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Imidazole propionate is increased in diabetes and
associated with dietary patterns and altered
microbial ecology
Antonio Molinaro et al.#

Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imi-

dazole propionate is a novel microbially produced metabolite from histidine, which impairs

glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the

MetaCardis cohort from three European countries have elevated serum imidazole propionate

levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial

gene richness and Bacteroides 2 enterotype, which have previously been associated with

obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the

genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and

controls did not differ in their histidine dietary intake, the elevated levels of imidazole pro-

pionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than

histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating

imidazole propionate that can modulate host inflammation and metabolism.
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Type 2 diabetes is a metabolic and societal disease that is
associated with an altered gut microbiome1–6, character-
ized by a lower abundance of butyrate-producing

bacteria1,2. Fecal microbiota transfer experiments in humans
have demonstrated that gut microbiota can directly affect insulin
sensitivity providing causal evidence that gut microbiota can
contribute to disease development7,8. Diet strongly affects the
microbial composition and provides a substrate for microbial
enzymes generating metabolites, which can modulate host phy-
siology9. Since the microbiome differs between ethnicities and
different geographical regions2,10,11, gut microbiome-derived
metabolites might be more conserved biomarkers than specific
taxa. Furthermore, metabolites can provide mechanistic insights
that may lead to the development of new therapeutic strategies for
clinical management of patients with impaired glucose
metabolism12,13.

Accumulating data suggest that microbial metabolism of diet-
ary components contributes to cardiometabolic diseases14–17, but
the full appreciation of the interaction between diet and the
microbiome in generating such metabolites is still scarce. Some
bacterial metabolites such as secondary bile acids18, short-chain
fatty acids19, branched-chain amino acids15, and trimethylamines
have attracted significant interest in cardiometabolic diseases20.
We recently identified that imidazole propionate (ImP) is pro-
duced by type 2 diabetes associated microbiome through alter-
native metabolism of histidine, which induces impaired glucose
metabolism by activating the p38γ-mTOR1-S6K1 signaling16,21.

Here we examine ImP serum levels in a large European mul-
ticentric cohort (MetaCardis), from three different European
countries, consisting of subjects with different severity of
impaired glucose metabolism demonstrating that ImP is
increased in subjects with prediabetes and type 2 diabetes. Fur-
thermore, we extend previous studies16,21 to demonstrate that
ImP is associated with, inflammation, altered microbiome, dietary
habits, but not histidine intake.

Results
Serum ImP is increased in pre- and type 2 diabetes. The
patients with type 2 diabetes in the MetaCardis cohort were
slightly older, with a higher proportion of non-Caucasian males
compared with healthy individuals and subjects with prediabetes.
Patients had an impaired metabolic profile [higher body mass
index (BMI) and waist/hip ratio, glucose, insulin, HbA1c, and
lipid profiles], while there were no significant differences in
kidney function (Table 1).

ImP serum levels were significantly higher in subjects with pre-
and type 2 diabetes compared with healthy controls (Fig. 1a), with
no impact of subject ethnic background (Supplementary Fig. 1a).
Similar observations were made in all enrollments centers
(Supplementary Fig. 1b). As compared to subjects in the lowest
quartile of ImP levels, those in the highest quartile had a
significantly higher risk of having prediabetes [odds ratio (OR)
1.75; 95% confidence interval (CI) 1.18–2.57; P= 0.006] and type
2 diabetes [OR 2.76, 95%; CI 1.86–4.12, P < 0.001; Fig. 1b, c,
Supplementary Table 1, after adjusting for traditional risk factors
(Model 1: age, gender, BMI, ethnicity) and for kidney function
(Model 2: Model 1 + creatinine clearance)].

We next examined associations between ImP levels and
markers of glucose and lipid metabolism as well as for surrogates
of insulin resistance. ImP correlated positively with fasting
HbA1c, glycemia, insulinemia, HOMA-IR, and triglyceride-
glucose index and negatively with HOMA-B. These results
indicate a link between circulating ImP and impaired glucose
metabolism profiles. Importantly, correlations remained signifi-
cant after adjustment for known traditional risk factors (Model 1:

age, gender, BMI and ethnicity), for kidney function (Model 2:
Model 1 + creatinine clearance), and even the presence of type 2
diabetes (Model 3: Model 2 + diabetes status, Fig. 1d,
Supplementary Table 2).

To investigate if ImP also was associated with the dynamic
assessment of glucose metabolism, we performed further analyses
on a subpopulation (n= 586) where oral glucose tolerance tests
(OGTT) were performed. Subject stratification based on ImP
quartiles revealed that elevated ImP levels were associated with
increased glucose, insulin, and C-peptide levels 2 hours after
OGGT, translating to reduced Stumvoll sensitivity index
(Supplementary Table 3).

All together, serum ImP is increased in pre- and type 2 diabetes
and associates with markers of impaired glucose metabolism
independently of diabetes status.

ImP is associated with diabetes treatment and co-morbidities.
Metformin is the first line of treatment for type 2 diabetes and has
a profound effect on microbiota composition and function22,23.
ImP can alter the glucose-lowering effects of metformin treat-
ment21. Thus, we evaluated the effects of metformin and other
anti-diabetic drugs on ImP levels (Supplementary Fig. 1c).
Patients with metformin-treated type 2 diabetes had higher levels
of ImP compared with those without any treatment. This could
be due to the altered microbiome following metformin
treatment22,23 or reflecting a more severe disease phenotype that
required polypharmacy. Indeed, subjects treated with insulin and
additional anti-diabetic drugs also had increased ImP levels.
When we performed a sub-analysis including only subjects naïve
for anti-diabetic treatments, subjects with type 2 diabetes dis-
played significantly increased levels of ImP [28.1 nM (16.1–59.2)
median and interquartile range; n= 140] compared to subjects
with prediabetes [27.8 nM (17–49.3) median and interquartile
range; n= 654] or normal glucose tolerance [19.7 nM (13.2–33.9)
median and interquartile range; n= 359] (P= 0.028, linear
regression after adjustment for age, gender, BMI, ethnicity, and
creatinine clearance).

When we performed a sub-analysis for the presence of
cardiovascular diseases (CVD) we could observe that subjects
with CVD had significantly increased levels of ImP [36.7 nM
(20.5–69.1) median and interquartile range; n= 390] compared
to the subjects without CVD [25.2 nM (15.2–47.7) median and
interquartile range; n= 1568] (P < 0.001, linear regression after
adjustment for age, gender, BMI, ethnicity, diabetes status, and
creatinine clearance) which requires further investigation.

ImP serum levels are associated with an altered microbiome.
Since low microbiome gene count is associated with obesity,
insulin resistance, and dyslipidemia24, we next investigated if
increased circulating ImP levels are associated with an altered
microbiome. Thus, the study population was stratified into high
and low gene count (threshold: 607,000 genes) and observed that
subjects with low gene count had higher circulating ImP levels
compared to those with high gene count, independently of dia-
betes status (Fig. 2a). We observed a significant negative corre-
lation between ImP residuals (ImP levels adjusted for age, gender,
BMI, ethnicity, and creatine clearance) and gene count inde-
pendently of diabetes status. Interestingly, the effect size was even
stronger for type 2 diabetes (R=−0.31, P < 0.001) compared with
prediabetes and healthy subjects (Supplementary Fig. 2a).

The human gut microbiome can be separated into community
types, also known as enterotypes25. We next analyzed if ImP
levels were associated with specific enterotypes and observed that
subjects with Bacteroides 2 enterotype had significantly increased
serum ImP levels compared with other enterotypes (Fig. 2b). This
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enterotype has been linked to low gene richness and low bacterial
cell load as well as impaired metabolism26,27 and pro-
inflammatory conditions such as inflammatory bowel disease28,29.
We next investigated if specific mOTUs were associated with ImP
levels using a random forest approach. We observed that
Clostridium bolteae, Clostridium symbiosum, and Ruminococcus
gnavus were the most important mOTUs positively associated
with ImP after adjustment for age, gender, BMI, ethnicity,
creatine clearance, and diabetes status (Fig. 2c and Supplementary
Table 4). Increased abundance of these bacteria has previously
been reported in subjects with metabolic diseases such as type 2
diabetes and prediabetes1,5 as well as in subjects with inflamma-
tory bowel disease (IBD)30. In contrast, other bacteria with anti-
inflammatory capacity31,32, such as Faecalibacterium prausnitzii
were negatively associated with ImP serum levels. Taken together
these data suggest that ImP serum levels are linked to a pro-
inflammatory microbiota composition, in agreement with that
ImP initially was identified to be increased in subjects with gut
inflammation33.

ImP is associated with systemic inflammation. Next, we
explored whether ImP levels were associated with inflammatory
serum markers in the population and observed that serum ImP
levels were positively correlated with serum markers of inflam-
mation [total leucocytes count, high sensitive C-reactive protein
(hs-CRP), interferon gamma-induced protein 10 (IP-10)] after
correction for known traditional risk factors (Model 1: age,
gender, BMI, ethnicity), for kidney function (Model 2: Model 1 +
creatinine clearance), and for the presence of type 2 diabetes
(Model 3: Model 2 + diabetes status) (Fig. 2d and Supplementary
Table 5). Moreover, by examining a subpopulation (n= 439)
from the MetaCardis cohort with peripheral lymphocytes char-
acterization34, we observed a significant negative correlation
between ImP levels and circulating mucosal-associated invariant
T cells (MAIT, Fig. 2e and Supplementary Table 6), which have
innate effector-like qualities defending against microbial infec-
tions. Interestingly, the reduction in peripheral MAIT cells has
been linked with metabolic diseases and obesity, and with car-
diometabolic disease progression in the MetaCardis population34.

Taken together, low gene count microbiome and Bacteroides 2
enterotype are associated with increased circulating ImP levels
that may contribute to type 2 diabetes by promoting low-grade
inflammation.

Microbial metabolism of histidine. To gain further under-
standing of how the microbiota metabolizes histidine to ImP we
analyzed the abundance of the hutH gene encoding histidine
ammonia lyase and of urdA, the gene encoding urocanate
reductase. A major challenge for assessing enzyme specificity is
that several enzymes with homologous sequences may have dif-
ferent substrate specificity. However, urdA can be identified based
on amino acids in the FAD-binding domains in the active site16.
urdA is a low abundant gene whereas hutH is more prevalent and
observed in 201 metagenomic species (Supplementary Table 7).
After correction for age, gender, BMI, ethnicity, and creatinine
clearance both hutH and urdA abundances were increased
according to diabetes status and ImP quartiles (Supplementary
Fig. 2b–e). As expected, both urdA and hutH abundances were
increased in the Bacteroides 2 enterotype (Fig. 2f, g). In agree-
ment with the association between the increased abundance of
hutH and urdA with Bacteroides 2 enterotype, we also observed
negative correlations between these genes and gene richness
(rho=−0.41, P < 0.001 and rho=−0.25, P < 0.001 for hutH and
urdA, respectively) (Supplementary Fig. 2f, g).

Unhealthy dietary patterns are associated with serum ImP.
Histidine is a precursor of ImP, accordingly, we evaluated the
daily dietary histidine intake in our study population. Based on
food-frequency questionnaire records, we did not observe any
significant differences in histidine intake when the population
was stratified according to ImP quartiles (Fig. 3a). Accordingly,
we did not observe differences in circulating histidine levels in
controls and subjects with type 2 diabetes (n= 1895; P= 0.78).
Next, we evaluated the full spectrum of nutrient intake and
identified a significant positive correlation between ImP and
saturated fat intake (driven by high cheese intake) and negative
correlations with fiber and unsaturated fat intake (driven by
reduced intake of vegetables and nuts, Fig. 3b). Moreover, we

Table 1 Clinical and biochemical features of the MetaCardis cohort.

Healthy controls Prediabetes Type 2 diabetes P-value

N 539 654 765 –
Center of enrollment (%)

France (n= 835) 21.4 34.0 44.6 <0.001
Germany (n= 587) 34.4 19.3 46.3
Denmark (n= 536) 29.5 47.9 22.6

Age (years) 53 (39–63) 59 (51–65) 62 (55–67) <0.001
Male (%) 39 52.6 56.3 <0.001
Non-Caucasian ethnicity (%) 7.2 10.2 20.5 <0.001
Body Mass Index (kg/m*2) 25.9 (22.6–38.2) 30.4 (25.8–39.1) 31.9 (28.3–36.7) <0.001
Waist/hip ratio 1 (1–1.3) 1.1 (1–1.3) 1.1 (1–1.2) <0.001
Glucose (nM) 5 (4.7–5.3) 5.7 (5.3–6) 7.5 (6.3–8.9) <0.001
Insulin (mUI) 6.9 (4.4–11.3) 9.9 (6.6–14.5) 12.5 (8.7–21) <0.001
HbA1c (%) 5.4 (5.2–5.5) 5.8 (5.6–6) 6.8 (6.3–7.6) <0.001
Triglycerides (mM/l) 1 (0.7–1.4) 1.2 (0.9–1.6) 1.5 (1.1–2.2) <0.001
Creatinine clearance (ml/min) 87.5 (77.4–100) 86.4 (75–97.7) 86.4 (74.2–100.2) 0.206
Medications (%)

Any anti-diabetic treatment 0 0 81.7 <0.001
Metformin 0 0 69.8 <0.001
Any lipid-lowering treatment 21.5 36.2 51.5 <0.001
Statins 21.2 33.9 48.1 <0.001

Data are presented as median and interquartile range or as a percentage. P-values for continuous variables were calculated using linear regression. P-values for categorical variables were calculated using
the Fisher test.
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examined more broadly dietary patterns as assessed by different
indexes/scores [the alternate Healthy Eating Index (aHEI), Diet-
ary Approaches to Stop Hypertension (DASH) score, Dietary
Diversity Score (DDS) and Mediterranean diet score]35–37. ImP
serum levels correlated negatively with aHEI, DSS, and Medi-
terranean diet scores, after correction for age, gender, BMI, eth-
nicity, center (country), daily energy intake, creatinine clearance,
and diabetes status. It is important to note that the effect size for
these associations is relatively small but overall indicates that an
unhealthy diet was associated with increased levels of ImP
(Fig. 3b and Supplementary Table 8).

Discussion
The gut microbiome produces a myriad of metabolites that
modulate insulin signaling38, and we recently identified that the
histidine metabolite ImP is produced by the microbiome of
subjects with type 2 diabetes16. Here we demonstrated that ImP is
increased in patients with type 2 diabetes in a European multi-
centric cohort of subjects from different origins. In contrast, to
the microbiota that differs between countries2, regions within a
country11, or even between ethnicities within a city10, we
observed that ImP levels are increased in type 2 diabetes in

French, Danes, and Germans in addition to Dutch16, Swedes16,
and Chinese39 as previously reported. Metabolites, such as ImP,
may then provide a more relevant indicator of an altered
microbial function across populations than metagenomic
sequencing per se. Gut microbiome stratification revealed that the
Bacteroides 2 enterotype, and reduced gene richness, were asso-
ciated with increased ImP. Low gene richness has previously been
associated with low-grade inflammation, metabolic and inflam-
matory disorders24.

Here we observed that ImP was associated with increased levels
of pro-inflammatory cytokine and a reduced number of
MAIT cells, emanating from the gut mucosa. This is consistent
with the fact that ImP is a potent activator of the MAP-kinase
p38γ16. ImP was originally identified in subjects with gastro-
intestinal inflammation and is also associated with inflammatory
bowel disorders33. We have previously demonstrated that type 2
diabetes is associated with increased inflammatory tone in the
gut40, which is consistent with increased ImP levels. Thus one can
speculate that the increased levels of ImP in the gut may con-
tribute to elevated inflammatory tone in the mucosal lining.

Here we demonstrate that ImP levels were associated with a low
abundance of microbial diversity and Bacteroides 2 enterotype,
which previously have been linked to obesity27 and inflammatory
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Fig. 1 Imidazole propionate is increased in subjects with type 2 diabetes. a Serum levels of imidazole propionate in healthy subjects (n= 539), subjects
with prediabetes (n= 654), and with type 2 diabetes (n= 765). P-values were calculated with linear regression. Data are represented as boxplots: middle
line is the median, the lower and upper hinges are the first and third quartiles, the upper whisker extends from the hinge to the largest value no further than
1.5× the interquartile range (IQR) from the hinge, and the lower whisker extends from the hinge to the smallest value at most 1.5× IQR of the hinge. Gray
dots are single data points. b, c. Multinomial logistic regression for prediabetes and type 2 diabetes vs. healthy controls according to imidazole propionate
quartiles. Odds ratios (OR) were calculated using the lowest quartile of imidazole propionate (Q1) as reference. Model 1 OR was adjusted for age, gender,
body mass index (BMI), and ethnicity. Model 2 OR was adjusted for model 1 plus creatinine clearance. Squares represent OR and the upper and lower
whisker the 95% confidence intervals (CI), raw data are presented in Supplementary Table 1. *P < 0.05, **P < 0.01, ***P < 0.001 d. Correlation matrix for
imidazole propionate and glycated hemoglobin (HbA1c), glycemia, insulinemia, homeostatic model assessment of insulin resistance (HOMA-IR), updated
HOMA model for beta-cell function (HOMA-B), and the triglyceride and glucose (TyG) index. Pearson partial correlation coefficients and P-values were
calculated using partial correlations adjusted for Model 1: age, gender, body mass index, and ethnicity. Model 2: Model 1 plus creatinine clearance, Model 3:
Model 2 plus diabetes status. False discovery rate (FDR) adjusted *P < 0.05, **P < 0.01. See also Supplementary Table 2. Source data are provided as a
Source Data file.
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bowel diseases28. These findings are consistent with the fact that
subjects with type 2 diabetes have an altered microbiota including
reduced diversity and reduced abundance of butyrate-producing
bacteria including F. prauznitzii1–6. Furthermore, recent studies
demonstrated that ImP can predict alpha-diversity in humans13,
which also is associated with type 2 diabetes12. We observed that
an unhealthy diet, but not histidine intake, was associated with
increased ImP levels. These findings suggest that rather than being
affected by histidine as a substrate, increased ImP production may,
at least in part, be the result of an unhealthy diet changing
microbial environment and its capacity to produce ImP.

Several reasons could explain the absence of link observed
between FFQ-extrapolated histidine intake and ImP levels: (i)
ImP production by bacteria requires specific bacterial enzymes16

and therefore the limiting factor may not be the availability of the
substrate (histidine) but the presence of the bacteria with the
capacity to produce ImP; (ii) histidine degradation is tightly
regulated to maintain sufficient intracellular pools of histidine
and Hut enzymes are not formed at maximal rates unless bacteria
are limited in other carbon sources most commonly obtained
from fiber41; (iii) long term dietary habits are key shaping factors
for the gut microbiota and an unhealthy diet poor in fiber and
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subjects with prediabetes (n= 616), and with type 2 diabetes (n= 727) according to a bacterial gene count and b enterotypes. P-values were calculated
with linear regression adjusted for age, gender, BMI, ethnicity, and creatinine clearance. c Random forest for the 20 most significant mOTUs correlated with
ImP residuals, after adjustment for age, gender, BMI, ethnicity, creatinine clearance, and diabetes status. FDR adjusted P-value of spearman correlation
between taxa and imp residuals *P < 0.05, **P < 0.01. See also Supplementary Table 4. d Partial correlation matrix for ImP serum levels and serum
leucocytes count (109/l), neutrophils (%), monocytes (%), lymphocytes (%), C-reactive protein (CRP), Interleukin 6 (IL-6), Interleukin 7 (IL-7), Interferon
gamma-induced protein 10 (IP-10), C-X-C motif chemokine 5 (CXCL5), chemokine (C-C motif) ligand 2 (CCL2). Pearson partial correlation coefficients
and P-values were calculated using partial correlations adjusted for Model 1: age, gender, body mass index, and ethnicity. Model 2: Model 1 plus creatinine
clearance, Model 3: Model 2 plus diabetes status. *P < 0.05, **P < 0.01, ***P < 0.001. See also Supplementary Table 5. e Partial correlation matrix in a
subgroup of patients (n= 439) between serum ImP and circulating B- and T lymphocytes (%), regulatory T cells (TREG, %) and mucosal-associated
invariant T cell (MAIT, %). Partial correlation coefficients (Pearson for all variables except for MAIT cells for which Spearman coefficient was used since
variable distribution remained skewed despite log-transformation) and P-values were calculated using partial correlations for Model 1: age, gender, body
mass index, and ethnicity. Model 2: Model 1 plus creatinine clearance, Model 3: Model 2 plus diabetes status. *P < 0.05, **False discovery rate (FDR)
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(IQR) from the hinge and the lower whisker extends from the hinge to the smallest value at most 1.5× IQR of the hinge. Gray dots are single data points.
Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19589-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5881 | https://doi.org/10.1038/s41467-020-19589-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


rich in low saturated fats may lead to a dysbiotic microbial
environment which will ultimately lead to higher ImP levels42;
(iv) we cannot exclude that the methods used to capture histidine
intake have limited resolution to detect small differences in
intake. However, overall, our findings suggest that ImP is not
directly linked to dietary histidine intake, but rather an unhealthy
diet with reduced intake of fiber and unsaturated fatty acids that
results in a dysbiotic microbiome with increased capacity to
produce ImP. One limitation of our data is that that we have not
used an independent validation cohort to confirm our findings.
Further studies using independent cohorts are needed to confirm
the role of ImP in type 2 diabetes.

In summary, our data suggest that an unhealthy diet may
contribute to an altered microbial community type with increased
potential to metabolize dietary histidine to ImP, which in turn
contributes to impaired glucose metabolism by activating MAPK
signaling leading to degradation of insulin receptor substrate16

and inflammatory signaling43. Since ImP has been observed to be
increased in subjects with glucose intolerance and type 2 diabetes
of several origins, personalized dietary recommendation or
inhibition of urdA might be helpful for reducing circulating ImP
levels.

Methods
Study population. We examined 1990 subjects from the MetaCardis cohort for
whom a serum sample was available but excluded 32 patients due to non-metabolic
etiology of cardiovascular diseases (n= 25), clear outliers for ImP levels according
to Grubb’s test (n= 1), non-complete biochemistry data (n= 6). Subjects were
recruited between 2013 and 2015 in clinical institutions in France (Pitié-Salpêtrière
Hospital, Center of Research for Clinical Nutrition (CRNH), Institute of Cardio-
metabolism And Nutrition (ICAN)), Germany (Integrated Research and Treat-
ment Center (IFB) Adiposity Diseases in Leipzig) and Denmark (Novo Nordisk
Foundation Center for Basic Metabolic Research (NNFCBMR) in Copenhagen) for
the European project MetaCardis. www.metacardis.net.

Patients with a history of abdominal surgery (other than appendicitis or
cholecystectomy), abdominal radiotherapy, digestive cancer or that had received a
recent antibiotic treatment (<2 months) were not included. Patients that had
participated in the previous cohort-based study were contacted for potential
inclusion. A subgroup of healthy control individuals with no signs of obesity or
metabolic syndrome were recruited through advertisement and through existing
population cohorts. All subjects provided written informed consent and the study
was conducted in accordance with the Helsinki Declaration and is registered in
clinical trial https://clinicaltrials.gov/show/NCT02059538. The Ethics Committee
of each participating country approved the clinical investigation. The study was

approved by the Comite de Protection des Personnes (CPP) Ile de France III no.
IDRCB2013-A00189-36.

A detailed list of prescribed medications, anthropometric data, clinical history,
fecal sample, and a fasting blood sample was obtained at enrollment. Subjects were
classified as healthy, prediabetes, or type 2 diabetes. Type 2 diabetes was defined as
fasting glycemia ≥7.0 mmol/l and/or 2 h values during the oral glucose tolerance
test >11.1 mmol/l and/or hemoglobin A1c (HbA1c, glycated hemoglobin) ≥6.5%
(≥48 mmol/mol) and/or use of any anti-diabetic treatment; prediabetes was defined
for subjects without type 2 diabetes as fasting glycemia ≥5.6 mmol/l and/or 2 h
values in the oral glucose tolerance test ≥7.8 mmol/l and/or hemoglobin A1c
(HbA1c, glycated hemoglobin) ≥5.7% (≥39 mmol/mol) according to the American
Diabetes Association (ADA) definitions44.

Dietary intake data and diet quality assessment. Dietary data were collected via
a food-frequency questionnaire that was adapted to the cultural habits of each of
the countries of recruitment. A validation study against repeated 24 h-dietary
records among 324 French MetaCardis participants has indicated an acceptable
validity45. Specifically for this study, histidine intake was calculated based on values
concerning the histidine content of selected foods published online in the United
States Department of Agriculture (USDA) food composition databases https://ndb.
nal.usda.gov/ndb/nutrients/. Food groups were further refined by subdividing the
original 22 groups into 37, which were used to calculate the total dietary intake of
histidine. Dietary quality scores have been adapted from the scores used in the
framework of the multicenter European study EPIC46–49.

For each subject, the basal metabolic rate (BMR) was estimated using Harris
and Benedict Formula50. Subjects with aberrant energy intake declarations defined
as <0.5*BMR or >3.5*BMR were excluded from all nutritional analysis (<10% of
the subjects with available nutritional data). In total, 1607 subjects were included in
the nutritional analysis.

Biochemical analyses. Blood samples were collected after an overnight fast.
Fasting serum glucose, triglycerides, and HbA1c were measured using enzymatic
methods. Fasting serum insulin and C-peptide were measured using a chemilu-
minescence assay (Insulin Architect, Abbott). High-sensitivity C-reactive protein
(hs-CRP) was measured using an IMMAGE automatic immunoassay system
(Beckman-Coulter) and high-sensitivity interleukin 6 (hs-IL-6) was measured
using the Human IL-6 Quantikine HS ELISA Kit (R&D Systems). IFN-γ–induced
protein 10 (IP-10), interleukin 7 (IL-7), C-X-C motif chemokine ligand 2 (CXCL2),
and 5 (CXCL5) were measured by using a Luminex assay (ProcartaPlex Mix&-
Match Human 13-plex; eBioscience, San Diego, CA, USA).

Oral glucose tolerance test. For 586 subjects of the Metacardis cohort without
any clinical/laboratory sign of type 2 diabetes and thus naïve of anti-diabetic
treatments, at the inclusion visit, an oral 75 g-glucose tolerance test (OGTT) was
performed following standard of care. Serum glucose, insulin, and C-peptide were
measured at baseline and 120 min after the glucose load.
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Imidazole propionate serum measurements. ImP was quantified using ultra-
performance liquid chromatography coupled to tandem mass spectrometry
according to previous work. Briefly, serum samples were extracted with 3 volumes
of ice-cold acetonitrile containing internal standards (13C3-labeled ImP and uro-
canate). After derivatization to butyl esters using 5% hydrochloric acid in butanol,
the samples were separated on a C18 column using a gradient consisting of water
and acetonitrile. Quantification was made using an external calibration curve16.

Flow cytometry analysis. To characterize and quantify immune cells, 100 µl of
whole blood was freshly obtained in a subgroup of subjects (n= 439) belonging to
one of the centers involved in the MetaCardis consortium (France, Pitié-Salpêtrière
Hospital, Institute of Cardiometabolism And Nutrition cytometry platform)34.
Briefly, blood was incubated with FcR blocking reagent (Miltenyi Biotec, Bergisch
Gladbach, Germany), red blood cell lysated, and then white blood cells were stained
with the following antibodies: Vioblue-anti-human CD3 (clone BW264/56), PE-
Vio770-anti-human CD4 (VIT4), PerCP-Vio700-anti-human CD8 (BW135/80),
APC-anti-human CD25 (4E3), FITC-anti-human CD127 (MB15-18C9), PE-anti-
human CD161 (191B8) from Miltenyi Biotec, and APC-Cy7-anti-human TCR
Vα7.2 (3C10) from BioLegend (San Diego, CA, USA). Data acquisition was per-
formed with a MacsQuant Analyzer using MacsQuantify software (Miltenyi Bio-
tec). Data obtained were analyzed with FlowJo 10.1r5 software (Tree Star, Ashland,
OR, USA).

Extraction of fecal genomic DNA and whole-genome shotgun sequencing.
Participants collected fecal samples within 24 h before each visit. Samples were
either stored immediately at −80 °C or briefly conserved in home freezers, before
transport to the laboratory where they were immediately frozen at −80 °C fol-
lowing guidelines51. Total fecal DNA was extracted following the International
Human Microbiome Standards (IHMS) guidelines (SOP 07 V2 H) and sequenced
using ion-proton technology (ThermoFisher Scientific) resulting in 23.3 ± 4.0
million (mean ± SD) 150-bp single-end reads per sample on average. Reads were
cleaned using Alien Trimmer (v0.2.4)39 in order to remove resilient sequencing
adapters and to trim low-quality nucleotides at the 3′ side (quality and length cut-
off of 20 and 45 bp, respectively). Cleaned reads were subsequently filtered from
human and potential food contaminant DNA (using human genome RCh37-p10,
Bos taurus, and Arabidopsis thaliana with an identity score threshold of 97%). The
reads were mapped to the Integrated Gene Catalog (IGC) of 9.9 million genes52,
with Bowtie 2.2.4. For each read, the best alignment is conserved. Reads mapped to
the main reference with at least 95% of identity are conserved for the counting step
if they are not mapped against contaminant references with at least 97% of identity.
Gene counts were generated using a two-step procedure (called smart shared
counting). First, the unique mapped reads (reads mapping to a unique gene from
the catalog) were attributed to the corresponding genes. Second, the shared reads
(mapping different genes of the catalog) were attributed according to the ratio of
their unique mapping counts. Gene abundance tables (built from mapping against
the 9.9 M gene catalog) were processed for richness calculation, downsizing, and
normalization using the momr R package. In order to reduce technical bias due to
variable sequencing depth, Ion-Proton samples were downsized to 10 million reads,
and downsized gene abundances were normalized according to Fragments Per
Kilobase per Million mapped reads (FPKM) strategy.

Assessment of gut microbiota characteristics. Metagenomic data were available
for 1852 subjects. Abundance for each MGS (metagenomic species) was computed
as the mean value of the 50 genes defining a robust centroid of the cluster (if more
than 10% of these genes gave positive signals) as proposed53 for MGS with >500
genes using momr R package. MGS taxonomical annotation was performed using
all genes by sequence similarity using NCBI blastN; a species-level assignment was
given if >50% of the genes matched the same reference genome of the NCBI
database (November 2016 version) at a threshold of 95% of identity and 90% of
gene length coverage. The remaining MGS were assigned to a given taxonomical
level from the genus to superkingdom if more than 50% of their genes had the
same level of assignment. Microbial gene richness (gene count) was calculated by
counting the number of genes that were detected at least once in a given sample,
using the average number of genes counted in ten independent rarefaction
experiments. Alpha-diversity was measured as gene richness i.e., the average
number of genes (meaning at least one read mapped) per sample, and subjects were
classified in metagenomic richness status (low or high gene count). Metagenomic
richness status defined was defined using the threshold separating the bimodal
distributions of gene richness in the healthy control group of the German center
(where bimodality is revealed) i.e., <607,000 genes for the low gene count group
and ≥607,000 genes for the high gene count group. Enterotyping of the cohort was
performed following the Dirichlet Multinomial Mixture (DMM) method using
microbial taxons (mOTU) abundance matrix of the entire cohort collapsed at the
genus level29,54,55.

hutH analyses. To determine the abundance of hutH, the genes encoding histidine
ammonia-lyase that metabolizes histidine to urocanate, we quantified the abun-
dance of Kyoto Encyclopedia of Genes Genomes (KEGG) ortholog (KO) K01745.

To identify the metagenomic species with the functional capacity to degrade his-
tidine to urocanate, we projected K01745 on all MGS > 500 genes.

urdA analyses. To determine the DNA abundance of urdA, the gene encoding
urocanate reductase responsible for ImP production, we used the same pipeline as
previously16 but extend to the latest release of NCBI bacterial genomes which
contains 557,951,640 protein-coding genes (as accessed in February 2019) and
identified 63,961 potential urdA homologs. Exact read mapping was restricted to
gene regions containing only 90 nt both down- and up-stream of the FAD active
sites of the urdA genes based on bowtie 2 with no mismatches and gap opening
during reads alignment extracting 12,319 non-redundant sequences for further
metagenomic mapping. Of those 12,319 gene regions. In addition, only samples with
at least 10 reads mapped and reads with a mapping length larger than 100 bp were
included for analysis to ensure that the matched reads cover the active sites. The total
reads mapped were then normalized by the sequencing depth in each sample to
separate sequences based on true and false urocanate reductases based on the amino
acid in position 373. 4760 reads identified as true UrdA without histidine in the 373
position as well as 4968 as with histidine and that position. We have previously
shown that histidine in that position prevents urocanate reductase activity16.

Statistical analysis. The updated homeostatic model assessment of insulin
resistance, sensitivity, and beta-cell function (HOMA2-IR, HOMA2-S, HOMA2-
B), the quantitative insulin sensitivity check index (QUICKI), the triglycerides and
glucose index (TyG) and the Stumvoll index were calculated as described pre-
viously56–60. Estimated glomerular filtration rate (eGFR) was calculated using the
Modification of Diet in Renal Disease (MDRD) formula61. All nutrient and food
group data are expressed as g of intake per day. Diet quality assessed using four
previously validated nutritional scores: the alternate Healthy Eating Index (aHEI),
Dietary Approaches to Stop Hypertension (DASH) score, dietary diversity score
(DDS), and the Mediterranean diet score35–37,46. For descriptive statistics, con-
tinuous variables were presented in the median and interquartile range. ImP levels
were categorized into quartiles in the full analysis cohort of 1958 individuals.
Categorical variables were presented as numbers and percent. Analyses were per-
formed using linear regression models as unadjusted or adjusted for confounding
factors (see text and figure legends). For nutritional data, a further adjustment was
performed when precised on daily total energy intake and center. In quantitative
analysis (graphically presented as heatmaps), partial correlations were performed
unadjusted or adjusted for confounders. Variables with skewed distributions were
logarithmically transformed before entering the models (age, BMI, creatinine
clearance, 2 h glucose, insulin, C-peptide, Stumvoll sensitivity index and Imidazole
propionate were log-transformed, Shapiro–Wilk test P < 0.05). Correlation analysis
of gene richness and functional features (urdA, hutH) were assessed by Spearman’s
correlations. The most important mOTUs for the prediction of ImP levels were
identified with cross-validated random forest models using ImP residuals adjusted
for age, gender, BMI, diabetes status, ethnicity, and creatinine clearance with the
randomForest R package. An optimal mtry and max node of 50 for the trees was
determined using the mean squared error of ImP residuals in test samples as the
outcome. The mean variable importance (using an increase in node purity) was
determined with 100-fold cross-validation.

Statistical analyses were carried out using R statistical analysis software version
3.3.2 (http://www.R-project.org/).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Gender and center data were removed from source data files in order to maintain
participant confidentiality. These data can accessed by a request to Professor Karine
Clement.Raw sequencing data used in this study have been deposited in the EMBL-EBI
European Nucleotide Archive (ENA) under accession numbers PRJEB37249 and
PRJEB38742. For clinical cohort-related questions, contact K.C. Source data are provided
with this paper.

Received: 2 September 2019; Accepted: 22 October 2020;

References
1. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2

diabetes. Nature 490, 55–60 (2012).
2. Karlsson, F. H. et al. Gut metagenome in European women with normal,

impaired and diabetic glucose control. Nature 498, 99–103 (2013).
3. Zhou, W. et al. Longitudinal multi-omics of host-microbe dynamics in

prediabetes. Nature 569, 663–671 (2019).
4. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs

from non-diabetic adults. PLoS ONE 5, e9085 (2010).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19589-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5881 | https://doi.org/10.1038/s41467-020-19589-w |www.nature.com/naturecommunications 7

http://www.R-project.org/
https://www.ebi.ac.uk/ena/browser/view/PRJEB37249
https://www.ebi.ac.uk/ena/browser/view/PRJEB38742
www.nature.com/naturecommunications
www.nature.com/naturecommunications


5. Allin, K. H. et al. Aberrant intestinal microbiota in individuals with
prediabetes. Diabetologia 61, 810–820 (2018).

6. Wu, H. et al. The gut microbiota in prediabetes and diabetes: a population-
based cross-sectional study. Cell Metab. https://doi.org/10.1016/j.
cmet.2020.06.011 (2020).

7. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases
insulin sensitivity in individuals with metabolic syndrome. Gastroenterology
143, 913–916 e917 (2012).

8. Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in
metabolic syndrome is driven by baseline intestinal microbiota composition.
Cell Metab. 26, 611–619.e616 (2017).

9. Schroeder, B. O. & Backhed, F. Signals from the gut microbiota to distant
organs in physiology and disease. Nat. Med. 22, 1079–1089 (2016).

10. Deschasaux, M. et al. Depicting the composition of gut microbiota in a
population with varied ethnic origins but shared geography. Nat. Med. 24,
1526–1531 (2018).

11. He, Y. et al. Regional variation limits applications of healthy gut microbiome
reference ranges and disease models. Nat. Med. 24, 1532–1535 (2018).

12. Menni, C. et al. Serum metabolites reflecting gut microbiome alpha diversity
predict type 2 diabetes. Gut Microbes 11, 1632–1642 (2020).

13. Wilmanski, T. et al. Blood metabolome predicts gut microbiome α-diversity in
humans. Nat. Biotechnol. 37, 1217–1228 (2019).

14. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome
and insulin sensitivity. Nature 535, 376–381 (2016).

15. Newgard, C. B. et al. A branched-chain amino acid-related metabolic
signature that differentiates obese and lean humans and contributes to insulin
resistance. Cell Metab. 9, 311–326 (2009).

16. Koh, A. et al. Microbially produced imidazole propionate impairs insulin
signaling through mTORC1. Cell 175, 947–961.e917 (2018).

17. Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and
cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

18. Wahlstrom, A., Sayin, S. I., Marschall, H. U. & Backhed, F. Intestinal crosstalk
between bile acids and microbiota and its impact on host metabolism. Cell
Metab. 24, 41–50 (2016).

19. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary
fiber to host physiology: short-chain fatty acids as key bacterial metabolites.
Cell 165, 1332–1345 (2016).

20. Tang, W. H. W., Bäckhed, F., Landmesser, U. & Hazen, S. L. Intestinal
microbiota in cardiovascular health and disease: JACC state-of-the-art review.
J. Am. Coll. Cardiol. 73, 2089–2105 (2019).

21. Koh, A. et al. Microbial imidazole propionate affects responses to metformin
through p38γ-dependent inhibitory AMPK phosphorylation. Cell Metab.
https://doi.org/10.1016/j.cmet.2020.07.012 (2020).

22. Wu, H. et al. Metformin alters the gut microbiome of individuals with
treatment-naive type 2 diabetes, contributing to the therapeutic effects of the
drug. Nat. Med. 23, 850–858 (2017).

23. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment
signatures in the human gut microbiota. Nature 528, 262–266 (2015).

24. Le Chatelier, E. et al. Richness of human gut microbiome correlates with
metabolic markers. Nature 500, 541–546 (2013).

25. Costea, P. I. et al. Enterotypes in the landscape of gut microbial community
composition. Nat. Microbiol. 3, 8–16 (2018).

26. Aron-Wisnewsky, J. et al. Major microbiota dysbiosis in severe obesity: fate
after bariatric surgery. Gut 68, 70–82 (2019).

27. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut
microbiota dysbiosis. Nature 581, 310–315 (2020).

28. Vieira-Silva, S. et al. Quantitative microbiome profiling disentangles
inflammation- and bile duct obstruction-associated microbiota alterations
across PSC/IBD diagnoses. Nat. Microbiol. https://doi.org/10.1038/s41564-
019-0483-9 (2019).

29. Vandeputte, D. et al. Quantitative microbiome profiling links gut community
variation to microbial load. Nature 551, 507–511 (2017).

30. Hall, A. B. et al. A novel Ruminococcus gnavus clade enriched in
inflammatory bowel disease patients. Genome Med. 9, 103 (2017).

31. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory
commensal bacterium identified by gut microbiota analysis of Crohn disease
patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

32. Miquel, S. et al. Faecalibacterium prausnitzii and human intestinal health.
Curr. Opin. Microbiol. 16, 255–261 (2013).

33. Van Der Heiden, C., Wadman, S. K., De Bree, P. K. & Wauters, E. A. K.
Increased urinary imidazolepropionic acid, n-acetylhistamine and other
imidazole compounds in patients with intestinal disorders. Clin. Chim. Acta
39, 201–214 (1972).

34. Touch, S. et al. Mucosal-associated invariant T (MAIT) cells are depleted and
prone to apoptosis in cardiometabolic disorders. FASEB J. https://doi.org/
10.1096/fj.201800052RR (2018).

35. Fung, T. T. et al. Adherence to a DASH-style diet and risk of coronary heart
disease and stroke in women. Arch. Intern. Med. 168, 713–720 (2008).

36. McCullough, M. L. et al. Diet quality and major chronic disease risk in men
and women: moving toward improved dietary guidance. Am. J. Clin. Nutr. 76,
1261–1271 (2002).

37. Stefler, D. et al. Mediterranean diet score and total and cardiovascular mortality
in Eastern Europe: the HAPIEE study. Eur. J. Nutr. 56, 421–429 (2017).

38. Khan, M. T., Nieuwdorp, M. & Backhed, F. Microbial modulation of insulin
sensitivity. Cell Metab. 20, 753–760 (2014).

39. Yu, D. et al. Plasma metabolomic profiles in association with type 2 diabetes
risk and prevalence in Chinese adults. Metabolomics 12, 3 (2015).

40. Monteiro-Sepulveda, M. et al. Jejunal T cell inflammation in human obesity
correlates with decreased enterocyte insulin signaling. Cell Metab. 22, 113–124
(2015).

41. Bender, R. A. Regulation of the histidine utilization (hut) system in bacteria.
Microbiol. Mol. Biol. Rev. 76, 565–584 (2012).

42. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial
enterotypes. Science 334, 105–108 (2011).

43. Brown, A. E. et al. p38 MAPK activation upregulates proinflammatory
pathways in skeletal muscle cells from insulin-resistant type 2 diabetic
patients. Am. J. Physiol. Endocrinol. Metab. 308, E63–E70 (2015).

44. Association, A. D. Classification and diagnosis of diabetes. Diabetes Care 42,
S13–S28 (2019).

45. Verger, E. O. et al. Dietary Assessment in the MetaCardis Study: Development
and Relative Validity of an Online Food Frequency Questionnaire. J. Acad.
Nutr. Diet. 117, 878–888 (2017).

46. Jeurnink, S. M. et al. Variety in vegetable and fruit consumption and the risk
of gastric and esophageal cancer in the European Prospective Investigation
into Cancer and Nutrition. Int J. Cancer 131, E963–E973 (2012).

47. Consortium, T. I. Adherence to predefined dietary patterns and incident type
2 diabetes in European populations: EPIC-InterAct Study. Diabetologia 57,
321–333 (2014).

48. Sacks, F. M. et al. Rationale and design of the Dietary Approaches to Stop
Hypertension trial (DASH). A multicenter controlled-feeding study of dietary
patterns to lower blood pressure. Ann. Epidemiol. 5, 108–118 (1995).

49. Sofi, F., Macchi, C., Abbate, R., Gensini, G. F. & Casini, A. Mediterranean diet
and health status: an updated meta-analysis and a proposal for a literature-
based adherence score. Public Health Nutr. 17, 2769–2782 (2014).

50. Harris, J. A. & Benedict, F. G. A biometric study of basal metabolism in man.
Proc. Natl Acad. Sci. USA 4, 370–373 (1918).

51. Thomas, V., Clark, J. & Dore, J. Fecal microbiota analysis: an overview of
sample collection methods and sequencing strategies. Future Microbiol. 10,
1485–1504 (2015).

52. Li, J. et al. An integrated catalog of reference genes in the human gut
microbiome. Nat. Biotechnol. 32, 834–841 (2014).

53. Nielsen, H. B. et al. Identification and assembly of genomes and genetic
elements in complex metagenomic samples without using reference genomes.
Nat. Biotechnol. 32, 822–828 (2014).

54. Holmes, I., Harris, K. & Quince, C. Dirichlet multinomial mixtures: generative
models for microbial metagenomics. PLoS ONE 7, e30126 (2012).

55. Sunagawa, S. et al. Metagenomic species profiling using universal phylogenetic
marker genes. Nat. Methods 10, 1196–1199 (2013).

56. Stumvoll, M. et al. Use of the oral glucose tolerance test to assess insulin
release and insulin sensitivity. Diabetes Care 23, 295–301 (2000).

57. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and
beta-cell function from fasting plasma glucose and insulin concentrations in
man. Diabetologia 28, 412–419 (1985).

58. Katz, A. et al. Quantitative insulin sensitivity check index: a simple, accurate
method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab.
85, 2402–2410 (2000).

59. Levy, J. C., Matthews, D. R. & Hermans, M. P. Correct homeostasis model
assessment (HOMA) evaluation uses the computer program. Diabetes Care
21, 2191–2192 (1998).

60. Guerrero-Romero, F. et al. The product of triglycerides and glucose, a simple
measure of insulin sensitivity. Comparison with the euglycemic-
hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 95, 3347–3351 (2010).

61. Levey, A. S. et al. A more accurate method to estimate glomerular filtration
rate from serum creatinine: a new prediction equation. Modification of Diet in
Renal Disease Study Group. Ann. Intern. Med. 130, 461–470 (1999).

Acknowledgements
This study was supported by the FP7 sponsored program MetaCardis (305312), JPI
(A healthy diet for a healthy life; 2017-01996_3), as well as Transatlantic Networks of
Excellence Award from the Leducq Foundation (17CVD01), Swedish Research Council
(2019-01599), Swedish Heart Lung Foundation (20180600), Knut and Alice Wallenberg
Foundation (2017.0026), the Novo Nordisk Foundation (NNF19OC0057271,
NNF17OC0028232, and NNF15OC0016798), grants from the Swedish state under the
agreement between the Swedish government and the county councils, the ALF-

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19589-w

8 NATURE COMMUNICATIONS |         (2020) 11:5881 | https://doi.org/10.1038/s41467-020-19589-w |www.nature.com/naturecommunications

https://doi.org/10.1016/j.cmet.2020.06.011
https://doi.org/10.1016/j.cmet.2020.06.011
https://doi.org/10.1016/j.cmet.2020.07.012
https://doi.org/10.1038/s41564-019-0483-9
https://doi.org/10.1038/s41564-019-0483-9
https://doi.org/10.1096/fj.201800052RR
https://doi.org/10.1096/fj.201800052RR
www.nature.com/naturecommunications


agreement (ALFGBG- 718101), and the NIHR Imperial Biomedical Research Centre
(BRC). The clinical study is sponsored by Assistance Publique Hopitaux de Paris. The
computations for metagenomics analyses were performed on resources provided by the
Swedish National Infrastructure for Computing (SNIC) through Uppsala Multi-
disciplinary Center for Advanced Computational Science (UPPMAX). F.B. is Torsten
Söderberg Professor in Medicine and recipient of an ERC Consolidator Grant (European
Research Council, Consolidator grant 615362-METABASE). Open Access funding pro-
vided by Gothenburg University Library.

Author contributions
A.M., P.B., K.C., and F.B. conceived and designed the project. A.M. and P.B. analyzed
interactions between ImP and clinical and biochemical data. M.He. and P.B. analyzed
ImP levels. H.W. analyzed urdA abundance, P.B. and E.B. hutH abundance. S.A. and
K.A. determined dietary analysis and patterns, C.R. performed multiplex analysis of
inflammatory markers, S.A. and F.M. performed immune cell sorting technology and
analysis. F.A., J.-E.S., J.-M.O., J.-A.W., T.N., K.C., and M.Stu. recruited patients and R.C.,
J.-A.W., and T.N. contributed to patient investigation and data management. E.B., S.F.,
E.L.C., G.F., N.P., E.P., I.L., J.N., and S.-V.S. developed databases, analytical pipelines, and
performed metagenomics and functional analysis. B.Q. and H.R. contributed to stool
sample processing and sequencing all patient stool samples. C.R., S.A., and F.M. per-
formed all measurements of inflammatory cells and systemic markers, and J.-P.B. per-
formed the analytical measures of metabolic variables. J.-D.Z., S.H., M.-E.D., J.R.,
J.-M.O., O.P., P.B., M.S., and S.D.E. contributed to results’ discussion. A.M., P.B., K.C.,
and F.B wrote the paper. All authors commented and edited the manuscript.

Funding
Open Access funding provided by Gothenburg University Library.

Competing interests
F.B. is shareholder in Implexion pharma AB. K.C. is a consultant for Danone Research
and LNC therapeutics for work unassociated with the present study. K.C. has held a
collaborative research contract with Danone Research in the context of MetaCardis

project. M.B. received lecture and/or consultancy fees from AstraZeneca, Boehringer-
Ingelheim, Lilly, Novo Nordisk, Novartis and Sanofi. The remaining authors do not
report any competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-19589-w.

Correspondence and requests for materials should be addressed to K.C. or F.B.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020, corrected publication 2020

Antonio Molinaro1,2,35, Pierre Bel Lassen3,4,35, Marcus Henricsson1, Hao Wu1, Solia Adriouch3, Eugeni Belda3,5,

Rima Chakaroun6, Trine Nielsen 7, Per-Olof Bergh1, Christine Rouault3, Sébastien André 3, Florian Marquet3,

Fabrizio Andreelli3, Joe-Elie Salem8, Karen Assmann3, Jean-Philippe Bastard9, Sofia Forslund10,

Emmanuelle Le Chatelier11, Gwen Falony 12,13, Nicolas Pons11, Edi Prifti 5,14, Benoit Quinquis11, Hugo Roume11,

Sara Vieira-Silva 12,13, Tue H. Hansen 7, Helle Krogh Pedersen7, Christian Lewinter7,

Nadja B. Sønderskov 7 & The MetaCardis Consortium*, Lars Køber7, Henrik Vestergaard 7,

Torben Hansen 7, Jean-Daniel Zucker14, Pilar Galan15, Marc-Emmanuel Dumas 16,17, Jeroen Raes 11,12,

Jean-Michel Oppert4, Ivica Letunic18, Jens Nielsen 19, Peer Bork 20,21, S. Dusko Ehrlich 11,

Michael Stumvoll6, Oluf Pedersen 7, Judith Aron-Wisnewsky3,4, Karine Clément 3,4,36✉ &

Fredrik Bäckhed 1,7,22,36✉

1Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research,
University of Gothenburg, 413 45 Gothenburg, Sweden. 2Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
3INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Sorbonne Université, Paris, France. 4Assistance Publique Hôpitaux de Paris,
Pitie-Salpêtrière Hospital, Nutrition department, CRNH Ile de France, Paris, France. 5Integromics Unit, Institute of Cardiometabolism and Nutrition,
75013 Paris, France. 6Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
7Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej
3B, 2200 Copenhagen, Denmark. 8Assistance Publique Hôpitaux de Paris, Clinical Investigation Center Paris East, 75013 Paris, France. 9Assistance
Publique Hôpitaux de Paris, Biochemistry and Hormonology Department, Tenon Hospital, 75020 Paris, France. 10Experimental and Clinical
Research Center, A Cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, Berlin, Germany. 11Micalis Institute, INRA,
AgroParisTech, Université Paris-Saclay, Paris, France. 12Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega
Institute, KU Leuven Leuven, Belgium. 13Center for Microbiology, VIB Leuven, Belgium. 14Unité de Modélisation Mathématique et Informatique des
Systèmes Complexes, UMMISCO, 93143 Bondy, France. 15Sorbonne Paris Cité Epidemiology and Statistics Research Centre (CRESS), U1153
Inserm, U1125, Inra, Cnam, University of Paris 13, Nutritional Epidemiology Research Team (EREN), 93017 Bobigny, France. 16Computational and
Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19589-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5881 | https://doi.org/10.1038/s41467-020-19589-w |www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-020-19589-w
https://doi.org/10.1038/s41467-020-19589-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-2066-7895
http://orcid.org/0000-0002-2066-7895
http://orcid.org/0000-0002-2066-7895
http://orcid.org/0000-0002-2066-7895
http://orcid.org/0000-0002-2066-7895
http://orcid.org/0000-0002-7543-153X
http://orcid.org/0000-0002-7543-153X
http://orcid.org/0000-0002-7543-153X
http://orcid.org/0000-0002-7543-153X
http://orcid.org/0000-0002-7543-153X
http://orcid.org/0000-0003-2450-0782
http://orcid.org/0000-0003-2450-0782
http://orcid.org/0000-0003-2450-0782
http://orcid.org/0000-0003-2450-0782
http://orcid.org/0000-0003-2450-0782
http://orcid.org/0000-0001-8861-1305
http://orcid.org/0000-0001-8861-1305
http://orcid.org/0000-0001-8861-1305
http://orcid.org/0000-0001-8861-1305
http://orcid.org/0000-0001-8861-1305
http://orcid.org/0000-0002-4616-7602
http://orcid.org/0000-0002-4616-7602
http://orcid.org/0000-0002-4616-7602
http://orcid.org/0000-0002-4616-7602
http://orcid.org/0000-0002-4616-7602
http://orcid.org/0000-0001-5948-8993
http://orcid.org/0000-0001-5948-8993
http://orcid.org/0000-0001-5948-8993
http://orcid.org/0000-0001-5948-8993
http://orcid.org/0000-0001-5948-8993
http://orcid.org/0000-0001-6350-8117
http://orcid.org/0000-0001-6350-8117
http://orcid.org/0000-0001-6350-8117
http://orcid.org/0000-0001-6350-8117
http://orcid.org/0000-0001-6350-8117
http://orcid.org/0000-0003-3090-269X
http://orcid.org/0000-0003-3090-269X
http://orcid.org/0000-0003-3090-269X
http://orcid.org/0000-0003-3090-269X
http://orcid.org/0000-0003-3090-269X
http://orcid.org/0000-0001-8748-3831
http://orcid.org/0000-0001-8748-3831
http://orcid.org/0000-0001-8748-3831
http://orcid.org/0000-0001-8748-3831
http://orcid.org/0000-0001-8748-3831
http://orcid.org/0000-0001-9523-7024
http://orcid.org/0000-0001-9523-7024
http://orcid.org/0000-0001-9523-7024
http://orcid.org/0000-0001-9523-7024
http://orcid.org/0000-0001-9523-7024
http://orcid.org/0000-0002-1337-041X
http://orcid.org/0000-0002-1337-041X
http://orcid.org/0000-0002-1337-041X
http://orcid.org/0000-0002-1337-041X
http://orcid.org/0000-0002-1337-041X
http://orcid.org/0000-0002-9955-6003
http://orcid.org/0000-0002-9955-6003
http://orcid.org/0000-0002-9955-6003
http://orcid.org/0000-0002-9955-6003
http://orcid.org/0000-0002-9955-6003
http://orcid.org/0000-0002-2627-833X
http://orcid.org/0000-0002-2627-833X
http://orcid.org/0000-0002-2627-833X
http://orcid.org/0000-0002-2627-833X
http://orcid.org/0000-0002-2627-833X
http://orcid.org/0000-0002-7563-4046
http://orcid.org/0000-0002-7563-4046
http://orcid.org/0000-0002-7563-4046
http://orcid.org/0000-0002-7563-4046
http://orcid.org/0000-0002-7563-4046
http://orcid.org/0000-0002-3321-3972
http://orcid.org/0000-0002-3321-3972
http://orcid.org/0000-0002-3321-3972
http://orcid.org/0000-0002-3321-3972
http://orcid.org/0000-0002-3321-3972
http://orcid.org/0000-0002-2489-3355
http://orcid.org/0000-0002-2489-3355
http://orcid.org/0000-0002-2489-3355
http://orcid.org/0000-0002-2489-3355
http://orcid.org/0000-0002-2489-3355
http://orcid.org/0000-0002-4871-8818
http://orcid.org/0000-0002-4871-8818
http://orcid.org/0000-0002-4871-8818
http://orcid.org/0000-0002-4871-8818
http://orcid.org/0000-0002-4871-8818
www.nature.com/naturecommunications
www.nature.com/naturecommunications


17Genomic and Environmental Medicine, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London SW3 6KY, UK.
18Biobyte Solutions GmbH, Bothestr. 142, 69117 Heidelberg, Germany. 19Department of Biology and Biological Engineering, Chalmers University of
Technology, SE41128 Gothenburg, Sweden. 20Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.
21Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany. 22Department
of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden. 35These authors contributed equally:
Antonio Molinaro, Pierre Bel Lassen. 36These authors jointly supervised this work: Karine Clément, Fredrik Bäckhed. *A list of authors and their
affiliations appears at the end of the paper. ✉email: karine.clement@inserm.fr; fredrik.backhed@wlab.gu.se

The MetaCardis Consortium

Renato Alves20, Chloe Amouyal3,23, Ehm Astrid Andersson Galijatovic7, Olivier Barthelemy24,

Jean-Paul Batisse24, Magalie Berland25, Randa Bittar26, Hervé Blottière25, Frederic Bosquet23, Rachid Boubrit24,

Olivier Bourron23, Mickael Camus25, Dominique Cassuto4, Julien Chilloux16, Cecile Ciangura4,23,

Luis Pedro Coelho20,27, Jean-Philippe Collet24, Maria-Carlota Dao3, Morad Djebbar24, Angélique Doré25,

Line Engelbrechtsen3, Soraya Fellahi9,28, Leopold Fezeu15, Sebastien Fromentin25, Philippe Giral29,

Jens Peter Gøtze30, Agnes Hartemann23, Jens Juul Holst7, Serge Hercberg15, Gerard Helft24, Malene Hornbak7,

Jean-Sebastien Hulot31,32,33, Richard Isnard24, Sophie Jaqueminet25, Niklas Rye Jørgensen30, Hanna Julienne25,

Johanne Justesen7, Judith Kammer6, Nikolaj Krarup7, Mathieu Kerneis24, Jean Khemis4, Nadja Buus Kristensen7,

Michael Kuhn20, Véronique Lejard25, Florence Levenez25, Lea Lucas-Martini4, Robin Massey25,

Nicolas Maziers25, Jonathan Medina-Stamminger4, Gilles Montalescot24, Sandrine Moutel4,

Laetitia Pasero Le Pavin25, Christine Poitou3,4, Francoise Pousset24, Laurence Pouzoulet29, Sebastien Schmidt20,

Lucas Moitinho-Silva20, Johanne Silvain24, Nataliya Sokolovska3, Sothea Touch3, Mathilde Svendstrup7,

Timothy Swartz 3,5,34, Thierry Vanduyvenboden25, Camille Vatier4 & Stefanie Walther6

23Assistance Publique Hôpitaux de Paris, Diabetes Department, Pitie-Salpêtrière Hospital, Paris, France. 24Assistance Publique Hôpitaux de Paris,
Cardiology Department, Pitie-Salpêtrière Hospital, Paris, France. 25INRAE, Metagenopolis, Université Paris-Saclay, Jouy en Josas, France.
26Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Biochemistry Department of Metabolic Disorders, Paris, France. 27Institute of
Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China. 28Centre de Recherche Saint-Antoine, Sorbonne
Université-INSERM UMR-S 938, IHU ICAN, Paris, France. 29Assistance Publique Hôpitaux de Paris, Endocrinology Department, Pitie-Salpêtrière
Hospital, Paris, France. 30Department of Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark. 31Assistance
Publique Hôpitaux de Paris, Department of Pharmacology, Pitie-Salpêtrière Hospital, NICO Cardio-oncology Program, CIC-1421, INSERM,
Sorbonne Université, Paris, France. 32PARCC, INSERM, Université de Paris, Paris, France. 33Assistance Publique Hôpitaux de Paris, Hôpital
Européen Georges-Pompidou, CIC1418 and DMU CARTE, Paris, France. 34Integrative Phenomics, Paris, France.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19589-w

10 NATURE COMMUNICATIONS |         (2020) 11:5881 | https://doi.org/10.1038/s41467-020-19589-w |www.nature.com/naturecommunications

mailto:karine.clement@inserm.fr
mailto:fredrik.backhed@wlab.gu.se
http://orcid.org/0000-0002-9801-8756
http://orcid.org/0000-0002-9801-8756
http://orcid.org/0000-0002-9801-8756
http://orcid.org/0000-0002-9801-8756
http://orcid.org/0000-0002-9801-8756
www.nature.com/naturecommunications

	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology
	Results
	Serum ImP is increased in pre- and type 2 diabetes
	ImP is associated with diabetes treatment and co-morbidities
	ImP serum levels are associated with an altered microbiome
	ImP is associated with systemic inflammation
	Microbial metabolism of histidine
	Unhealthy dietary patterns are associated with serum ImP

	Discussion
	Methods
	Study population
	Dietary intake data and diet quality assessment
	Biochemical analyses
	Oral glucose tolerance test
	Imidazole propionate serum measurements
	Flow cytometry analysis
	Extraction of fecal genomic DNA and whole-genome shotgun sequencing
	Assessment of gut microbiota characteristics
	hutH analyses
	urdA analyses
	Statistical analysis

	Reporting summary
	Data availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




