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Simple Summary: Proteins are composed of compact domains, often of known three-dimensional
structure, and natively unstructured polypeptide regions. The abundant cold-shock domain is
among the set of canonical nucleic acid-binding domains and conserved from bacteria to man.
Proteins containing cold-shock domains serve a large variety of biological functions, which are
mostly linked to DNA or RNA binding. These functions include the regulation of transcription,
RNA splicing, translation, stability and sequestration. Cold-shock domains have a simple architecture
with a conserved surface ideally suited to bind single-stranded nucleic acids. Because the binding is
mostly by non-specific molecular interactions which do not involve the sugar-phosphate backbone,
cold-shock domains are not strictly sequence-specific and do not discriminate reliably between DNA
and RNA. Many, but not all functions of cold shock-domain proteins in health and disease can be
understood based of the physical and structural properties of their cold-shock domains.

Abstract: The cold-shock domain has a deceptively simple architecture but supports a complex
biology. It is conserved from bacteria to man and has representatives in all kingdoms of life. Bac-
terial cold-shock proteins consist of a single cold-shock domain and some, but not all are induced
by cold shock. Cold-shock domains in human proteins are often associated with natively unfolded
protein segments and more rarely with other folded domains. Cold-shock proteins and domains share
a five-stranded all-antiparallel β-barrel structure and a conserved surface that binds single-stranded
nucleic acids, predominantly by stacking interactions between nucleobases and aromatic protein
sidechains. This conserved binding mode explains the cold-shock domains’ ability to associate with
both DNA and RNA strands and their limited sequence selectivity. The promiscuous DNA and RNA
binding provides a rationale for the ability of cold-shock domain-containing proteins to function
in transcription regulation and DNA-damage repair as well as in regulating splicing, translation,
mRNA stability and RNA sequestration.

Keywords: cold-shock domain; cold-shock protein; RNA-binding domain; nucleic-acid binding;
gene regulation; OB fold; Y-box binding protein; domain fold; protein structure; protein stability
and folding

1. Introduction

Proteins are made of compact domains with defined three-dimensional folding and
of natively unstructured polypeptide segments. These globular domains are recurrent
structural elements, serving as parts sets of molecular evolution and often appearing in
multiple proteins that may or may not share common biochemical or biological functions.
The number of domain folds is limited; an early hypothesis speculated about the presence of
“one thousand families for the molecular biologist” [1]. As with domain folds in the entire
protein universe, there is a limited repertoire of RNA-binding domains (RBDs) [2] including
the cold-shock domain (CSD). Canonical RBDs preferentially bind short single-stranded
sequence motifs in RNA, but binding to structured regions of RNA is also observed [3].
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The total number of human RNA-binding proteins (RBPs) is estimated at more than
800 in both proliferating HeLa cells [4] and in an embryonic kidney cell line [5]. An analysis
of the RNA interactome to the sub-domain level revealed more than 1100 RNA-binding
sites in more than 500 RBPs including CSD-containing proteins [6].

A recent review of CSD-containing proteins [7] directed its focus on their domain struc-
ture and sequence motifs in interacting nucleic acids. Here, we compare bacterial cold-shock
protein (CSPs) with CSDs occurring in human or other eukaryotic proteins. We focus on the
common structural, biophysical and nucleic acid-binding properties of these evolutionarily
related domains which share a conserved geometry of binding single-stranded DNA or RNA
(ssDNA or ssRNA) and limited sequence or nucleic acid-type selectivity. Some of these
common principles were revealed in very recent structural studies [8–14].

2. Definition, Abundance and Discovery of Cold-Shock Domains
2.1. Definition and Basic Properties of Cold-Shock Domains

Almost three decades ago, a common oligonucleotide/oligosaccharide-binding (OB) fold
was identified in four proteins unrelated by sequence: staphylococcal nuclease, the anticodon-
binding domain of aspartyl-tRNA synthetase, and the β-subunits of two Escherichia coli toxins,
heat-labile enterotoxin and verotoxin-1. The OB fold as present in these proteins is character-
ized by 70–150 amino-acid (aa) residues organized into a five-stranded all-antiparallel β-barrel
which is frequently capped by an α-helix located between strands β3 and β4. Oligonucleotide
and oligosaccharide ligands bind to a conserved surface area on the barrel [15]. There is little
to no sequence conservation between OB-fold proteins, but ssDNA and ssRNA bind with
conserved polarity to oligonucleotide-binding family members [16].

OB-fold proteins including staphylococcal nuclease, the bacterial enterotoxins and the
MOP (molybdate/tungstate binding)- and TIMP (tissue inhibitor of metalloproteases)-like
proteins have been classified into superfamilies. The nucleic acid-binding proteins consti-
tute the largest OB-fold superfamily, including protein families such as the single-strand
DNA-binding (SSB) proteins and RNA-binding RNB domain-like proteins. Among the
nucleic acid-binding proteins, the cold-shock DNA-binding domain-like proteins constitute
the largest family. This protein family can be further divided into proteins containing
(proper) cold-shock domains, which are the subject of this review, and other domains
including the S1, IF2-type S1, S12, S17, and S28e domains first identified in proteins of
the small ribosomal subunit [17]. The taxonomic distribution of the abundant S1 domain-
containing family of OB-fold proteins was recently reviewed [18]. Frequently, multiple OB
domains are present in oligomeric proteins or within one polypeptide chain. The human
CTC1-STN1-TEN1 (CST) complex essential for telomere maintenance, may serve as an
impressive example. Here, all subunits contain OB-fold domains two of which (OB-F
and OB-G of CTC1) are involved in ssDNA binding as demonstrated by cryo-electron
microscopy (cryo-EM) [19].

In contrast to the wider group of OB-fold proteins, the bacterial CSPs and eukaryotic
CSDs are of very similar length of about 70 aa and share clearly conserved sequences.
The presence of RNP1 and RNP2 sequence motifs [20] provided an early hint towards a
function of CSDs in binding single-stranded nucleic acids. As in other RBPs, the RNP
motifs [21] are placed within β-strands. These RNP motifs contain some of the most
highly conserved residues in the set of representative bacterial CSPs and eukaryotic CSDs
displayed in Figure 1. In general, sequence conservation in CSPs and CSDs is higher in
β-strands than in loop regions. Whereas bacterial CSPs are small proteins consisting, as a
rule, of a single CSD only, their eukaryotic homologs are proteins of variable length and
domain composition.
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Figure 1. Sequence alignment of representative bacterial CSPs and CSDs from human proteins. The Xenopus laevis FRGY1 
and FRGY2 (YBOX1, YBX2A, YBX2B) proteins are also included. Human CSDE1 contains five CSDs, all other proteins 
contain or consist of a single CSD. Proteins are identified by their Uniprot [22] entry number and name. The secondary-
structure annotation atop the sequence follows BsCspB, the first CSP for which a crystal structure was determined [23]. 
Residues conserved across all aligned CSDs are highlighted on dark blue background and shown with capital letters in 
the consensus sequence. Residues conserved in ≥50% of the sequences are shown on a light blue background and with 
lower-case letters in the consensus. Sequences were aligned using the Clustal Omega server [24]. The sequence motifs 
RNP1 ([YF]-G-F-I) and RNP2 ([YF]-[YF]-H) are associated with RNA binding and indicated according to Prosite [25]. 

Figure 1. Sequence alignment of representative bacterial CSPs and CSDs from human proteins.
The Xenopus laevis FRGY1 and FRGY2 (YBOX1, YBX2A, YBX2B) proteins are also included. Hu-
man CSDE1 contains five CSDs, all other proteins contain or consist of a single CSD. Proteins are
identified by their Uniprot [22] entry number and name. The secondary-structure annotation atop
the sequence follows BsCspB, the first CSP for which a crystal structure was determined [23].
Residues conserved across all aligned CSDs are highlighted on dark blue background and shown
with capital letters in the consensus sequence. Residues conserved in ≥50% of the sequences are
shown on a light blue background and with lower-case letters in the consensus. Sequences were
aligned using the Clustal Omega server [24]. The sequence motifs RNP1 ([YF]-G-F-I) and RNP2
([YF]-[YF]-H) are associated with RNA binding and indicated according to Prosite [25].
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2.2. Abundance of Cold-Shock Domains

Analysis of the SCOP database [26] finds 18 protein superfamilies within the OB fold
including a nucleic acid-binding (NAB) superfamily. The 17 protein families within the
NAB include the cold-shock DNA-binding protein (CSDB) family, which further separates
into 32 domain types of which the CSD is one. The SMART database [27] lists the CSD
under accession number SM00357. As of 01 Dec 2020, SMART contained 80,336 CSDs
in 70,472 proteins. Of these proteins, 90.9% occurred in bacteria and 7.3% in eukaryotes.
SMART lists 29 CSDs in the human proteome.

The large majority of CSDs are in single-domain bacterial CSPs. Gram-negative E. coli
contains nine csp genes of which cspA, cspB, cspG and cspI are cold-inducible, while the
others are not [28]. Gram-positive Bacillus subtilis contains three CSP paralogs, BsCspB,
BsCspC and BsCspD [29]. In general, the number of CSPs in different bacteria is variable
and evidently unlinked to habitat or preferred growth temperature. The larger eukaryotic
proteins contain between one and five (or more) CSDs, frequently in combination with
natively unfolded polypeptide regions and less often with other domains of known fold [30]
(see Figure 2).
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Figure 2. Proteins with cold-shock domains. Domain annotations for one representative bacterial CSP and human CSD-
containing proteins according to SMART [27]. For CSDE1, Pfam [31] agrees with the domain annotation shown here.
Uniprot [22] annotates two additional CSDs in CSDE1, one between CSD3 and CSD4 and one between CSD4 and CSD5,
as well as two additional truncated CSDs, one between CSD1 and CSD2 and one between CSD2 and CSD3. InterPro [32]
annotates a total of nine CSDs in CSDE1, those shown here and four additional CSDs filling the gaps. CSDs are displayed as
green diamonds labeled “CSP”, the stunted CCHC-type zinc fingers (zinc knuckles) present in the LIN28 proteins as blue
vertical bars, and low-complexity sequences as pink bars. Proteins are drawn to scale.

2.3. Discovery of Cold-Shock Domains

In 1987 Jones et al. observed that a sudden down-shift in growth temperature of E.
coli W3110 cultures caused changes in protein abundance with many proteins being down-
regulated and a small number, the cold-shock proteins, being up-regulated [33]. Subsequently,
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a small 7.4-kDa protein named CS7.4 was discovered after down-shift of E. coli growth tem-
perature from 37 ◦C to 10 or 15 ◦C. The rate of CS7.4 synthesis increased dramatically within
~1 h after temperature down-shift. The corresponding gene (cspA) was cloned and shown to
encode a hydrophilic 70-aa polypeptide which binds to and stimulates the transcription of the
CCAAT-containing promoters of the HN-S protein and of gyrA [34]. In this review, we shall
use a notation where bacterial CSPs are identified by their source organism and gene name;
hence CS7.4 will be referred to as EcCspA from here on.

Expression of the E. coli cspA gene could be further induced by chloramphenicol
at 15 ◦C. Whereas cspA up-regulation by cold shock was transient, antibiotic-stimulated
gene expression was constitutive [35] indicating the presence of more than one regulatory
mechanism for cspA expression. Furthermore, the paralogous E. coli genes cspB, cspG
and cspI were cold-inducible while other paralogs were not [36], and the E. coli “cold-
shock response” could be induced by other stimuli, such as inhibitors of translation [37].
Therefore, the cold-shock response may be seen as just one aspect of a more general stress-
response scheme and the terms “cold-shock protein” or “cold-shock domain” may be
regarded as misnomers; but they are here to stay. However, it remains undisputed that
some proteins with CSDs may confer cold protection, as recently demonstrated for the
Ga16676 gene of the psychrophilic yeast Glaciozyma antarctica which encodes a protein with
N-terminal CSD. Overexpression of this gene in E. coli was reported to induce increased
bacterial cell growth at 10 ◦C [38].

Paralogous CSPs may have distinct or redundant function in their bacterial hosts.
In Staphylococcus aureus, for example, only SaCspA but no other CSP can stimulate the
biosynthesis of the pigment staphyloxanthin (STX). However, a single amino-acid mutation
(E58P) enables the paralog SaCspC to restore STX production in a cspA deletion strain [39].
SaCspA post-transcriptionally modulates target-gene expression by binding to sites in the
3′-untranslated regions (3′UTRs) of their mRNAs [40].

Temperature-regulated genes evolutionarily unrelated to the CSD have been described
in eukaryotes. For example, Saccharomyces cerevisiae TIP1 (temperature shock-inducible
protein 1) was found upregulated by both cold and heat shock [41]. Yeast NSR1 (nuclear lo-
calization sequence-binding protein-1) is another example for a protein that is up-regulated
under cold shock. NSR1 does not contain a CSD and is structurally related to mammalian
nucleolin [42]. In human cells, the cold-inducible RNA-binding protein CIRBP serves a
well-documented role in circadian regulation [43], but its RNA association is mediated by
an RNA-recognition motif (RRM) and not by a CSD [44].

The most extensively studied human protein containing a CSD is YBX1, the Y-box
binding protein 1, also known as YB-1, CBF-A (CCAAT-binding transcription factor I
subunit A), DBPB (DNA-binding protein B), EFI-A (enhancer factor I subunit A), or NSEP1
(nuclease-sensitive element-binding protein 1). YBX1 was identified as a basic protein
specifically binding to the Y-box, a cis-acting element in regulating the expression of HLA
class-II genes containing an inverted CCAAT box (ATTGG). An inverse correlation between
YBX1 and levels of HLA DRβ chain mRNA was observed [45]. When the homology
between bacterial EcCspA and a domain in human YBX1, the CSD, was noted, the cold-
shock response was linked to DNA binding and the conservation of the CSD across
evolutionarily distant organisms established [46]. Cellular functions of YBX1 related to
RNA binding were also discovered early on, for example YBX1’s ability to stabilize mRNA
by association of its CSD with the 5′-cap structure and by destabilizing the cap interaction
with the cap-binding complex eIF4F [47]. Recently, YBX functions related to RNA binding
have received increased attention [48].

Although functions of YBX1 are generally linked to DNA and/or RNA binding,
some cellular activities, e.g., in regulating cytokinesis, may be facilitated by phosphorylation-
dependent protein-protein interactions [49]. Under oxidative stress, nuclear YBX1 physi-
cally interacts with the DNA-repair enzyme DNA glycosylase NEIL2 and stimulates its
base-excision activity [50]. In humans, YBX1 and other CSD-containing proteins serve a
plethora of biological functions [51–53] and are broadly involved in disease development
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and progression [54,55]. Functions of YBX1 in DNA-damage repair, transcription regula-
tion, splicing and translation, and their cellular consequences in cancer are summarized in
a recent review [56], and biological roles of YBX1 dependent on RNA binding, including
formation of messenger ribonucleoprotein (mRNP) and mRNA stabilization were reviewed
as well [48,57].

YBX1 is localized to various subcellular compartments. In addition to nuclear and
cytoplasmic YBX1, a secreted form arising from a non-classical export pathway was also
described [58] which may be linked to a more recently discovered function of YBX1 in
regulating the sorting of small non-coding RNAs into extracellular vesicles [59]. Further-
more, the formation of cytoplasmic stress granules (SGs) by tRNA-derived stress-induced
RNAs (tiRNAs) is mediated by YBX1 through direct YBX1-CSD association with the
tiRNA [60]. The YBX1 CSD was shown to bind angiogenin-produced tiRNAAla to displace
the cap-binding complex eIF4F from capped mRNA, inhibit translation and induce SG as-
sembly [61]. Some tiRNAs were reported to have a tumor-suppressive role in breast-cancer
cells by displacing YBX1 from the 3′UTRs of oncogenic transcripts [62].

Two human paralogs of YBX1 are known. YBX2 is also known as YB-2, DNA-binding
protein C (DBPC) or CSDA3; YBX3 is also known as YB-3, DBPA, CSDA or zonula occludens
1 (ZO-1) associated nucleic acid-binding protein (ZONAB). YBX1, YBX2 and YBX3 share a
common domain organization with an N-terminal region followed by a CSD and differently
spaced alternating arginine-rich and acidic regions (Figure 2). With three type-conserved
amino-acid replacements between YBX1 and YBX2 and identical sequences in YBX1 and
YBX3 the CSDs of the human Y-box proteins are extremely well conserved. However, clearly
different phenotypes of gene knockouts are observed in mice where the YBX1 knockout
is embryonic lethal, while YBX2 and YBX3 knockouts are associated with compromised
offspring fertility [22].

Stress-induced YBX3 stabilizes the mRNA of p21WAF1/CIP1, a central element of the
cellular stress response, by binding into its 3′UTR and enhances its translation. YBX3
thereby promotes cell survival under conditions of cytotoxic stress [63]. YBX3 is recruited
to tight junctions by ZO-1 and mediates Rho-regulated cyclin D1 promoter activation by
interacting with the Rho activator GEF-H1 [64]. YBX3 and ZO-1 cooperate in controlling
the expression of ErbB-2 [65].

YBX1 homologs are present in many organisms including Xenopus, where FRGY1 has
a broad tissue distribution while FRGY2 expression is limited to germ cells [66]. In analogy
to human YBX1, FRGY1 and FRGY2 act as transcription factors binding to the CCAAT-
containing Y-box of Xenopus hsp70 genes. In frog oocytes, certain transcripts are masked
by FRGY2, leading to translational repression [67]. Four Y-box binding proteins (CEY-1 to
CEY-4) are present in Caenorhabditis elegans. These proteins are essential for fertility and
function in the formation of large polysomes [68].

Cold shock domain-containing protein E1 (CSDE1), also known as Upstream of N-
Ras (UNR), contains multiple CSDs suggesting a role as multivalent nucleic acid-binding
protein. The five bona fide CSDs of human CSDE1 confer high affinity for single-stranded
DNA or RNA, but not for dsDNA or double-stranded and structured RNA. Both ssDNA
and ssRNA are bound without distinct sequence preference, but simple homopolymers
are bound with reduced affinity. CSDE1 primarily localizes to the cytoplasm where it
may associate with cytoplasmic mRNA in vivo [69] and was ascribed the ability to both
enhance or repress mRNA translation and both reduce or increase RNA abundance [70].
CSDE1 is highly expressed in human embryonic stem cells (hESCs) and functions to arrest
them in their undifferentiated state. In addition, CSDE1 was shown to bind the mRNAs
of fatty acid-binding protein 7 (FABP7) and vimentin and suggested to be a crucial post-
transcriptional regulator of hESC identity [71]. Beyond the five RNA-binding CSDs, CSDE1
was reported to contain four additional, interspersed CSDs that do not bind RNA [72].
In the guinea pig UNR gene, each CSD repeat is encoded by one exon, suggesting a modular
assembly from one primordial gene [73].
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Cold shock domain-containing protein C2 (CSDC2), also known as PIPPin (after a
sequence motif inside its CSD), is a mammalian brain-specific protein that binds to histone
mRNA and is thought to play a role in the regulation of brain development. CSDC2 was
discovered as a protein that binds specifically to the 3′UTR of nuclear transcripts encoding
rare histone variants. CSDC2 contains a central CSD preceded in the sequence by a
presumably dsRNA-binding proline-rich PIP motif [74]. Along with E-cadherin, CSDC2 is
induced by miR-373 and pre-miR-373 where the microRNA plays an unexpected role
in transcription activation [75]. A further CSD-containing human protein, the calcium-
regulated heat-shock protein 24 (CRHSP-24), was identified as a factor stabilizing the tumor-
necrosis factor-α (TNF-α) mRNA by associating with its 3′UTR and thereby stimulating
TNF-α production in a human cell line [76].

LIN28 is an essential RNA-binding protein that regulates the biogenesis of the let-7
family of tumor-suppressor microRNAs and modulates the translation of a large number
of target mRNAs [52,77,78]. LIN28 also binds to the putative tumor-suppressor miRNA
miR-363 [79]. Binding of LIN28 to microRNA precursors is mediated by an N-terminal CSD
and a C-terminal zinc knuckle domain (ZKD) [80]. LIN28 mediates degradation of pre-let-7
by recruiting the 3′-terminal uridylyl transferase TUT4 to the microRNA [81] which thus
becomes a substrate for the 3′-5′ exonuclease DIS3L2 [82]. The LIN28-mediated decrease in let-
7 microRNAs causes overexpression of their oncogene targets including MYC, RAS, HMGA2
and BLIMP1 [83]. The LIN28—let-7 microRNA axis plays an important role in neuroblastoma
development [84]. This is but one example for the broad involvement of LIN28 in human
disease and particularly in cancer [85,86]. The LIN28—let-7 axis was also shown to be a
central regulator of glucose metabolism by virtue of translationally repressing components of
the insulin-PI3K-mTOR pathway [87]. The predominantly cytoplasmic human LIN28A and
the nuclear LIN28B are the products of two closely related oncogenes. LIN28A can promote
tissue repair by let-7-dependent as well as let-7-independent cellular mechanisms [88].

LIN28 has multiple let-7-independent cellular functions. Cross-linking immunopre-
cipitation with high-throughput sequencing (CLIP-seq) revealed GGAGA motifs as LIN28
binding sites within loops of approximately a quarter of all human transcripts. In somatic
and pluripotent stem cells, LIN28 target sequences were found in mRNAs encoding LIN28
itself and splice regulators, suggesting functions in autoregulation and splicing [89,90].

Along with transcription factors OCT4, SOX2 and NANOG, LIN28 has been used to
induce the reprogramming of human somatic cells into pluripotent stem cells [91]. The re-
programming ability of LIN28 is conserved in plants: The homologous cold-shock domain
protein 1 (PpCSP1) in the moss Physcomitrella patens regulates reprogramming of differentiated
leaf cells into stem cells. PpCSP1 is one of three paralogous PpCSP proteins [92].

3. Structure of Cold-Shock Domains

The CSD is a simplified version of the OB fold lacking the α-helix. B. subtilis CspB was
the first CSP to be crystallized [93], and its structure, determined from two crystal forms,
set the paradigm for bacterial CSP and eukaryotic CSD conformation. The polypeptide
chain is organized into an antiparallel five-stranded β-barrel with connecting loops of
variable length. In the β-barrel, a three-stranded β-sheet and a two-stranded β-ladder are
recognizable which are linked by only a few backbone hydrogen bonds. In spite of its small
size of ~70 aa, the CSD contains a fully formed hydrophobic core. The presence of exposed
aromatic residues on a basic protein surface strongly suggested a role in binding single-
stranded nucleic acids, and ssDNA binding was confirmed in a gel-shift experiment [23].
The core findings of the crystallographic analysis of BsCspB were essentially confirmed
by the solution structure of the protein determined by nuclear magnetic resonance (NMR)
spectroscopy [94]. Subsequently, a crystal structure of EcCspA was determined at 2-Å
resolution which revealed the same architecture as that of BsCspB and a conserved nucleic
acid-binding surface [95]. The solution NMR structure of EcCspA was in general agreement
with the crystallographic analysis and identified nine aromatic and two basic residues in
binding to a 24-nucleotide ssDNA [96].
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The crystal structure of BcCspB at atomic resolution of 1.17 Å (Figure 3a,b) confirms
the expected close conformational similarity with BsCspB and suggests that the surface
charge distribution (Figure 3c) may be linked to the enhanced thermal stability of this
protein from the thermophilic Bacillus caldolyticus [97]. The NMR structure of the homolo-
gous TmCsp from the hyperthermophilic Thermotoga maritima suggests residues mediating
enhanced thermal stability in this CSP [98]. The structure of a psychrophilic CSP from Lis-
teria monocytogenes determined by NMR resembles other bacterial CSP structures, but with
a melting transition at 40 ◦C LmCspA has reduced thermostability [99]. A variation in the
structures of bacterial CSPs is offered by the NMR analysis of the single CSP from Rickettsia
rickettsii, which shows a canonical CSP structure with the insertion of a short segment of
α-helix in the long loop L3 [90].

Cancers 2021, 13, x 8 of 22 
 

 

conserved nucleic acid-binding surface [95]. The solution NMR structure of EcCspA was 
in general agreement with the crystallographic analysis and identified nine aromatic and 
two basic residues in binding to a 24-nucleotide ssDNA [96]. 

The crystal structure of BcCspB at atomic resolution of 1.17 Å (Figure 3a,b) confirms 
the expected close conformational similarity with BsCspB and suggests that the surface 
charge distribution (Figure 3c) may be linked to the enhanced thermal stability of this 
protein from the thermophilic Bacillus caldolyticus [97]. The NMR structure of the homol-
ogous TmCsp from the hyperthermophilic Thermotoga maritima suggests residues mediat-
ing enhanced thermal stability in this CSP [98]. The structure of a psychrophilic CSP from 
Listeria monocytogenes determined by NMR resembles other bacterial CSP structures, but 
with a melting transition at 40 °C LmCspA has reduced thermostability [99]. A variation 
in the structures of bacterial CSPs is offered by the NMR analysis of the single CSP from 
Rickettsia rickettsii, which shows a canonical CSP structure with the insertion of a short 
segment of α-helix in the long loop L3 [90].  

 
Figure 3. Three-dimensional structure of cold-shock proteins and domains determined at near-atomic resolution. (a) Car-
toon drawing, (b) topology diagram with β-sheet stabilizing hydrogen bonds, and (c) electrostatic surface potential col-
ored from red (−10 kT/e) to blue (+10 kT/e) of BcCspB (PDB entry 1c9o). (d) Schematic drawing of the X. tropicalis LIN28 
CSD (PDB entry 3ulj). Orthogonal views are presented in (a,c). (e) Conserved residues on the surface of StCspE (PDB entry 
3i2z). RNP1/RNP2, RNA-binding motifs [20]. Note the close structural similarity between the bacterial BcCspB [97] and 
the eukaryotic LIN28B CSD [100], the separation of negative (red) and positive (blue) surface charge in (c) and the asym-
metric distribution of conserved residues over the CSP surface. Cartoon drawings were prepared with PyMOL [101], the 
topology diagram is based on PDBsum [102], and the electrostatic surface was calculated with the Adaptive Poisson-
Boltzmann Solver (APBS) plugin [103] of PyMOL. 

Figure 3. Three-dimensional structure of cold-shock proteins and domains determined at near-atomic resolution. (a) Cartoon
drawing, (b) topology diagram with β-sheet stabilizing hydrogen bonds, and (c) electrostatic surface potential colored
from red (−10 kT/e) to blue (+10 kT/e) of BcCspB (PDB entry 1c9o). (d) Schematic drawing of the X. tropicalis LIN28 CSD
(PDB entry 3ulj). Orthogonal views are presented in (a,c). (e) Conserved residues on the surface of StCspE (PDB entry
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In addition to bacterial CSPs, a number of ligand-free eukaryotic CSDs were struc-
turally analyzed. The NMR structure of YBX1 CSD was the first structure of a eukaryotic
CSD and proved that crucial structural features of the CSD are conserved from bacteria to
man [104]. NMR analyses of all five canonical CSDE1 CSDs were also reported. These struc-
tures provide evidence for a special arrangement of several aromatic sidechains in the RNP
motifs of CSD1 that differs from the other four CSDs and may be linked to the enhanced
RNA-binding affinity of CSD1 [105]. The crystal structure of human CRHSP-24 reveals
a canonical CSD preceded in the sequence by an α-helix. RNA binding by CRHSP-24 is
regulated by phosphorylation at S41 [106]. The NMR structure of the single CSD of Chlamy-
domonas reinhardtii nucleic acid-binding protein 1 (NAB1), showing close similarity with
BsCspB and eukaryotic CSDs, was the first CSD structure from plants or green algae [107].

The single CSD and a tandem ZKD of LIN28 are both involved in nucleic-acid binding.
The Xenopus tropicalis LIN28 CSD was shown to have a closely similar structure as bacterial
CSPs (Figure 3d). The insertion of seven additional residues in loop L2 between β2 and β3 is
accommodated by extending each strand by two residues and an altered loop structure [100].

The eukaryotic CSDs share with the homologous bacterial CSPs a markedly asym-
metric surface distribution of conserved amino-acid sidechains (Figure 3e). Together with
most conserved residues, the RNP1 and RNP2 motifs are located on one side of the CSD
barrel, while just a few conserved sidechains are exposed on the backside of StCspE from
Salmonella typhimurium [108], a protein containing all residues of the CSD consensus se-
quence according to Figure 1. The highly conserved residues include a set of exposed
aromatic sidechains (marked W, F and H in the left panel of Figure 3e) playing a central
role in DNA or RNA binding as detailed below.

CSD β-Barrel Stability and Formation of Domain-Swapped Dimers

As a rule, bacterial CSPs and eukaryotic CSDs are monomeric under standard buffer
conditions. However, the early crystal structure of BsCspB [23] already provided evidence
for weak dimerization of the protein which found support in a study by differential
scanning calorimetry and size-exclusion chromatography suggesting that BsCspB may be
dimeric in the absence of phosphate [109]. The dimeric structure of two homologous CSPs
from the psychrophilic Bacillus cereus was deduced from biochemical experiments [110].
Several more bacterial CSPs were described to form dimers whose spatial arrangement,
however, remained undefined [111,112].

The crystal structure of DNA-bound BcCspB revealed an unexpected domain-swapped
dimer in which β-barrels closely resembling the commonly observed monomeric structures
are formed by β-strands 1–3 from one subunit and 4 and 5 from the second (Figure 4a). Ev-
idently, the formation of this dimeric structure was facilitated by the weak link connecting
strands β3 and β4 in the barrel of the monomeric CSP (see Figure 3b), the rapid unfolding
and refolding of bacterial CSPs (see below) and the high protein concentration used to
grow crystals. The conformational change leading to dimerization is strictly limited to
a single torsion angle in the peptide link between residues E36 and G37 of BcCspB [113].
Deletion of the two residues at the hinge in the variant BcCspB∆36–37 leads to forma-
tion of a non-swapped protein dimer with a dimerization interface overlapping with the
DNA/RNA-binding surface [114]. A domain-swapped dimer with very similar geome-
try as in BcCspB was observed in the CSP from Neisseria meningitidis [115]. In principle,
formation of domain-swapped dimers is possible with all proteins with unconstrained
polypeptide chain termini, irrespective of secondary structure [116]. Dimer formation is
favored under conditions of high protein density such as present during protein crystal-
lization and in many cellular compartments. We are not aware of any domain-swapped
dimers involving eukaryotic CSDs. If this type of self-association occurred with eukaryotic
CSDs, it could have profound functional consequences.
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swapped dimer ([113], PDB entry 2hax). Protein-bound DNA strands were omitted for the sake of
clarity. (b) Crystal structure of EcCspA ([95], PDB entry 1mjc) and (c) NMR structure of the S1 domain
of E. coli polynucleotide phosphorylase ([117], PDB entry 1sro). Strands β1-β3 of both proteins that
recombine to form 1b11 are highlighted by darker colors. (d) Structure of combinatorial protein 1b11
([118], PDB entry 2bh8). Drawings prepared with PyMOL [101].

In eukaryotic CSDs, an exon boundary frequently separates the N-terminal strands
β1-β3 from the rest of the domain, suggesting that the CSD may have evolved by combi-
nation of the two elements. This observation prompted a study in which β1-β3 of EcCspA
(Figure 4b) were recombined at random with fragments of natural proteins. The crystal
structure of one resultant protein, 1b11, in which three strands from EcCspA have recombined
with three strands from the S1 domain of E. coli polynucleotide phosphorylase (Figure 4c)
shows a six-stranded β-barrel (Figure 4d) which represents one half of a domain-swapped
dimer [118]. This structure illustrates the structural plasticity of the CSD and the related S1
domain in an impressive way.

4. Biophysical Properties of Cold-Shock Proteins

The presence in CSPs of a fully formed hydrophobic core and the absence of disulfide
bonds or cis-peptides, often associated with slow phases in protein folding, rendered
these proteins preferred targets for in-depth studies of their conformational stability, their
folding kinetics and mechanism. With a free enthalpy of urea-induced unfolding at 25 ◦C
of ∆GD(H2O) = 12.4 kJ mol−1 BsCspB is only marginally stable, but it folds extremely fast
in a reversible two-state reaction without folding intermediates. Urea-induced unfolding
of BsCspB proceeds with a time constant t1/2 = 20 ms, and refolding is characterized
by a time constant t1/2 ≤ 1.2 ms [119]. BcCspB from a thermophile and TmCsp from a
hyperthermophilic organism have significantly enhanced conformational stability, but
retain the very fast two-state folding reaction [120].

Mutational analyses of Bacillus CSPs provided strong evidence that the surface charge
distribution contributes strongly to conformational stability. Charge reversal of a single
surface-exposed residue from arginine to glutamate accounted for two thirds of the stability
difference between BcCspB and BsCspB [121] leading to the hypothesis that the removal
of unfavorable Coulomb interactions on the surface of CSDs may be an optimal strategy
for engineering conformational stability. The crystallographic analysis of five variants
of BcCspB carrying mutations of charged surface residues identified an acidic surface
patch near the C-terminus that contributes to protein stability [122]. Molecular dynamics
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(MD) simulations strongly suggest that grafting additional favorable Coulomb interac-
tions onto the surface of BcCspB by directed mutagenesis may further enhance the CSP’s
thermostability [123]. A similar observation was made when grafting stabilizing charge
interactions from the surface of TmCsp onto BsCspB and studying the mutant CSP with
single-molecule force spectroscopy (SMFS) and MD [124]. A full thermodynamic analysis
of amino-acid contributions to the stabilization of a thermophilic CSP [125] that aimed at
generating highly thermostable CSPs by in vitro selection yielded a BsCspB variant with
altered surface charges, an increase of the midpoint of the thermal transition by ~30 ◦C
and of the Gibbs free energy of unfolding by ~21 kJ/mol [126,127]. In an alternative study,
computational redesign of BsCspB gave rise to a thermotolerant variant, CspB-TB, with in-
creased transition temperature by ~20 ◦C [128]. A systematic study of engineered sequence
variants of CspB-TB led to the conclusion that charge-charge interactions on the surface of
the folded protein (and not in the unfolded state) are mainly responsible for the observed
structural stabilization [129].

CSPs were characterized as two-state folders in ensemble experiments [119,120]. Re-
cently, however, SMFS of TmCspB revealed multiple long-lived unfolding intermedi-
ates [130]. The apparent discrepancy between unfolding experiments in bulk and with
single molecules was reconciled by coarse-grained MD simulations demonstrating that
TmCspB unfolding intermediates can be stabilized by the pulling force [131].

5. Cold-Shock Domain-Binding to Nucleic Acids

In spite of the small size and simple architecture of CSPs and CSDs, their DNA- or
RNA-bound three-dimensional structures are still limited in number, and many were
published only recently. The following compilation will show that both bacterial CSPs and
eukaryotic CSDs (i) bind their single-stranded nucleic-acid ligands with closely similar
geometry, (ii) do not discriminate much between ssDNA and ssRNA binding, and (iii)
display limited DNA or RNA sequence selectivity.

5.1. Bacterial Cold-Shock Proteins
5.1.1. DNA Binding

Probing the DNA-sequence selectivity of BsCspB with a DNA microarray-based ap-
proach revealed the pyrimidine-rich heptameric consensus sequence d(GTCTTTG/C) [132],
and an in vitro analysis confirmed that binding affinity of DNA fragments to BsCspB corre-
lated with thymidine content [133]. Following these leads, BsCspB and BcCspB were both
crystallized in complex with the single-stranded DNA fragment (dT)6 [134]. The crystal
structure of (dT)6-bound BsCspB (Table 1) revealed the general principles of oligonucleotide
binding to CSPs or CSDs, although the BsCspB-bound DNA strand was discontinuous in
this particular structure. A DNA single strand binds in a groove across a positively charged
protein surface with exposed aromatic sidechains. The DNA or RNA bases are oriented
towards the protein, stacking atop aromatic protein sidechains and forming a limited
number of hydrogen-bonded interactions with the protein backbone or sidechains, whereas
the DNA or RNA backbone faces the solvent and is not in contact with the protein [135].
This binding geometry offers an explanation why CSPs display limited sequence specificity
and discriminate poorly between DNA and RNA strands. NMR and mutational analyses
identified a similar set of ssRNA-binding sites in BsCspB [136].
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Table 1. Structures of CSP/CSD: DNA complexes.

CSP/CSD Organism Sequence 1 Method PDB ID 2 Reference

BsCspB B. subtilis TTT TTT X-ray 2es2 [135]

BcCspB B. caldolyticus TTT TTT X-ray 2hax [113]

LIN28B CSD X. tropicalis TTT TTT
TTT TTT T

X-ray
X-ray

4a75
4a76 [100]

YBX1 CSDex 3 human AAC ACC T NMR 6lmr [9]
1 Residues in contact with the CSP/CSD are underlined. Other nucleotides may be disordered or not observed.
2 Entry in the Protein Data Bank [137]. 3 C-terminally extended CSD covering residues D51-A140.

(dT)6 binds to the homologous BcCspB with similar geometry as to BsCspB, but with
a contiguous DNA strand (Figure 5a,b). The six base-binding subsites are conserved
between both proteins [113] and formed by highly conserved protein sidechains including
those in the RNP1 and RNP2 motifs (see Figure 1). DNA and RNA oligonucleotide
binding to TmCsp was mapped by NMR chemical-shift perturbations revealing nucleic
acid-protein contacts as observed in other bacterial CSPs, although the full structure of a
TmCsp:oligo(deoxy)ribonucleotide complex was not determined [138].
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Figure 5. DNA single strands bound to CSDs. (a) Solvent-accessible surface and (b) cartoon drawing of BcCspB bound
to (dT)6 ([113], PDB entry 2hax). Only one globular unit formed by two strands of a domain-swapped BcCspB dimer
(see Figure 4) is displayed. (c) (dT)7 bound to LIN28B CSD ([100], PDB entry 4a76). Note how stacking interactions between
nucleobases and aromatic amino-acid sidechains contribute prominently to the closely similar binding interfaces of the
bacterial CSP and the eukaryotic CSD. Drawings prepared with PyMOL [101].

5.1.2. RNA Binding

Pyrimidine-rich ssRNA fragments bind BsCspB (Table 2) with closely similar geometry
as their DNA analogs, and their bases occupy some of the same subsites on the cold-shock
protein surface (Figure 6a). DNA strands, however, bind BsCspB with ~10-fold higher
affinity than analogous RNA strands. This difference in binding strength is shown to arise
from favorable contributions to the binding energy of the thymine methyl groups and is
not provided by the nucleic-acid backbone [139].
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Table 2. Structures of CSP/CSD: RNA complexes.

CSP/CSD Organism Sequence 1 Method PDB ID 2 Reference

BsCspB B. subtilis UUU UUU
GUC UUU A X-ray 3pf5

3pf4 [139]

LIN28A CSD+ZKD M. musculus

GGG CAG AGA UUU UGC CCG GAG 3

GGG GUA GUG AUU UUA CCC UGG
AG 4

GGG GUC UAU GAU ACC ACC CCG
GAG 5

X-ray
3trz
3ts0
3ts2

[140]

LIN28B CSD X. tropicalis UUU UUU X-ray 4alp [100]

CSDE1 CSD1 6 D. melanogaster UUU UUU UGA GCA CGU GAA X-ray 4qqb [14]

LIN28A CSD+ZKD human GGG GUA GUG AUU UUA CCC UGG
AGA U X-ray 5udz [13]

YBX1 CSD human

UCA UCU
UCU UCU
UCA ACU
UCA UGU

X-ray

5ytv
5yts
5ytx
5ytt

[11]

YBX1 CSD human UCA Um 5 CU X-ray 6a6l [12]

YBX1 CSD D. rerio UCA Um 5 CU X-ray 6a6j [10]

YPS CSD D. melanogaster ACC AGC CU
ACC AGm 5 C CU X-ray 6kug

6ktc [8]

1 Residues in contact with the CSP/CSD are underlined. Other nucleotides may be disordered, not observed or contacting other structural
elements of the protein. 2 Entry in the Protein Data Bank [137]. 3 preEM-let-7d; 4 preEM-let-7f-1; 5 preEM-let-7g. 6 In ternary complex with a
protein fragment containing domains RRM1 and RRM2 of Sex-lethal (SXL).
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Figure 6. RNA single strands bound to CSDs. (a) GUCUUUA bound to BsCspB ([139], PDB entry 3pf4). The 5′ and
3′-terminal nucleotides of the co-crystallized RNA strand are not revealed in the structure. (b) UCAUCU bound to the YBX1
CSD ([11], PDB entry 5ytv). The 5′ and 3′-terminal nucleotides of the co-crystallized RNA strand are not revealed in the
structure. (c) The microRNA precursor preEM-let-7d bound to the CSD and ZKD of mouse LIN28A ([140], PDB entry 3trz).
Drawings prepared with PyMOL [101].
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5.2. Eukaryotic Cold-Shock Domains
5.2.1. DNA Binding

Analyses by NMR and isothermal titration calorimetry (ITC) of DNA-heptamer bind-
ing to an extended YBX1 CSD reveals DNA-sequence preferences of YBX1, a binding mode
resembling bacterial CSPs and the structural basis of the observed attenuated target DNA
binding by S102 phosphorylation [9]. Conversely, dephosphorylation of S102 and other ser-
ine residues was proposed to unmask the nuclear localization signal of YBX1 and facilitate
nuclear entry at specific stages during the cell cycle [141]. Protein kinase AKT-mediated
phosphorylation of YBX1 also regulates its binding to the capped 5′-end of mRNA [142].
Whereas the phosphorylation site at S102 is located in loop L3 within the CSD, a recently de-
scribed site of O-glycosylation at T126 [143] is just outside the CSD and not revealed in any
structural study. This threonine glycosylation was shown to affect S102 phosphorylation,
thereby enhancing cell proliferation in hepatocellular carcinoma [143]. Biological effects
arising from ssDNA binding by YBX1 have been widely reported. For example, YBX1 binds
ssDNA in the MHC class-II DRA promoter resulting in transcriptional repression [144],
and YXB1 binds to an enhancer sequence in the PTP1B promoter regulating the cellular
levels of this protein tyrosine phosphorylase [145].

(dT)6 and (dT)7 bind to the LIN28B CSD with similar geometry as to bacterial CSPs
regarding strand polarity and base-binding subsites [100]. Subsite occupation by DNA
bases is nearly identical in BcCspB and LIN28B CSD with one additional subsite in the
latter being occupied by the 5′-terminal thymidine (Figure 5c). To date, most cellular
functions of LIN28 have been linked to RNA binding. However, it was reported that
LIN28A binds a consensus DNA sequence both in vitro and in mouse embryonic stem cells.
By recruiting the 5-methylcytosine dioxygenase TET1 to specific genomic sites, LIN28A
assumes a previously unexpected role as epigenetic and transcriptional regulator [146,147].

5.2.2. RNA Binding

High-resolution crystal structures of YBX1 bound to four different RNA-hexamer
strands (Figure 6b) reveal a binding geometry in which the bases of the central CAUC core
motif or variants thereof are stacked onto four conserved aromatic protein sidechains [11].
CAUC and CACC motifs had previously been identified by systematic evolution of lig-
ands by exponential enrichment (SELEX) as high-affinity YBX1-binding sites. This study
suggested a role of YBX1 in mRNA splicing by recruitment of splicing factors to certain
splice sites [148]. Very recently, YBX1 was identified as a JAK2 protein-kinase target whose
inactivation caused intron retention in proteins of the ERK signaling pathway [149]. UC-
CAUCA was also identified as target sequence for mouse YBX2 and YBX3 in the 3’UTR
of the PRM1 (protamine 1) mRNA [150]. Human YBX3 binds a similar set of mRNAs as
its homolog YBX1 [151], suggesting that target selection is driven by the CSD which has
identical sequence in YBX1 and YBX3, but not by the flanking regions which differ between
both proteins (see Figures 1 and 2).

In human bladder-cancer cells, the NOP2/Sun RNA methyltransferase 2 (NSUN2)
methylates cytosine bases. YBX1 binding to a 5-methylcytosine (m5C) site within the
3′UTR of the oncogene mRNA of heparin binding growth factor (HDGF) stabilizes this
mRNA, thereby contributing to oncogene activation. The crystal structure analysis shows
that YBX1 recognizes the m5C-modified target mRNA through interaction with its W45
sidechain [12]. Residue W45 in zebrafish YBX1 is essential for the preferential recognition of
m5C-containing RNA as well, as shown by crystal structure analysis [11]. This interaction
is crucial for maternal mRNA stabilization in the maternal-to-zygotic transition in early
zebrafish embryogenesis [10]. Finally, the Drosophila YBX1 homolog Ypsilon schachtel (YPS)
binds preferentially to m5C-containing RNA, thereby promoting stem-cell maintenance,
proliferation and differentiation. As YBX1, YPS binds m5C-containing oligoribonucleotides
in vitro with higher affinity than unmodified RNA, a behavior reminiscent of the preferred
binding of DNA over RNA strands to BcCspB which was linked to the thymine methyl
groups [139]. Crystal structure analysis shows that the ssRNA octamers ACCAGm5CCU
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and ACCAGCCU bind the YPS CSD with similar geometry with both m5C6 and C6
binding to the same subsite by stacking onto the sidechain of residue F85 [8]. In all studied
CSDs, m5C-containing RNA strands were bound with closely similar geometry as the
unsubstituted RNAs.

On a higher structural level, a combination of small-angle X-ray scattering (SAXS),
NMR and MD simulations [11] was used to characterize filaments of an mRNA-bound
C-terminally truncated YBX1. This work leads to the hypothesis that YBX1 may have a role
in unfolding structured mRNA molecules [152].

Gene dosage compensation between female and male flies is mediated by the Drosophila
gene male specific lethal-2 (msl2). The translation of msl2 mRNA is down-regulated by the
proteins Sex-lethal (SXL) and CSDE1 that both bind in the msl2 3′UTR. A crystal structure
of a ternary complex formed by SXL, the CSDE1 CSD1 and an 18-nucleotide RNA from the
3′-region of msl2 mRNA [14] demonstrates that this CSD follows the paradigm established
before for homologous domains in its mode of RNA binding. To our knowledge, this is
so far the only structure showing details of the cooperative binding of a CSD and another
RBP on the same RNA strand.

A systematic study of LIN28 binding to the human transcriptome confirmed the
predicted binding to precursors of let-7 microRNAs and revealed association with the
majority of mRNAs, both in their coding sequences and 3′UTRs [153]. Both in vitro and
in vivo LIN28 proteins preferentially bind to uridine-rich single-stranded RNA [154].

Crystallographic analysis revealed fine structural details of mouse LIN28A binding
to three different let-7 microRNA precursor elements: preEM-let-7d (Figure 6c), preEM-
let-7f-1, and preEM-let-7g. The structures reveal that the LIN28A CSD has the ability
to accommodate rather different stem-loop structures while the ZKD binds a GGAG
motif in all pre-micro-RNAs, and the truncated linker peptide remains unresolved in any
structure [140]. Biochemical evidence suggests that LIN28-CSD binding to the terminal loop
structure of pre-let-7 microRNA precedes and facilitates binding of the ZKD to a conserved
GGAG motif in the microRNA precursor [100]. A study of the binding mechanism of
LIN28 with the let-7g terminal loop supports the notion of a stepwise protein binding with
RNA remodeling by the LIN28 CSD [155]. MD simulations of the LIN28 interaction with
different microRNA subtypes lends further support to a sequential binding of the CSD and
ZKD to pre-let-7 [156].

There is evidence for the existence of two subclasses of let-7 microRNA precursors,
one with binding sites for the LIN28 CSD and ZKD and one with only ZKD binding
sites [157] and that the specific association of the LIN28 ZKD with pre-let-7 is required
and sufficient for recruitment of the terminal uridylyltransferase TUT4 [13]. For pre-let-
7g, biochemical data suggest that a basic region in between the LIN28 CSD and ZKD
contributes to binding [158]. Finally, it may be noted that small molecules were identified
by screening a compound library that inhibit both LIN28:let-7 binding and LIN28-mediated
RNA polyuridylation, thus opening an avenue towards pharmacological intervention with
the oncogenic activities of LIN28. One inhibitor, TPEN, is directed against the LIN28 ZKD,
whereas a second inhibitor, LIF1, was shown to bind to the LIN28 CSD and prevent its
RNA binding [159].

6. Conclusions

In this review, it was attempted to provide a structural basis to explain how an evolu-
tionarily conserved simple protein module, the CSD, is able to support a wide variety of
biological functions ranging from transcriptional regulation and DNA repair to the control
of RNA splicing, stability, translation and sequestration. The wide-ranging similarity
between bacterial CSPs and eukaryotic CSDs regarding their sequences, three-dimensional
structure and nucleic-acid binding is clearly revealed. CSD-containing proteins from all
kingdoms of life share a common mode of nucleic-acid binding which is characterized by
stacking between nucleobases and aromatic protein sidechains, a solvent-exposed sugar-
phosphate backbone and conserved strand polarity, where the 5′-end of the bound DNA
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or RNA single strand is near the C-terminus of strand β1 and the 3′-end is in the vicinity
of the C-terminus of β2 on the CSD β-barrel. In addition, all CSDs share a conserved
set of nucleotide-binding subsites involving the most highly conserved residues across
the large number of CSD sequences. This binding geometry readily explains the limited
discrimination of single-stranded DNA from RNA by CSDs and their lack of distinct se-
quence specificity. The participation of CSDs in a wide range of cellular functions may be
understood as a direct consequence of this common nucleic acid-binding mode.

The biochemical, biophysical and structural properties of CSDs reviewed here are the
basis for all biological functions of CSD-containing proteins. However, they are insufficient
to fully understand the functions of YBX1, LIN28 and other human proteins in a broader,
e.g., cancer context, because these functions also depend on the natively unfolded parts
of these polypeptides, their tissue distribution, sub-cellular localization and expression
levels. In this context, it may be recalled that the human and murine YBX1, YBX2 and
YBX3 proteins have very closely matching CSD sequences, but clearly different mutant
phenotypes [22]. Open questions regarding the molecular basis of the unique association of
YBX3 with the tight-junction protein ZO-1 [64,65], the propensity of YBX1 to alternatively
stimulate or repress translation of target mRNAs [160] or the coordination of the various
roles of YBX1 in disease [53–56] are at least partly linked to the natively unstructured
regions of these proteins, and their resolution will require further research.

Some aspects of CSD stability, folding and structural plasticity have been much more
thoroughly studied in bacterial CSPs than in eukaryotic proteins. Given the conservation
of sequence, structure and nucleic-acid binding across all members of the large CSD family,
it is suggested that for understanding human CSDs much may still be learnt from bacterial
CSPs, especially regarding conforma-tional stability and structural plasticity.
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