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Patient-derived xenograft (PDX)
models of colorectal carcinoma (CRC)
as a platform for chemosensitivity and
biomarker analysis in personalized

NARX¢

medicine ™

Abstract

Patient-derived xenograft (PDX) tumor models represent a valuable platform for identifying new biomarkers and novel targets, to
evaluate therapy response and resistance mechanisms. This study aimed at establishment, characterization and therapy testing of
colorectal carcinoma-derived PDX. We generated 49 PDX and validated identity between patient tumor and corresponding PDX.
Sensitivity of PDX toward conventional and targeted drugs revealed that 92% of PDX responded toward irinotecan, 45% toward 5-
FU, 65% toward bevacizumab, and 61% toward cetuximab. Expression of epidermal growth factor receptor (EGFR) ligands correlated
to the sensitivity toward cetuximab. Proto-oncogene B-RAE, EGFR, Kirsten rat sarcoma virus oncogene homolog gene copy number
correlated positively with cetuximab and erlotinib sensitivity. The mutational analyses revealed an individual mutational profile of
PDX and mainly identical profiles of PDX from primary tumor vs corresponding metastasis. Mutation in PIK3CA was a determinant
of accelerated tumor doubling time. PDX with wildtype Kirsten rat sarcoma virus oncogene homolog, proto-oncogene B-RAF, and
phosphatidylinositol-4,5-bisphosphate 3-kinaseM catalytic subunit alfa showed higher sensitivity toward cetuximab and erlotinib. To
study the molecular mechanism of cetuximab resistance, cetuximab resistant PDX models were generated, and changes in HER2,
HERS3, betacellulin, transforming growth factor alfa were observed. Global proteome and phosphoproteome profiling showed a
reduction in canonical EGFR-mediated signaling via PTPN11 (SHP2) and AKT1S1 (PRAS40) and an increase in anti-apoptotic
signaling as a consequence of acquired cetuximab resistance. This demonstrates that PDX models provide a multitude of possibilities
to identify and validate biomarkers, signaling pathways and resistance mechanisms for clinically relevant improvement in cancer
therapy.
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Introduction

Colorectal cancer (CRC) is the third most diagnosed cancer affecting
about 10% of men and 9% of women worldwide. CRC represents the fourth
most common cause of death due to cancer worldwide and the second
in Europe [1]. The inherent complexity of the disease, characterized by
multiple genetic aberrations in interconnected signaling cascades has impact
on therapy outcome and also on drug discovery [2,3].

CRC is treated by surgery, combined targeted and chemotherapy and
radiation [4]. However, therapeutic success is highly dependent on choosing
the right therapeutic modality for the right patient, who will benefit most
from an appropriate and effective treatment. Regarding chemotherapy of
CRC patients, 5-fluorouracil (5-FU), modulated by leucovorin (LV), was for
decades the only drugs available for CRC and metastatic CRC. Currently,
5-FU is combined with oxaliplatin or irinotecan as first-line treatment.
The introduction of targeted anti-cancer drugs such as bevacizumab and
cetuximab prolonged the survival of CRC patients [5].

However, identification of resistance signatures and stratifying responsive
patients is a current challenge in clinical management of CRC. This
demands appropriate and reliable preclinical models that reproduce cancer
pathway dynamics and closely resemble the clinical situation. In this context,
appropriate clinically relevant in vivo models are required, such as patient-
derived xenograft models (PDX). PDX were demonstrated to maintain the
morphological and molecular characteristics of the original heterogeneous
patient tumor and have been identified as a superior model system for
translational research [6]. Several studies have demonstrated that PDX models
can be used for the correct prediction for sensitivity or resistance of the tumor
to better guide therapies for the patient [7—13]. Analysis of clinically validated
biomarkers such as Kirsten rat sarcoma virus oncogene homolog (KRAS)
mutations and resistance to epidermal growth factor receptor (EGFR)
inhibitors in CRC PDX studies led to the same conclusions as clinical trials
and explored resistance signatures for improved therapy in CRC [14,15].

In this study, we established 49 CRC PDX models, performed thorough
characterization of molecular features such as gene copy number, mutational
status, gene expression as well as proteome profiles. We characterized tumor
responsiveness toward anti-cancer drugs and generated in vivo resistance
models to be used for molecular analysis of key features associated with
cetuximab-induced resistance. Our study strongly supports the power
and value of PDX models as a platform for biomarker identification
and verification and for more pre-clinical testing of individualized cancer
therapies.

Material and methods
Patient samples

Approval of the local ethical committees was given and informed
consent was obtained from all patients prior to sample acquisition and
experimentation. All patient data were used in an anonymized fashion
according to the ethical guidelines.

Establishment of PDX

All animal experiments were carried out in accordance to the German
Animal Welfare Act as well as the UKCCCR (United Kingdom Coordinating
Committee on Cancer Research).

Fresh tumor fragments were transplanted subcutaneously (s.c.) into the
left flank of anaesthetized NOD scid gamma mice. Mice were observed for
maximum 120 d and maintained under sterile and controlled conditions
(22 °C, 50% relative humidity, 12h light—dark cycle, autoclaved food
and bedding, acidified drinking water). Tumor growth was measured in 2
dimensions with a caliper. Tumor volumes (TV) were determined by the

formula: TV = (width? x length) x 0.5. Tumors were routinely passaged at
TV =1 cm?® Xenograft material was snap frozen and stored at -80 °C or

processed to formalin fixed, paraffin embedded (FFPE) blocks.

Chemosensitivity testing of the PDX

Groups of 5 mice were randomized to receive either solvent as control or
one of the respective drugs. Treatment was started at tumor size of approx.
0.1 cm?®. For evaluation of therapeutic efficacy, the ratio of the mean TV
of the treated group (T) and the control group (C) was expressed as the
T/C-value in percentage. Antitumor activity was also defined based on the
Response Evaluation Criteria in Solid Tumors. A relative tumor volume
(RTV, normalized to the TV on the first treatment day) greater than 1.2
was classified as progressive disease (PD), an RTV of 0.7 to 1.2 as stable
disease (SD), an RTV lower than 0.7 as partial response (PR), and a complete
disappearance of the tumor was classified as complete response (CR).

Generation of cetuximab-resistant PDX sublines

To generate resistant PDX isogenic models, 2 cetuximab sensitive PDX
models were continuously treated with cetuximab for 10 in vivo passages
(weekly treated with increasing doses of cetuximab: 50, 75, 100 mg/kg).
PDX with highest RTV was selected for further passages. The corresponding
untreated PDX was passaged in parallel as corresponding sensitive model.

HE-staining of tumor samples

FFPE blocks were sectioned (5 to 8 pm), deparaffinized. Shock frozen
tissues were cut (4 to 5pm) and fixed in 96% ethanol for 5min.
Specimens were stained according to standard hematoxylin eosin protocol
for histopathological evaluation.

Immunobistochemistry and immunofluorescence

For immunohistochemistry frozen sections were fixed with 4% formalin
at RT, blocked with peroxidase-block, washed in phosphate buffered saline
(PBS) and blocked with a Streptavidin-Biotin block (both from Vector
Laboratories), according to manufacturer’s instructions. Then sections were
blocked with 20% goat serum for 30 min at RT, incubated with the
biotinylated anti-EpCAM antibody (using the Animal Research Kit (Dako),
1:200, 2h, RT (Enzo Life Sciences), and horse radish peroxidase-labeled
streptavidin (1:800, 20 min, RT).

For immunofluorescence FFPE samples were washed in PBS and
permeabilized in 0.1% Triton-X, incubated with Cy3-labeled human anti-
nuclei antibody (Merck Millipore, dilution 1:300) 1h at 37 °C, washed
in PBS and mounted in glycerol and PBS (1:1) containing 5 pg/mL 4',6-
Diamidin-2-phenylindole (DAPI) (Roth). Staining was visualized with 3,3'-
Diaminobenzidine substrate (Dako) and counterstained with hematoxylin,
then mounted with VectaMount Aqueous Mounting Medium.

Total DNA extraction from tissues

Isolation of total DNA from tissues was carried out using the DNeasy
Blood and Tissue kit (QIAGEN) following manufacturer’s instructions. The
DNA was eluted in 200 pL of distilled H,O and used for further analysis.

DNA sequencing

DNA samples from the 49 PDX were analyzed with the Illumina
TruSeq Amplicon Cancer Panel (Illumina), targeting 212 amplicons from
48 oncogenes. Paired patient tumor and normal tissue from 3 samples were
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analyzed and compared to their respective PDX in order to corroborate the
conservation of the original genetic profile in the xenografts. All reagents
were supplied in the TruSeq Amplicon Cancer Panel Kit (Illumina). MiSeq
sequencing was carried out on Illumina MiSeq Desktop Sequencer. Illumina
Variant Studio 2.1 was used for sample analysis. For correlation analysis,
known SNPs were excluded and only somatic mutations with an allelic
frequency > 5% were considered.

Total RNA extraction from tissues

The total RNA from xenograft tissue samples was isolated by using the
RNeasy Mini Kit (QIAGEN) following the manufacturer’s instructions. The
RNA was eluted in RNAse-free 50 pL H,O and used for further analyses.

Gene expression amz/ysz's

The global mRNA expression was compared between sensitive PDX
and its cetuximab resistant counterparts. Transcriptome analysis of 12 CRC
PDX samples was performed using Illumina Beadchips (HumanHT-12,
V4). Sample preparation was done according to the “Whole-Genome Gene
Expression Direct Hybridization Assay GuidePart # 11322355 Rev. A”
from Illumina. For analysis, the Illumina HumanHT-12 array data were
quantile normalized on probe level (47,323 probes) and on gene level
without background correction using Illumina GenomeStudio V2011.1.
cDNA synthesis

The Reverse-Transcriptase-Kit (Applied Biosystems) was used according
to manufacturer’s instructions to generate a master mix of 1 x RT-
buffer, containing 500 pM dNTPs, 5.5mM MgCl,, 2.5pM random
hexamers, 0.4 U/pL RNase inhibitor und 1.25 U/pL MultiScribe-Reverse-
Transkriptase. Then, 200 ng of RNA were diluted in 10 pl RT-buffer and the
RT-PCR reaction was conducted at 25 °C, 10 min; 48 °C, 30 min, and 95
°C, 5 min.

Gene expression analysis by quantitative real-time PCR

200 ng of cDNA, TagMan Fast Master Mix and Gene Expression Assay
kit were combined in a total volume of 20 pL according to manufacturer’s
instructions. The real-time polymerase chain reaction (PCR) was carried out
on a StepOnePlus System and was conducted at 95 °C for 20 s, followed by 40
cycles of 95 °C, 1 s and at 60 °C, 20 s. The amplification plots were evaluated
with the StepOne Software Version 2.3. The threshold cycle (Cr) of the gene
of interest was normalized to the Ct of B-actin and the ACr-values were
used to compare the expression between samples.

Enzyme-linked immunosorbent assay

Protein lysates were generated for EGFR and its ligand analysis.
Tumor tissues were homogenized in 200pL T-PER Tissue Protein
Extraction Reagent (Life Technologies), supplemented with protease and
phosphatase inhibitors (Sigma-Aldrich). Then, samples were freeze-thawed
and centrifuged 15 min, 4 °C at 13,000 x g. Protein concentration was
measured with a Protein Assay (Bio-Rad), using a bovine serum albumine
(BSA) standard curve and adjusted to 4pg/pL. DuoSet enzyme-linked
immunosorbent assays were used to measure the concentration of EGFR,
Ampbhiregulin (AREG), epiregulin (EREG), betacellulin (BTC), EGF,
and transforming growth factor alfa (TGF«) according to manufacturer’s
instructions (USCN Life Science). The concentrations were normalized to
the total protein concentration.

Protein extraction and digestion

The tissues were cryo-fractured on dry ice using a Covaris CP02
cryoPREP Automated Dry Pulverizer. Proteins were extracted with an 8 M

Urea-based extraction buffer and reduced with 5mM DTT (Thermo Fisher
Pierce) for 1h at 37 °C. Cysteine residues were alkylated by adding IAA
(Sigma-Aldrich) to a final concentration of 10 mM, followed by incubation
for 45 min in the dark at 25°C. Samples were diluted 1:4 with 50 mM Tris-
HCI (pH 8.0). LysC (Wako) was added in an enzyme/substrate ratio of 1:50
followed by incubation for 2 h at 25 °C. Trypsin (Promega, enzyme/substrate
ratio of 1:50) was added for overnight digestion at 25 °C, then quenched by
acidifying the mixture to a final concentration of 1% FA (Sigma-Aldrich).
The peptide samples were desalted using tC18 SepPak cartridges with a
vacuum manifold.

Tandem Mass Tag labeling and fractionation

For multiplexing, 200 pg peptide samples were labeled with 400 pg
tandem mass tag (TMT)-10 reagents (Thermo Scientific). The samples
were separated by high-pH reversed-phase liquid chromatography using
Agilent 1290 Infinity II LC system into 96 fractions that were combined
in a step-wise manner, into 28 fractions for proteome and 14 fractions for
phosphoproteome analysis. Early-, middle-, and late-eluting peptides were
combined by mixing every 28th original fraction for the proteome and every
12th original fraction for the phosphoproteome analysis. A total of 10% by
volume of the material was used for proteome analysis. The remaining 90% of
each sample was enriched for phosphopeptides by immobilized metal affinity
chromatography using high capacity Fe (III)-NTA cartridges on Agilent
Bravo automated liquid handling platform.

LC-MS/MS analysis

Tryptic peptides were analyzed on an EASY-nLC 1200 system coupled
to a Q-Exactive HF-X (Thermo Fisher Scientific). The EASY-nLC system
was equipped with a 75 pm x 20 cm column (packed in-house with 1.9 um
C18 resin; Reprosil Gold, Dr. Maisch) and operated at a flow rate of 250
nL/min applying a 110 min linear gradient from 2 to 90% solvent B (90%
ACN, 0.1% FA) in solvent A (3% ACN, 0.1% FA). MS measurements
were performed on Q Exactive HF-X with the following modifications:
MSI spectra were recorded at a resolution of 60k using a maxIT of 10 ms.
Fragment spectra were acquired at 45k resolution using a maxIT of 86 ms for
global proteome measurements and a maxIT of 120 ms for phosphoproteome
measurements.

Data analysis

For TMT experiments, peptide identification and quantification were
performed using MaxQuant (version 1.6.0.1) [16]. Tandem mass spectra
were searched against human and mouse reference proteome (Uniprot fasta,
downloaded on 09.01.2017) supplemented with common contaminants.
For all searches carbamidomethylated cysteine was set as fixed modification
and oxidation of methionine, N-terminal protein acetylation, and for
immobilized metal affinity chromatography data also phosphorylation on
serine, threonine, and tyrosine residues as variable modifications. Trypsin/P
was specified as the proteolytic enzyme with up to 2 missed cleavage sites
allowed. Results were adjusted to 1% false discovery rate. The reporter-ion
intensities were corrected for isotopic impurities before using the reporter-
ion signals in each MS/MS spectrum for quantitative calculation s [17].

Statistical analysis

All statistical analyses were performed with Graph Pad Prism 5. For the
response evaluation in the sensitivity characterization, two-tailed ANOVA-
test was used. Correlation analysis was performed as Spearman rank-order
correlation with a two-tailed Pvalue, and Spearman Rho (rs) were calculated.
Mann-Whitney U tests were performed to compare the generated cetuximab
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resistant PDX sublines with their sensitive counterparts. A P value of < 0.05
was considered as statistically significant.

Statistical analysis of proteome and phosphoproteome

The corrected reporter ion intensities obtained from the mass-
spectrometric measurements were divided by the internal standard mix
reporter jon intensities and log-transformed using the R-statistical software
package [18]. The ratios for the resistant vs control were calculated
and used for the one-sample moderated # test with Proteomics Toolset
for Integrative Data Analysis (Protigy; https://github.com/broadinstitute/
protigy). All identifications were considered significant with adj. P< 0.1 and
reproducibility filter alfa = 0.01 in. Significantly regulated proteins were used
for the Gene Ontology analysis using the DAVID online tool [19]. Heatmaps
were created using pheatmap package in R.

Results
Histological characteristics of CRC PDX models

For establishment of the 49 CRC PDX, 87 surgical tumor samples
(patient characteristics Table 1) were used, reflecting an engraftment rate of
56%. The average time to initial engraftment in NOD scid gamma mice was
49.4 £+ 19.5 d. Of these 49 PDX, 27 (55%) were derived from colon and 22
(45%) from rectum (Table 2).

The number of PDX derived from primary tumors was balanced to those
PDX derived from metastases (53% vs 47% respectively). The metastasis-
derived PDX were evenly distributed between metastasis from lung or
liver. Histology of primary CRC patient tumor tissue was compared with
corresponding PDX tissue (Figure 1).

All PDX showed similar characteristics of adenocarcinomas and
were therefore well comparable with the initial patient tumor sample
(Figure 1A). This adenocarcinoma histology was maintained through serial
passages (Figure 1B). The tumor cells in the PDX expressed the human
epithelial marker EpCAM. Further, they were positive for human nuclei
antibody staining, whereas the surrounding stroma was negative, indicating
murine origin of the stroma in the stably engrafted PDX (Figure 1A),
indicating a replacement of human by murine stroma during in vivo passaging

of the PDX.

Mutational status and genetic stability of CRC PDX models

Mutation analysis in the PDX revealed frequent mutations in the
prominent oncogenes, such as adenomatous polyposis coli (APC), KRAS,
and P53, as well-known key players in CRC (Figure 1C; Suppl. Table 1).
Highest mutational frequency of 67.3% was detected for APC, followed by
55.1% for KRAS and 53.1% for P53 in the 49 CRC PDX. A lower percentage
of PDX possessed mutated NRAS, PTEN, BRAF or PIK3CA (4.1%, 6.1%,
10.2%, or 16.3%, respectively).

To evaluate whether the PDX retain the genetic profile, mutational
analyses were performed for all models regarding normal-, primary tumor-
and PDX tissues. The mutation analysis of the original patient tumor after
establishment and also over serial passages in 3 representative PDX revealed
mutations in the genes APC, KRAS, PIK3CA, and TP53 of the respective
patient tumor tissues. These were also present in all analyzed passages of the
matched PDX. No mutations were detected in the corresponding normal
tissues. Comparison of primary tumor tissue vs PDX indicated no gains
or losses of mutations throughout the xenografting and passaging process
(Table 3) supporting stability of the mutational status within driver oncogenes
and suppressor genes in the PDX.

Growth characteristics of the PDX models

Tumor doubling time (TDT) was determined as one parameter for PDX
growth (Figure 2). Mean TDT of the 49 CRC PDX was 9.96 & 4.73 d, with a
broad range between 2.5 and 30.5 d. TDT of 50% of PDX models clustered
in a rather narrow range of 7.1 to 11.7 d. PDX derived from the colon or
rectum were not different in their TDT. Similarly, TDT of PDX derived from
primary tumors and PDX derived from metastasis did not show differences.
Analysis of the mutational status of the PDX regarding TDT showed no
correlation between mutations in APC, KRAS, TP53, PTEN, BRAE or
NRAS. Interestingly, mutated PIK3CA (= 8 PDX) had a significant impact
(P=10.019) on TDT (7.1 & 2.8 d in mutated vs 10.5 & 4.8 d in wild type
PIK3CA; 7= 41).

Sensitivity of the PDX models toward drug treatment

One key parameter of PDX models is responsiveness toward conventional
and targeted drugs.

The sensitivity of PDX toward chemotherapeutics including 5-FU,
oxaliplatin and irinotecan as well as toward targeted drugs bevacizumab,
cetuximab and erlotinib were tested as monotherapy (Figure 3A and B
and Suppl. Tables 2 and 3). The criterion for response was fulfilled, if the
treated to control value (T/C) was <50%. By this, 44% of the 49 PDX
responded to 5-FU and 37% to oxaliplatin treatment. Best responses were
achieved for irinotecan in 92% of the PDX, which can be attributed to
the specific activating metabolism in mice [20]. For the targeted agents,
best response rates were obtained with cetuximab (61% of PDX) and
bevacizumab (65% of PDX). Erlotinib showed a response in 41% of the
PDX. Interestingly, comparison of PDX models derived from tumor samples
of the same patient showed almost identical sensitivity profiles (Figure 3B,
Suppl. Tables 2 and 3).

Since mutational status of KRAS is recognized as an important biomarker
for resistance toward EGFR-targeted therapies, the influence of KRAS,
BRAF and PIK3CA was correlated to PDX sensitivity toward cetuximab
and erlotinib. Among the sensitive PDX with T/C-value <25%, only 2/17
models (12%) have an activating KRAS mutation. By contrast, 25/32 (78%)
of resistant PDX carried a KRAS mutation (Figure 3C). Of 5 PDX with a
BRAF mutation, 3 carrying the V600E mutation (Co5854, Co10302A, and
Co010302B) were resistant to cetuximab. The T/C-values for cetuximab and
erlotinib were not significantly different between PDX with a mutated or
a wild type PIK3CA or BRAF. However, more importantly, triple wild-type
PDX for BRAFE, KRAS, and PIK3CA were significantly more sensitive toward
cetuximab or erlotinib (significantly lower T/C-values; P=0.001 or P=0.01
respectively) than PDX with an activating mutation in 1 or more of these 3
genes (Figure 3D).

Influence of gene copy numbers on PDX sensitivity toward targeted drugs

As for gene mutational status, we also analyzed if alterations in gene
copy numbers (GCN) have an impact on responsiveness of the PDX toward
targeted drugs and analyzed EGFR, KRAS, NRAS, BRAF, and MET GCN
alterations (Figure 4).

This analysis indicated, that 14/49 PDX harbor increased GCN (>2) for
EGFR (Figure 4A, Suppl. Table 4). For KRAS, 3/49 PDX had 5 to 9 copies
of the gene. BRAF amplifications were detected in 9/49 PDX (Co7596 had a
BRAF copy number of 23). The correlation analysis revealed better response
to cetuximab or erlotinib in the PDX with high GCN for EGFR, KRAS,
and BRAF (Figure 4C). This indicates that a potentially higher activity of
EGFR/MAPK signaling increases the tumors’ vulnerability toward cetuximab
or erlotinib therapies.
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Table 1
Key clinical data of patients from whom PDX models were established.
PDX Patient characteristics Tumor sample characteristics
Gender Age TNM-status Grading Classification  Primary site  Metastasis

Type Site

Co 5676 f 67 T3aNOMO G2LOV1RO0  primary rectum

Co 5677 m 71 T4bN1MO G2LOVORO  primary colon

Co 5679 f 51 T3N2M1 G3L1V1IR0  primary colon

Co 5682 f 78 T4bN2MO G2LOV1RO  primary rectum

Co 5734 m 79 T3bNOMO G2LOVORO  primary colon

Co 5735 m 84 T3NOM1 G2 metastasis rectum met liver

Co 5736 f 77 TANOMO G2LOVORO  primary rectum

Co 5771 m 49 T3N1MO G2LxVORO  primary rectum

Co 5776 m 55 yT3N1M1 G3L1VIRO0  metastasis rectum syn liver

Co 5841 m 55 T3N2M1 G3L1V1IRO  primary rectum

Co 5854 f 52 T4AN2MO G3L1V1IRO  primary colon

Co 5896 m 71 T2NOMO G2LOVORO  primary rectum

Co 6044 m 53 T4AN2M1 G2LOV1R2  metastasis rectum syn lymph node

Co 6228 f 60 rp TXNxM1 GxLxVxR0  metastasis colon met liver

Co 7271 f 66 pT2pN1 G3LOVIRO  metastasis colon syn lung

Co 7475 f 68 pT2pNO G2 metastasis rectum met lung

Co 7515 m 53 pT3 pNOMO LOVO RO metastasis rectum met lung

Co 7523 f 64 pT3pN1cMO n.a. metastasis colon met lung

Co 7553A2 m 77 T3pN1MO G3 metastasis colon met lung

Co 7553B2 m 77 T3pN1MO G3 metastasis colon met lung

Co 7567 m 75 pT3pNOM1 RO metastasis colon syn lung

Co 7596 f 72 pT3NxcM0C2 n.a. metastasis rectum met lung

Co 7660' f 67 pT2pN1 G3LOV1R0  metastasis colon met lung

Co 7689 f 58 pT3N2MO G2c metastasis rectum met lung

Co 7809 m 67 yrp TxNxM1 ROLxVxG3  metastasis colon syn liver

Co 7818 m 68 rp TXNxM1 ROLxVxG2  metastasis colon syn lung

Co 7835 m 75 rpTxNxM1 ROLXxVxG2  metastasis colon syn lung

Co 7888 m 73 yrepTxNxM1 ROLxVxGx  metastasis rectum syn liver

Co 7935 m 65 rpTxNxM1 ROLXxVxG2  metastasis rectum syn liver

Co 9587 f 80 pT3pNO0(0/16) G2ROL1VO0  primary colon

Co 9634 f 61 pT3C4pN1C4cM1  LOVO metastasis colon met liver

Co 9689A3 m 53 pT3pN2cM1 L1V1 metastasis rectum met liver

Co 9689B3 m 53 pT3pN2cM1 L1V1 metastasis rectum met liver

Co 9729 m 68 pT3pN1ic G3L1VO0 primary rectum

Co 9775 m 67 pT3pN2apM1 G2ROLOVO  primary colon

Co 9946 m 81 pT4bpNO G2R0O primary colon

Co 9978 f 50 pT4apN1bpM1 G2ROL1V1 primary rectum

Co 99974 f 27 pT4apN2b G3ROL1V1 primary rectum

Co 10,158 m 67 pT4apNO G2ROLOVO  primary colon

Co 10,194 m 78 pT3pNO G2ROLOVO  primary colon

Co 103004 f 27 pT4apN2b G3ROL1V1 metastasis rectum syn liver

Co10302A° m 64 pT4b(m)pN1b G2RXL1VO  primary colon

Co10302B° m 64 pT4b(m)pN1b G2RXL1VO  primary colon

Co 10,377 m 50 ypT3ypNO RxLOV1G2  primary colon

Co 10,383 m 51 pT2pNOpM1 G3ROLOVO  primary rectum

Co 10,588 m 72 pT3pNO G2R0 primary colon

Co 10,764 m 62 yrpT4bpN1apM1 n.a. primary colon

Co 10,925 m 73 pT3pN2bcMO RO primary colon

Co 11,061 f 81 pT3pNO G2ROLOVO  primary colon

1-5PDX models were derived from the same patient; syn = synchronous metastasis; met = metachronous metastasis.

Impact of EGFR ligand and receptor expression on PDX sensitivity

toward targeted drugs

Regarding targeted drug action, we also analyzed expression of EGFR
ligands AREG, EREG, EGE BTC, and TGFa in association with

responsiveness toward cetuximab or erlotinib. This analysis revealed a
significant (P< 0.05) correlation for expression of AREG, EREG and

TGFa with cetuximab response of the PDX. No such correlation was

detected regarding erlotinib response (Figure 4B and C). This reflects the
close molecular interplay of cetuximab and the respective natural ligands as
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Figure 1. Histological and mutational status of CRC PDX. (A) Staining of the original patient tissue paired to the corresponding PDX tissue. Representative
patient/PDX pairs were chosen: Co10194 is derived from a primary colon carcinoma sample, C09978 from a rectum sample, Co7809 was derived from a
liver metastasis and Co7475 is derived from a lung metastasis. Upper panel, original patient tissue: HE staining; panel 2 to 4, PDX tissue: HE staining; IF
staining for human nuclei, DAPI = blue; human nuclei = orange (Cy3); IHC staining for EpCAM. (B) Representative HE staining of consecutive passages of
PDX Co05854 and Co11061 demonstrate characteristic phenotype of human colorectal carcinoma. Scale bar represents 100 pm. (C) Summary of mutational

status of all PDX models.

determinant of drug efficacy. By contrast, no significant correlation was found
between sensitivity toward cytostatic drugs and the expression of EGFR and
its ligands.

Generation and characterization of cetuximab resistant CRC PDX

We generated isogenic PDX pairs of cetuximab responsive and resistant
models by the continuous treatment of PDX with cetuximab (Figure 5).

After 10 passages of the PDX with cetuximab, resistance had developed,
reflected by increase in T/C values for the Co7596 model (Co7596_orig

vs Co7596_cetux) from 0.7% up to 74% and for the Col0718 model
(Co10718_orig vs Col0718_cetux) from 23% to 46% (Figure 5A).

For these pairs we determined if emergence of cetuximab resistance
is associated with alterations in mutational status. The analysis revealed
no alterations for the mutational status and mutated allele frequency
(Figure 5B) of APC, BRAE, KRAS, RET, SMAD4, and TP53 in
Co7596_orig vs Co7596_cetux. In Col0718_orig vs Col0718_cetux,
cetuximab resistance was correlated with an increased frequency of mutated
KRAS from 67% to 93% and decreased frequency for SMAD4 from 72% to
55%. This indicates the emergence of rather individual alterations during the
emergence of cetuximab resistance.
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Table 2

Summary of key parameters of the established 49 PDX.

Number Ratio of PDX [%]

Patients 44

Male 28

Female 16
Generated PDX 49

PDX derived from colon carcinoma 27 55
PDX derived from rectum carcinoma 22 45
PDX derived from primary tumors 26 53
PDX derived from metastases 23 47
Liver 1 22
Lung 11 22
Lymph node 1 2

Since we had observed a significant correlation between GCN of BRAF
and EGFR and response toward targeted drugs, we also analyzed this
correlation regarding cetuximab resistance. However, we did not detect
significant alterations in GCN during emergence of resistance in the 2 models

(Suppl. Table 5).

Expression alteration of EGER family members and their ligands during

cetuximab resistance in PDX

Since targeted therapies aim at EGFR signaling, the expression of the
EGFR receptor family and its ligands was compared in original PDX and
their resistant counterparts. Expression analysis for EGFR, HER2, HER3
and HER4 revealed no significant changes in Co7596_orig vs Co7596_cetux
(Figure 5C). By contrast, in the Co010718_cetux model, a statistically
significant increase in HER2 and HER3 (P< 0.05) was detected, pointing
to the diverging response of the CRC tumors toward cetuximab treatment.

Table 3

As expression of EGFR ligands correlated with sensitivity to cetuximab
in the 49 PDX, expression of these molecules was also analyzed in the
cetuximab resistant PDX to evaluate potential changes of AREG, EREG,
BTC, EGE or TGFa. In this regard elevated expression only of BTC and
TGFa was detected at protein level in the Co7596_cetux, and at mRNA-level
in Co10718_cetux PDX (Figure 5D). The concentration of BTC in PDX was
almost 2-fold in the Co7596_cetux (from 141.95 pg/mg protein to 263.36
pg/mg protein) when compared to the original PDX. Also, in Co10718_orig
vs Col0718_cetux, a statistically significant difference in ACr-values was
detected for BTC, EGE and TGFa. The expression levels of BTC and TGF«

were elevated and the level of EGF was lowered.

Molecular analysis of cetuximab resistant CRC PDX

To obtain a deeper insight into potential alteration mediating resistance
toward cetuximab, differential gene expression of Co7596_orig and
Co7596_cetux, as well as Col0718_orig and Col0718_cetux, was
performed (Figure 6A).

The differential gene expression analysis revealed decreased EGFR
expression in Col0718_cetux compared to Col0718_orig (Differential
score =-2.55). HER2 and HER3 were upregulated in Co7596_cetux and
Co10718_cetux, respectively. Interestingly, an up-regulation of c-MET was
seen in Co10718_cetux, and BRAF was down-regulated (not significantly) in
Co7596_cetux, similarly to its CGN. (*P < 0.05, **P < 0.01, ***P < 0.001)

Proteomics and phosphoproteomic analysis of cetuximab resistant CRC
PDX

To characterize proteomic and phosphoproteomic changes involved in
the acquisition of cetuximab resistance in CRC PDX models, we performed
TMT labeling-based global proteome and phosphoproteome analysis of
Co010718 and Co7596 resistant models and their sensitive counterparts
(Figure 6B, Suppl. Figure 1; Suppl. Table 6). Among the 15,167 proteins and
24,890 phosphosites that were quantified without missing values, we detected

Patient tumor and matched normal tissue, paired with tissue from different, sequential passages of the corresponding PDX models was
sequenced using the TruSeq Amplicon — Cancer Panel. 212 amplicons in 48 oncogenes were targeted. The results obtained for the main
oncogenes are summarized in the table (AA = amino acid, n.a. = not analyzed).

Mutation detected, (AA mutation)

Patient or PDX, passage APC BRAF EGFR KRAS MET PIK3CA TP53
Co09587, normal tissue - - - - - - -
Co09587, patient tumor n.a. n.a. n.a G12D n.a n.a. n.a.
Co09587, PO ins1554;R876 - - G12D - del104 -
Co09587, P1 ins1554;R876X - - G12D - del104 -
Co09587, P2 ins1554;R876X - - G12D - del104 -
Co09587, P3 ins1554;R876X - - G12D - del104 -
Co9587, P4 ins1554;R876X - - G12D - del104 -
Co09775 normal tissue - - - - - - -
Co9775, patient tumor - - - G12D - - G245S
Co09775, PO - - - G12D - - G245S
Co9775, P1 - - - G12D - - G245S
Co09775, P3 - - - G12D - - G245S
Co9775, P4 - - - G12D - - G245S
C010925 normal tissue - - - - - - -
Co10925, patient tumor E1379X - - - - - -
Co010925, P1 E1379X - - - - - -
Co10925, P2 E1379X - - - - - -
Co010925, P4 E1379X - - - - - -
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Figure 2. Tumor doubling times (TDT) of the PXD models. The tumor doubling time was measured once the models were considered as stably established.

The PDX with mutated PIK3CA are marked by an “*.”

9095 proteins, 15,237 phosphosites that could be matched to the human
proteome. Of these, 1335 proteins and 1259 phosphosites were significantly
regulated in the Co10718_cetux model (adj. P value < 0.05, one-sample #
test), whereas no significant changes were observed for the Co7596_cetux
model due to sample related variability between replicates (Suppl. Figures 2
and 3).

We performed pathway enrichment analyses for the significantly up
and down regulated proteins and phosphosites in Co10718 model. Top
20 significantly up and down regulated GO terms and KEGG pathways
are shown in the bar graphs (Suppl. Figure 4). Here, endocytosis, cell-cell
adhesion, tight and adherence junctions related terms were enriched in the
downregulated proteins and phosphosites population of the resistant model.

We also examined proteomic and phosphoproteomic profiles of proteins
belonging to EGFR and downstream signaling cascades including MAPK,
PI3K/AKT/mTOR and apoptosis pathways (significance cut-off adj. P value
<0.1, one-sample ¢ test; Figure 6B). The results on protein level indicated no
significant change on the EGFR itself, while KRAS was slightly upregulated
in the cetuximab resistant model. Notably, among EGFR ligands, AREG
level was increased whereas EREG level was slightly decreased in the
Co010718_cetux model (Figure 6B). Also, we found increased levels of RIN1,
a RAS effector protein known to compete with RAF for RAS interaction.

Deep phosphoproteome analysis showed increased phosphorylation levels
of RIN1 (Ser 351) and its downstream effector ABL. Both proteins
have previously been shown to be involved in EGFR stabilization and
inhibition of macropinocytosis (PMID: 22,976,291). In addition, increased
phosphorylation of DNMI1 (dynamin) and RACI, proteins involved in
endocytosis and re-organization of the actin cytoskeleton was observed. We
detected increased phosphorylation on MAP3K1 (MEKK1) (Figure 6B),
known to have unique structural characteristics that mediate its specific
activities including regulation of cell survival and apoptosis [56].

Metabolic pathways, cell cycle and mRNA processing, and transport-
related terms were enriched for the upregulated proteins and phosphosites. In
order to further elucidate pathways which are activated or shut down upon
acquired cetuximab resistance, we performed phosphosite-centric PTM-

SEA (Post Translational Modifications Set Enrichment Analysis) analysis
using individual quantified phosphosites (»=11,917 phosphosites) of the
Co010718 PDX model and queried against PTMsigDB. PTM-SEA resulted
in 102 enriched pathway signatures which includes at least 5 matched
phosphosites. Enrichment scores were calculated for each sample and
individual pathway signatures. To obtain differentially enriched pathway
scores between cetuximab resistant and sensitive models, we applied two-
sample moderated ¢ test to the replicates of the Co10718 model. In total, we
detected 23 significantly enriched signatures between resistant and sensitive
models (Figure6C and D). We observed positive enrichment of EGFR
and EGF pathway signatures in the cetuximab sensitive models. Among
the signatures that showed positive enrichment upon acquired cetuximab
resistance were proliferative kinase signatures such as CDKI and CDKG,
Aurora kinases and DYRK2.

Discussion

This study described the successful establishment of 49 CRC PDX and
their thorough characterization. We were able to stably generate PDX with
cetuximab resistance to further explore the molecular features associated with
emergence of this resistance. We employed these models to explore in detail
the impact of the EGFR signaling network in the context of chemosensitivity.

Histology, stability, and sensitivity of the PDX

All 49 engrafted PDX displayed the characteristic adenocarcinoma
architecture with intense uniform membranous and cytoplasmic staining
for EpCAM [21]. Human nuclei staining confirmed that CRC tumor cells
reconstructed structures of primary tumors by replacing human stroma
through several passages of PDX. In the vast majority of studies, as well as
in our set of PDX, only murine stroma was detected in stably engrafted PDX
[22-24]. Regarding growth characteristics, the mean TDT for the 49 PDX
was 10 d. This indicates that cells growing in a PDX undergo much less
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Figure 3. Chemosensitivity of the PDX models. (A) Three representative chemosensitivity curves of PDX C09587, C0o9689B, and Co10383 are shown.
Groups of 5 tumor-bearing mice were treated either with vehicle (control group) or specific drug as monotherapy. (*P< 0.05, **P < 0.01, ***P < 0.001).
(B) Summary of sensitivity characteristics of the PDX models toward standard of care cytostatic and targeted drugs based on the optimal treated to control

(optT/C) values, expressed in percent. (C) Sensitivity of PDX models toward

cetuximab: the 49 PDX models are arranged according to their optT/C-value for

cetuximab and are correlated to the KRAS mutational status. The bar below represents the relative tumor volume (RTV) values. The bar colors indicate the
respective mutational status of KRAS. (D) Comparison of optT/C-values for EGFR-inhibitors cetuximab and erlotinib between PDX with wildtype KRAS,
BRAE and PIK3CA (triple wt) and PDX with an activating mutation in one of these genes (mut).

divisions compared to xenografts derived from established tumor cell lines,
preventing genetic drift [25].

Mutation profiling showed that the key genetic elements driving tumor
growth (e.g., p53, KRAS) in patients were maintained in PDX [26,27].
Frequency of mutations in CRC PDX closely reflects frequency in human
primary tumor samples [22,28]. The frequency of 55.1% we describe for
KRAS in the PDX is rather at the upper level of the overall described
frequencies for CRC. However, for CRC in patient tumors and PDX models
frequencies ranging from 35% to 51% were described [15,29]. Therefore,
these models are well suited for sensitivity testing [7,28,30,31].

Regarding sensitivity toward drugs our set of PDX reflects the
heterogeneity known for CRC. The T/C-values for the cytostatic drugs 5-
FU and oxaliplatin reflect well the clinical response of CRC to the drugs.
Irinotecan reached highest response among all cytostatics due to the more
efficient drug metabolism in mice [20]. Lowest response was seen for
oxaliplatin. For targeted drugs, T/C-values for erlotinib correlated strongly
with those for cetuximab underlining their interference with same signaling
pathway.

We showed, that GCNs of BRAF, EGFR, and KRAS, correlated to
drug response to EGFR-inhibitors of the PDX. Amplification of EGFR
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Figure 4. Molecular characterization of PDX regarding GCN and AREG/EREG protein expression and chemosensitivity toward targeted drugs. (A) GCN of
EGFR in the 49 CRC PDX models, determined by a real-time PCR (left panel) and correlation to cetuximab response (right panel). (B) AREG expression at
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rs and their corresponding P values) of the GCN of the key molecules of the EGFR network (left table) and the sensitivity of the PDX toward cetuximab and

etlotinib, as well as ligand expression at mRNA and protein level (right table).

has been associated with sensitivity to cetuximab by several studies,
which is in accordance with our own results [32-35]. Thus, PDX
models can be considered representative of the patient tissue regarding

GCN.
EGFR pathway and targeted drug response in CRC PDX

The expression of EGFR and its ligands has been linked to a more
aggressive disease or a poor prognosis in several cancers, including CRC
[35,36]. Regarding EGFR ligands, highest and most differential expression
was found for AREG and EREG, indicating their biological relevance in the
PDX. Another analysis of 144 CRC tumors also determined that AREG and

EREG, are tightly co-expressed in primary tumors as well as in liver metastases
[37,38]. We showed that this link extends to BTC. Expression of EGFR
ligands can be upregulated upon activation of the receptor by the ligand itself
(auto-induction), as well as by other members of the EGFR ligand family
[39]. The correlation pattern of ligands and receptors in this study confirms
the redundant EGFR signaling in the PDX.

Higher expression of AREG and EREG correlated to better tumor growth
inhibition by cetuximab, which is well documented in CRC patients [40,41].
These correlations were not observed for erlotinib, underlining different
mechanisms of action of the 2 drugs. TGFa behaved inversely. Since TGFa
is an epithelial-specific autocrine mitogen, but also acts in a paracrine manner
to modulate the tumor microenvironment, its mitogenic action might protect
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the PDX from tumor growth inhibition. In a study of 62 CRC patients,
AREG and EREG were elevated in sensitive tumors, whereas TGFo behaved
inversely [42].

Comparison of the genetic profile between original PDX and cetuximab
resistant sub-lines

We generated models of acquired cetuximab resistance to examine relevant
mechanisms of acquired cetuximab-resistance at molecular level. Efforts to
generate preclinical models of cetuximab-resistance from xenograft tumors

have been limited to date [43—45].

The genetic profile and expression of EGFR-related molecules were
analyzed in 2 original PDX and their cetuximab-resistant counterparts.
The mRNA analysis both, by qRT-PCR and also by Illumina, showed a
downregulation of EGFR expression in Co10718_cetux, as well as an increase
of HER2 and HER3. Such upregulation of the HER2 and HER3 receptors or
their increased activation as response to EGFR inhibition has been reported in
preclinical models and cancer patients [44,46,47]. An increased ligand level
(e.g., TGFar) was observed in both resistant models, indicating that ligand
production can be a mechanism of resistance to EGFR blockade. Redundant
EGFR signaling and use of alternative receptors to activate downstream
mitogenic cascades are crucial in resistance to cetuximab. Increased expression
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Figure 6. Gene expression and proteome, phosphoproteome analysis of cetuximab sensitive vs resistant PDX. (A) Comparison of the gene expression of EGFR
receptors and molecules involved in EGFR signal transduction. (B) Heatmaps of significantly changed proteins and phosphosites (One-sample ¢ test, adj. P
value < 0.1, reproducibility filter = 0.01) within the EGFR, PI3K/AKT/Mtor, and apoptosis pathways (Wiki Pathway annotations) for the Co10718 model.
P values are calculated with data of 2 replicates for the Co10718_cetux models normalized against Co10718_orig models. The annotation column shows
2 lanes for 2 replicates of sensitive (Co10718_orig) and cetuximab resistant (Co10718_cetux) models with green and magenta colors, respectively. On the
heatmap, blue color indicates down-regulation whereas red color corresponds to proteins and phosphosites up-regulated in the cetuximab resistant comparing
to sensitive pair. (C) Volcano plot of the P values vs the logFC (fold change) of enrichment scores of PTM-SEA (Ref DOI: 10.1074/mcp.TIR118.000943).
Two-sample ¢ test is performed between resistant and sensitive replicates of the Co10718 model. Proteins crossing the significance lines (|logFC| > 2, Pvalue
< 0.05) are colored in blue or red. (D) Heatmap depicting enrichment scores of significantly regulated pathways in the PTM-SEA analysis.

of HER2 and HER3 can open novel treatments that target HER2 and/or
HER3.

Comparison of the proteomic and phosphoproteomic profile between
original PDX and cetuximab-resistant sub-lines

Proteome and phosphoproteome analysis revealed that acquired resistance
to cetuximab in CRC PDX affects multiple pathways downstream of the

EGEFR. Increased phosphosites within the EGFR pathway belong to proteins
associated with the regulation of EGFR trafficking, ubiquitination and
proteasomal degradation (RIN1, ABL1, CBLB, and SH3KBPI). It was
demonstrated before that increased EGFR degradation is associated with
acquired cetuximab resistance in metastatic CRC cells [48]. Additional
proteins known to play a role in endocytosis and the regulation of cytoskeletal
components include dynamin, ABL and the src family kinase-binding protein
SH3KBP1. These phosphorylation events indicate that alterations in EGFR
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and growth factor receptor internalization and trafficking are associated with
resistance to cetuximab and warrant further investigation.

Deep phosphoproteome profile analysis showed that canonical MAPK
and PI3K/AKT/mTOR pathways have major dephosphorylation events,
such as reduced phosphorylation of pTyr546 of PTPN11 (SHP2), pSer381
of GABI, pSerl83 and pThr246 of AKT1S1 (PRAS40), pSer388 of
RPS6KB1 (p70S6K) kinase, and several phosphosites on its substrate RPS6.
In contrast to downregulated phosphorylation profiles of several MAPK
pathway kinases such as MAP3K4, MAP2K2, or MAP2K5, and other
kinases such as PDK1 and PTKG6 in the Co10718_cetux model, we detected
increased phosphorylation on MAP3K1 (MEKK1) (Figure 6B). MEKK1 is
known to have unique structural and functional characteristics compared to
other MAPK pathway proteins, that mediate its specific activity including
regulation of cell survival and apoptosis [56].

Among the EGFR ligands, AREG level was increased whereas EREG level
was slightly decreased in the Co10718_cetux model. Regulation of AREG
and EREG expression has been reported to be involved in cancer metastasis
and drug resistance in various cancers [49-52].

Even though significant downregulation in the phosphorylation
profile of several MAPK pathway proteins was observed, we detected
increased phospho-MAP3K1 in the Col0718_cetux model. Several studies
demonstrated that MAP3K1 promotes cell survival or apoptosis depending
on the cell type, genetic alteration or stimulus [52-54]. In this regard,
decreased Casp3 protein level with increased phosphorylated MAP3K1 and
NF-«B point toward a MAP3K1-mediated cell survival mechanism in this
cetuximab resistance model [55-57]. Thus, tumor profiling on the genome
and proteome level after different treatments can determine possible changes
in the molecular drivers and signaling pathways and elucidate resistance
mechanisms in vivo.

In summary, a set of CRC PDX was established and extensively
characterized. The genetic and sensitivity profile of the PDX reflects the
heterogeneity of CRC. Correlation analysis of molecules involved in the
EGFR pathway, as well as targeted therapy addressing this pathway, reflected
the dynamics of the EGFR pathway regulation in the PDX models,
confirming them as a tool for preclinical cancer research.
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