SUPPORTING INFORMATION

Pantoea stewartii WceF is a glycan biofilm modifying enzyme with a bacteriophage tailspike-like fold

Tobias Irmscher^{1,2,#}, Yvette Roske^{3,6,#}, Igor Gayk¹, Valentin Dunsing⁴, Salvatore Chiantia⁴, Udo Heinemann^{3,5,*}, and Stefanie Barbirz^{1,*}

¹Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.

²Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.

³Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125 Berlin, Germany.

⁴Physikalische Zellbiochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.

⁵Institut für Chemie und Biochemie, Freie Universität, Takustr. 6, 14195 Berlin, Germany.

#Authors contributed equally *Corresponding authors: Stefanie Barbirz, Udo Heinemann Email: barbirz@uni-potsdam.de, heinemann@mdc-berlin.de **Running title:** Phage tailspike-like biofilm glycosidase from P. *stewartii*

WP_047714099.1/1-736 WP_08960697.1/1-737 WP_050860697.1/1-737 WP_050680143.1/1-738 WP_1084875998.1/1-738 WP_103030746.1/1-738 WP_07432085.1/1-740 WP_00141069.1/1-740 WP_004162445.1/1-743 WP_034887639.1/1-737	1 MKRE VLOTAASALVGALSVSTFS - SYAAKNSG - LALKSVDASAVPKODVPLLTPENVYAMPPOFVORFOGKUWIGKSGSDASOPGOIPVFLEDANGNL 1 MKRE VLOTAASALVGALSVSTFS - SYAAKSNG - LALKSVDAIAIPKODVPLLTPENVYAMPPOFVOGFEGKUWIGKSGDASKPONOIPVFLEDAKGNL 1 MKRE VLOTAASALVGALSVSTFS - SYAAKSNG - LALKSVDAIDVFKSDVPLLTPENVYAMPPOFVOGFEGKUWIGKSGDASKPONOIPVFLEDASGKV 1 MKRE VLOTAASALVGALSVSTFS - SYAAKSNG - IALKFVDAIDVFKSDVPLTPENVYAMPPOFVOGFEGKUWIGKSGDASKPONOIPVFLEDASGKV 1 MKRE VLOTAASSIVGALSVSTFS - SYAAKSNG - IALKFVDAIDVFKSDVPLTPENVYAMPPOFVOGFEGKUWIGKSGDASKPONOIPVFLEDASGKV 1 MKRE VLOTAASSIVGALSVSTFS - SYAAKSNG - IALKFVDAIDVFKSDVPLTPENVYAMPPOFVOGFEGKUWIGKSGDASKONOIPVFLEDASGKV 1 MKRE VLOTAASSIVGALSVSTFS - SYAAKSSG - FALKAVDPSSVPGOVPLLTPENVYAMPPOFVOFEGKUWIGKSGSDASKONOIPVFLEDASGKV 1 MKRE VLOTAASSIVAALSVSTFS - SYAAKSSG - FALKAVDPSVPGOVPLLTPENVYMPPOFVOFEGKUWIGKSGSDASKONOIPVFLEDASGKV 1 MKRE VLOTAASSIVAALSVSTFS - SYAAKSGE - FSLKVSPSAVPTGNVPVLTPENIYAMPPKVONFEGKUWIGKSGSDASKONOIPVFLEDASGKV 1 MKRE VLOTAASSIVAALSVSTFS - SYAAKSSG - NELKOVPKDIPADVPLTPENIYAMPPKVENDFGGKUWIGKAGSDFTKSGNTIPVFLENADGKV 1 MKRE VLOTAASSIVAALSVSTFS - SYAAKSSGE - FSLKVSPSAVPTGNVPVLTPENIYAMPPKVENFEGKUWIGKAGSDFTKSGNTIPVFLENADGKV 1 MKRE VLOTAASSIVAALSVSTFS - SYAAKSSGELNLKOVNPKDIPPDOVPLITPENIYAMPPKVENFEGKUVIGKAGSDFTKSGNTIPVFLENADGKV 1 MKRE VLOTAASSIVAALSVSTFS - SYAAKSGE - NELKVVSPSAVPTGNVPVLTPENIYAMPPGKVENFEGKUVIGKAGSDFTKSGNTIPVFLENADGKV 1 MKRE VLOTAASSIVAALSVSTFS - SYAAKSSGELNLKOVNPDD PKDDVPILTPENYTMPPGFWENFGGKUVIGKAGSDFTKSGNTIPVFLENADGKV 1 MKRE VLOTAASSIVAALSVSTFS - SYAAKSGE - NELKVVSPSAVPTGNVPVLTPENIYAMPDFWENFGGKUVIGKAGSDFTKSGNTIPVFLANAGKU 1 MKRE VLOTAASSIVALSVSTFS - SYAAKSGE - NELKVVSSAVPTGNVPVLTPEDVTMPGGKWIFGGKUVIGKGSDASKONTIPVTKNDVDVV 1 MKRE VLOTAASSIVALSVSTFS - SYAAKSGE - NELKVVSSAVPTGNVFVTGFKGKUVGKAGSDASKONTIPVTKNDV 1 MKRE VLOTAASSIVATALSVSVSTFS - SYAAKSGE - NELKVVSSAVPTGNVFVTGFKGKUVGKAGSDASKONTIPVTKNDV 1 MKRE VLOTAASSIVASSAVSVSTFS - SYAAKSGEN V NOVDING 1 MKRE VLOTASSIVATASSIVSSAVGEN V NOVDING 1 MKRE VLOTAASSIVSSAVGEN V NOVDING 1 MKRE VLOTASSIVSSAVSVSTFS - SYAAKSONT V NOVDING 1	98 98 98 98 98 100 98 100 99
WP_047714099.1/1-736 WP_08906097.1/1-737 WP_05080097.1/1-737 WP_050800143.1/1-738 WP_084875998.1/1-738 WP_130830746.1/1-738 WP_067432085.1/1-740 WP_014182445.1/17-737 WP_034887639.1/1-737	99 AD IT OP IT LINKONFODFVKDNAALIANPSHAMALED SNGGMVFNI PDVSOPGOAAFSOR LADPAGYOLIGE IPSVDLIKTRPLFEGAKI KLKSMHAGLEV 99 AD IT DINKONFODFVKDNAALIANPSHSMALED SNGGMVFNI PDVSOPGOAAFSOR LADPAGYOLIGE IPSVDLIKTRPLFEGAKI KLKSMHAGLEV 99 SEI AOPIALNKONFAOFIODNAALIANPSHSMAVED SNGGTLFNI ADVSPGAADFSOR LADPAGYOLIGE IPSVAELRKTRPLFEGAKVKLKSMHEGREV 99 SEI AOPIALNKONFAOFIODNAALIANPSHSMAVED SNGGTLFNI ADVSPGAADFSOR LADPAGYOLIGE IPSVAELRKTRPLFEGAKVKLKSMHEGREV 99 SOI SOPIALNKONFAOFIODNAALIANPSHSMAVED SNGGTLFNI ADVSPGAADFSOR LADPAGYOLIGE IPSVAELRKTRPLFEGAKVKLKSMHEGREV 99 SOI SOPIALNKONFAOFIODNAALIANPSHSMAVED SNGGTLFNI ADVSPGAADFSOR LADPAGYOLIGE IPSVELRKTRPLFEGAKVKLKSMHEGREV 99 SOI SOPIALNKONFAOFI ADNAALIANPSHSMAVED SNGGTLFNI ADVSRPGAADFSOR LADPAGYOLIGE IPSVELRKTRPLFEGAKVKLKSMHEGLEV 99 SOI SOPIALNKONFAOFI IDNAALIANPSHSMAVYDNGKOLFYI PDVTRPNSSDFSOR LADPAGYOLIGE IPSVELRKTRPLFEGAKI KLKSMHEGLEV 99 SOI SOPIALNKONFOOFI ADNAALIANPSHSMAVYDNGKOLFYI PDVTRPNSSDFSOR LADPGGYOLIGE IPSVELRKTRPLFEGAKI KLKSMHEGLEV 99 SOI ODPVVLNKONFOOFI ADNAALIANPSHSMAVYDDNGGOLFFMPDVSRPNSADFSOR LADPGGYOLIGE IPSVELRKTRPLFEGAKI KLKSMHEGLEV 99 SOI ODPVVLNKVSLERFVADNSSLIAAPSHSMAVYDDNGGOLFFMPDVSRPNSADFSOR LADPGGYOLIGE IPSVSLENGTRPLFEGAKI KLKSMHEGLEV 99 SOI ODPVVLNKVSLERFVADNSSLIAAPSHSMAVYDDNGGOLFFMPDVSRPNSADFSOR LADPGGYOLIGE IPSVSLRGTRPLFEGAKI KLKSMHEGLEV 90 SOI ODPVVLNKVSLERFVADNSSLIAAPSHSMAVYDDNGGOLFFMPDVSRPNSADFSOR LADPAGYOLIGE IPSVSLRGTRPLFEGAKI KLKSMHEGLEV 90 SOI ODPVLNKVSLERFVADNSSLIAAPSHSMAVYDDNGGOLFFMPDVSRPNSADFSOR LADPAGYOLIGE IPSVSLRGTRPLFEGAKI KLKSMHEGLEV 90 SOI ODPVLNKVSLRFVADNSSLIAAPSHSMAVYDDNGGOLFFMPDVSRPNSADFSOR LADPAGYOLIGE IPSVSLRGTRPLFEGAKI KLKSMHEGLEV 90 SOI ODPVLNKVSLEFVADNSSLIAAPSHSMAVYDDNGGOLFFMPDVSRPNSADFSOR LADPAGYOLIGE IPSVSLRGTRPLFEGAKI KLKSMHEGLEV 90 SOI ODPVLNKVSLEFVADNSSLIAAPSHSMAVYDDNGGVFFMPDVSRPNSADFSOR LADPAGYOLIGE IPSVSLRGTRPLFEGAKI KLKSMHEGES 101 ALLSOPIDLINSETLKTFVAAKGALWSASEVSMALHDNDEOI FYNDVKNGVSEFSRRLEGAPGYOLIGE ISSASLRGOTRPLFSGRVKKRSMKNGGES	199 199 199 199 199 201 198 201 200
WP_047714099.1/1-736 WP_109717354.1/1-737 WP_068906097.1/1-738 WP_050680017.1/1-738 WP_050480745.1/1-738 WP_1084875998.1/1-740 WP_100745.1/1-740 WP_004162445.1/1-743 WP_034887639.1/1-737	200 GGGEFVGSFOPAODOGVIFS-GDGFHARRVVDDYNRLSLFDFGAIADGKTDSAPAIKAMYOWSGOSDOPICVOFPAGTFFVSGCDFGECORRFFRISGAM 200 GGGEFVGSFOPAODOGVIFS-GDGFHARRVVDDYNLLSLFDFGAIADGKTDSAPAIKAMYOWSGOSDOPICVOFPAGTFFVSGCDFGECORRFFRISGAM 200 GGGEFVGSFOPAODOGVIFS-GOGFHARRVVDDFNLLTLFDFGAIADGCTDTAPAIMAMFGWSGOANGOICIGFPAGTFWSACNLGEKNLNLFRISGAM 200 GGGEFVGSFOPAONDGGVIFA-GOGFHARRVVDDFNLTLFDFGAIADGCTDTAPAIMAMFGWSGOANGOICIGFPAGTFWSACNLGEKNLNLFRISGAM 200 GGGEFVGSFOPAONDGGVIFS-GDGFHARRVVDDFNLTLFDFGAIADGKTDSAPAIKAMYOWSGOANGOICIGFPAGTFWSACNLGEKNLNLFRISGAM 200 GGGEFVGSFOPAONDGGVIFS-GDGFHARRVVDDFNLTLFDFGAIADGKTDSAPAIKAMYOWSGOANGOICIGFPAGTFFVSGCDFGEKETGFFKISGAM 200 GGGEFVGSFTAAKDNGGVIFSSGSDFHARRVVDDYNLTLFDFGAIADGKTDSAPAIKAMYOMSGOANGOICVOFPAGTFFVSGCDFGEKETGFFFKVSGAM 202 GGGEFVGSLEAAEDDGGVIFSSGSDFHARRVVDDYNLTLFDFGAIADGKTDSAPAIKAMYOMSGOANGOICVOFPAGTFFVSGCDFGEKETGFFKVSGAM 202 GGGEFVGSLEAAEDDGGVIFSSGSDFHARRVVDDYNLTLFDFGAIADGKTDSAPAIKAMYOMSGANGOICVGFPAGTFFVSGCDFGEKETGFFKVSGAM 202 GGGEFVGSLEAAEDDGGVILSSGADFHARRVVDYNNLTLFDFGAIADGKTDSAPAIKAMYOMSGANGOICVGFPAGTFFVSGCDFGEKETGFFKVSGAM	299 299 299 299 299 302 299 302 302 301
WP_047714099.1/1-736 WP_109717354.1/1-737 WP_0569606097.1/1-738 WP_056806097.1/1-738 WP_054875998.1/1-736 WP_1094875998.1/1-738 WP_067432085.1/1-740 WP_004162445.1/1-743 WP_004162445.1/1-737	300 VNFGYFPATTIVSDGKSAFLFEVSARWVEISNLIFNGNTDSHPNKOGLFRNTCPGGGFFRGACLRFNNVGGTALSLLDTLDCKIDDWYASACTGDVIDAGA 300 VNFGYFPATTIVSDGKSPFVFEVSARWVEISNLIFNGNTDSSPNKOGLFRNTCPGGGFRGACLRFNOVGGTALSLLDTLDCKIDDWYASACTGDVIDAGA 300 VNFGYFPATTIVSDGKSDFVFENNARRVELSNLIFNGNTDSSPNKOGLFRNTCPGGGFRGACLRFNOVGGTALSLLDTLDCKIDDWYASACTGDVIDAGA 300 VNFGYFPATTIVSDGKSDFVFENNARRVELSNLIFNGNTDKNPNOGLFONTCPGGGFRGACLRFTAVGGTALSLLDTLDCKIDDWYASACTGDVIDAGA 300 VNFGYFPATTIVSDGKSDFVFENNARRVELSNLIFNGNTDKNPNOGLFONTCPGGGFRGACLRFTAVGGTALSLLDTLDCKIDDWYASACTGDVIRAGA 300 VNFGYFPATTIVSDGKSDFVFENNARRVELSNLIFNGNTDKNPNOGLFONTCPGGGFRGACLRFTAVGGTALSLLDTLDCKIDDWYASACTGDVIRAGA 300 VNFGYFPATTIVSDGRSFFLFDVKARWTEISNLIFNGNTDKNPNOGGLFONTCPGGGFRGACLRFNOVGGVSLSLLDTLDCKIDDWYASACTGDVIRAGA 300 VNFGYFPATTIVSDGRSFFLFDINARWELSNLIFNGNTDKNPNOGGLFONTCPGGGFRGACLRFNOVGGVSLSLLDTLDCKIDDWYASACTGDVIRAGA 300 VNFGYFPATTIVSDGRSFFLFDINARWELSSLIPDGOVNKNPNKOGFFENTCAGGGFRGACLRFNFVGGTALSMLDTLDCKIDDWYASACTGDVIRAGA 300 VNFGYFPATTIVSDGKSAFIFKVNARRVELSSLVFDGOVNKNPNKOGFFENTCAGGGFFRGACLRFNFVGGTALSMLDTLDCKIDDWYASACTGDVIRAGA 300 VNFGYFPATTIVSDGKSSFFLFVNARRVELSSLVFDGOVNKNPNKOGFFENTCAGGFFRGACLRFNFVGGTALSMLDTLDCKIDDWYASACTGDVIRAGA 300 VNFGYFPATTIVSDGKSSFFLFVNARRVELSSLVFDGOVNKNPNKOGFFENTCAGGFFRGACLRFNFVGGTALSMLDTLDCKIDDWYASACTGDVIRAGA 300 VNFGYFPATTIVSDGKSSFFLFVNARWELSSLVFDGOVNKNPNKOGFFENTCAGGFFNGSGSLNFVVGGVALSLUDTLDCKIDDWASACTGDVIRGSAF	400 400 400 400 400 403 400 403 402
WP_047714099.1/1-736 WP_109717354.1/1-737 WP_050680017.1/1-738 WP_050680143.1/1-738 WP_1084875998.1/1-736 WP_1094875998.1/1-736 WP_067432085.1/1-740 WP_004162445.1/1-7437 WP_034887639.1/1-737	401 SGCK KGMADHSTAIELSNFNADHCKGGKVLNLPRCSOSLIHNGWIEHCDNPGDISNGWIIDALSLEDCKNPLIAWHSRLNTROTNLOSGSWIDNSEDGDR 401 SGCKGMADHSTAIELSNFNADHCKGGKVLNLPRCSOSLIHNGWIEHCDNPGDISNGWIIDALSLEDCKNPLIAWHSRLNTROTNLOSGSWIDNSEDGDR 401 SGCKGMADHSTAIELSNFNADHCRGGKVLNLPRCADSIIHNGWIEHCDNPGDISNGWIVDALSIEDCKNPLIAHNSRLNMROTSLOSGSWIDNSMGDR 401 SGCKGMADHSTAIELSNFNADHCRGGKVLNLPRCADSIIHNGWIEHCDNPGDISNGWIVDALSIEDCKNPLIAHNSRLNMROTSLOSGSWIDNSMGDR 401 SGCKGSMADHSTAIELSNFNADHCRGGKVLNLPRCADSIIHNGWIEHCDNPGDISNGWIVDALSIEDCKNPLIAHNSRLNMROTSLOSGSWIDNSMGDR 401 SGCKGSMADHSTAIELSNFNADHCRGGSVLNLPRCADSIIHNGWIEHTENPGDISNGWIVDALSIEDCKNPLIAHNSRLNMROTSLOSGSWIDNSMGDR 404 SGCKGSWADHSTAIELSNFNADHCRGGSVLNLPRCBSIIHNGWIEHTENPGDISNGWIIDALSLEDCKNPLIAHNSRLNMROTNLOSGSWIDNSMEGDR 405 SGCKGSWADHSTAIELSNFNADHCRGGSVLNLPRCBSIIHNGWIEHTENPGDISNGWIIDALSLEDCKNPLIAHNSRLNMROTNLOSGSWIDNSMEGDR 404 SGCKGSWADHSTAIELSNFNADHCRGGSVLNLPRCGSSIIHNGWIEHTENPGDISNGWIIDALSLEDCKNPLLAHNSRLNMROTNLOSGSWIDNSMEGER 404 SGCKGSWADHSTAIELSNFNADNCSGGWVLNLPRCGSSIIHNGWIEHTENPGDISNGWIIDALSLEDCKNPLLAHNSRLNMROTNLOSGSWIDNSNEGKSA 405 SKCKSWADHSTAIELSNFNADNCSGGWVLNLPRCGSSIIHNGWIEHTENPGDISNGWIIDALSLETCKNPLLAHNSRLNMROTNLOSGSWIDNSNGKSA 404 SGCKGSWADHSTAIELSNFNADNCSGGWVLNLPRCGSSIIHNGWIEHTENPGDISNGWIIDALSLETCKNPLLAHNSRLNMROTNLOSGSWIDNSNGKSA 405 SKCKGMADHTAIELSNFNADNCSGGWVLNLPRCGSSIIHNGWIEHSEPFGDISNGWIIDALSLETCKNPLLAHNSRLNMROTNLOSGSWIDNSCKSA 405 SKCKGMADHTAIELSNFNADNCRSGVVLNLPRCGSSIIHNGWIEHSEPFGDISNGWIIDALSLETCKNPLLAHNSRLNMROTNLOSGSWIDNSCKSA 405 SKCMMAHNTAIELSNFNADHCRCSKVLNLPRCTGSIIHNGWIEHSEPFGDISNGWIIDALSLETCKNPLLAHNSRLNMROTNLOSGWIDNSCKSA	501 501 501 501 501 504 504 504 504 504
WP_047714099.1/1-736 WP_108717354.1/1-737 WP_05680143.1/1-738 WP_050680143.1/1-738 WP_0504807598.1/1-736 WP_067432085.1/1-740 WP_067432085.1/1-740 WP_004162445.1/1-743 WP_034887639.1/1-737	502 WL SAWEMGSTRVESYGVA I DGSLKYNYLTSRWLLENNTNOPWYFELANLYSPTVGDSWEI EVFGOSOFNNGTD SEPLMNLI GGKNTGGRTVI H I ORKKDHÄ 502 WL SAWEMGSTRVESYGVA I DGSLKYNYLTSRWLLENNSNG AWFELANLYSPTVGDSWEI ELFGOSOFNNGTD GEPLMNLI SGKNTGGRAVI HVORKKDHÄ 502 LL SIWEMGSTRVESYGVA I DGSLKYNYLTSRWLLENNTNOETWFPL GSLYSPTVGDSWEI ELFGOSOFSNGSGDKPLMNLI GORTTGGRAVI HVORKKDRS 502 LLSIWEMGSTRVESYGVA I DGSLKYNYI TSRWLENNTNOETWFPL GSLYSPTVGDSWEI ELFGOSOFSNGSGDKPLMDLI GORTTGGRAVI HVORKKDRS 502 LLSIWEMGSTRVESYGVA I DGSLKYNYI TSRWLENNTNOETWFPL GSLYSPTVGDSWEI ELFGOSOFSNGSGDKPLMDLI GORTTGGRAVI HVORKKDRS 502 WLNIWEMGSTRVESYGVA I DGSLKYNYI TSRVFLENNTNOETWFPL GSLYSPTVGDSWEI ELFGOSOFSNGSGDKPLMDLI GORTTGGRAVI HVORKKDRS 502 ULSAWEGOSTRVESYGVA I DGSLKYNYI TSRVFLENNTNOETWFEL GNFYSPAVCDSWEI EVFGOSOFSNGSGDKPLMD LI GORTTGGRAVI HVORKKDRS 502 ULSAWEGOSTRVESYGVA I DGSLKYNYI TSRFFLENNTNOETWFELGNFYSPAVCDSWEI EVFGOSOFSNGSGDKPLMD LI GORTTGGRAVI HVORKKDRS 505 WL SAWERGSTRVESYGVA I DGSLKYNYI TSRFFLENNSNOEKWFELGNLYSPDVGDCWEI EIFGOSSYNKGTDOULSDI TGGKTTGGKAI I SLORKTOKA 505 WL SAWERGSTRVESYGVA DGSMKYNYLTSRFFLENNSSNOEKWFELGNLYSPDVGDCWEI EIFGOSOFSNGSDTKALMMNI GOHTGGKAI I SLORKTOKA 505 WL SAFERGSTRVESYGVA DGSMKYNYLTSRFFLENNSSNOEKWFELGNLYSPDVGDSWEI EVFGOSOFSNGSDTKALMMI GOHTGGKAI I SLORKVHGF 506 WL SAFERGSTRVESYGVA DGSMKYNYLTSRFFLENNSSSOEKWELGNLI SLORKTOKA	302 602 602 602 602 605 605 603
WP_047714099.1/1-736 WP_109717354.1/1-737 WP_0569069017.1/1-738 WP_050680143.1/1-738 WP_1084875998.1/1-736 WP_1094875998.1/1-738 WP_067432085.1/1-740 WP_004162445.1/1-743 WP_004162445.1/1-743	603 EASWSAEGSSPVLDVRYVAKTDTDTDVFVKLAGWTPSAAIMIKSTAKDRFVTGRCARVDAKMAKATPDSSHAAPORFSLHNGKAGVGANEGDLLLAS 603 EASWSAEGSSPVLDVRYVAKTDTDTDVFVKLAGWTPSAAVNIKSTAKDRFVTGRCARVDAKMAKATPDSSHAAPORFSLHNGKAGVGANEGDLLLAS 603 EASWSAEGSSPVLDVRYVAEHDTDVFIFVKLAGWTPSAAVUVKTTGKDRFVTGRCARVDAKMEKGNPPAGDATKRAPORFSLHNGKAGVGANEGDLLLAS 603 EASWSAEGSSPVDVRYVEHDTDVFIFVKLAGWTPSAAVUVKTTGKDRFVTGRCARVNAKMEKGNPPAGDATKRAPORFSLHNGKAGVGANEGDLLLAS 603 EASWSAEGSSPVDVRYVEHDTDVFIFVKLAGWTPATVVLVKTGKDRFVTGRCARVDAKMEKGNPPAGDATKRAPORFSLHNGKAGVGANEGDLLLAS 605 EASWSAEGSSPVDVRYVEHDTDVFIFVKLAGWTPATVVLVKTGKDRFVTGRCARVDATMTGTPASGSGCAPORFSLHNGKAGVGANEGDLLMS 605 EASWSAEGSSPVDVRYVEHTDTDTKFVKLAGWTPATVVLKTGKDRFVTGRCARVDATMTGTPASGSGCAPORFSLHNGKAGVGANEGDLLMS 606 EASWAEGSSPVDVRYVTENDTDAFFVFKLAGWTPATVVLKTAKDRFATGRCARFDSKMPGROPPAGDNTHRAPGRFSLHNGKAGVGANEGDLLMS 606 EASWFAEGVSPVDVMVDAPYDTDAFFVFKLAGWLGAGAGVUMKTTAKDRFMGCARFDSTMKFVSOPAGASTHKALORFSVHNGKAGFGANEGDLLVAS 606 EASWFAEGVSPVDVMVDAPYDTDAFFVFKLAGWLGAGGIGMWKTTAKDRFMGGCARFDSTMKFVSOPAGASTHKALORFSVHNGKAGFGANEGDLLVES 605 EASWSEGSSPVDVVYTTLODSDTRVVLKLAGWLGAGVMIKTTAKDRFMGGCARFDSTMKFVSOPAGASTHKALORFSVHNGKAGFGANEGDLLVES 606 EASWFGESSPVDVVTTLODSDTRVVLKLAGWLGAGVMIKTTAKDRFMGGCARFDSTMKFVSOPAGASTHKALORFSVHNGKAGFGANEGDLLVES 604 EMSWSAEGSSPVDVAFTTEDSDTRVVLKLAGWLGAGVMIKTTAKDRFMGGCARFDSMVHSFNSWHNSFNAURFSLNNGLAGFGANEGDLLVES 604 EMSWSAEGSSPVDVAFTTEDSDTRVVLKLAGWLGAGVMIKTTAKDRFMGGCARFDSMUHSPPKGEVNAAVRRFSLNNGLAGFGANEGDLLVES	701 703 703 701 703 706 703 706 703
WP_047714099.1/1-736 WP_109717354.1/1-737 WP_056506097.1/1-738 WP_056060143.1/1-738 WP_084875998.1/1-738 WP_07482053.1/1-740 WP_07424051.1/1-740 WP_004162445.1/1-743	702 RALSADKVDTSK PEGFVSVVI NGK PVALPYFALKA 702 RALSADKVDTSK PEGFVSVVI NGK PVALPYFALKSS - 704 RPLSADQVDTSK PEGFVSVVI NGK PVALPYFALKSS - 704 RPLSADQVDTSK PEGFVSVVI NGK PVALPYFALKSS - 702 RMLK PEQVDTREPKGFI SVVI NGEPCALPYFALKSS - 704 RKLTADEVDTSVPEGFVSVVI NGEPCALPYFALKSS - 707 RALRPEQVNTCKVEGYI SVVI NGEPCALPYFALKSS - 708 RHLDATQVETSVAEGFI SLVI NGEQVAVPYFALKONT 707 RHLDAAKVETSRAEGYI SLVI NGEQVAVPYFALKONT 707 RALRPSVETSOPHEFI SVLI NGEQVAVPYFALKONT	736 737 738 738 736 736 740 740 740 743

Figure S1: Sequence alignment of conserved, WceF-like proteins within *Erwinia* **and** *Pantoea* **species (see also Table S1).** Sequences were aligned with Clustal with default settings ("Clustal W and Clustal X version 2.0", Bioinformatics, 23: 2947 (2007)).

Figure S2: Size exclusion chromatography of native WceF. WceF was analyzed on a Superdex® 200 10/300. The inset shows a calibration curve using ferritin (equine, 480 kDa), aldolase (rabbit, 147 kDa), albumin (bovine, 67 kD), albumin (chicken, 45 kDa) and cytochrome C (equine, 12.4 kDa). WceF eluted at 10.2 mL, resulting in an apparent molecular weight of 204.2 kDa for the native trimer (a single WceF chain has a calculated MW of 77.7 kDa).

Figure S3: Comparison of WceF head domain with bacteriophage P22 head domain. Superposition of WceF head domain (aa 47-149) in light blue onto the P22 tailspike (PDB: 2XC1) head domain (aa 26-104) in gray, showing a similar overall fold (rmsd 1.27 Å).

Figure S4: SDS PAGE of soluble and non-soluble fractions after cell lysis of E. coli BL21(DE3) expression of N-terminally truncated WceF constructs. (1) WceF lacking the head domain (residues 147-736, 67.3 kDa), (2) the neck domain (residues 230-736, 57.8 kDa) or (3) the β -helix capping domain (residues 266-736, 54.0 kDa). (4) A purified sample of purified, soluble full-length WceF (residues 29-736, 80.3 kDa) is shown for comparison.

Figure S5: WceF reduces the viscosity of stewartan solutions after 75 h at room temperature. Fluorescence correlation spectroscopy was used to analyze hindrance of 60 nm latex beads ($\tau d/\tau d$,buffer) in the stewartan matrix (10 g/l) in absence (blue) or presence of WceF (red) (for a description of the method see Dunsing, V.; Irmscher, T.; Barbirz, S.; Chiantia, S. Purely Polysaccharide-Based Biofilm Matrix Provides Size-Selective Diffusion Barriers for Nanoparticles and Bacteriophages. *Biomacromolecules* **2019**, *20*, 3842-3854, doi:10.1021/acs.biomac.9b00938.).

Figure S6: Activity of ϕ Ea1h TSP at varying pH and salt concentrations. Φ Ea1h TSP (141 nM) was incubated with 1 mg ml⁻¹ stewartan for 72 h at varying pH (A) or salt concentration (B).

Figure S7: Size exclusion chromatography and MALDI-MS analysis of stewartan exopolysaccharide digests with Φ Ea1h TSP or WceF. (A) Size-exclusion chromatography (SEC, Superdex® 30 26/60) after stewartan cleavage by Φ Ea1h TSP. (B-C) MALDI-MS spectra of oligosaccharide fragments. Fractions pooled after SEC at ca. 180 ml (B) or ca. 215 ml (C) revealed masses corresponding to two RU (B) or one RU (C), respectively. (D) SEC (Superdex® 30 10/300) of stewartan after 197 h of incubation with WceF. (E) MALDI-MS of WceF-stewartan digest fraction pooled 15 ml corresponding to one RU. Eluent in all SEC runs was 100 mM acetic acid.

Figure S8: WccF does not hinder access of bacteriophage Φ Ea1h TSP depolymerase to cleavage sites in stewartan. Fluorescence correlation spectroscopy was used to analyze hindrance of particles ($\tau d/\tau d$,buffer) in the stewartan matrix (5 g/l) (for a description of the method see Dunsing, V.; Irmscher, T.; Barbirz, S.; Chiantia, S. Purely Polysaccharide-Based Biofilm Matrix Provides Size-Selective Diffusion Barriers for Nanoparticles and Bacteriophages. *Biomacromolecules* **2019**, *20*, 3842-3854, doi:10.1021/acs.biomac.9b00938.) Bacteriophage particles (0.2 nM are hindered by the matrix (blue circles), but addition of the TSP (φ Ea1h depolymerase, 141 nM) cleaves stewartan and restores free diffusion of phage particles (red squares). When we did this experiment in the presence of WceF (1.5 μ M), the TSP still could restore free diffusion of the phages.

Protein / residues	Interface area / Å ²	Calculated interface energy /
		kcal mol ⁻¹
WceF / 34 - 736	5140	-40.5
WceF / 232 - 736	4844	-17.1
P22 / 113 - 666	4607	-35

Figure S9: Details of C-terminal trimer interfaces in WceF and P22TSP and interface area analysis. Stabilization of native trimers of WceF and P22TSP. (A) Salt bridges interconnecting two neighboring C-terminal sandwich domains in the WceF trimer. (B) Hydrophobic core of the β -prism domain in P22TSP.

Table S1: Conservation of WceF within Erwinia and Pantoea species

BLAST search against database of non-redundant protein sequences with WceF from *Pantoea stewartii* (NCBI accession number WP_006119865.1, 736 aa) as query sequence. For an alignment of the sequences in this table see Figure S1.

Protein/Species	Size / aa	Sequence identity / %	Origin of bacterial isolate	NCBI accession
AmsF /Pantoea ananatis	736	96	Sweet corn, ananas, rice, onion	WP_047714099.1
AmsF / <i>Pantoea allii</i>	736	95	Onion	WP_109717354.1
AmsF / Pantoea agglomerans	738	81	ubiquitous	WP_086906097.1
AmsF / Pantoea vagans	738	80	Eukalyptus	WP_050680143.1
AmsF / <i>Pantoea</i> cypripedii	736	78	Orchid	WP_084875998.1
AmsF / Erwinia mediterraneensis	738	75	Human skin	WP_130830746.1
AmsF / <i>Erwinia</i> gerundensis	740	71	<i>Rosacea</i> (e.g. apples, pears)	WP_067432085.1
ĂmsF / <i>Erwinia</i> tasmaniensis	740	67		WP_012441069.1
AmsF / <i>Erwinia</i> amylovora	743	61		WP_004162445.1
AmsF / <i>Erwinia</i> typographi	737	54	Gut contents of bark beetles (<i>Coleoptera</i>)	WP_034887639.1

	WceF	WceF	
	(SeMet - phasing)	(native)	
Data collection			
Beamline	BESSY 14.1	BESSY 14.2	
Wavelength (Å)	0.9798	0.9184	
Space group	P2 ₁	P21	
Cell dimensions			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	100.7, 97.6, 129.5	100.2, 97.2, 128.9	
α, β, γ (°)	90.0, 106.3, 90.0	90.0, 106.4, 90.0	
Resolution (Å)*	34.6 - 2.9	48.60 - 2.55	
	(2.98 - 2.90)	(2.70 – 2.55)	
$R_{meas}*$	23.6 (60.5)	23.1 (128.1)	
$< I / \sigma(I) > *$	9.72 (1.89)	6.77 (1.02)	
CC1/2*	0.987 (0.668)	0.985 (0.360)	
Completeness* (%)*	99.2 (96.7)	96.4 (81.4)	
Redundancy	7.0	3.82	
Refinement			
Resolution (Å)		2.55	
No. unique reflections		74949	
$R_{\rm work} / R_{\rm free}$ (%)		22.42 / 26.93	
No. atoms			
Protein		15839	
Ligand		194	
Water		617	
Mean <i>B</i> factor (Å ²)		47.4	
R.m.s deviations			
Bond lengths (Å)		0.015	
Bond angles (°)		1.65	
Mol/AU		3	

Table S2: X-ray crystallographic data collection and refinement statistics

Table S3: WceF structural homolog prediction with HHPred

The WceF protein sequence (UniProt H3REJ8) was subjected to HHPred structural homolog prediction.¹ Search was performed against PDB_mmCIF70_3_Aug on August 22nd, 2019. 25 best hits according to probability are shown.

No	pdb code	Homolog prediction	Probability	E-value	aa covered	Total length
	•					of homolog
1	5W6H_C	Bacteriophage CBA120 tailspike protein 4	100.0	2,00E-35	403	(697)
2	6NW9_B	Bacteriophage CBA120 tailspike	99.9	4.1E-28	371	(633)
3	2XC1_C	Bacteriophage P22 tailspike O- antigen recognition domain	99.9	1.1E-24	528	(666)
4	5W6S_A	Bacteriophage CBA120 tailspike protein 2	99.9	1.2E-24	324	(680)
5	1LKT_F	Bacteriophage P22 tailspike capsid binding domain	99.9	2.7E-25	104	(104)
6	6E1R_E	Acinetobacter phage vB_ApiP_P1, tailspike	99.9	1.7E-22	338	(554)
7	40J5_A	Bacteriophage CBA120 tailspike protein 1	99.8	1.1E-21	462	(776)
8	2VNL_A	Bacteriophage P22 tailspike capsid binding domain	99.8	4.8E-23	118	(151)
9	5W5P_A	Acinetobacter phage AM24 tailspike	99.8	7.1E-21	313	(623)
10	6EU4_C	Acinetobacter phage vB_AbaP_AS12 tailspike	99.8	1.5E-20	290	(716)
11	1RMG_A	Aspergillus aculeatus rhamnogalacturonase A	99.5	4.7E-15	262	(422)
12	4C2L_A	Aspergillus tubingensis endo- xylogalacturonan hydrolase	99.5	2.5E-14	278	(388)
13	2VBK_A	Bacteriophage Sf6 tailspike	99.4	5.7E-14	325	(514)
14	1CZF_B	Aspergillus niger polygalacturonase II	99.4	8.3E-14	252	(362)
15	4XOT_A	Bacteriophage HK620 tailspike	99.4	3.8E-14	281	(597)
16	2IQ7_A	Colletotrichum lupine endopolygalacturonase	99.4	2.5E-13	239	(339)
17	3JUR_C	<i>Thermotoga maritima</i> Exo-poly- alpha-D-galacturonosidase	99.4	8.1E-13	262	(448)
18	4MXN_B	Parabacteroides merdae pectate lyase	99.3	2.7E-13	219	(247)
19	1H80_A	Alteromonas sp. ATCC43554 iota- carragenase	99.3	4.1E-13	233	(464)
20	2UVF_A	Yersinia enterolytica exopolygalacturonase	99.3	2.6E-12	324	(608)
21	50LP_A	Bacteroides thetaiotaomicron galacturonidase	99.3	3.2E-12	300	(452)
22	4RU5_A	Pseudomonas phage phi297 tailspike	99.3	6.2E-12	290	(605)
23	1IB4_B	Aspergillus aculeatus polygalacturonase	99.3	1.4E-12	253	(339)
24	4RU4_F	Pseudomonas phage LKA1 tailspike	99.3	1.3E-11	386	(602)
25	1BHE_A	<i>Chaetomium thermophilum</i> beta- 1,3-glucanase	99.2	9.9E-12	295	(376)

1. Zimmermann, L., Stephens, A., Nam, S. Z., Rau, D., Kubler, J., Lozajic, M., Gabler, F., Soding, J., Lupas, A. N., and Alva, V. (2018) A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core, *J. Mol. Biol.* 430, 2237-2243.