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Abstract

Background: Co-localized combinations of histone modifications (“chromatin states”) have been shown to correlate
with promoter and enhancer activity. Changes in chromatin states over multiple time points (“chromatin state
trajectories”) have previously been analyzed at promoter and enhancers separately. With the advent of time series
Hi-C data it is now possible to connect promoters and enhancers and to analyze chromatin state trajectories at
promoter-enhancer pairs.

Results: We present TimelessFlex, a framework for investigating chromatin state trajectories at promoters and
enhancers and at promoter-enhancer pairs based on Hi-C information. TimelessFlex extends our previous approach
Timeless, a Bayesian network for clustering multiple histone modification data sets at promoter and enhancer feature
regions. We utilize time series ATAC-seq data measuring open chromatin to define promoters and enhancer
candidates. We developed an expectation-maximization algorithm to assign promoters and enhancers to each other
based on Hi-C interactions and jointly cluster their feature regions into paired chromatin state trajectories.
We find jointly clustered promoter-enhancer pairs showing the same activation patterns on both sides but with a
stronger trend at the enhancer side. While the promoter side remains accessible across the time series, the enhancer
side becomes dynamically more open towards the gene activation time point. Promoter cluster patterns show strong
correlations with gene expression signals, whereas Hi-C signals get only slightly stronger towards activation.
The code of the framework is available at https://github.com/henriettemiko/TimelessFlex.

Conclusions: TimelessFlex clusters time series histone modifications at promoter-enhancer pairs based on Hi-C and it
can identify distinct chromatin states at promoter and enhancer feature regions and their changes over time.
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Background
Genomic regulatory regions like promoters and enhancers
are important players in gene expression. Their activity
has been shown to correlate with specific co-localized
combinations of post-translational histone modifications
(or marks) called ”chromatin states”. For example, active
promoters are enriched in histone modifications H3 lysine
27 acetylation (H3K27ac) and H3 lysine 4 di−/trimethyla-
tion (H3K4me2/3), while active enhancers are enriched in
H3K27ac and histone H3 lysine 4 mono−/dimethylation
(H3K4me1/2). Whether histone modifications are causal
or a consequence of the activity of the genomic locus
remains unclear.
Chromatin states have initially been annotated in a

spatial manner genome-wide, by segmenting the genome
into distinct states based on histone modification ChIP-
seq data from, for instance, one cell line, which represents
an unsupervised learning problem. Chromatin states were
popular in the Encyclopedia of DNA Elements (ENCODE)
[1], resulting from the first seminal methods ChromHMM
[2] and Segway [3]. In ChromHMM, the genome is
partitioned into 200 bp bins, and a multivariate Hidden
Markov Model (HMM) with binary values represented as
Bernoulli random variables is used to model the combina-
torial presence or absence of histone marks in all bins [2].
In Segway, a Dynamic Bayesian Network modelling the
read counts as independent Gaussian random variables is
used to segment and label the genome at base-pair
resolution into joint histone mark patterns [3]. Segway
was later extended by a graph-based regularization
method for incorporating chromatin interaction data from
Hi-C, which showed improved results [4]. Other methods
for segmentation of a genome include jMOSAiCS [5],
EpiCSeg [6] and Spectacle [7].
Several methods focusing on regulatory regions have

been introduced, for example over multiple human cell
lines [8, 9], using self-organizing maps [10], employing
Hi-C data [11, 12], as well as our own approach employing
an HMM for chromatin states at high resolution [13].
With the advent of new genomics technologies and

improved biological in vitro differentiation systems, time
series ChIP-seq data sets have been generated that allow
for investigating chromatin states across multiple time
points. Such sequential chromatin states are referred to
as ”chromatin state trajectories”, and only a handful of
methods have been developed to analyze these.
An early method for analyzing chromatin state trajec-

tories is GATE [14], which clusters multiple histone
modifications over multiple time points with a hierarch-
ical probabilistic model. The top layer consists of a finite
mixture model for clustering genomic segments, and the
bottom layer models the temporal changes as an HMM
with the two states active and inactive. The limitations
of GATE are that it can only handle two states (active/

inactive), and that it is not possible to use it on differen-
tiation with more complex topologies. A newer method
is CMINT [15], a probabilistic clustering approach to
identify chromatin states across multiple cell types,
based on a given tree topology representing the relation-
ship of these cell types as input. A limitation of this
method is that it uses large genomic regions of 2 or 8
kb. Further methods based on similar ideas include
TreeHMM [16] and ChromstaR [17]. Interesting re-
search questions that could be addressed with such
methods are: which chromatin states occur during dif-
ferentiation and how do they change over time? Which
genes and enhancers function at specific time points?
What are the target genes of these enhancers?
These existing methods generally investigate chro-

matin states at promoters and enhancers separately.
Chromatin interaction data like Hi-C should in
principle enable an assignment of promoters and en-
hancers to promoter-enhancer pairs. Following this
idea, we here present TimelessFlex, a model for inves-
tigating chromatin state trajectories at feature regions
around promoters and enhancers and at pairs of such
feature regions. TimelessFlex employs our previous
model Timeless [18], a Bayesian network for co-
clustering multiple time series histone modifications
at given feature regions, which assigns the regions to
the cluster with the highest probability. The output
are clusters of regions with similar chromatin state
trajectories. We extend this approach by (1) a strategy
to employ time series ATAC-seq data to improve def-
initions of promoters and distal regions called ”enhan-
cer candidates”; (2) an expectation-maximization (EM)
based approach to allow the use of incomplete or
low-resolution time series Hi-C data indicating chro-
matin interactions; (3) jointly clustering paired chro-
matin state trajectories; for (4) linear and tree-shaped
differentation topologies. We validate our approach
and the resulting candidate enhancers for the pres-
ence of predicted or in vivo occupied transcription
factor (TF) binding sites, for discovering new en-
hancers, and for linking enhancers to their target genes.

Results
We developed a Bayesian network-based clustering ap-
proach to characterize regulatory regions based on their
chromatin state changes across time. A set of candidate
regulatory regions is first annotated from ATAC-seq
data across the time series. Then, multivariate, quantita-
tive time series histone modification data is used as
features for time series clustering, where available Hi-C
data allows for the clustering of interacting pairs instead
of individual regions. To utilize Hi-C data despite its fre-
quently coarse resolution, we follow a two-step strategy,
in which clusters are first determined on unambiguous
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assignments and in a second round extended by ambigu-
ous interactions, which are resolved via expectation-
maximization (EM). As we utilize ATAC-seq and Hi-C
merely to define regions and their interactions, but do
not exploit the temporal or quantitative information
present in ATAC-seq or Hi-C, we also use these data for
corroboration.

Chromatin state trajectories for enhancer feature regions
during mouse hematopoiesis
We first illustrate the TimelessFlex principles on a data
set from mouse hematopoiesis [19] based on a given
branching trajectory of differentiation (see Fig. 1), for
the scenario that there are time series ChIP-seq and
ATAC-seq data available but no accompanying Hi-C
data set. We defined one consistent set of distal regions
(“enhancer candidates”) across the time series based on
ATAC-seq data (see Methods), which resulted in 48,804
enhancer feature regions. As feature region we took the
window around an open chromatin region with 500 bp
extension from the edges (see Fig. 2, top). To determine
an appropriate number of clusters, Akaike information
criterion (AIC) and Bayesian information criterion (BIC)
were computed and clusters corresponding to local
minima were visually inspected. This led to 19 clusters
of enhancer regions (see Additional file 1: Figure S1 for
model selection and Additional file 2: Figure S2 for all
19 enhancer clusters).
Figure 3 illustrates the impact of chromatin state clus-

tering across time and different lineages simultaneously,
for two example clusters of enhancer feature regions.
Cluster 11 consists of 2480 regions that become more
active at time points granulocyte (Granu) and monocyte
(Mono). The corresponding ATAC-seq signal confirms
that the enhancer regions are more accessible at these

stages compared to other time points. Enriched tran-
scription factor motifs computed with HOMER come
from the CEBP family and PU.1. Cebpb, Cebpa and PU.1
are known regulators of myeloid enhancers and Cebpb
was shown to be an important TF for lineage specifica-
tion of granulocytes [19]. Cluster 7 with 983 enhancer
feature regions becomes active towards the MEP and
EryA stages. At these time points the ATAC-seq signal
shows a strong increase in accessibility. HOMER found
enriched motifs for Gata, GATA binding TF TRPS1 and
Klf families, where Gata1 and Klf1 in particular are
known regulators of erythroid enhancers [19].

Chromatin state trajectories during human pancreatic
differentiation
The main application of TimelessFlex addresses an
extensive multi-omics time series data set, including
deep Hi-C data, obtained at multiple stages of human
pancreas differentiation (see Fig. 4).

Chromatin state trajectories for enhancer feature regions
As in the case of hematopoiesis above, we started by
annotating enhancer feature regions from ATAC-seq
data. We obtained 17,103 enhancer feature regions and
clustered them in 8 clusters (see Additional file 3: Figure
S3 for model selection and Additional file 4: Figure S4
for all 8 clusters). As examples, Fig. 5 shows details for
cluster 6 (active at D5) and cluster 5 (active at D10).
Cluster 6 consists of 1431 enhancer feature regions that
show strong activity at D5 and decreased activity at D10.
The regions become more open at D5 and slightly less
open at D10. HOMER results show motifs for the FOX
family. Cluster 5 with 1451 feature regions becomes
active at D10 and the features regions become more

Fig. 1 Schematic of mouse hematopoietic differentiation. Six time points of mouse hematopoiesis: common myeloid progenitor (CMP), megakaryocyte
erythroid progenitor (MEP), granulocyte macrophage progenitor (GMP), erythrocyte A (EryA), granulocyte (Granu), monocyte (Mono) [19]
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open towards D10. HOMER reported motifs for HNF,
CUX, Pdx1, PBX1 and FOX family.

Paired chromatin state trajectories for promoter-enhancer
pairs
The multi-stage Hi-C data allowed for a joint
characterization of interacting promoters and enhancers.
Promoter-enhancer candidate pairs were determined based
on ATAC-seq and Hi-C data (see Methods) and led to 3617
initialization feature pairs and 3406 multi feature pairs. This
illustrates the main motivation behind our semi-supervised
approach, namely that the current Hi-C coverage and
resolution frequently does not enable an unambiguous
assignment between all promoters and enhancers.

Initialization feature pairs For clustering the initialization
feature pairs, 10 clusters were determined as the optimal
BIC in the investigated range (Fig. 6). All 10 initialization
clusters can be found in Additional file 5: Figure S5.
Two example clusters are shown in Fig. 7: cluster 7

with pairs becoming active at time point D5 and cluster
3 with pairs becoming active at D10. To evaluate the
success of the unsupervised clustering, we aimed to as-
sess the quality of cluster membership in different ways.
For one such metric we used the quantitative ATAC-seq
signal which is not used for clustering. More precisely,
we computed the Spearman correlation co-efficent
between H3K27ac signal and ATAC-seq signal for each

enhancer feature region in clusters. For cluster 7, the me-
dian correlation coefficient is 0.8, and for cluster 3 it is 0.6
(Fig. 8). The correlation of the noise cluster is 0.4 and
served as adequate baseline. In addition to the higher me-
dian correlation, the distributions of the correlation coeffi-
cients in clusters 7 and 3 are also much narrower. As
another measure, we computed the RNA-seq derived gene
expression levels of the closest transcript TSSs as baseline,
to compare them to the Hi-C supported assignments. Fig-
ure 9 shows a much weaker gene expression of the baseline
assignments compared to the cluster-assigned promoters in
Fig. 7 (see Additional file 6: Figure S6 for all clusters).
Cluster 7 (Fig. 7, left side) consists of 226 promoter-

enhancer pairs. The paired chromatin state trajectory
shows that the enhancers get activated strongly at D5
and then lose their signal at D10. The promoters exhibit
the same trajectory but much weaker, in accordance
with reports that documented the much lower variability
in the accessibility of promoters, which are frequently
open even if the genes are not actively transcribed [22].
When looking at the gene expression signal from the
RNA-seq, it confirms that steady-state gene expression
is elevated at D5. The Hi-C signal confirms that the
highest number of interactions is observed at D5, but
some interactions persist at other days. Given that we
are only analyzing a subset of active regions, we ob-
served small overlaps with reported signature genes for
different stages (1/90 at D2, 1/18 at D5, 1/31 at D10).

Fig. 2 Toy example of a feature region and histone mark signals over it. Top: A feature region (red) is defined as a window around an open
chromatin region with 500 bp extension from the edges. Bottom: Three histone modification signals over the feature region are shown. For each
histone modification, the maximum signal (*) is computed
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Motif analysis of the enhancer candidates with HOMER
found motifs from the FOX family.
In cluster 3 (displayed in Fig. 7, right side) there are

282 promoter-enhancer pairs. The enhancers get
strongly activated at D10, while the promoters show a
weaker increase at D10. The gene expression signal gets
increased at D10, and the Hi-C signal again shows the
highest number of interactions at D10. For this cluster,
there is a clear enrichment for known signature genes
from D10 (3/90 at D2, 0/18 at D5, 14/31 at D10). Motifs
of HNF and CUX families, Pdx1 and PBX2 were found
by HOMER as enriched in enhancer regions.
Pairwise intersections of enhancers from cluster 7 and

cluster 3 with published FOXA1, FOXA2 and PDX1
ChIP-seq peaks and Fisher’s test showed a highly

significant overlap of FOXA ChIP targets in cluster 3
and of PDX1 in cluster 7, respectively (Table 1). As both
clusters contain genes active in pancreatic differenti-
ation, TF interactions were generally enriched in both
clusters, but the most significant enrichment was ob-
served for D5 for cluster 7 and FOXA1/2, i. e. at the
point of highest enhancer activation, and for D10 for
cluster 3 in the case of PDX1.
Altogether, this demonstrates that our approach can

(a) identify distinct chromatin trajectories which are (b)
supported by complementary genomics data, are (c)
enriched in sequence motifs and functional interactions
of known relevant TFs, and (d) enrich for enhancers
with an impact on gene expression compared to the
baseline of the closest assignment. Our observations also

Fig. 3 Example clusters of enhancer feature regions during mouse hematopoiesis. Left: activation at Granu/Mono (cluster 11 with 2480 feature
regions), right: activation at MEP/EryA (cluster 7 with 983 feature regions), a shows chromatin state trajectory, b accessibility signal from ATAC-
seq, c Top 10 known enriched motifs by HOMER

Fig. 4 Schematic of human pancreatic differentiation system. Four time points of human pancreatic differentiation: day 0 (D0) human embryonic
stem cells (ES cells), day 2 (D2) definitive endoderm (DE), day 5 (D5) primitive gut tube (GT), day 10 (D10) pancreatic endoderm (PE) [20, 21]
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support the current understanding that histone modifica-
tions and chromatin accessibility is much more pro-
nounced at individual enhancers, rather than the promoters
that act as integration platforms of multiple regulatory
regions.

Multi feature pairs While the pancreas lineage Hi-C
data is of very high depth, it still allowed for an unam-
biguous assignment of only ∼3600 enhancers. Given that
clustering is based on a probabilistic graphical model,
we wondered whether it would be possible to not only
use it to infer unobservable cluster identities, but also re-
solve multi pair regions. In such regions Hi-C shows in-
teractions between regions with multiple enhancers and/
or promoters. Our data set consists of almost as many
multi pairs as unambiguous pairs.
These multi feature pairs were thus clustered in a

second step, using the model resulting from clustering
the initialization pairs. The cluster number and the clus-
ter ordering stayed fixed (e. g. cluster 7 stays cluster 7
for ambiguous pairs; see Additional file 7: Figure S7 for
all 10 multi clusters). 753 of 3406 ambiguous pairs were
assigned to the noise cluster. The newly determined
promoter-enhancers from this larger set of pairs are
shown in Fig. 10 for cluster 7 and cluster 3. It can be
seen that the ambiguous pair clusters are very similar to

their corresponding initialization clusters, and are
equally well supported by RNA-seq, ATAC-seq, and Hi-
C data.
In summary, our EM based assignment of ambiguous

Hi-C interactions nearly doubled the number of assign-
ments of promoters to enhancers, while the agreement
with orthogonal functional genomics data was on par
with the unambiguous pairs. This suggests that the
activity of these enhancers has an equal impact on gene
expression as those used for initial clustering, but that
the genomic arrangement and spatial resolution did not
allow them to be directly assigned.

Discussion
TimelessFlex learns chromatin state trajectories of
promoter and enhancer feature regions and of promoter-
enhancer feature pairs during differentiation by co-
clustering multiple histone modification data sets. It iden-
tifies clusters of genes that may function at specific stages
during differentiation and groups of enhancers that are
active at certain time points. Clustering of feature regions
of promoter-enhancer pairs, we find clusters where pro-
moters and enhancers show the same activation patterns.
Noticeably, the trend of the histone mark signals of the
enhancer side is much stronger compared to the pro-
moter side. We identify enhancer clusters that become

Fig. 5 Example clusters of enhancer feature regions during human pancreatic differentiation. Left: activation at D5 (cluster 6 with 1431 feature
regions), right: activation at D10 (cluster 5 with 1451 feature regions), a shows chromatin state trajectory, b accessibility signal from ATAC-seq, c
Top 10 known enriched motifs by HOMER
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active or repressed for nearly every stage of two example
differentation data sets from hematopoiesis and pancreas
development, whereas this is not necessarily the case for
promoter clusters. However, as readout of the promoters,
the gene expression signal from RNA-seq correlates well
with the inferred chromatin trajectories. On the enhancer
side, motif enrichment analyses with HOMER reveal
known hematopoietic respectively pancreatic and hepatic
TFs in active enhancer clusters at specific time points.
Paired clustering allows for direct comparison of the

accessibility signals of the promoter and the enhancer.
It can be seen that the promoters are near-constantly
open across time, while enhancers open more dynamic-
ally towards the time point of highest gene activation.
Enhancers change in terms of accessibility much more
across time, and this correlates with active histone
modifications. This suggests that the activity of the
promoter is comparatively better predicted by using
histone mark signals than accessibility. Looking at Hi-C

interactions within clusters, we found that some interac-
tions are observed at each time point, but that their num-
ber is highest at the time point of highest activation. This
suggests that at least some promoter-enhancer interac-
tions are established long before activation of their target
gene.
In the initialization clusters there are 512 promoters

and 242 enhancer candidates that were also found in
at least one other cluster. Investigation of these fea-
ture regions would be an interesting point for future
analysis.
We found that resulting chromatin state trajectories

from multi clusters are very similar to the clusters
obtained from clustering the initialization pairs, indicat-
ing that we successfully identified additional promoter-
enhancer pairs of equal quality, nearly double the cluster
sizes by adding the corresponding multi pairs. To the
best of our knowledge, paired chromatin state trajectories
have not yet been investigated, which makes it difficult to

Fig. 6 Model selection for clustering of promoter-enhancer initialization feature pairs during human pancreatic differentiation. Bayesian information
criterion (BIC) and Akaike information criterion (AIC) are computed in the range of 2 to 30 clusters to decide on the number of clusters for the
initialization feature pairs. Cluster number 10 is the minimum of the BIC in the investigated range and therefore chosen as cluster number

Miko et al. BMC Genomics           (2021) 22:84 Page 7 of 19



directly compare to methods for chromatin state analysis
such as those discussed in the introduction.
In many studies, feature regions for promoters are com-

monly defined as regions of fixed lengths around all anno-
tated/expressed genes, e. g. +2 kb and -200 bp around
TSSs in our previous approach Timeless [18]. Instead, we
here use a data driven approach employing ATAC-seq
data for defining precise coordinates of promoter and en-
hancer candidate regions. A similar strategy was employed
in fly in [23], where DHSs from DNase-seq were used as
proxy for putative enhancers, reducing the search space to
6.4% of the genome. The ATAC-seq data defined open
chromatin regions across all time points are of variable
sizes, and we chose windows extending the edges of open
chromatin regions by 500 bp, which leads to more
pronounced histone mark signals compared to fixed-size
windows. The categorization of open chromatin regions

into promoters and enhancers is based on gene TSSs from
GENCODE. Some regions labelled as enhancer candidates
may thus be promoters of incompletely annotated
lncRNAs. In the last years, it has been shown that separ-
ation of promoters and enhancers is not as clear as their
original definition suggested, as many promoters display
enhancer-like activity [24]. Further work may therefore
completely drop the labeling of promoters and enhancers
and characterize all Hi-C interacting pairs. As an alterna-
tive to infer significant Hi-C interactions the use of
GOTHiC [25] could be investigated.

Conclusions
We present the flexible framework TimelessFlex, which
clusters time series histone modifications at promoters and
enhancers and at promoter-enhancer pairs. TimelessFlex
identifies distinct chromatin states that occur at promoter

Fig. 7 Example clusters of initialization promoter-enhancer feature pairs during human pancreatic differentiation. Left: activation at D5 (cluster 7 with
226 initialization feature pairs), right: activation at D10 (cluster 3 with 282 initialization feature pairs), a shows paired chromatin state trajectory, b gene
expression signal from RNA-seq, c accessibility signal from ATAC-seq, d interaction signal from Hi-C, e Top 10 known enriched motifs by HOMER
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and enhancer feature regions over a time series such as
in vitro differentiation from stem cells, and how they
change over time. It can identify groups of genes and en-
hancers that are active or repressed at specific time points.
ATAC-seq is utilized to define promoters and enhancers
and Hi-C data is used to assign them to Hi-C interaction
pairs. Feature regions of such interaction pairs are jointly
clustered into paired chromatin state trajectories, which al-
lows for exploring their 3D relationship over time.
TimelessFlex is applicable to branched trajectories as

well and it can be employed to enable a comparison of
chromatin state trajectories between two lineages and to

identify genes and enhancers that are active in one
lineage and inactive in the other.
Finally, the resulting clusters can be further vali-

dated and benchmarked with predictive approaches
such as deep learning. Neural networks, similar to
[26], can be used to find the most predictive sequence
features of each cluster via classification. These
sequence features can then be used to distinguish
different classes of promoters and enhancers, and to
ultimately characterize the impact of non-coding se-
quence variants obtained from GWAS studies or
eQTL mappings, e. g [27].

Fig. 8 Spearman correlation of H3K27ac signal and ATAC-seq signal for enhancer clusters. For clusters 7, 3 and noise cluster 10 the Spearman
correlation coefficient was computed between H3K27ac signal and ATAC-seq signal for each feature region. For clusters 7 and 3 the correlation is
higher than for the noise cluster 10

Fig. 9 Comparison of gene expression signals for closest TSS and Hi-C supported genes. Gene expression signal from RNA-seq for (a) genes with
closest TSSs to enhancers in cluster 7 and 3 from initialization pairs and for (b) Hi-C supported assigned genes
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Methods
Data sets and data processing
To showcase our approach, we use multiple data sets
from two differentiation systems: hematopoietic differen-
tiation in mouse [19] and an in vitro model system of
human pancreatic differentiation [20, 21] (see Figs. 1
and 4, respectively).
For mouse hematopoiesis, we downloaded ChIP-seq and

ATAC-seq data from GEO under accession number
GSE59636 [19]. We employed ChIP-seq data for H3K4me1/
2/3 and H3K27ac and ATAC-seq on the following six time
points forming a branching tree: common myeloid progeni-
tor (CMP), megakaryocyte erythroid progenitor (MEP),
erythrocyte A (EryA), granulocyte macrophage progenitor
(GMP), granulocyte (Granu) and monocyte (Mono).
For human pancreatic differentiation we used multiple

data sets (ChIP-seq for H3K27ac, H3K27me3 and

H3K4me1/3, ATAC-seq, RNA-seq and Hi-C) at four
time points: human embryonic stem cells (ES cells) at
day 0 (D0), definitive endoderm (DE) at day 2 (D2),
primitive gut tube (GT) at day 5 (D5), and pancreatic
endoderm (PE) at day 10 (D10). ChIP-seq data for
H3K27ac and H3K4me1 were downloaded from GEO
under accession number GSE54471 [20], ChIP-seq data
for H3K27me3 and H3K4me3 were downloaded from
Array Express under accession number E-MTAB-1086
[21] and from GEO under accession number GSE149148
[28]. ATAC-seq data were generated and deposited in
GEO under accession number GSE151769. RNA-seq
data were downloaded at Array Express under accession
number E-MTAB-1086 [21]. In situ Hi-C data for all
four time points were downloaded from the 4D
Nucleome Data Portal [29] under accession numbers
4DNESOLVRKBM, 4DNESOL9JVE2, 4DNESV11RYSF
and 4DNESSSDVO27.
Table 2 gives an overview of the data samples for the

different genomic data types.

ChIP-seq data
All ChIP-seq data samples were processed as follows:
Illumina universal adapters were trimmed from reads
with Trim Galore 0.6.1 [30] and reads were mapped with
Bowtie2 2.3.4.3 [31] to reference genome mm10 for
mouse data or hg19/GRCh37 for human data. An in-
house script was used to filter for uniquely mapped
reads with at most 2 mismatches (similar to [18]). Dupli-
cate reads were removed with samtools 1.9 [32] and sam

Fig. 10 Example clusters of multi promoter-enhancer feature pairs during human pancreatic differentiation. Only the selected multi regions are
plotted. Left: activation at D5 (cluster 7 with 225 multi feature pairs), right: activation at D10 (cluster 3 with 255 multi feature pairs), a shows
paired chromatin state trajectory, b gene expression signal from RNA-seq, c accessibility signal from ATAC-seq, d interaction signal from Hi-C

Table 1 Results of Fisher’s two-tailed test. Test performed on
pairwise intersections of enhancer clusters from initialization
pairs with published ChIP-seq peaks [20]

ChIP-seq peaks cluster 7 cluster 3

FOXA1 at D5 5.3257e-102 6.4588e-22

FOXA1 at D10 1.5073e-31 2.0066e-87

FOXA2 at D2 6.0772e-115 6.3536e-19

FOXA2 at D5 7.0324e-180 9.476e-41

FOXA2 at D10 2.5729e-123 5.7507e-81

PDX1 at D10 1.0513e-54 2.1041e-132
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format was converted to bed format with bed tools
2.27.1 [33].
Peaks for H3K27ac, H3K27me3, H3K4me1 and

H3K4me3 were called with JAMM 1.0.7.5 [34] in win-
dow mode with fixed bin size 150 and auto filtering of
peaks. As there is no Input data available for mouse
hematopoiesis data we used data from time point of
long-term hematopoietic stem cells (LT-HSC) as control
for peak calling. During peak calling the fragment
lengths were computed which were needed later for run-
ning JAMM Signal Generator.

ATAC-seq data

Library preparation ATAC-seq for human pancreatic
differentiation [35] was performed on approximately 50,
000 nuclei. The samples were permeabilized in cold
permeabilization buffer (0.2% IGEPAL-CA630 (I8896,
Sigma), 1 mM DTT (D9779, Sigma), Protease inhibitor
(05056489001, Roche), 5% BSA (A7906, Sigma) in PBS
(10010–23, Thermo Fisher Scientific) for 10 min on the
rotator in the cold room and centrifuged for 5 min at
500 x g at 4 °C. The pellet was resuspended in cold
tagmentation buffer (33 mM Tris-acetate (pH = 7.8) (BP-
152, Thermo Fisher Scientific), 66 mMK-acetate (P5708,
Sigma), 11 mMMg-acetate (M2545, Sigma), 16% DMF
(DX1730, EMD Millipore) in Molecular biology water
(46000-CM, Corning)) and incubated with tagmentation
enzyme (FC-121-1030; Illumina) at 37 °C for 30 min with
shaking at 500 rpm. The tagmented DNA was purified

using MinElute PCR purification kit (28,004, QIAGEN).
Libraries were amplified using NEBNext High-Fidelity
2X PCR Master Mix (M0541, NEB) with primer exten-
sion at 72 °C for 5 min, denaturation at 98 °C for 30 s,
followed by 8 cycles of denaturation at 98 °C for 10 s, an-
nealing at 63 °C for 30 s and extension at 72 °C for 60 s.
After the purification of amplified libraries using MinE-
lute PCR purification kit (28,004, QIAGEN), double size
selection was performed using SPRIselect bead (B23317,
Beckman Coulter) with 0.55X beads and 1.5X to sample
volume. Finally, libraries were sequenced on HiSeq4000
(Paired-end 50 cycles, Illumina).

Data processing Paired-end ATAC-seq data from pan-
creatic differentiation was processed similarly to [36]:
Nextera adapters were trimmed from reads with Trim
Galore 0.6.1 and parameter --paired. Reads were mapped
with Bowtie2 2.3.4.3 to hg19 reference genome with
maximum fragment length of 2000 bp and parameters
--no-disconcordant and --no-mixed. Mapped reads were
filtered by mapping quality of 20. Duplicates were re-
moved with Picard 2.10.3 [37] Sort-Sam and MarkDupli-
cates. Sam format was converted to bedpe format with
bedtools 2.27.1. An in-house script was used to filter out
reads from chromosome M, unplaced and unlocalized
scaffolds or alternative haplotypes. To account for the
size of the transposase, read pairs were filtered to have a
distance of at least 38 bp between them. Finally, reads
were cut to their 5′ ends and converted to bed format.
Peaks were called with MACS2 2.1.1.20160309 [38] and
the Irreproducible Discovery Rate (IDR) framework
(2012 version) [39] as follows: peaks were called with
MACS2 and parameters --no-model, --shift 100,
--extsize 200, --keep-dup all and p-value -p 0.05 for
pooled replicates and for each replicate separately. For
each replicate the top 100,000 peaks were taken and the
script IDR batch-consistency-analysis was run. An IDR
threshold of 0.01 was used to select the top peaks from
the pooled peak file which were then taken as final
peaks.
For single-end ATAC-seq data from hematopoiesis,

Nextera adapters were trimmed from reads with Trim
Galore 0.6.1. Reads were then processed like ChIP-seq
reads for mapping with Bowtie2 2.3.4.3 to reference gen-
ome mm10 and further processing. Peaks were called
with MACS2 2.1.1.20160309 [38] and parameters --no-
model, --shift 100, --extsize 200, --keep-dup all and q-
value -q 0.01 for pooled replicates because of variable
number of replicates.

RNA-seq data
RNA-seq data was processed based on [18]: Illumina
adapters were trimmed with Trim Galore 0.6.1 [30] and

Table 2 Data samples from mouse hematopoietic
differentiation [19] (top) and human pancreatic differentiation
[20, 21] (bottom). For each genomic data type and each time
point the number of replicates is given

Data type CMP MEP EryA GMP Granu Mono

H3K27ac 4 1 2 2 2 4

H3K4me1 3 1 2 2 3 4

H3K4me2 3 2 1 3 2 3

H3K4me3 4 2 1 3 2 4

ATAC-seq 3 3 1 2 2 1

Data type D0 D2 D5 D10

H3K27ac 2 2 2 2

H3K27me3 2 2 2 2

H3K4me1 2 2 2 2

H3K4me3 2 2 2 2

Input 2 2 2 2

ATAC-seq 2 2 2 2

RNA-seq 3 3 3 3

Hi-C 2 2 2 2
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expected FPKM (Fragments Per Kilobase Million) values
at gene level were computed with RSEM 1.3.1 [40].

Hi-C data
Time series in situ Hi-C data was generated using MboI
enzyme and each sample was sequenced to ∼4 billion
reads achieving a resolution of 10 kb. The Hi-C data was
processed into loop calls based on [41] and as described
in detail in [28]. Briefly, read pairs were aligned separ-
ately using BWA-MEM [42] to human reference genome
hg19, chimeric reads were cut to 5′ ends, low mapping
quality filtered, paired and PCR duplicates removed.
Juicer [43] tools were used to generate Knight-Ruiz (KR)
normalized matrices at 10 kb resolution. Each pixel was
compared to its donut region to model expected counts
(based on [44]). Candidate pixels were defined as pixels
with p-value < 0.01 and distance < 10 kb. Candidate
pixels without neigboring candidate pixels were re-
moved. In the last step candidate pixels within 20 kb of
each other were collapsed and filtered for p-value < 1e-5
to get chromatin loops. Here we employ the candidate
pixels before the last collapsing step, which represent
significantly in-teracting uncollapsed Hi-C bins of 10 kb.

Overview of framework
TimelessFlex is a flexible framework for investigating
chromatin state trajectories at feature regions around
promoters and enhancers or at pairs of such feature re-
gions. TimelessFlex extends Timeless [18] by integrating
the additional data types ATAC-seq and Hi-C. The
framework can make use of genomic data from multiple
biological assays but it is flexible regarding which gen-
omic data is available. An overview of the steps in Time-
lessFlex and the employed genomic data types is given
in Fig. 11. The basic requirements are ChIP-seq data for
one or more histone modifications from at least three
time points and a set of regions of interest. For the lat-
ter, we here use time series ATAC-seq data to define
promoters and enhancer candidates, which are partially
assigned to promoter-enhancer pairs based on detected
Hi-C interactions. These pairs are jointly clustered into
paired chromatin state trajectories with an adapted
Bayesian network.

Regions definition step
In this step, promoters and enhancer candidates are de-
fined based on time series ATAC-seq data and assigned
to promoter-enhancer pairs based on Hi-C interactions
if available. It is recommended to compute the pairs as
described in the following, but it is also possible to use
pre-computed regions or pairs.

Combining ATAC-seq peaks over time into one set of open
chromatin regions
For defining promoters and enhancer candidates, we
employ time series ATAC-seq data. This is based on the
assumption that relevant regulatory regions will be de-
tectable as accessible chromatin regions in at least one
time point during a differentiation process that they are
functionally active in. Therefore, the sets of ATAC-seq
peaks from each time point are combined and then
merged if they overlap with a minimal length of 101 bp.
This number was choosen as peaks have a minimal
length of 200 bp and transitive overlaps should be
avoided. Merged regions overlapping ENCODE blacklist
regions (mm10 version 2 for mouse data or hg19 ori-
ginal version 1 for human data, both from [45]) were
discarded. The resulting merged regions are one final
representative set of regions over all time points.

Categorization into promoters and enhancer candidates
The total set of open chromatin regions were loosely
categorized into promoters and enhancer candidates
based on their overlap with GENCODE annotation
[46], specifically all transcript TSSs. For mouse data
we use GENCODE release M24 and for human data
GENCODE release version 29 lift 37 (v29lift37). We
use the terms promoters and enhancers as proxies for
proximal (TSS adjacent) and distal candidates of
regulatory regions. Promoters are defined as regions
where: 1) on one strand there is an overlapping TSS
and on the other strand there is not, or 2) on both
strands there are overlapping TSSs (and the TSS on
the plus strand must have a larger coordinate than
the TSS on the minus strand). Enhancer candidates
are defined as regions where there is no overlapping
TSS on either strand.
Regions overlapping multiple TSSs from the same

gene are kept and the closest TSS is taken. Overlapping
regions and regions that do not fall into any of the
categories above, for example overlapping TSSs from
multiple genes on the same strand, are discarded. This
results in a set of non-overlapping open regions catego-
rized as either promoters or enhancer candidates.

Defining feature regions from open chromatin regions
For each candidate regulatory region, we define feature
regions as windows around the margins of open
chromatin. The feature regions are intended to span
the upstream and downstream nucleosomes flanking
the open regions. Due to merging the ATAC-seq
peaks across multiple samples/time points, the
resulting open regions can be quite large (in our
case for pancreatic data median lengths of 1200–
1400 bp for promoter regions and around 750 bp for
enhancer regions). Therefore we chose only 500 bp
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as extension around the open regions, which ensures
that at least the first 2–3 flanking nucleosomes in
both directions are captured. To ensure a distinctive
signal for the clustering, overlapping feature regions
are discarded.

Assigning promoters and enhancers to Hi-C interaction
pairs
The resolution and coverage of Hi-C data and ATAC-
seq data is very different. The resolution of Hi-C data is
limited by the enzymatic reaction and sequencing depth,

Fig. 11 Overview of steps and employed data types in TimelessFlex. The framework TimelessFlex consists of 3 steps (regions definition, clustering
and validation step) in which multiple data types are employed
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and the highest resolution is currently in the range of
10 kb. Furthermore, it cannot be expected that even
deeply sequenced libraries will cover all interactions be-
tween regulatory regions. ATAC-seq has in principle
single-nucleotide resolution, where it is used for TF
footprinting, and the open chromatin regions as derived
here have a median width of 700–1400 bp. The candi-
date assignment of promoters and enhancers to each
other was based on Hi-C derived interactions from all
time points combined, regardless of the specific time(s)
the interaction was detected. When we look at overlaps
between Hi-C bins and open chromatin regions, the
following cases can occur:

1 Hi-C bin overlaps exactly one open chromatin
region fully

2 Hi-C bin overlaps multiple open chromatin regions
fully

3 Hi-C bin overlaps only partly or not at all with an
open chromatin region

Hi-C bins from case 1 and 2 were used to define Hi-C
interaction pairs, and bins from case 3 were discarded.
Interaction pairs for which both bins overlap exactly one
open regions fully (both bins from case 1) are considered
unambiguous and therefore taken as initialization pairs.
Feature regions around initialization pairs are called
initialization feature pairs. Pairs for which one or both
bins overlap more than one open region (one or both
bins from case 2) are considered ambiguous and referred
to as multi pairs and their corresponding feature re-
gions as multi feature pairs. Figure 12 illustrates how
initialization and multi pairs are defined. Interactions
can occur between any type of open chromatin regions;
an initialization pair where one bin is overlapping a pro-
moter and one bin is overlapping an enhancer candidate
is a promoter-enhancer initialization pair, and analo-
gously for a promoter-enhancer multi pair.

Clustering step
In this step, histone modification signals at the feature
regions are computed, and their normalized changes are
used as observable variables in a Bayesian network. The
output of this step are clusters of regions with the same
chromatin state trajectories.

Computing histone modification signals over feature regions
To compute histone modification signals over feature
regions, the Signal Generator routine from JAMM [34]
was used (following the previous model Timeless [18]).
Signal Generator was run for each histone mark and each
time point with feature regions (−r), bin size of 1 (−b 1)
and depth normalization (−n depth). The values for the
parameter -f are the fragment lengths that are computed
by JAMM during peak calling and stored in the output
file. The output of Signal Generator is a depth-normalized
bedgraph file, and for each feature region the maximum
signal across the region was taken (see Fig. 2, bottom).
Then for each histone modification, the maximum signals
were quantile normalized [47] over time to allow compari-
sons between data sets. Finally, for each histone modifica-
tion, log2-fold changes between neighboring timepoints
were computed and these relative changes were used as
input for the clustering.

Clustering of histone modification signals with Bayesian network
The log2-fold changes between histone modifications of
consecutive time points are clustered with a Bayesian
network adapted from [18]. The Bayesian network de-
fines a joint probability distribution over the random
variables C and Xh

t , where C ∈ {1, ..., N} is a hidden
discrete random variable that represents the cluster IDs
of chromatin state trajectories and Xh

t is an observed
univariate conditional linear Gaussian random variable
which stores normalized log2-fold changes of histone
modification h at time interval t.

Fig. 12 Schematic of initialization and multi pairs from Hi-C data. Initialization (black) and multi (gray) pairs are shown with Hi-C bins bs and open
chromatin regions rt (yellow). Assignment of pairs leads to initialization pair (bi, bj) and multi pairs (bi+1, bj) and (bi+1, bj+1)
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The Bayesian network represents the following prob-
ability distribution:

p C;X1
1;…;X1

T ;X
2
1;…;X2

T ;…;XH
1 ;…;XH
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� �
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p Xh
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tð Þ
���

� �
;

where Xpa(Y) are parents of Y .

The directed acyclic graphs (DAGs) of the Bayesian
network and the random variables for clustering feature
regions from mouse hematopoiesis data and promoter-
enhancer feature pairs from human pancreatic differenti-
ation are shown in Fig. 13. For time intervals t = 1, ..., T
and histone modifications h = 1, ..., H, the number of
nodes in the TimelessFlex DAG for clustering feature re-
gions is (H × T) + 1. For clustering feature pairs there are
(2 ×H × T) + 1 nodes in the TimelessFlex DAG because
it contains a set of promoter-enhancer feature pairs for
histone modifications, so that one side represents the

Fig. 13 DAGs of Bayesian network for clustering feature regions (top) and promoter-enhancer feature pairs (bottom). Colors represent different
histone modifications (green: H3K27ac, red: H3K27me3, black: H3K4me1, orange: H3K4me2, gray: H3K4me3). For clustering of feature regions from
mouse hematopoiesis data (top) there are 4 histone modifications and 5 time intervals, therefore the DAG consists of 21 nodes. For clustering of
promoter-enhancer feature pairs from human pancreatic differentiation (bottom) there are 4 histone modifications and 3 time intervals resulting
in 25 nodes. One half of the continuous nodes represents histone mark signals of the promoter side and the other half represents histone mark
signals of the enhancer side
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histone mark signals of the promoter side and the other
side the histone mark signals of the enhancer side.
Without Hi-C data, the feature regions are first filtered

to keep only those with a histone mark signal above
mean signal on at least one time point. As the cluster
assignment is unobservable, the parameters of the model
cannot be computed directly. We use k-means as
initialization to learn model parameters via the EM algo-
rithm. For inference, the junction tree algorithm is used.
For each feature region, this results in the likelihoods
that a region is assigned to a cluster C ∈ {1, ..., N} given
the fold changes of histone modifications. The cluster
with the highest probability is used as the cluster assign-
ment of the region.
When there is an accompanying Hi-C data set avail-

able, a two-step strategy is applied: in a first step, the
initialization feature pairs, i. e. those with unambiguous
promoter-enhancer Hi-C assignments, are clustered.
The initialization feature pairs are divided into signal
and noise pairs, where signal pairs are pairs with histone
mark signals above the mean signal on both feature re-
gions. Then, (k − 1)-means is used for the signal pairs,
and the noise pairs are assigned to noise cluster k as
initialization for the EM algorithm. Cluster assignments
of feature pairs are generated as described above.
In the next step, the multi feature regions are clus-

tered. The model resulting from the initialization pairs is
used to generate cluster assignments as initialization for
the EM algorithm. The cluster number is fixed and clus-
ter assignments are computed as described.

Model selection
To decide on the number of clusters, we use Bayesian
information criterion (BIC) and Akaike information cri-
terion (AIC) computed as follows:

AIC ¼ − 2 � log Lð Þ þ 2 � k
BIC ¼ − 2 � log Lð Þ þ log Nð Þ � k

where L is likelihood of the model, N is number of ob-
servations (data points) and k is degrees of freedom
(number of parameters).
For visualization of the resulting clusters, normalized

counts are used. Each histone modification is scaled be-
tween 0 and 100, and the mean values with error bars
are shown.

Validation step
Validation of clusters with genomic data not used in
clustering
The resulting clusters of chromatin state trajectories
were validated by available genomic data that was not
used for clustering itself, for example time series RNA-

seq, ATAC-seq or Hi-C data. Note that ATAC-seq is
only used to define the coordinates of candidate regions,
and Hi-C only to determine promoter-enhancer pairs –
i. e., in both cases, neither time point nor quantitative
values influence the clustering. The goal was to see if
these data support the inferred chromatin state trajec-
tory patterns.
To check how the pancreatic promoter clusters correl-

ate with gene expression, RSEM [40] was used to calcu-
late expected FPKM values from the accompanying time
series RNA-seq data set. As a gene can have multiple
TSSs and therefore multiple promoter feature regions, it
can happen that these regions get assigned to different
clusters. We only take genes into account that are
assigned to exactly one cluster. For each time point in a
cluster, the logarithm of the geometric average of the ex-
pected FPKMs plus 1 was finally computed.
To see how accessibility changes over time in the clus-

ters, the time series ATAC-seq signal representing the
cut sites over the clustered feature regions is computed.
Normalized 1 bp bedgraphs of ATAC-seq data are used,
and for each time point, the length normalized number
of cut sites in each region was determined. For each
cluster, quantile normalization of these data over time
was used to allow for comparisons across time. Resulting
ATAC-seq signals were normalized and divided by 2.
As assigning promoter-enhancer pairs via Hi-C did

not take the time point of the interaction into account,
the clustering does not use information at which time
point interactions occurred. Hi-C interaction signals
between promoter-enhancer pairs visualize how many
interactions are present at which time point. The num-
ber of interactions between pairs is determined for each
cluster and time point, and normalized by the overall
number of Hi-C interactions that occur at this time
point for all the pairs in the clusters.
All results are visualized with the R barplot or box plot

function (outliers are not depicted).

Functional interpretation of clusters

Promoter clusters Lists of pancreatic stage-specific sig-
nature genes based on gene expression were reported in
[21]: 685 genes for D2, 155 for D5 and 236 for D10. We
only use the subset of those genes that are in the Hi-C
pairs of the clustering. For promoter clusters, the overlap
with these genes is computed, but only genes that could
be unambiguously assigned during the clustering are
taken into account.

Enhancer clusters To find enriched known motifs in
the clusters of enhancer candidates, HOMER suite
(v4.10) [48] with the script findMotifsGenome.pl was
used. It was run for a given cluster using the enhancers
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as input, the masked genome (-mask), the given region
sizes (-size given) and all enhancers from all clusters as
background (-bg regions_all.txt).
Intersections between pancreatic clusters of enhancers

and published ChIP-seq peaks for FOXA1, FOXA2 and
PDX1 (from [20]) were investigated. After liftOver of
peaks to hg19 coordinates, pairwise intersections were
computed with Intervene [49] followed by Fisher’s two-
tailed test to see if the amount of overlap is more than
expected given their coverage and genome size.

Implementation
Wrappers are implemented mostly in bash and R [50].
The framework uses GNU core utilities and multiple
publicly available bioinformatics software tools. For
clustering, the Bayes Net Toolbox (BNT) in MATLAB
[51] is used (Matlab R2016a (9.0.0.341360) 64-bit
(glnxa64), February 11, 2016). The pipeline is intended to
run on a high performance computing cluster. To enable
reproducibility a GNU Guix profile [52] was generated
and a Docker [53] image of the profile is available for
download at https://bimsbstatic.mdc-berlin.de/ohler/
henriettemiko/TimelessFlex-docker-pack.tar. This image
contains all packages needed for the framework except for
Matlab for the clustering and the packages intervene and
csvkit for intersections with published ChIP-seq peaks. All
code can be found at: https://github.com/henriettemiko/
TimelessFlex.

Availability and requirements
Project name: TimelessFlex
Project home page: https://github.com/henriettemiko/

TimelessFlex
Operating system(s): Linux
Programming language: bash, R, Matlab
Other requirements: Bayes Net Toolbox (BNT) in

Matlab, GNU core utilities, multiple publicly available
bioinformatics software tools
License: GNU GPLv3
Any restrictions to use by non-academics: Matlab li-

cense needed
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Additional file 1: Figure S1. Model selection for clustering of enhancer
feature regions during mouse hematopoiesis. Bayesian information
criterion (BIC) and Akaike information criterion (AIC) are computed in the
range of 2 to 30 clusters to decide on the number of clusters. Cluster
number 19 is a local minimum in the investigated range and was chosen
as cluster number.

Additional file 2: Figure S2. All 19 clusters of enhancer feature regions
during mouse hematopoiesis. Chromatin state trajectories are shown for
each cluster.

Additional file 3: Figure S3. Model selection for clustering of enhancer
feature regions during human pancreatic differentiation. Bayesian
information criterion (BIC) and Akaike information criterion (AIC) are
computed in the range of 2 to 30 clusters to decide on the number of
clusters. Cluster number 8 is a local minimum in the investigated range
and was chosen as cluster number.

Additional file 4: Figure S4. All 8 clusters of enhancer feature regions
during human pancreatic differentiation. Chromatin state trajectories are
shown for each cluster.

Additional file 5: Figure S5. All 10 clusters of initialization promoter-
enhancer feature pairs during human pancreatic differentiation. Chroma-
tin state trajectories and gene expression signals from RNA-seq are
shown for each cluster.

Additional file 6: Figure S6. Comparison of gene expression signals for
closest TSS and Hi-C supported genes. For all 10 clusters of initialization
promoter-enhancer feature pairs the gene expression signal from RNA-
seq for genes with closest TSSs to enhancers (left) and for Hi-C supported
assigned genes (right) is shown.

Additional file 7: Figure S7. All 10 clusters of multi promoter-enhancer
feature pairs during human pancreatic differentiation. Only the selected
multi regions are plotted. Chromatin state trajectories and gene expres-
sion signals from RNA-seq are shown for each cluster.
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