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Abstract

Magnetic resonance imaging of the eye and orbit (MReye) is a cross-domain research field, 

combining (bio)physics, (bio)engineering, physiology, data sciences and ophthalmology. A growing 

number of reports document technical innovations of MReye and promote their application in 

preclinical research and clinical science. Realizing the progress and promises, this review outlines 

current trends in MReye. Examples of MReye strategies and their clinical relevance are 

demonstrated. Frontier applications in ocular oncology, refractive surgery, ocular muscle disorders 

and orbital inflammation are presented and their implications for explorations into ophthalmic 

diseases are provided. Substantial progress in anatomically detailed, high-spatial resolution MReye 

of the eye, orbit and optic nerve is demonstrated. Recent developments in MReye of ocular tumors 

are explored, and its value for personalized eye models derived from machine learning in the 

treatment planning of uveal melanoma and evaluation of retinoblastoma is highlighted. The 

potential of MReye for monitoring drug distribution and for improving treatment management and 

the assessment of individual responses is discussed. To open a window into the eye and into 

(patho)physiological processes that in the past have been largely inaccessible, advances in MReye at 

ultrahigh magnetic field strengths are discussed. A concluding section ventures a glance beyond the 

horizon and explores future directions of MReye across multiple scales, including in vivo electrolyte 

mapping of sodium and other nuclei. This review underscores the need for the (bio)medical imaging 

and ophthalmic communities to expand efforts to find solutions to the remaining unsolved problems 

and technical obstacles of MReye, with the objective to transfer methodological advancements 

driven by MR physics into genuine clinical value. 
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Introduction

The demand for new strategies for early detection and treatment of ocular diseases requires 

that we deepen our understanding of the underlying pathophysiological processes and molecular 

mechanisms, which in turn calls for new ways to visualize the eye and the orbit and to image ocular 

disease states at multiple scales of length and time. Magnetic resonance imaging (MRI) of the eye 

and orbit (hereafter referred to as ‘MReye’1-5) as well as the spatial arrangements of the eye 

segments and their masses, is increasingly being used in basic and translational research, and clinical 

diagnostics. 

Although the ophthalmic clinic is generally equipped with a wide variety of imaging 

modalities including fundus photography, optical coherence tomography and ultrasound, MReye can 

complement these tools, and address a number of their limitations. Crucially, most ophthalmic 

imaging modalities use optical techniques and are therefore limited to imaging transparent tissues. 

MReye allows the characterization of opaque tissues, such as intra-ocular tumors. Optical images are 

distorted as light is refracted by the cornea and lens, which constitutes a challenge for radiotherapy 

planning. Unlike optical approaches, MRI can image orbital structures behind the globe, such as the 

eye muscles, which otherwise can only be indirectly evaluated, for example using the clinical activity 

scale in Graves’ Orbitopathy. MReye provides 3D volumetric imaging, whereas conventional 

techniques such as fundoscopy are constrained to 2D cross-sections of the eye. MReye has also 

enabled the quantification and mapping of parameters related to biophysics and physiology such as 

perfusion of intra-ocular lesions, water diffusion in uveal melanoma, and assessment of sodium 

content. This opens up an entirely new arena for the diagnosis of ocular lesions, which so far has 

primarily been based on purely descriptive assessments. With a spatial resolution close to that of 

computed tomography (CT), MRI can serve as a diagnostic tool for a wide range of ocular diseases 

including eye tumors and optic neuropathies. Ultimately, the development of ocular MRI 

applications aims towards image-based biometry. MReye also has a role to play in screening for 

ophthalmic disease, teaching, clinical trials and in virtual ophthalmology and telemedicine. 

This review surveys the state-of-the-art of MReye and highlights cutting-edge technologies. 

Examples of novel MReye strategies and emerging applications are presented, with demonstrations 

of their clinical relevance,  together with a perspective into future directions. 

MReye in ocular oncology, refractive surgery, ocular muscle disorders and 

orbital inflammation

MReye for ocular oncology
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Uveal Melanoma (UM) is the most common primary eye tumor. Its distant metastases render it one 

of the very few life threatening ocular conditions6. Conventionally, UM is diagnosed using fundus 

photography, fluorescence angiography and ultrasound (US). The optimal treatment approach for 

UM depends primarily on its size and location. Small UM, e.g. less than 8mm thickness, are generally 

treated with local brachytherapy, whereas larger UM generally receive external beam therapy, such 

as Proton Therapy (PT), or may require enucleation7,8. In ophthalmic US the observed tumor 

thickness depends heavily on the orientation of the US transducer. This thickness is often 

overestimated as the transducer cuts obliquely through the tumor9. US is constrained by the modest 

contrast between tumor and sclera, and therefore has a relatively high inter-observer variation of 

0.6 mm10. MReye can image the tumor with superior tissue contrast (Figure 1), thus providing a 

more accurate and reproducible evaluation of the tumor dimensions. Incorporating MReye into 

clinical practice has proven to be cost-effective for patients with medium-size UM, as the avoidance 

of tumour size overestimation using three-dimensional (3D) MR-based measurements generally 

results in smaller volumes, making at least 10% of these patients eligible for brachytherapy instead 

of the more invasive and expensive PT, or enucleation, which would otherwise have been 

prescribed.11 

3D MR-based visualization of the tumor is also beneficial for radiotherapy planning for UM. 

Several studies report developments in MR-based PT planning, which can not only incorporate the 

3D shape of the tumor, but also the actual location of the organs-at-risk4,11-13. MR-based treatment 

and position verification methods are developed for brachytherapy planning of ocular tumors, 

enabling treatment planning based on the unique tumor geometry and plaque location of the 

individual patient (Figure 2).14  These advances in ocular radiotherapy have been facilitated by the 

demonstration of the MR-safety of tantalum markers used in PT-planning,15 and the confirmation of 

geometric stability of the eye and tumor, between MR-images acquired in a supine position and the 

delivery of PT in a sitting position.16 

MR-based eye models for refractive surgery

Efforts in refractive surgery have expanded from central vision to include peripheral vision. 

In cataract surgery, a decrease in peripheral image quality was observed after implantation of an 

intra-ocular lens.17 Furthermore, studies on the development of myopia in children suggest a link 

between peripheral refraction and a gradual elongation of the eye.18,19 Since peripheral refraction is 

partly related to the retinal shape,20 various approaches have been explored to accurately measure 

the eye shape, and MReye has become instrumental for this (Figure 2). MRI revealed a less oblate 

shape in myopic eyes as compared to emmetropic eyes.21-23 The increased spatial resolution 
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available at ultrahigh magnetic field strengths has facilitated quantification of small changes in lens 

shape with increasing age,24 and has revealed submillimeter irregularities that could have an 

important influence on the subjects' peripheral vision.25 More recently, high-resolution MReye 

techniques have been applied in clinical studies, for example to assess the geometric relation 

between the iris and intra-ocular lens in patients with Negative Dysphotopsia.26

MReye of orbital inflammation

MRI is the modality of choice for the evaluation of orbital inflammation, because of its 

superior soft tissue contrast and spatial resolution.27 T1- and T2-weighted MRI are instrumental for 

tissue characterization, and can help to determine the extent of inflammation in orbital structures. 

In T1-weighted images inflammatory lesions are hypointense to isointense. For T2-weighted MRI the 

signal intensity of inflammatory lesions is governed by the balance between edema, which appears 

hyper-intense, and fibrosis, which appears hypo-intense. Incorporating fat suppression into T2-

weighted MRI makes edema even more conspicuous. MReye of optic nerve inflammation appears 

hyperintense on T2-weighted images, together with unilateral optic nerve swelling in the 

retrobulbar/intra-orbital segment28.

In addition to T1- and T2-weighted imaging, parametric mapping using quantitative MR-

techniques has the potentional to provide even greater impact for the assessment of ocular 

inflammation. In quantitative MRI, the effects of specific biological parameters can be probed, such 

as the tissue water content, water diffusion, perfusion and lesion vascularity. These biomarkers are 

routinely used in a wide range of applications, and have become increasingly available for 

MReye29,30.  For example, diffusion weighted imaging (DWI) probes the diffusion of water on a 

microscopic level (Figure 3) and holds the potential for enhancing diagnostic accuracy compared to 

morphological techniques. DWI was shown to differentiate orbital inflammatory processes from 

malignant lesions31. Combining DWI with morphological MRI can help to reveal the underlying 

causes of inflammatory disorders.18 Without MRI, these assessments can often only be performed 

with biopsy when these pathologies are located behind the globe, and are therefore not accessible 

to optical methods. Combining morphological MRI and mapping of the apparent water diffusion 

coefficient (ADC) has value for the differential diagnosis of orbital lymphoma and idiopathic orbital 

inflammatory pseudotumors32. The ADC was shown to be higher in inflammatory and benign lesions 

as compared to malignant lesions, resulting from an increased intracellular fraction of water rather 

than cellular infiltration33. To advance this approach, DWI has been specifically tailored for the eye, 

to enable higher precision images free from geometric distortion34. Other examples of quantitative 

MRI include mapping of the spin-spin relaxation time (T2) and fat-water imaging (Figure 3) using 
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Dixon techniques to quantify the amount of inflammation and fatty infiltration of muscles. These 

techniques have been translated to ophthalmic applications, providing detailed, noninvasive 

assessment of the extra-ocular muscles in Graves’ orbitopathy and Myastenia gravis.35,36  

MReye: the intersection between ophthalmology and radiology 

Technical progress has continuously improved MRI quality of the eye and orbital cavity 1,37-40. 

Due to the superior soft tissue contrast and the lack of ionizing radiation, MRI provides an attractive 

alternative to CT for the diagnosis of diseases of the eye and orbit.  These diagnostic possibilities 

have became ever more diverse, and the range of clinical indications has broadened considerably41. 

The main indications for MReye currently include ambiguous ophthalmoscopic findings such as 

vitreous opacification, bleeding and retinal detachment, local staging of ocular mass lesions (e.g. 

uveal melanoma, retinoblastoma) as well as planning for their treatment, and the assessment of 

injuries involving non-metallic foreign bodies. A recent addition to these indications are masses 

within the eye lid. Unlike with conventional ophthalmic techniques, MReye could identify which 

eyelid layers are affected, thus enabling more conservative surgery in a subset of patients.42 

Indications for MReye of structures behind the globe and in the deeper orbital cavity include unclear 

protrusion of the globe, as well as staging of mass lesions with regard to dignity and entity. UM is 

often complicated by exudative retinal detachment, which is sometimes mistaken for a 

rhegmatogenous detachment and subsequently treated with vitrectomy with silicone oil (SiOil) 

tamponade. The latter is challenging if not impossible to image with US. MReye enables high-

resolution imaging of vitrectomized eyes with SiOil tamponade, facilitating treatment planning and 

follow-up in UM patients.43 MRI of the orbital cavity is warranted in clinically unclear situations of 

thyroid associated orbitopathy such as unilateral involvement, missing thyroid disease and 

assessment of disease activity 44.

Using MReye to achieve the correct diagnosis is crucial, since tissue sampling and surgery in 

the orbital cavity especially behind the globe, is technically difficult and may be associated with 

adverse outcomes. Nevertheless, imaging of the eye and orbit can be challenging. Involuntary 

movements of the eye can have a significant impact on image quality. Artifacts induced by magnetic 

field inhomogeneities can occur due to the adjacent air-containing paranasal sinuses and maxillary 

sinuses. The radiologist or interpreting physician must be experienced with assessing these artifacts 

since they can mimic disease indications such as orbital inflammation, especially around the orbital 

floor.

MRI scans of a metallic intraocular foreign body are very rare, primarily due to the magnetic 

susceptibility and resultant tissue damage, making the procedure contraindicated. The initial 
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imaging modality of choice for diagnostic evaluation of a suspected intraorbital foreign bodies is a CT 

scan. MReye is generally contraindicated as first-line imaging because the strong magnetic field may 

dislodge metallic intraocular foreign, potentially causing damage to ocular structures or even 

blindness.

The advent of multiparametric imaging adds functional information to standard anatomical 

T1- and T2-weighted imaging protocols, enhancing diagnostic possibilities in the eye and orbit 45. 

Being able to differentiate between benign and malignant lesions in the orbital cavity has a major 

impact for the patient, by avoiding tissue sampling and surgery as much as possible. DWI has great 

value in classifying unclear orbital lesions 17,46-52. An average ADC of 0.9 x 10-3 mm2/s was reported 

for malignant lesions 17. For benign orbital lesions, an average ADC of 1.43 x 10-3 mm2/s was 

reported 17. Consequently, a model containing two ADC thresholds was proposed to classify orbital 

lesions into 'malignant', 'benign' and 'undetermined'. With this progress DWI has proven its value for 

the differentiation of UM from benign lesions, and has shown strong potential as an early biomarker 

of radiotherapy response.17,27,53,54 Figure 4 shows an example of two patients with similar signal 

characteristics in the T1- and T2-weighted images but with different signal characteristics for DWI. 

The development of distortion-free DWI has been very useful in the assessment of orbital 

pathologies, especially when the anatomical structures are small 55. Figure 4 depicts optic nerve 

ischemia using distortion-free DWI. 

Recent studies have shown the diagnostic advantages of perfusion weighted imaging (PWI) 
56-59. The time course of the dynamic contrast-enhanced MR signal allows conclusions to be drawn 

about the vascularization and the microcirculation of different lesions (Figure 3). PWI helps to 

classify mass lesions into 'benign' and 'malignant'. Benign mass lesions tend to show a slow increase 

in signal intensity over time, whereas malignant lesions typically show a fast increase of signal 

intensity, and after reaching a peak, a plateau or even a drop in signal intensity occurs (‘washout 

phenomenon’). This is particularly useful in distinguishing mass lesions which may have similar signal 

characteristics in standard T1- and T2-weighted images. PWI images can provide the radiologist with 

more confidence in classifying these lesions (Figure 3). In ocular oncology, the visual appearance of 

the lesion, e.g. pigmented with orange spots, is used to provide a strong indication of the type of 

lesion (UM in this case).60 However, when a lesion is located behind the iris, or covered with blood or 

liquid, such a visual inspection is not always possible. In these cases, PWI can provide crucial insights 

into the origin of the lesion. For example, choroidal hemangioma show a significantly stronger 

enhancement in PWI than UM.61 Dedicated analysis tools have been developed for PWI of the eyes 

to correct these images for eye-motion and to incorporate differences in tumor pigmentation in the 

models used for quantification.
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The application of contrast media for (dynamic) contrast enhancement should be used with 

caution, and the potential benefits and risks must be evaluated individually for every patient. Tissue 

deposits of gadolinium after the administration of MR contrast agents have become a controversial 

issue and a serious safety concern, with implications for patient care and clinical use 62,63. 

Gadolinium retention in the brain was demonstrated, especially in patients who had several contrast 

media applications 64. A recent study showed leakage of gadolinium-based contrast into the anterior 

chamber of the eye in children shortly after intravenous injection 65. 

A systematic approach is required for interpreting MR images, and reports to the referring 

clinician should include information on location of lesions, adjacent structures, size and 

characteristics (such as hemorrhage and necrosis) as well as information on lesion dignity (benign 

versus malignant). Table 1 provides a summary of pathologies encountered in the eye and orbital 

cavity which warrant high-resolution MR imaging. The most common benign orbital mass lesions are 

hemangiomas. DWI is particularly helpful in evaluating lacrimal gland lesions. Lymphomas must be 

accurately discriminated from benign mixed tumors since the latter should not be biopsied due to 

increased recurrence rates along the biopsy pathway. Lymphomas typically show restricted diffusion 

whereas benign mixed tumors do not.

MReye to monitor drug delivery and ocular pharmacokinetics 

The eye can be divided into the anterior segment (approximately one third of the eye 

volume), and the posterior segment (accounting for the remaining two thirds). The choice of drug 

delivery to the eye mainly depends on the affected area, mode of action and the desired therapeutic 

effect. The treatment of anterior eye diseases is most commonly performed via topical 

administration, whereas intravitreal injection is the gold standard for treating posterior eye 

diseases66. Intravitreal injections may have severe side effects including retinal detachment, vitreous 

hemorrhaging, intraocular inflammation, endophthalmitis or elevated intraocular pressure 67. 

Moreover, poor patient compliance is a crucial problem for intravitreal administration. Drugs 

delivered to the back of the eye encounter multiple physiological barriers. The vitreous is gel-like, 

acellular and consists primarily of water with collagen, glycosaminoglycan and hyaluronic acid 

supporting the structure formation of the vitreous 68. In contrast to the vitreous, the retina is a 

complex collection of tissues consisting of multiple layers of biological barriers including Bruch’s 

membrane, the retinal pigment epithelium, retinal endothelia, inner- and outer-limiting membrane 

as well as Müller cells. The retinal pigment epithelium is part of the blood-retina barrier, and this 

structure is a reason why it is difficult to achieve therapeutic levels of drugs in the retina after 

systemic administration69. Nevertheless, retinal degenerative diseases such as age-related macular 

Page 8 of 100

URL: http://mc.manuscriptcentral.com/ncer

Current Eye Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

- 9 -

degeneration, diabetic retinopathy and macular edema, can lead to blindness and are increasing due 

to the aging population70. Drug delivery to the posterior eye segment continues to pose a challenge 

in ophthalmology and has become an important focus for research for pharmaceutical and 

biotechnology companies. Given the current need for new therapeutic options, suitable imaging 

tools are necessary for improving disease detection, evaluation and adjustment of treatment 

protocols in real time. and to help streamline the drug development process 71. Reliable ocular 

pharmacokinetic data are needed to ensure successful development of novel ocular drug-delivery 

methods and improvements of the existing methods 72. Patients treated with drugs via intravitreal 

injections need to visit the ophthalmic clinic very regularly (e.g. every month), which presents a 

substantial burden for the clinics and the patients. Advanced methods for controlled drug delivery 

and monitoring would be instrumental to offset this burden for the benefit of patient comfort and 

cost reduction.

Several studies have demonstrated the usefulness of MRI for providing insights into ocular 

transport barriers, clearance pathways, penetration routes and aqueous humor dynamics 73-76. 

Moreover, qualitative and quantitative longitudinal evaluations of drug delivery systems have been 

performed with MRI, regarding drug location and release kinetics in periocular, intrascleral, 

suprachoroidal and intravitreal administration 77-80, the latter also after injection of silicone oil 

tamponade agent within vitrectomy surgery 81. MRI can also be useful in the study of penetration 

routes and distribution of ionic permeants in the eye during and after iontophoresis, for constructing 

iontophoresis protocols and device testing 82,83. Conventional MRI contrast agents have been widely 

used, inter alia, to investigate dysfunction in the blood-retinal barrier function 84,85. Figure 5 shows 

contrast distribution in a pig eye ex vivo after subcorneal injection of a gadolinium-based contrast 

agent, and after application of 2ml of contrast agent in the anterior chamber.

Dynamic contrast-enhanced PWI is currently commonly used for preclinical and clinical 

evaluation of anti-angiogenesis inhibitors 86,87. PWI allows quantitative pharmacokinetic modelling, 

which is an additional benefit over qualitative Fluorescence angiography (FAG). Although ocular 

applications of PWI are still at an early development stage, preliminary findings are promising. PWI 

showed a strong correlation between the transfer constant (Ktrans) from vascular to extravascular 

extracellular space, and tumor genetics59,88. An alternative to traditional PWI is offered by arterial 

spin labeling (ASL) techniques, mostly used to measure cerebral blood flow 89. ASL has also been 

shown to have the potential to monitor and assess retinal pathologies by detecting changes in 

retinal and choroidal blood flow 90,91.

Owing to the development of contrast agents tailored for specific objectives, MRI has 

evolved into a versatile technique with multiple functions, and has become one of the most 

Page 9 of 100

URL: http://mc.manuscriptcentral.com/ncer

Current Eye Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

- 10 -

powerful noninvasive imaging tools in the field of molecular imaging (MI). MI integrates biology at 

the molecular level with in vivo imaging at the cellular and subcellular level. This allows the 

monitoring and measurement of biological processes in living subjects, thereby providing 

information similar to that obtainable from biopsy, but noninvasively and performed in real time 92. 

Here nanotechnology can serves as an ideal framework for interfacing contrast agents with 

molecular biomarkers in vivo, since the nanoscale is the scale at which molecular interactions occur 
71. Among the first nanoparticle structures used for MI were superparamagnetic iron oxide 

nanoparticles 93. Distribution of the nanoparticles in the eye could be tracked in vivo at different 

time points after intravitreal injection by MRI94. Moreover, the nanoparticles can be combined with 

coating proteins, such as human serum albumin. Human serum albumin bears functional groups 

(e.g., hydroxyls, amines, carboxylates and thiols), which can be used for conjugation of various 

biomolecules, and can improve the pharmacokinetics of peptide- or protein-based drugs. Albumin 

has low toxicity, is readily available, biodegradable (average blood half-life19 days) and is 

preferentially uptaken in tumors and inflamed tissues 95. For instance, albuminated polylactic-co-

glycolic acid nanoparticles of bevacizumab, injected intravitreally in rabbits, were found to prolong 

the vitreous concentration of bevacizumab and retain the activity, protected against aggregation 

and instability 96.

Magnetic resonance spectroscopy (MRS) measures chemical shift information of individual 

molecules or components of molecules, thereby allowing the study of the biochemistry and 

metabolism of disease processes within the subject 97. 1H-MRS assessment of the visual system and 

the visual cortex suggest a significant value of this method for uncovering the processes and 

mechanisms of developmental and pathophysiological changes systematically along visual pathways 
98-101. Moreover, 19F-MRS was used to follow the dynamics of a fluorine-containing corticosteroid in 

the eye, administered by intravitreal and subconjunctival injections. Notwithstanding the high 

specificity of 19F-MR, the relatively low sensitivity versus conventional assays remains a limitation. 

Improving the detection limits so that 19F-MR may be sensitive enough to evaluate the 

pharmacokinetics of ocular drug delivery methods will require further MR hardware improvements 

and pulse sequence developments102.

MRI allows for the real-time visualization, localization, characterization and quantification of 

ophthalmic drugs after their administration, in a safe and non-invasive way. This can help foster the 

objective of improving the application and permanence of ophthalmic drugs in their sites of action. 

MReye offers great potential for the development of ophthalmic drugs and delivery systems for 

posterior eye diseases.
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MReye microscopy 

Unlike common imaging modalities in ophthalmology including Scheimpflug imaging, US, US 

Biomicroscopy or Optical Coherence Tomography, MReye affords distortion-free assessment of the 

orbit, the globe and the optic nerve. MReye is not subject to operator-dependent error. With MReye 

the image quality depends on the magnetic field homogeneity and the sensitivity of the 

radiofrequency (RF) antennae used for signal detection. Recent advances in MR technology allow ex 

and in vivo imaging with submillimeter spatial resolution in reasonable imaging time. 

MRI of the orbit at 1.5 tesla (T) is well-established using head volume RF coils for signal 

detection103. With the advent of dedicated small RF surface coils 104,105, spatial resolution has been 

significantly increased, allowing differentiation of orbital tumors from subretinal fluid. Increasing the 

magnetic field strength promotes the signal-to-noise ratio (SNR), the most important determinant of 

image quality. This boost can be used to reduce scanning time for the benefit of minimizing the 

impact of bulk eye motion on image quality, or to enhance spatial resolution. With the increasing 

availability of 3.0 T MR instruments spatial resolution has significantly improved for imaging the eye 
106-108 and the optic nerve 109. The value of increasing magnetic field strength even further, and of 

tailoring RF coil designs to boost SNR and spatial resolution has been demonstrated 103. These gains 

allowed quantitative analysis of lesions of the orbit 110, the optic nerve 111 and the eye lid42 using DWI 

and diffusion tensor imaging (DTI).

MR microscopy (MRM) refers to imaging with an in-plane spatial resolution of 100µm 112. 

MRM enabled differentiation of the choroid, retina and sclera of the human eye ex vivo (Figure 6) 113 

and supported ex vivo studies of the accommodation apparatus 114. Ex vivo examinations of the 

human eye at 9.4 T permitted an in-plane spatial resolution of 32-50 µm 34,112. Using a magnetic field 

strength of 9.4 T in conjunction with a cryogenically cooled RF coil to enhance signal detection 

affords high resolution ex vivo anatomical imaging and DTI of the human optic nerve (Figure 6). 

MRM can also be used for the evaluation of orbital masses 115. Recent work demonstrated the value 

of preclinical MRM at 9.4 T and at 17.6 T for ex vivo evaluation of the extent and microstructural 

anatomy of retinoblastoma, in comparison with histopathology. This work facilitated visualization of 

subtle subrenital tumour seeds with a size <300 m.116 Although the spatial resolution of MRM is an 

order of magnitude inferior to that of conventional histology, the major advantages of MRM are its 

non-invasiveness, and the ability to acquire images in any arbitrary plane with the possibility of 

quantitative imaging in vivo. Ex vivo MRM of uveal melanomas yielded an excellent correlation of 

the structural features obtained from imaging (Figure 6) with conventional histology and in vivo 

imaging techniques 55,117. MRM is also instrumental for the evaluation of the optic nerve, the central 

retinal artery that runs in the dura mater of the optic nerve and the extraocular muscles that control 
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eye motion (Figure 6). Advancements in MRM render this approach an important adjunct for clinical 

imaging and a vital tool in ophthalmological research.

Synergy of MReye with image processing and artificial intelligence

Opportunities for discovery 

In an era of increasing recognition and knowledge of ocular disease, MReye yields new 

insights at the functional, physio-metabolic, molecular and cellular levels. In order to integrate these 

findings into a coherent picture of the eye, its tissues and the orbit for early interception of disease 

and treatment planning, it is becoming increasingly crucial to make use of the tools of data science. 

For example, access to an on-the-fly direct 3D patient-specific model of the tumor volume and the 

eye structures remains an unmet clinical need thus far. This clinical need provides a strong 

motivation for connecting MRI with advanced image processing, visualization algorithms, 

quantitative analysis, artificial intelligence and predictive analysis with the ultimate goal to translate 

MReye-guided computer-assisted diagnosis, treatment planning and intervention into the 

ophthalmic clinic. 

3D imaging is opening up opportunities in the treatment of ocular tumors in children and 

adults 32,91,108,118,119. MRI with an in-plane spatial resolution of about 0.5-1.0 mm along each direction 

can clearly identify eye structures. Importantly, this includes the possibility of imaging the freely 

moving human eye, which makes fixating or administration of paralytics or anaesthetics obsolete, 

vastly improving patient comfort and compliance 120. MRI can readily distinguish between normal 

anatomy and pathological regions such as the gross tumor volume or retinal detachment. 

Furthermore, MRI provides valuable information for tumour tissue characterization, for example 

between enhancing and non-enhancing regions (as in retinoblastoma) or between nodular and 

diffuse appearance (as in UM). Adding advanced image processing with a strong data science 

dimension to MReye will expand the field into unchartered territory, with the possibility to generate 

patient-specific 3D models of the pathological eye, in near real-time and with minimum human 

assistance.

Automated segmentation of MReye 

There is a dearth of approaches for automated segmentation of healthy ocular structures 

from 3D MRI or CT.  Pioneering studies on this topic have reported on performing parametric 

modeling of the eye using pre-established shapes such as spheres and ellipsoids. EYEPLAN 121 
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presented a framework that estimates the shape of the lens, cornea and sclera by combining 

parametric spheres. Similarly, OCTOPUS 11 reconstructed anatomical eye structures (e.g. lens or 

vitreous humor (VH))  as combinations of ellipsoids. Both of these methods were semi-automated, 

requiring an expert to assist with manually pre-selecting measurements and landmarks in order to 

initialize the respective models. The modeling capabilities of these approaches are limited to a linear 

eye-growing pattern, dependent on the age of the patient. Following these initial reports more 

sophisticated image processing techniques have explored more complex models, enabling the 

segmentation of more regions of interest (ROI) inside the eye. For example, 3D modeling of the eye 

based on MReye using spherical meshes has been suggested 122. This approach leveraged the 

posterior corneal pole and a sphericity modifying parameter. An atlas-based segmentation algorithm 

using parametric active contours together with an ellipsoid model has also been proposed. This 

approach enabled more accurate segmentations of the sclera and the lens123. 

The main shortcoming of parametric models is that they rely on strictly pre-defined 

geometry and lack statistical information (both related to image intensity and shape variations) that 

could be extracted from the anatomical variability over a given population. To this end, machine 

learning (ML) based Active Shape modeling (ASM) 124 provides a robust solution for deforming the 

shape of a structure using a constrained statistical model-based segmentation algorithm trained 

upon a dataset. This development culminated in the first semi-automated method, requiring minor 

user interaction, to segment the sclera, the cornea and the lens on CT images of adult patients 125. 

This triggered progress on statistical shape models for automated  segmentation of  the sclera, VH, 

and the lens using  T1-weighted images of eyes of healthy children, and eyes of children with 

unilateral or bilateral tumours, obtained at 3.0 T MR (Figure 7) 126,127. This approach was reproduced 

for segmentation of eyes in awake adults using T1-weighted images acquired at 1.5T, demonstrating 

the presence of pronounced motion and bias field artefacts with bigger eye volume versus asleep 

children 128,129. This work also confirmed the ability to build a 3D UM patient-specific eye model with 

the presence of tumors and tantalum clips, and confirmed that ASM was able to accurately segment 

eye structures even in the presence of tumors 128,129. ML-based MReye radiomics analysis represents 

a promising tool kit for discriminating between UM and other intraocular masses in adults130.

Semi-automated eye structure segmentation has been explored for 7.0 T MRI to measure 

the 3D shape of the retina to study abnormal shape changes and peripheral vision. 25,26 Retinal 

topographic maps were constructed based on the segmentation of the lens and vitreous body 

utilizing a series of region growing, multiple threshold and connected component steps. 

Deep learning is an important branch of machine learning and artificial intelligence (AI)131. 

DL holds promise to automatically pinpoint, identify and grade pathological features in ocular 
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diseases 132. A supervised DL algorithm was explored for segmenting sclera, lens and head of the 

optic nerve (and also the tumor, see section below) in using a 3D-Unet and additional post-

processing steps 128. This potential invites ophthalmology to embrace the application of DL with 

MReye.

Automated ocular tumor segmentation

Few studies have explored automated segmentation of ocular tumors with MRI thus far. 

Initial methods were developed for segmentation of retinoblastoma (RB) in children. A 3D 

convolutional neural network (CNN) tailored for RB segmentation was reported using multi-spectral 

MRI sequences and patient-specific features extracted from initial ASM segmentation in 16 patients 
126,133,. Another deep learning method based on a 3D U-net architecture was employed for 

segmentation in 32 patients with RB 128.  In addition to the patient data, healthy adults and children 

were included in the training data. This approach aimed at solving the dual problem of identifying 

eye structures and tumor segmentation simultaneously. RB segmentation was also presented in 24 

patients using a combination of  ASM and tumor prior location with 2D-Unet architecture to explore 

the performance of training and testing using multiple 2D and 3D MRI sequences including  2D T1-

weighted, 2D T2-weighted and 3D balanced SSFP imaging protocols 134.

Automated segmentation of UM in MRI has been virtually neglected thus far. Preliminary 

data were reported  using a fully automatic framework to obtain tumor thickness from 7.0 T MRI 

images, with four cases being evaluated qualitatively 135. A weakly-supervised deep learning 

framework was recently published that explored the use of 2D and 3D-Unet architectures in T1- and 

T2-weighted sequences in 24 patients with UM 136. This approach demonstrated the ability of weak 

labels (presence or absence of tumor) to generate further training data for segmentation purposes.

Unmet needs of ocular tumour segmentation 

The automatic extraction of quantitative and reliable information on patient-specific eye 

structures and ocular tumors (location, size, texture, morphology and distribution of pathological 

tissues) would be a breakthrough for current diagnosis, follow-up and therapy planning. Robust and 

accurate MReye analysis methods would help integrate multiple ophthalmic image modalities 

covering different scales in space (such as MRI, funduscopy, OCT and ultrasound) in support of 

patient care. Specifically, a precise characterization of ocular tumor features would boost 

developments in the emerging field of radiogenomics 137,138 where the link between genetic 

information of tumor tissue and image-based features could provide new insights into patient 

response to therapy, and further support patient-specific treatment. Furthermore, accurate 3D eye 
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and ocular tumor segmentation would directly benefit current targeting procedures such as 

radiation therapies applied in UM in adults. 12,139,140 In this context, the 3D segmentation of the gross 

tumor volume would certainly increase the acceptance of MRI for therapy planning 139 and could 

subsequently drive a shift away from the current standard of invasive surgery, towards non-invasive 

procedures.

Overall, current image processing methods tailored for automated eye MR image analysis 

are limited. The methods developed thus far are not yet ready to be seamlessly integrated into 

routine clinical practice as ready-to-use solutions. A major bottleneck in MReye analysis research is 

the lack of available datasets with ground truth annotations, contrary to other research areas such 

as brain tumours or multiple sclerosis, where tremendous efforts have been made to collect and 

share data publicly to further machine learning approaches 141,142. Nevertheless, the increasing 

adoption of MReye in research and clinical studies, together with the expanding embrace of novel 

machine learning techniques promises to close this gap.

Pushing the boundaries of MReye technology

(Ultra)high field MReye 

MReye has progressed rapidly, with new research directions often being driven by the 

sensitivity gain afforded by high field (B0≥3.0 T) and ultrahigh field (UHF) MRI (B0≥7.0 T) 

5,24,34,43,45,55,103,108,112,143-152. An in-plane spatial resolution of 100 µm, and a voxel resolution of 200 m 

x 200 m x 400 m were achieved in vivo for gradient echo imaging at 7.0 T within clinically 

acceptable scan times 5,34. Ex vivo examinations of the human eye at 9.4 T acheived an in-plane 

spatial resolution of 32-50 µm 34,112. 

Arguably, the potential of ultrahigh field MReye remains untapped. However, this potential 

can be restricted by a number of concomitant physics-related phenomena and practical obstacles 

associated with magnetic field inhomogeneities at higher field strengths. These include off-

resonance artifacts, dielectric effects and RF non-uniformities, as well as localized tissue heating and 

RF power deposition constraints. These effects pose serious challenges to compete with the 

capabilities of MReye at 1.5 T. If these practical impediments can be overcome, UHF-MReye 

promises to become a springboard for bridging critical gaps in space in time: from the near 

molecular level to the anatomic structures of the ocular system, and from microseconds in tracking 

Brownian motion of water, to potentially years in population imaging studies. This opens a window 

into the eye, and into (patho)physiological processes that have, to date, been largely inaccessible.  
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Development of novel MR detector technology

MRI of subtle ocular structures requires sub-millimeter spatial resolution over a small field 

of view (FOV). Figure 8 shows a clinical set-up comprising a volume head RF coil in conjunction with 

a small surface receive RF coil. Using this approach has even more impact on improving SNR than 

increasing the magnetic field strength. The correct positioning of the surface RF coil is crucial 153. This 

requires highly experienced medical staff in the MR operater room, since the RF coil must be 

positioned in direct contact with the patient’s face and may not be well tolerated. Despite this, the 

use of a small surface RF coil and a volume head RF coil together in one examination can be 

beneficial to obtain high-resolution anatomical images and functional images in a single session. 

The SNR gains inherent to UHF MRI can be translated into enhanced spatial resolution. To 

meet this goal various RF antenna configurations used for MR signal excitation or/and signal 

reception have been proposed 143,154,155. Pioneering developments include a six-element transceiver 

RF coil array (Figure 9) that covers both eyes 5,39,55. This design meets the RF power deposition limit 

requirements of MRI, is duly certified and approved for clinical use by a notified body and provides 

image quality suitable for in vivo use together with optimized patient comfort and ease of use 

(Figure 9). To foster swift translation of this enabling RF coil technology into the clinical realm, 

patients with ocular masses and/or retinal detachment were examined in clinical feasibility studies 

(Figure 9). These investigations demonstrated enhanced spatial resolution at 7.0 T compared to 

clinical counterparts at 1.5 T and 3.0 T. For example, a voxel size of approximately 0.1 mm3 was 

achieved for diffusion weighted imaging (DWI) of the eye using a single average acquisition. This 

corresponds to a factor of forty improvement in spatial resolution compared to clinical protocols 

used at 1.5 T, and approaches the resolution of ex vivo MR microscopy at 9.4 T, which permits a 

voxel size of 0.003 mm3 for DWI 34. For comparison, in vivo DWI-MReye at 1.5 T reported using 8-10 

averages to support a spatial resolution with a voxel size of 4 mm3,   while a 3.0 T setup afforded a 

voxel size of 1.2 mm3 in a single average DWI acquisition 153. Owing to the water diffusion sensitivity 

inherent to DWI together with the spatial resolution enhancement, MReye at 7.0 T showed clear 

benefits for the differentiation between ocular tumors and retinal detachment 34.

Progress in gradient coil technology

MRI of subtle ocular structures requires sub-millimeter spatial resolution over a small FOV, 

which is constrained by the magnetic field gradients. Magnetic field gradient strength limitations on 

clinical scanners require long echo times (TE) for DWI of the eye and orbit to accommodate the 

increased diffusion encoding times needed for higher b-values, exponentially lowering the SNR of 

the acquisition. The advent of high performance gradient coil systems (Gmax=300 mT/m) for clinical 
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MR instruments enables smaller FOVs, substantially reduces TE and boosts SNR, compared to 

conventional gradient systems, as demonstrated for ultrahigh b-value DWI of the brain156,157.  This 

progress in gradient coil technology has triggered the implementation of high performance clinical 

gradients offering Gmax_combined=100 mT/m158 or Gmax=113 mT/m159. This technology has multiple 

benefits for high resolution imaging, rapid imaging and DWI of the eye and orbit.

Advancing rapid MR imaging techniques

The quality of high spatial resolution ocular imaging can be hampered by involuntary eye 

motion, and especially eye blinking. Scanning while the subject’s eyes are closed is not a solution, 

since unintentional eye movement may corrupt the imaging data. Possible solutions to reduce bulk 

motion induced imaging artifacts include automated eye blink detection, external eye motion 

tracking guidance or the use of rapid or accelerated imaging techniques 34,55,148. Echo planar imaging 

(EPI) techniques are the most widely applied rapid MRI techniques. Notwithstanding its ubiquity, EPI 

is prone to magnetic susceptibility artefacts that result in signal voids and image distortion. These 

effects increase with magnetic field strength, and are especially pronounced in cranial regions 

proximal to air filled cavities, including the paranasal sinuses and maxillary sinuses, and in close 

proximity to skin/muscle/bone/brain boundaries including the orbit, which is particularly susceptible 

to geometric distortions. This constitutes a severe challenge for EPI of the eye and orbit 153,160. RARE 

techniques provide an alternative for rapid MReye with high anatomic fidelity 161-163. RARE uses a 

train of refocusing RF pulses, resulting in a handicap of imaging speed and RF power deposition 

compared to EPI. To address these constraints, Combined Acquisition Techniques (CAT) employ a 

RARE-EPI hybrid that integrates the anatomical integrity of RARE with the imaging speed and RF 

power deposition advantages of EPI 164. RARE-EPI maintains the immunity to B0 inhomogeneities 

reported for RARE imaging and has the capability to acquire high fidelity, distortion-free images of 

the eye and the orbit. This is beneficial for the assessment of ocular masses and pathologic changes 

of the eye and the orbit 55. Owing to the reduced RF power deposition, RARE-EPI was demonstrated 

to enhance the spatial coverage and to promote imaging speed for MReye using simultaneous multi-

slice (multiband) imaging techniques 55. 

Dynamic techniques are an intriguing alternative for rapid MReye. The feasibility of near-

real-time oculodynamic MRI was demonstrated for depicting the extraocular muscles. Eye 

movements were tracked in the horizontal and sagittal plane with a temporal resolution of 180 ms 

per image. Analysis of real-time MRI data obtained from patients with diplopia correlated with 

clinical testing, and may render real time MRI of the eye suitable to examine bulb motility and 

extraocular muscle structural or functional deteriorations165. A frame rate of 18 images per second 
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was achieved for dynamic imaging of the eye, optic nerve, and extraocular muscles using golden 

angle radial MRI166. This approach facilitated analysis of the motion enabled estimation of 

trajectories, lengths, and strains on the optic nerves and extraocular muscles166.

MR safety

Pushing to higher magnetic field strengths with UHF-MReye presents the same safety 

challenges as the advent of UHF imaging technology for other systems, and must be thoroughly 

tested for potential physiological impact and physical effects. Deepening our understanding of the 

interactions between passively conducting implants and RF fields will be key to clinical applications. 

An increasing number of patients have implants that might limit their access to UHF-MR, until it has 

been conclusively demonstrated that these are safe at B0≥7.0 T. Many such implants have already 

been deemed MR-safe at lower magnetic fields, but still require collecting extra data at UHF-MR. 

Assessment of MR safety and MR compatibility at B0≥7.0 T has been carried out on tantalum 

markers used in proton beam therapy (PRT) for intraocular tumors 15 and for intra-ocular lenses used 

for the treatment of cataract 167. These studies revealed that all ocular tantalum markers 

commercially available today with CE certification for PT can be considered safe for MR at field 

strengths of up to and including 7.0 T 15. It was also concluded that all the tested intraocular lenses 

currently in clinical use are considered safe for MRI up to and including 7.0 T.167 Meanwhile, a large 

body of literature exists on the MR safety of passive conductive implants at 7.0 T. 168-176

Looking Beyond the Horizon

Google Maps for Ocular Health 

Breaking new spatial and temporal boundaries and lowering detection levels with UHF-

MReye are some of the elements inspiring the concept of ‘Google Maps for Ocular Health’ 177. 

Considering how Google Maps works, one can start with a very high level view of a city, zoom in to 

smaller neighborhoods and even view it at the scale of individual houses. However, this static spatial 

view is not sufficient to predict what will happen in the future because other kinds of dynamic 

information are needed. Keeping with the city example, if one wants to predict how the weather will 

change, a static map is not sufficient. Other kinds of quantitative information, for example maps of 

wind speed and barometric pressure, need to be integrated with the spatial views, to make a 

weather forecast or storm alert. Analogously, predicting ocular health outcomes requires zooming in 

to view the ophthalmic system at multiple spatial scales, and going beyond MR imaging to the level 

of molecules, where events that are crucial to health take place. However this cannot be easily done 
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because different scales of images and imaging modalities (from the macro- and mesocopic MR to 

the micro- and sub-microcopic) need to be integrated and connected using the tools of data science 
146,178. This requires combining different types of information, for example about water diffusion and 

ion concentration in the eye, in order to integrate multi-scale imaging into a coherent picture to 

develop new approaches for diagnosis and for early interception of ocular disease.

Electrolyte Mapping

Each new MReye approach adds another dimension to our view of the eye that helps 

integrate our knowledge of events at the molecular scale with effects at higher levels. The sensitivity 

gain of UHF-MReye helps to move beyond conventional 1H-MRI to study other MR nuclei that are 

relevant to physiology and metabolism. For example, sodium (Na+) ions are an important 

component of the VH, and play a key role in various physiological processes in the eye. The VH 

functions as a metabolic buffer and a diffusion barrier between the anterior and the posterior 

segments of the eye, adjoining the retina and ciliary body. The concentration of Na+ in the VH is 

close to that of plasma (150 mmol/l). Changes in concentration of substances in the vitreous body 

likely reflect pathological processes in adjoining tissues. A recent study demonstrated the feasibility 

of millimeter-scale spatial resolution Na+ imaging in vivo at 7.0 tesla using a dedicated six-channel 

transceiver array tuned to the resonant frequency of 23Na 150. Three most important eye 

compartments in the context of Na+ physiology were clearly delineated in the sodium images: the 

VH, the aqueous humor and the lens (Figure 9). These results provide encouragement for 23Na-MRI 

research into eye diseases including ocular melanoma, cataract and glaucoma. Other x-nuclei 

ophthalmic MRI applications emerging from basic research include fluorine (19F) MRI for probing 

inflammation, for tracking orbital immune cell infiltration and for monitoring the bioavailability of 

fluorinated drugs 179,180. Potassium (39K) MRI is also conceptually appealing for eye research since it 

facilitates probing the potassium ion homeostasis in vivo 181,182.

Looking towards the future of ultrahigh field MReye 

Each increase in magnetic field strength pushes the boundaries of MReye, and will help to 

translate the discoveries from basic research into the clinic. Pioneering reports on brain MRI at 10.5 

T provide a powerful stimulus for MReye at extreme magnetic field strengths 183,184. The UHF-MR 

community has already taken further steps into the future by demonstrating the feasibility of human 

MR at 14.0 T and at 23.5 T (f=1 GHz) using numerical simulations 185,186. For example, the sensitivity 

gain at 20.0 T is expected to reduce scan times for sodium MReye by a factor of 8 versus current 7.0 

T capabilities, and promises 23Na imaging with an isotropic sub-millimeter spatial resolution in 5 min 
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scan time 187,188.  Newer horizontal preclinical MR systems operating at 15.2 - 17.2 T indicate the 

imminent need to move towards extreme field MR (eMR). Recent reports have also emphasized the 

value of preclinical MR at 17.6 T 189-195 and at 21.1 T 181,196-205. 

Conclusion

Ophthalmic imaging takes advantage of a broad spectrum of modalities, each offering a 

multitude of benefits: tissue contrast, resolution, wave length, investigation time, invasiveness, 

surgical compatibility, cost, etc. MReye has proven its usefulness in preclinical and clinical research 

applications, and will come to have a role in routine clinical practice, complementing existing 

diagnostic and prognostic tools, and even going beyond their limitations. MReye has opened an 

unprecedented window into novel aspects of the ocular system that will help to reveal new 

dimensions of physiology and disease. 
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Table 1.

Survey of the pathologies encountered in the eye and orbital cavity warranting high-resolution MR 

imaging.

Ocular pathologies Orbital pathologies
Hemangioma
Leiomyoma
PHPV, persistent hyperplastic primary vitreous
Uveal melanoma
Choroidal metastasis
Coloboma/Staphyloma

Capillary and cavernous hemangioma
Optic pathway glioma
Optic nerve sheath meningioma
Optic nerve neuritis
Benign mixed tumor
Dacryoadenitis
Dacryocystitis
Eye lid tumours
Cellulitis
Subperiosteal abscess
Mucocele & Pyocele
Myasthenia Gravis
Dermoid cyst
Lymphoma
Lymphangioma
Schwannoma
Orbital metastasis
Idiopathic inflammatory orbital disease 
(Pseudotumor orbitae)
Thyroid associated orbitopathy
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Figure Captions

Figure 1:

A) MRI of ocular tumors. Left: Two-dimensional T1-weighted and T2-weighted imaging of 

retinoblastoma using a magnetic field strength of 3.0 tesla and radiofrequency head coil for 

signal reception (courtesy of Prof. P. Maeder, Lausanne University Hospital, Switzerland). Right: 

T1-weighted and T2-weighted  imaging of uveal melanoma using a magnetic field strength of 1.5 

tesla and a surface radiofrequency coil for signal reception (courtesy of Dr. A. Pica, Paul Scherrer 

Institute, Switzerland).

B) Three-dimensional MReye and ophthalmic imaging of a Uveal Melanoma patient. Top row: T2 

(left), T1 (middle) and Gadolinium contrast enhanced T1 (right) weighted images, showing the 

tumor (*), retinal detachment (white arrow) and sclera (black arrow) with high contrast. Bottom 

row: Examples of Ultrasound (left), fundus photography (middle) and whole eye coverage 3D 

MReye (right) used for tumor visualisation.

Figure 2:

Three dimensional patient-specific MReye models for proton beam therapy and for refractive 

surgery planning. A) 3D 7.0 tesla MReye model (left) from a patient with Uveal Melanoma which is 

used for Proton Therapy dose planning (right). (courtesy of E. Fleury, Erasmus Medical Center, 

Rotterdam and HollandPTC, The Netherlands). B) MR-based eye-model used for optical ray-tracing 

simulations in which MReye is used to personalize the retinal shape (purple), pupil plane (green) and 

intra-ocular lens location (red). 

Figure 3: 

Quantitative MReye: A) Apparent diffusion coefficient (ADC) map of a healthy subject obtained from 

a series of diffusion weighted (DWI) images. B) Water content (left) and fat-quantification (right) of a 

Graves’ Orbitopathy patient, showing not only the enlarged extra-ocular muscles (white arrow, left), 

but also an increased fat-fraction in the right lateral muscle (black arrow, right). C) Perfusion 

Weighted Imaging (PWI) using T1-weighted contrast enhancement, showing a contrast agent wash-

out curve for a uveal melanoma patient. 

Figure 4:

A) Two patients with a mass lesion behind the globe. The standard T1-weighted images revealed 

similar signal characteristics of the mass whereas slightly different signal characteristics in the 

T2-weighted images were observed. Both lesions show increased signal after contrast injection. 

Although the DWI image of the top row patient is distorted, it indicates no or little restricted 

diffusion. The DWI image of the patient at the bottom row indicates marked restricted diffusion, 
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confirmed by ADC-measurements, which suggests a malignant pathology. Follow-up and 

histopathology revealed a cavernous hemangioma for top row the patient and an orbital 

metastasis due to breast cancer for the bottom row patient below.

B) T2-weighted images (top), DWI (center) and ADC-map (bottom) of a patient with giant cell 

arteritis and acute onset of vision loss. Distortion-free DWI depicted restricted diffusion in the 

right optic nerve (center, arrow), indicating ischemia.

Figure 5

Contrast distribution in a pig eye ex vivo after administration of gadolinium-based contrast agent. All 

images were acquired at 7.0 tesla (T1-weighted spin-echo sequence, TR=550 ms, TE=14 ms, slice 

thickness=0.7 mm, FOV=40 x 40 mm2, matrix size=1024 x 1024, acquisition time 8:42min) after 

administration of gadolinium-based contrast agent (0.5 mmol/l; 1:128 with 0.9% saline). a) after 

subcorneal injection of 50 µl contrast agent, b) immediately after installation of 2ml of contrast 

agent in the anterior chamber, c) the same as in b) but 45 min after contrast application; the eye 

was imaged placed on the cornea leading to deformity and d) after continuous flushing of the 

anterior chamber with contrast agent for 30 min and artificial drainage in the posterior chamber.

Figure 6

Examples of MR microscopy.

A) Left: Axial T2-weighted image of a human eye ex vivo at 7.0 T; MR microscopy allows the 

depiction of the three layers of the globe: sclera – arrow, choroid – dotted arrow, retina – 

arrowhead; x – lens. Right: Axial T2-weighted image of a human optic nerve ex vivo at 9.4T; MR 

microscopy at this field strength depicts the layers of the optic nerve and the central artery (x); 

sclera – arrow, choroid – dotted arrow, retina – arrowhead. The corresponding diffusion tensor 

image (DTI) of the human optic nerve ex vivo at 9.4T is shown below using colour coding (green: 

anterior-posterior; blue: cranial-caudal; red: right-left).

B) MR microscopy of uveal melanoma ex vivo. Left: Sagittal T2-weighted image demonstrating the 

posterior extend of the tumor (x) with subsequent retinal (arrow) and choroidal (dotted arrow) 

detachment. The tumor infiltrates the ciliary body (arrowhead). Right) Coronal T2-weighted 

image demonstrating the extension of the tumor (x) from 10 – 2 o´clock with infiltration of the 

iris (arrow). Low intensities (dotted arrow) representing the melanin-producing tumor parts

C) In vivo MR microscopy of the optic nerve at 7.0 T using a dedicated 6-channel radio-frequency 

coil array for signal detection. Left: Coronal T1-weighted 3D image of a healthy subject. Right: 

corresponding conventional histology (HE-stain, 10x magnification) of a patient. long arrow: 

inferior rectus muscle; dotted arrow: medial rectus muscle; arrowhead: superior rectus muscle; 

short arrow: levator palpebrae muscle; green arrow: superior oblique muscle; red arrow: lateral 

rectus muscle.
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Figure 7 :

A) Active Shape Model (ASM) segmentation pipeline: healthy eye (top row) and eye with 

retinoblastoma (RB, bottom row). Pre-processing is needed to determine a volume of interest; 

ASM mean average shape superimposed to the eye to be segmented; illustration of the different 

modes of variation: mean shape (x–) of the sclera (upper left) and the vitreous humor and the 

lens (down left) and b1, b2, b3, and b4 are the 1st, 2nd, 3th and 4th mode of variation 

respectively (effects in shape deformation colored in mm with respect to the distance to the 

mean shape); automatic fitting is done based on MR image information. Resulting segmentation 

for the lens, sclera and vitreous humour.  Figure adapted from 126 and 206.

B) Left: 3D patient specific eye model of a patient with UM, based on manual delineation. Right: 

Results of automated UM segmentation. 1st and 2nd row show a T1-weighted and a T2-weighted 

MR respectively, automated segmentation is highlighted in solid green, manual segmentation is 

outlined in red.  Blue arrows show that automatic segmentation can better fit image contours 

than manual segmentation; yellow arrows show areas where automated segmentation cannot 

separate tumor and retinal detachment. Figure adapted from 136.

Figure 8:

A) Photograph of a state-of-the-art radiofrequency coil set-up used in clinical practice at 1.5 T and 

3.0 T. The small surface RF receive coil is used to obtain high-resolution images of the eye and 

orbit. The head RF coil is used to acquire functional images such as DWI and PWI. 

B) Left: Photographs of an early version of a six channel TX/RX array tailored for ocular imaging at 

7.0 T (f=297 MHz) showing the coil casing and a mirror which allows for fixating a point in the 

isocenter of the scanner bore. Right: Photographs of an advanced version of a six channel TX/RX 

array tailored for ocular imaging at 7.0 T (f=297 MHz) showing the (i) coil casing, (ii) an universal 

interface to ensure patient comfort and ease of use and to connect the RF coil array with the 

scanner and (iii) a mirror which allows for fixating a point in the isocenter of the scanner bore. 

(Courtesy of Dr. Helmar Waiczies and Dr. Andre Kühne, MRI.TOOLS GmbH, Berlin, Germany.)

C) Left: Examples of MRI of the eye of a healthy subject obtained at a magnetic field strength of 7.0 

T using a six-channel RF array for signal transmission and reception. Top: T1-weighted 3D 

gradient-echo imaging (spatial resolution (0.3 x0.3x1.0) mm3, scan time 3:12 min, echo time 

TE=3.6 ms, repition time TR TR=10.3 ms, flip angle =60, matrix size = (320 x 230), FOV=(81 x 58) 

mm2. Bottom: T2-weighted imaging using a RARE (fast spin-echo) technique (spatial resolution 

(0.25 x 0.25 x 0.7) mm3, TR=2940 ms, TE=85 ms, refocusing pulse = 100°, FOV = (84 x 60) mm2
,
 

matrix size = 384 x 245, number of slices = 6, number of averages = 4, scan time = 2:00 min per 

average. Right: Examples of MRI of the eye of a subject with uveal melanoma. Images were 

obtained after Cyberknife intervention at a magnetic field strength of 7.0 T using a six-channel 

RF array for signal transmission and reception. Top: T1-weighted 3D gradient-echo imaging, 
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Bottom: T2-weighted fast spin-echo imaging (RARE). The membrane between the vitreous 

humor (hyper-intense) and the subretinal space is hypo-intense. 

Figure 9:

A) One of the most exciting areas of MReye concerns imaging across multiple scales in space and 

time. Enabled by data science and artificial intelligence, one can imagine a concept like ‘Google 

Maps for ocular health’, in which macroscopic, mesoscopic, and microscopic views are stitched 

together for seamless zooming. This figure shows and example of multi-scale, multi-contrast 

MReye obtained for a patient with a uveal melanoma in the right eye. From left to right: In vivo 

anatomical view using T1-weighted gradient-echo MRI at 3.0 T(spatial resolution: (0.6 x 0.6 x 0.6) 

mm3); in vivo anatomical view using T2-weighted multi-shot RARE MRI at 7.0 T (spatial resolution 

of (0.1 x 0.1 x 1.2) mm3); in vivo diffusion weighted imaging using a multi-shot EPI-RARE variant 

(spatial resolution: (0.5 x 0.5 x 5) mm3); in vivo apparent water diffusion coefficient (ADC) map 

derived from a series of diffusion weighted images acquired with a multi-shot EPI-RARE hybrid 

(spatial resolution: (0.5 x 0.5 x 5) mm3) showing the retinal detachment as well as the melanom, 

ex vivo ADC map (spatial resolution of (0.1 x 0.1 x 0.3) mm3) of the enucleated eye obtained at 

9.4 T showing strong contrast between the remaining vitreous body, the subretinal space 

induced by retinal detachment and the ocular mass; Macrophotography of the enucleated eye.

B) Sodium (23Na) MRI of the eye at 7.0 tesla. From left to right: 23Na six channel transceiver RF array 

(f=79 MHz) placed on an adult volunteer. 23Na sagittal view (nominal isotropic resolution = (1.0 x 

1.0 x 1.0 mm3), scan time = 14 minutes 10 seconds) of the eye of a healthy male volunteer (BMI 

= 27.1 kg/m2) obtained with density adapted 3D projection reconstruction imaging. Colour 

coded sodium image superimposed to the anatomical view (gray scale) derived from T1-

weighted gradient-echo imaging. 23Na axial view (nominal isotropic resolution = (1.0 x 1.0 x 1.0 

mm3), scan time = 14 minutes 10 seconds) of the same healthy male volunteer. Colour coded 

sodium image superimposed to the anatomical view (gray scale) obtained from T1-weighted 

gradient-echo imaging.
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