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1 Training of HunFlair

The training of HunFlair is a two-step process. First, the required word em-
beddings are trained on a large unlabeled corpus, which are then used in the
training of the NER tagger on multiple manually labeled NER corpora.

1.1 Embeddings

We use two types of word embeddings for HunFlair, (I) Flair embeddings based
on a character-level language model (LM) and (II) fastText embeddings (Bo-
janowski et al., 2017).

We trained the Flair LM on a corpus of roughly 3 million full texts from
the PubmedCentral BioC text mining collection1 and 25 million abstracts of
PubMed articles2, yielding a corpus of roughly 14 billion tokens, which we divide
into 1500 splits. For the training of fastText, we used the same corpus, which
we enriched with the text of 6,062,172 wikipedia articles3, adding another 2.6
billion tokens.

For the Flair embeddings, we use a single-layer LSTM with a hidden size of
2048 for each direction. Both LSTMs are trained with a sequence length of 300, a
batch size of 256 and a split-wise patience for the learning rate annealing of 100.
For the fastText embeddings, we train a skip-gram model with 200 dimensions
and sample 10 negative examples per step. The rest of the hyperparameters are
left at their default value.

1ftp://ftp.ncbi.nlm.nih.gov/pub/wilbur/BioC-PMC/, Version of 2019/05/24
2ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline, Version of 2019/12/16A
3https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.

bz2, Version of 2020/05/06
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1.2 Gold standard NER pre-training

In order to have a broad data basis, we harmonize 23 manually-curated, biomed-
ical NER corpora for the training of HunFlair. The corpora include patents,
abstracts and full-texts from scientific articles and are annotated with a variety
of entity types. Table SM 1 gives an overview about the included corpora and
highlights important statistics. We are using almost the same data sets as in
HUNER (Weber et al., 2019). The only difference is that, for HunFlair, we ex-
cluded the BioSemantics corpus (Akhondi et al., 2014) because the large number
of very long sentences significantly slowed down training and we didn’t observe
any performance improvements in preliminary experiments using it. Note, that
the reported number of used corpora differs from Weber et al. (2019), because
here, we count a corpus only once even if it contains multiple entity types.

We use the sentence splitter and a modified version of the tokenizer of the
en core sci sm model of scispacy4 (Neumann et al., 2019). In preliminary ex-
periments, we evaluated different tokenization strategies for HunFlair but did
not observe any significant differences. We train distinct models for each entity
type, i.e. cell lines, chemicals, disease, gene / proteins and species, to achieve
high quality results. For each type we only use corpora that contain annotations
for the respective entity type to learn a type-specific model. We re-use the splits
introduced by HUNER to form a training and validation split for each data set.
Our training sets are built by taking the union of the HUNER train and test
splits of each data set. The validation sets are given by the union of all HUNER
validation splits. The former is used to train the models and the latter to select
the best performing model.

We apply a bidirectional LSTM-CRF neural network to model the recog-
nition of named entities as sequence labeling task. We represent input words
using the HunFlair language model and fastText embeddings learned on in-
domain texts (see Section 1.1). Building on this, a single layer Bi-LSTM with
a hidden size of 256 is used to process the input sequence. Prediction of the
output sequence, i.e. one IOBES label per word, is done using a CRF in the
final layer. All models are trained for 200 epochs with an batch size of 32, an
initial learning rate of 0.1, dropout of 0.5 and a patience of 3.

4https://s3-us-west-2.amazonaws.com/ai2-s2-scispacy/releases/v0.2.5/en_core_

sci_sm-0.2.5.tar.gz
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Table SM 1: Overview of the 23 biomedical NER corpora used to train HunFlair. For each corpus we report the text genre
(patent (P) / scientific articles (SA)), text type (abstract (A) / full-text (FT)) as well as number of sentence, token, entity
annotation statistics.

Corpora Genre Type Sentences Tokens Entity Type Annotations Unique Ann.

BioCreative II GM (Smith et al. (2008)) SA A 20,744 545,966 Genes / Proteins 24,453 16,046
BioCreative V GPRO (Pérez-Pérez et al. (2017)) P A 35,277 1,558,687 Genes / Proteins 13,125 5,662
BioCreative V CDR (Li et al. (2016)) SA A 14,464 345,648 Chemicals 15,828 2,712

Diseases 12,931 3,281
BioInfer (Pyysalo et al. (2007)) SA A 1,138 37,135 Genes / Proteins 4,408 1,357
CellFinder (Neves et al. (2012)) SA FT 2,211 70,286 Cell Lines 367 63

Genes / Proteins 1,572 706
Species 462 43

CHEMDNER patent (Krallinger et al. (2015b,a)) P A 48,744 1,558,182 Chemicals 65,238 20,529
CHEBI (Shardlow et al. (2018)) P FT 13,088 423,731 Chemicals 24,124 6,816

Genes / Proteins 7,140 1,871
Species 3,841 884

CHEMDNER (Krallinger et al. (2015a)) SA A 87,550 2,431,366 Chemicals 83,058 20,470
CLL (Kaewphan et al. (2016)) SA A, FT 201 7,689 Cell Lines 341 309
DECA (Wang et al. (2010)) SA A 5,454 147,874 Genes / Proteins 6,261 2,187
FSU-PRGE (Hahn et al. (2010)) SA A 36,216 985,598 Genes / Proteins 59,521 15,912
Gellus (Kaewphan et al. (2016)) SA A, FT 11,809 312,699 Cell Lines 650 210
IEPA (Ding et al. (2002)) SA A 486 16,590 Genes / Proteins 1,117 139
JNLPBA (Kim et al. (2004)) SA A 18,535 532,777 Cell Lines 3,831 2,250

Genes / Proteins 30,263 8,964
Linneaus (Gerner et al. (2010)) SA FT 17,593 504,261 Species 2,724 339
LocText (Goldberg et al. (2015)) SA A 945 24,178 Genes / Proteins 1,930 717

Species 276 37
miRNA (Bagewadi et al. (2014)) SA A 2,456 64,897 Diseases 2,032 586

Genes / Proteins 944 345
Species 676 45

NCBI Disease (Doğan et al. (2014)) SA A 7,308 179,849 Diseases 6,861 2,137
OSIRIS (Furlong et al. (2008)) SA A 1,072 31,020 Genes / Proteins 957 355
S800 (Pafilis et al. (2013)) SA A 6,421 165,451 Species 3,734 1,576
SCAI Chemical (Kolárik et al. (2008)) SA A 940 30,808 Chemicals 1,314 797
SCAI Disease (Gurulingappa et al. (2010)) SA A 4,351 113,541 Diseases 2,241 1,003
Variome (Verspoor et al. (2013)) SA FT 6,155 180,237 Diseases 5,925 475

Genes / Proteins 4,552 529
Species 182 8
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Table SM 2: Overview of the gold standard NER corpora used to evaluate
HunFlair and the competitor off-the-shelf tools in an cross-corpus setting. For
each corpus we report the number of sentences and tokens as well as entity
annotation statistics.

Corpora Sentences Tokens Entity Type Annotations Unique

BioNLP2013-CG 5,994 157,109 Chemicals 2,405 841
(Pyysalo et al. (2013)) Diseases 2,604 624

Genes / Proteins 7,908 2,057
Species 1,801 306

CRAFT 26,589 776,028 Chemicals 6,780 1,031
(Bada et al. (2012)) Genes / Proteins 23,578 2,330

Species 10,465 354
Plant-Disease (PDR) 1,780 49,392 Diseases 1,298 477
(Kim et al. (2019))

2 Evaluation against off-the-shelf tools

The evaluation of HunFlair and its competitor biomedical NER tools is per-
formed using the three corpora, CRAFT (Bada et al., 2012), BioNLP13 Cancer
Genetics (Pyysalo et al., 2013) and plant-disease-relations (PDR) (Kim et al.,
2019). For the comparison with SciSpacy (Neumann et al., 2019), we use the
models en ner craft md, en ner jnlpba md, en ner bc5cdr md, and en ner bionlp13cg md5.
However, when evaluating on a corpus which was used to train the specific SciS-
pacy model, we excluded the respective model and report the best score of the
remaining models to retain a fair comparison. Due to this, neither HunFlair nor
any of the competitor tools are trained on any of the corpora, hence the evalua-
tion setting is similar to an application to completely unseen text. Table SM 2
highlights statistics of the used corpora.

We report F1 scores for all considered methods and tools. We designed
our evaluation to minimize the assumptions made about the preprocessing of
the input texts, especially with respect to tokenization and sentence splitting.
Each model is given the complete abstract resp. full-text of the scientific article
or patent as input for which it executes its own pre-processing pipeline. The
predictions of each model are represented by text offsets. To calculate the
evaluation scores, we use the gold standard text offsets and match them with
the predicted offsets. We consider any predicted span as true positive that either
exactly matches one gold standard annotation or differs only by one character
either at the end or at the beginning. This accounts for the fact that the
methods have differences in their processing of special characters, leading to
small deviations in token off-sets.

Note, that this evaluation protocol differs substantially from the one used
in Weber et al. (2019), where homogeneously preprocessed versions of the cor-
pora were used for evaluation, leading to different offsets in many cases. Ad-

5Note, that we don’t compare against the more general SciSpacy models (e.g.
en core sci md or en core sci lg), since they do not provide entity types out-of-the-box.
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ditionally, HUNER only outputs the entities as extracted from the tokenized
text, losing non-ascii symbols and whitespace in the process. Thus, to align the
predicted entities to the input text in the present evaluation, we try to match
the predicted entity strings to the original text by using fuzzy matching. These
are two important reasons for the fact that the results for Gene on the Craft
corpus are much worse than those reported in Weber et al. (2019). This is sup-
ported by the fact that the difference between results from Weber et al. (2019)
and those reported diminishes, when counting any overlap between predicted
and annotated spans as a true positive (see Table SM 3).

We noticed that for some combinations of model and corpus SciSpacy pre-
dicts wrong entity boundaries in a large number of cases, leading to strikingly
different results in the any-overlap evaluation and the more strict one. Never-
theless, also under this evaluation protocol, HunFlair performs better than all
competitors except for Species on the BioNLP CG corpus.

Table SM 3: Cross corpus evaluation of off-the-shelf BioNER tools for the entity
types Chemical (Ch), Disease (D), Gene (G) and Species (S) counting any over-
lap between the predicted and annotated span as a true positive. All scores are
F1-measures and the best results are in bold. Delta shows the improvement over
the more strict evaluation reported in the main text (Table 1). Misc displays
the results of multiple taggers: tmChem for Chemical, GNormPus for Gene and
Species, and DNorm for Disease.

CRAFT BioNLP CG PDR
Ch G S Ch D G S D

Misc 44.86 67.52 82.02 74.36 60.04 71.06 84.18 86.95
∆ 1.98 2.59 0.87 2.21 4.40 2.09 3.65 6.32

SciSpacy 39.78 54.71 72.02 60.65 61.69 78.77 65.04 83.49
∆ 4.05 6.95 17.81 2.22 5.21 12.59 7.93 7.59

HUNER 46.84 65.27 84.66 72.00 59.74 79.58 71.43 78.49
∆ 3.85 14.50 0.21 4.63 4.42 8.36 3.59 4.85

HunFlair 61.99 80.5 85.46 83.52 69.29 92.73 80.15 88.64
∆ 2.16 6.99 0.42 1.70 4.22 5.02 3.74 5.20

3 Evaluation against state-of-the-art models

We compare HunFlair to the reported scores of the state-of-the-art models
BioBERT (Lee et al., 2019), SciBERT (Beltagy et al., 2019), CollaboNet (Yoon
et al., 2019) and SciSpacy (Neumann et al., 2019) on JNLPBA (only using Gene
annotations), NCBI Disease and BioCreative V CDR. To obtain results that are
comparable to the reported scores of these methods, we use the preprocessed
versions of the corpora provided by by Lee et al. (2019). For this experiment,
we used the large BioWordVec embeddings6 (Chen et al., 2018) and remove the

6https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/BioSentVec/BioWordVec_PubMed_

MIMICIII_d200.vec.bin
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Table SM 4: Comparison with the reported results of state-of-the-art models
for BioNER. Scores are macro-averaged F1 and best results are printed in bold.
’HunFlair (no)’ refers to the HunFlair model without pretraining on goldstan-
dard corpora.

JNLPBA (Gene) BC5CDR NCBI

SciBERT 77.28 90.01 88.57
BioBERT v1.1 77.49 89.76 89.71
CollaboNET 78.58 87.68 88.60
SciSpacy - 83.92 81.56

HunFlair 77.6 89.65 88.65
HunFlair (no) 77.78 90.57 87.47

three evaluation corpora from the pretraining set.

4 Effects of pretraining

We investigate the effects of pretraining our tagger on multiple goldstandard cor-
pora, by comparing the pretrained tagger to a randomly initialized LSTM. Note,
that the randomly initialized LSTM still uses pretrained Flair and fastText em-
beddings. For this experiment, we used the large BioWordVec embeddings and
do not use the test portions of the corpora for pretraining. The results can be
found in Table SM 5.

Pretraining improves the average results for all entity types with gains rang-
ing from 0.8 pp for chemicals to 4.75 pp for cell lines. Performance improvements
are mainly attributed to better recall. In 28 of the 34 cases the recall of the
pretrained model is higher than the vanilla one. For eight cases recall improves
by over 4.0 pp. This indicates that the increased amount of training data indeed
leads to a better coverage of existing entities and their various surface forms as
well as a higher adaptability to other biomedical subdomains. However, there
are also six cases where the F1 score decreases slightly (max. 1.05 pp). In
five out of these six cases there is a decline in precision. Additionally, also
in ten cases in which F1 increases, precision is lower. This suggests that the
larger number of entities seen in training may occasionally lead to few imprecise
predictions.
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Table SM 5: Comparison of the tagger that was pretrained on multiple gold
standard corpora (Pretrained) vs a tagger without pretraining (Vanilla). The
∆-columns report the gains achieved through pretraining.

Vanilla Pretrained
Prec. Rec. F1 Prec. Rec. F1 ∆Prec. ∆Rec. ∆F1

Cell Line

CellFinder 0.9174 0.7634 0.8333 0.8983 0.8092 0.8514 -0.0191 0.0458 0.0181
CLL 0.7093 0.7922 0.7485 0.8158 0.8052 0.8105 0.1065 0.0130 0.0620
Gellus 0.7818 0.6964 0.7366 0.9375 0.7895 0.8571 0.1557 0.0931 0.1205
JLNPBA 0.7456 0.6876 0.7154 0.7485 0.6661 0.7049 0.0029 -0.0215 -0.0105

avg. 0.7885 0.7349 0.7585 0.8500 0.7675 0.8060 0.0711 0.0433 0.0528

Chemical

BC5CDR 0.9365 0.9391 0.9378 0.9394 0.9411 0.9403 0.0029 0.0020 0.0025
CHEMDNER patent 0.8491 0.9135 0.8801 0.8471 0.9187 0.8815 -0.0020 0.0052 0.0014
CHEBI 0.8006 0.7878 0.7941 0.8220 0.7786 0.7997 0.0214 -0.0092 0.0056
CHEMDNER 0.9319 0.9171 0.9245 0.9310 0.9198 0.9254 -0.0009 0.0027 0.0009
SCAI Chemical 0.8131 0.7307 0.7697 0.8505 0.8347 0.8425 0.0374 0.1040 0.0728

avg. 0.8662 0.8576 0.8612 0.8780 0.8786 0.8779 0.0129 0.0246 0.0166

Disease

BC5CDR 0.8615 0.8727 0.8670 0.8488 0.8804 0.8643 -0.0127 0.0077 -0.0027
miRNA 0.8318 0.8220 0.8269 0.8467 0.8769 0.8615 0.0149 0.0549 0.0346
NCBI Disease 0.8583 0.8990 0.8782 0.8663 0.8815 0.8738 0.0080 -0.0175 -0.0044
SCAI Disease 0.8159 0.7930 0.8043 0.8311 0.7972 0.8138 0.0152 0.0042 0.0095
Variome 0.9147 0.9127 0.9137 0.9072 0.9163 0.9117 -0.0075 0.0036 -0.0020

avg. 0.8564 0.8599 0.8580 0.8600 0.8705 0.8650 0.0117 0.0176 0.0106

Gene

BioCreative II GM 0.8330 0.8284 0.8307 0.8372 0.8285 0.8328 0.0042 0.0001 0.0021
BioInfer 0.8647 0.8351 0.8497 0.8813 0.8717 0.8765 0.0166 0.0366 0.0268
CellFinder 0.8254 0.7045 0.7602 0.9050 0.8662 0.8852 0.0796 0.1617 0.1250
CHEBI 0.7811 0.6667 0.7194 0.7810 0.7155 0.7468 -0.0001 0.0488 0.0274
DECA 0.7200 0.7388 0.7293 0.7390 0.7306 0.7348 0.0190 -0.0082 0.0055
FSU-PRGE 0.9036 0.9171 0.9103 0.9020 0.9187 0.9103 -0.0016 0.0016 0.0000
CHEMDNER patent 0.6828 0.8382 0.7526 0.6875 0.8423 0.7570 0.0047 0.0041 0.0044
IEPA 0.8771 0.8771 0.8771 0.8754 0.8870 0.8812 -0.0017 0.0099 0.0041
JNLPBA 0.8366 0.8561 0.8462 0.8287 0.8507 0.8396 -0.0079 -0.0054 -0.0066
LocText 0.8646 0.8202 0.8418 0.8689 0.8881 0.8784 0.0043 0.0679 0.0366
miRNA 0.7644 0.7956 0.7797 0.7541 0.8679 0.8070 -0.0103 0.0723 0.0273
OSIRIS 0.8721 0.8926 0.8823 0.9123 0.9430 0.9274 0.0402 0.0504 0.0451
Variome 0.9223 0.9482 0.9351 0.9169 0.9519 0.9340 -0.0054 0.0037 -0.0011

avg. 0.8267 0.8245 0.8242 0.8376 0.8586 0.8470 0.0150 0.0362 0.0240

Species

CellFinder 0.8489 0.9219 0.8839 0.8414 0.9531 0.8938 -0.0075 0.0312 0.0099
CHEBI 0.8875 0.7890 0.8353 0.8807 0.7765 0.8253 -0.0068 -0.0125 -0.0100
Linneaus 0.9440 0.9142 0.9289 0.9579 0.9470 0.9524 0.0139 0.0328 0.0235
LocText 0.9545 0.9130 0.9333 0.9468 0.9674 0.9570 -0.0077 0.0544 0.0237
miRNA 0.9914 0.9312 0.9603 0.9789 0.9393 0.9587 -0.0125 0.0081 -0.0016
S800 0.7664 0.7232 0.7442 0.7396 0.7518 0.7457 -0.0268 0.0286 0.0015
Variome 0.5400 0.8182 0.6506 0.6829 0.8485 0.7568 0.1429 0.0303 0.1062

avg. 0.8475 0.8587 0.8481 0.8612 0.8834 0.8700 0.0312 0.0283 0.02527
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Doğan, R. I., Leaman, R., and Lu, Z. (2014). NCBI disease corpus: a resource for disease name

recognition and concept normalization. J. Biomed. Inform., 47, 1–10.

Furlong, L. I., Dach, H., Hofmann-Apitius, M., and Sanz, F. (2008). OSIRISv1.2: a named entity

recognition system for sequence variants of genes in biomedical literature. BMC Bioinformatics,

9, 84.

Gerner, M., Nenadic, G., and Bergman, C. M. (2010). LINNAEUS: a species name identification

system for biomedical literature. BMC Bioinformatics, 11, 85.

Goldberg, T., Vinchurkar, S., Cejuela, J. M., Jensen, L. J., and Rost, B. (2015). Linked annotations:

a middle ground for manual curation of biomedical databases and text corpora. BMC Proc., 9(5),

A4.

Gurulingappa, H., Klinger, R., Hofmann-Apitius, M., and Fluck, J. (2010). An empirical evaluation

of resources for the identification of diseases and adverse effects in biomedical literature. In 2nd

Workshop on Building and evaluating resources for biomedical text mining (7th edition of the

Language Resources and Evaluation Conference). pub.uni-bielefeld.de.

Hahn, U., Tomanek, K., Beisswanger, E., and Faessler, E. (2010). A proposal for a configurable

silver standard. In Proceedings of the Fourth Linguistic Annotation Workshop, pages 235–242.

aclweb.org.

Kaewphan, S., Van Landeghem, S., Ohta, T., Van de Peer, Y., Ginter, F., and Pyysalo, S. (2016).

Cell line name recognition in support of the identification of synthetic lethality in cancer from

text. Bioinformatics, 32(2), 276–282.

Kim, B., Choi, W., and Lee, H. (2019). A corpus of plant–disease relations in the biomedical

domain. PLOS ONE , 14(8), 1–19.

Kim, J.-D., Ohta, T., Tsuruoka, Y., Tateisi, Y., and Collier, N. (2004). Introduction to the bio-

entity recognition task at JNLPBA. In Proceedings of the international joint workshop on

natural language processing in biomedicine and its applications, pages 70–75. Citeseer.

8



Kolárik, C., Klinger, R., Friedrich, C. M., Hofmann-Apitius, M., and Fluck, J. (2008). Chem-

ical names: terminological resources and corpora annotation. In Workshop on Building and

evaluating resources for biomedical text mining (6th edition of the Language Resources and

Evaluation Conference). pub.uni-bielefeld.de.

Krallinger, M., Rabal, O., Leitner, F., Vazquez, M., Salgado, D., Lu, Z., Leaman, R., Lu, Y., Ji, D.,

Lowe, D. M., Sayle, R. A., Batista-Navarro, R. T., Rak, R., Huber, T., Rocktäschel, T., Matos,
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P., Divoli, A., Maña-López, M., Mata, J., and Wilbur, W. J. (2008). Overview of BioCreative II

gene mention recognition. Genome Biol., 9 Suppl 2, S2.

9



Verspoor, K., Jimeno Yepes, A., Cavedon, L., McIntosh, T., Herten-Crabb, A., Thomas, Z., and

Plazzer, J.-P. (2013). Annotating the biomedical literature for the human variome. Database,

2013, bat019.

Wang, X., Tsujii, J., and Ananiadou, S. (2010). Disambiguating the species of biomedical named

entities using natural language parsers. Bioinformatics, 26(5), 661–667.
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