities (dotted arrow) representing the melanin-producing tumor parts

C) In vivo MR microscopy of the optic nerve at 7.0 T using a dedicated 6-channel radio-frequency coil array for signal detection. Left: Coronal T_1-weighted 3D image of a healthy subject. Right: corresponding conventional histology (HE-stain, 10x magnification) of a patient. long arrow: inferior rectus muscle; dotted arrow: medial rectus muscle; arrowhead: superior rectus muscle; short arrow: levator palpebrae muscle; green arrow: superior oblique muscle; red arrow: lateral rectus muscle.
Figure 7:

A) Active Shape Model (ASM) segmentation pipeline: healthy eye (top row) and eye with retinoblastoma (RB, bottom row). Pre-processing is needed to determine a volume of interest; ASM mean average shape superimposed to the eye to be segmented; illustration of the different modes of variation: mean shape (x–) of the sclera (upper left) and the vitreous humor and the lens (down left) and b1, b2, b3, and b4 are the 1st, 2nd, 3th and 4th mode of variation respectively (effects in shape deformation colored in mm with respect to the distance to the mean shape); automatic fitting is done based on MR image information. Resulting segmentation for the lens, sclera and vitreous humour. Figure adapted from 126 and 206.

B) Left: 3D patient specific eye model of a patient with UM, based on manual delineation. Right: Results of automated UM segmentation. 1st and 2nd row show a T\textsubscript{1}-weighted and a T\textsubscript{2}-weighted MR respectively, automated segmentation is highlighted in solid green, manual segmentation is outlined in red. Blue arrows show that automatic segmentation can better fit image contours than manual segmentation; yellow arrows show areas where automated segmentation cannot separate tumor and retinal detachment. Figure adapted from 136.

Figure 8:

A) Photograph of a state-of-the-art radiofrequency coil set-up used in clinical practice at 1.5 T and 3.0 T. The small surface RF receive coil is used to obtain high-resolution images of the eye and orbit. The head RF coil is used to acquire functional images such as DWI and PWI.

B) Left: Photographs of an early version of a six channel TX/RX array tailored for ocular imaging at 7.0 T (f=297 MHz) showing the coil casing and a mirror which allows for fixating a point in the isocenter of the scanner bore. Right: Photographs of an advanced version of a six channel TX/RX array tailored for ocular imaging at 7.0 T (f=297 MHz) showing the (i) coil casing, (ii) an universal interface to ensure patient comfort and ease of use and to connect the RF coil array with the scanner and (iii) a mirror which allows for fixating a point in the isocenter of the scanner bore. (Courtesy of Dr. Helmar Waiczies and Dr. Andre Kühne, MRI.TOOLS GmbH, Berlin, Germany.)

C) Left: Examples of MRI of the eye of a healthy subject obtained at a magnetic field strength of 7.0 T using a six-channel RF array for signal transmission and reception. Top: T\textsubscript{1}-weighted 3D gradient-echo imaging (spatial resolution (0.3 x0.3x1.0) mm3, scan time 3:12 min, echo time TE=3.6 ms, repetition time TR TR=10.3 ms, flip angle \(\alpha\)=6°, matrix size = (320 x 230), FOV=(81 x 58) mm2. Bottom: T\textsubscript{2}-weighted imaging using a RARE (fast spin-echo) technique (spatial resolution (0.25 x 0.25 x 0.7) mm3, TR=2940 ms, TE=85 ms, refocusing pulse \(\alpha\)= 100°, FOV = (84 x 60) mm2, matrix size = 384 x 245, number of slices = 6, number of averages = 4, scan time = 2:00 min per average. Right: Examples of MRI of the eye of a subject with uveal melanoma. Images were obtained after Cyberknife intervention at a magnetic field strength of 7.0 T using a six-channel RF array for signal transmission and reception. Top: T\textsubscript{1}-weighted 3D gradient-echo imaging,
Bottom: T_2-weighted fast spin-echo imaging (RARE). The membrane between the vitreous humor (hyper-intense) and the subretinal space is hypo-intense.

Figure 9:

A) One of the most exciting areas of MReye concerns imaging across multiple scales in space and time. Enabled by data science and artificial intelligence, one can imagine a concept like ‘Google Maps for ocular health’, in which macroscopic, mesoscopic, and microscopic views are stitched together for seamless zooming. This figure shows and example of multi-scale, multi-contrast MReye obtained for a patient with a uveal melanoma in the right eye. From left to right: *In vivo* anatomical view using T_1-weighted gradient-echo MRI at 3.0 T (spatial resolution: $0.6 \times 0.6 \times 0.6$ mm3); *in vivo* anatomical view using T_2-weighted multi-shot RARE MRI at 7.0 T (spatial resolution of $0.1 \times 0.1 \times 1.2$ mm3); *in vivo* diffusion weighted imaging using a multi-shot EPI-RARE variant (spatial resolution: $0.5 \times 0.5 \times 5$ mm3); *in vivo* apparent water diffusion coefficient (ADC) map derived from a series of diffusion weighted images acquired with a multi-shot EPI-RARE hybrid (spatial resolution: $0.5 \times 0.5 \times 5$ mm3) showing the retinal detachment as well as the melanom, *ex vivo* ADC map (spatial resolution of $0.1 \times 0.1 \times 0.3$ mm3) of the enucleated eye obtained at 9.4 T showing strong contrast between the remaining vitreous body, the subretinal space induced by retinal detachment and the ocular mass; Macrophotography of the enucleated eye.

B) Sodium (23Na) MRI of the eye at 7.0 tesla. From left to right: 23Na six channel transceiver RF array (f=79 MHz) placed on an adult volunteer. 23Na sagittal view (nominal isotropic resolution = $1.0 \times 1.0 \times 1.0$ mm3), scan time = 14 minutes 10 seconds) of the eye of a healthy male volunteer (BMI = 27.1 kg/m2) obtained with density adapted 3D projection reconstruction imaging. Colour coded sodium image superimposed to the anatomical view (gray scale) derived from T_1-weighted gradient-echo imaging. 23Na axial view (nominal isotropic resolution = $1.0 \times 1.0 \times 1.0$ mm3), scan time = 14 minutes 10 seconds) of the same healthy male volunteer. Colour coded sodium image superimposed to the anatomical view (gray scale) obtained from T_1-weighted gradient-echo imaging.
References:

83. Molokhia SA, Jeong EK, Higuchi WI, Li SK. Examination of penetration routes and distribution of ionic permeants during and after transscleral iontophoresis with magnetic resonance imaging. *Int J Pharm.* Apr 20 2007;335(1-2):46-53.

real-time fusion imaging of the orbit--a hybrid tool for assessment of choroidal melanoma.

infiltration and tissue remodeling during development of graves disease by (1) H(19) F MRI.

F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed. Jun 2015;28(6):726-
737.

181. Nagel AM, Umathum R, Rosler MB, et al. (39) K and (23) Na relaxation times and MRI of rat

182. Wenz D, Nagel AM, Lott J, Kuehne A, Niesporek SC, Niendorf T. In vivo potassium MRI of the

183. He X, Erturk MA, Grant A, et al. First in-vivo human imaging at 10.5T: Imaging the body at

2020;84(1):484-496.

185. Winter L, Niendorf T. Electrodynamics and radiofrequency antenna concepts for human
magnetic resonance at 23.5 T (1 GHz) and beyond. MAGMA. Jun 2016;29(3):641-656.

applicator for magnetic resonance imaging and rf induced hyperthermia: electromagnetic

studies: opportunities for discovery and neuroscience rationale. MAGMA. Jun

188. Polenova T, Budinger TF. Ultrahigh field NMR and MRI: Science at a crossroads. Report on a
jointly-funded NSF, NIH and DOE workshop, held on November 12-13, 2015 in Bethesda,

Figure 1

201x182mm (600 x 600 DPI)
Figure 2

267x68mm (600 x 600 DPI)
Figure 3

199x55mm (600 x 600 DPI)
Figure 4

236x117mm (600 x 600 DPI)
Figure 5

248x60mm (600 x 600 DPI)
Figure 6

132x186mm (600 x 600 DPI)
Figure 7

239x180mm (600 x 600 DPI)
Figure 8

269x78mm (600 x 600 DPI)
Figure 9

259x128mm (600 x 600 DPI)