

Family 1121

Family 1319

Family 1151

Family 1560

Family 1575

Family 1722

Fig S1. Pedigrees of 32 Danish multiplex CHD families. Circles: females. Squares: males. White symbols: unaffected family members. Filled symbols: affected family members. Triangles: abortion. CHD was determined by manual inspection of patient files (black) or data from DNPR/interview with family members (grey). Exome sequenced individuals are marked with asterix. The following heart defects were identified; Aortic Valve Regurgitation (AVR), Aortic Valve Stenosis (AVS), Atrial Septal Defect (ASD), Atrioventricular Septal Defect (AVSD), Bicuspid Aortic Valve(BAV), Coarctation of the Aorta (COA), Dilated Cardiomyopathy (DCM), Ebstein's Anomaly (EbA), Hypertrophic Cardiomyopathy (HCM), Hypoplastic Left Heart Syndrome (HLHS), Infundibular Pulmonary Stenosis (InfPS), Mitral Valve Atresia (MVA), Partial Anomalous Pulmonary Venous Return (PAPVR), Patent Ductus Arteriosus (PDA), Patent Foramen Ovale (PFO), Pulmonary Valve Atresia (PVA), Pulmonary Valve Stenosis (PVS), Single Ventricle (SV), Subvalvular Aortic Stenosis (SubAS), Tetralogy of Fallot (TOF), Total Anomalous Pulmonary Venous Return (TAPVR), Transposition of The Great Arteries (TGA), Vascular ring (Vring), Ventricular Septal Defect (VSD). For ASD and VSD spontanous closure (a), intervention performed (b) and no intervention performed (c) is indicated if information was available.

Fig. S2. Relatedness of the 90 individuals included in the study. A. Heatmap showing the relatedness score of pairs of individuals. The family number and position in the family is indicated left and below the heatmap. B. Density plot of relatedness score from the pairwise analysis. Individuals from same family is shown in blue, and individuals not from the same family is shown in red.

Fig. S3. Homogeneity of the cohort. Population distances from each of the 90 individuals in the cohort to the 20 nearest neighbors (NN) were calculated. The distances compared to the the mean of the population in terms of standard deviations (Z-scores) is plotted on the x-axis.

Fig. S4. Principle component analysis. The Danish samples were analyzed together with reference samples of different Super Populations from 1000 genomes (AFR= African, AMR= Admixed American, EAS= East Asian, EUR= European, SAS= South Asian).

Fig. S5. Sequencing coverage and number of reads. A. Cumulative depth of sequencing per family. B. Number of reads after removal of duplicates.

Α

Whole exome sequencing

DNA extraction **PPI network of** 79 CHD patients 8.186 proteins with 11 obligate carriers Whole exome sequencing 1,310 seed proteins 29.463 interactions Mapping to hg19 230 significant clusters 211,791 unique variants Identification of clusters Variant calling with treshold p-value 0.05 - Read depth >30 Identification of clusters - Phred call quality >30 25 clusters with proteins Variant quality filtering - Variants present in all encoded by >2 CDGs with >2 CDGs affected family members MAF<0.01 in 1000 G Two clusters enriched for CDGs **Permutation analysis** MAF<0.01 in ExAC **Frequency filtering** - 5 proteins (3 CDGs) (k=10,000) MAF<0.01 in 2000 Danish exomes - 27 proteins (11 CDGs) MAF<0.05 in Genome Denmark cohort Enrichment for biological **Gene ontology** Removal of noncoding variants **Effect filtering** processes involved in enrichment analysis and NMD variants calcium signaling **Rare variants segregating** 3,698 unique rare with CHD in families variants in 1,785 genes

Systems analysis of CDGs

Fig. S6. Overview of the sequencing and data analysis processes.

Fig. S7. Number of CDGs per family when all rare variants (left) or only high severity variants (right) were considered. High severity variants were defined as variants creating splicing defects, frameshifts, premature stop codons and missense variants predicted to be damaging by both Polyphen and SIFT.

Fig. S8. Overlap between CDGs in pairs of families. The fraction of overlap (FO) between CDGs are shown for each pair of families. For example, 11% of the CDGs identified in family 49 overlaps with CDGs identified in family 2558, which is indicated by a FO value of 0.11.

BAGE2	
ULA DODE	
HLA-DRB5	
HLA-DQA1	
ARSD	
111 4 0040	
HLA-DQA21	
DNAH11	
OR52H1	
01102111	
HELZZ	
GBP5	
PEG3	
TL05	
C10orf90	
FSIP2	
NREAL 1	
NDLALI	
COL6A5	
GRIPAP1	
DNAHS	
DIVATIO	
MYH7B1	
SYNE2	
\$772	
5212	
KIF16B1	
ENPP6	
MYO1H-	
SCYL1	
PIEZO1	
PONT	
1011	
ARHGEF28	
PCDHB16	
PTRE	
LUDGE	
MUC5B1	
DNAJC13	
EXD2	
75,0/500	
ZFYVE20	
IGSF10	
KRT10	
14110	
INSC	
CCDC88C	
NIN	
0.500/10	
SEC31B1	
CCDC82	
MYRDD1A	
WITBBF TA	
TIGD6	
KIAA1875	
0000010	
PPPZRIB	
PHYKPL	
VCAN	
ATD104	
AIPTOA	
GPAM 1	
FOXP4	
SI COGAO	
SLOZOAS	
IGFN1	
PMF1-BGLAP	
0001	
BRDI	
C12orf68	
IDH3A	
EDNO	
FBN3	
FNTB	
GSN	
NED	
INEB]	
GORASP2	
BTNL8	
Церсон	
113FG2	
C1orf168	
TACC2	
IVET	
LIST	
RNF31	
CEP57	
TATONIZ	
DUDOC	
DHRS3	
IPCEF1	
TOEIO	
OLOUILIE	
CACNA1S	
DNAH17	
C1002	
SIPKS	
PKDREJ	
WNK2	
ANIVATA	
ANXAII	
LAMA1	
IMPS	
17000	
TIPR21	
DNAH3	
CEP102	
ULF 192	
NMBR	
ADATA-	
ADALI	

Fig. S9. Families with rare inherited variants in CDGs. Only genes mutated in two or more families are shown.

Fig. S10. Overlap between the 1,785 CDGs in our families and a curated list of 829 genes known to cause CHD in mice. A. Overlap with all 1,785 CDGs. B. Overlap with genes carrying mutations scored pathogenic by SIFT/Polyphen-2.

Fig. S11. Distribution of CHD genes across families. CHD genes identified in mouse models are shown here. The distribution of human CHD genes is shown in Supplemental Table 4. A. All CHD genes affected by rare variants. B. CHD genes affected by high severity variants. High severity variants were defined as variants creating splicing defects, frameshifts, premature stop codons and missense variants predicted to be damaging by both Polyphen and SIFT.

Fig. S12. Quantile-quantile plots. Plots were generated based on p-values from case control association testing (two-sided Fisher's Exact test) on the burden of synonymous mutations within 10,000 random genesets. The analysis was performed using different MAF cutoffs: A. 0.01 and B. 0.001.

Fig. S13. Distribution of pathogenic mutations in random gene-sets. 10,000 random gene-sets of 10 genes were created. The size distribution of each set was similar to the calcium-signaling gene-set tested in the case-control study; *ADCY2* (6575 bp), *ADCY5* (7311 bp), *ITPR1* (10197 bp), *CACNA1S* (6166 bp), *CACNA1I* (6740 bp), *CACNA1H* (8208 bp), *CACNA1D* (8991 bp), *GRIA4* (5508 bp), *PLCB2* (4616 bp), and *NFAT5* (13362 bp). Pathogenic mutations were defined as mutations with MAF < 0.001 and MPC score >2.

Fig. S14. A. Injection of sub-efficient doses of MOs. Note that only combinations of MOs result in significant numbers of heart defects among the embryos. B. Quantification of heart phenotypes in WT, controls and morphants injected with second set of MOs. S indicates that sub-efficient doses of MOs are injected. C. Rescue of *adcy2a* and *plcb2* knockdown. Embryos injected with *adcy2a* or *plcb2* RNA alone and in combinations with corresponding MOs, are displayed at 48 hpf. *myl7* in situ hybridization marks the heart in these embryos.

Fig. S15. Efficiency of the splice blocking morpholinos (MOs) used against *adcy2a*, *itpr1b* and *plcb2*. Upper panel shows first set of MOs and lower panel shows second set of MOs. Aberrant splicing of *adcy2a*, *itpr1b* and *plcb2* and decrease in corresponding WT mature mRNA is confirmed by RT-PCR analysis.

Table S1. Human orthologues to 829 genes known to be associated with CHD in mouse models. The list was compiled from data in the Mouse Genome Informatics database (http://www.informatics.jax.org/).

ABCA5	CHD7	FGFRL1	INVS	MTERF3	PPARG	SPTBN1
ABCB8	CHMP5	FHOD3	IRAK1	MTERF4	PPARGC1A	SRF
ABI1	CHRD	FKBP1A	IRX3	MTMR12	PPARGC1B	SRSF1
ABL1	CHST14	FKBP1B	IRX5	MTO1	PPP1R13L	SRSF10
ACACB	CISD2	FLNA	ISL1	MUS81	PPP2R3A	SSBP2
ACADM	CITED2	FLRT3	ITCH	МҮВРС3	PPP2R5C	SSR1
ACADVL	CLU	FMOD	ITGA5	MYCN	<i>РРР3СВ</i>	STK39
ACE	CLUAP1	FN1	ITGAV	MYH10	PRDM1	SUFU
ACKR3	CNTRL	FOXA2	ITGB1	МҮН6	PRDM16	Т
ACSL4	COL18A1	FOXC1	ITPA	MYH7	PRDM6	TAB1
ACTC1	COL1A1	FOXC2	JAG1	MYL2	PRF1	TAL1
ACVR1	COL4A3BP	FOXD3	JARID2	MYL7	PRICKLE1	TBC1D32
ACVR2A	COMMD9	FOXG1	JMJD6	MYLK3	PRKAR1A	TBX1
ACVR2B	CRB2	FOXH1	JPH2	MYO10	PRKCI	TBX18
ACVRL1	CREBBP	FOXJ1	JUN	MYO18B	PROC	TBX2
ADAM12	CRKL	FOXM1	JUND	MYOD1	PSEN1	TBX20
ADAM15	CSNK2A1	FOXO1	JUP	MYOZ2	PSEN2	ТВХЗ
ADAM17	CSRP2	FOXP1	KAT6A	NACA	PSKH1	TBX5
ADAM19	CSRP3	FOXP4	KCNH2	NCKAP1	PTCD2	TBX6
ADAM9	CST9	FOXQ1	KCTD10	NCOA6	PTEN	TCF21
ADAMTS6	CTBP2	FRAS1	KDM1A	NCOR2	PTGS2	TCTN2
ADGRG6	CTNNA3	FREM2	KDM2A	NCSTN	PTK2	TDG
ADM	CTNNB1	FRS2	KDM4A	NDST1	PTK7	TEAD1
ADRA1A	CXADR	FSTL1	KDM6A	NEGR1	PTPN11	TEAD2
ADRA1B	CXCL12	FURIN	KDR	NEK6	PTPRB	TEK
AGT	CXCR4	FUS	KIF3A	NEK8	PTPRJ	TERC
AGTR1	CYBB	FUZ	KIF3B	NF1	RAC1	TFAP2A
AGTR2	CYBRD1	FXN	KIF7	NFAT5	RAF1	TFB1M
AIFM1	CYP11B2	FXR1	KIFAP3	NFATC1	RAMP2	TGFB1
AIP	CYP26A1	FZD1	KISS1R	NFATC3	RARA	TGFB2
AKAP12	CYP27B1	FZD2	KLF15	NFATC4	RARB	TGFBR2
AKAP13	CYP51A1	FZD7	KLF2	NGF	RARG	TGFBR3
AKAP6	CYR61	GAA	KLF3	NIPBL	RB1	TGIF1
AKT1	DAAM1	GAB1	KLF5	NKX2-5	RB1CC1	TGIF2
AKT3	DAG1	GAB2	KLHL40	NKX2-6	RBL2	TGM2
ALDH1A2	DAGLA	GAS1	KMT2B	NODAL	RBM20	TH
ALG13	DAND5	GATA4	KMT2D	NOG	RBP4	THBS1
ALPK3	DAW1	GATA5	KRAS	NOS1	RBPJ	THRA
AMN	DCHS1	GATA6	KRT19	NOS3	RCAN1	TIE1
ANGPT1	DCTN5	GBE1	LAMA4	NOTCH1	RCE1	TK2

ANKRD17	DDR2	GBX2	LAMA5	NOTCH2	RDH10	TKT
ANKS6	DDX11	GDF1	LARGE1	NOV	RERE	TLL1
AP2B1	DDX3X	GH1	LATS2	NPPB	RFX3	TLR2
AP4E1	DEDD	GHR	LBX1	NPR1	RHBDF1	TMED2
APC	DES	GHRHR	LDB3	NPRL3	RHBDF2	TMEM100
APOB	DHRS3	GIPC1	LDLR	NR1D2	RHEB	TMEM106B
APOE	DICER1	GJA1	LEFTY1	NR1H3	RHOBTB3	TMEM38A
AR	DISP1	GJA5	LEFTY2	NR2F2	RIC8B	TMEM38B
ARID1A	DLL1	GJC1	LEMD2	NR3C1	RIPPLY3	TMEM67
ARID2	DLL4	GNA11	LEP	NR3C2	RNF4	TMOD1
ARMC4	DMD	GNAQ	LEPR	NRG1	ROBO1	TMSB4X
ARNTL	DNAAF2	GNAS	LHCGR	NRP1	ROR1	TNNI3
ARSB	DNAAF3	GNG5	LHX1	NRP2	ROR2	TNNT2
ASL	DNAH11	GPC3	LIG3	NTF3	RPGRIP1L	TP53
ATE1	DNAH5	GRIN2D	LIMS1	NTRK3	RPS6KA2	TREX1
ATF2	DNAI1	GRK2	LIMS2	NXN	RSPO3	TRIM37
ATF7	DNAJA3	GSC	LIN28A	OFD1	RTTN	TRIM54
ATG5	DNASE1L2	GTF2I	LMNA	OPA3	RXRA	TRIM55
ATMIN	DNM1L	GTF2IRD1	LMOD2	OSR1	RXRB	TRIM63
ATP2A2	DNM2	GYS1	LOXL2	OTX2	RYR1	TRIP11
AXIN1	DNMT3B	GYS2	LRP1	OVOL2	RYR2	TRPM2
AXIN2	DOCK1	HADHB	LRP2	PAK1	SALL1	TSC1
B9D1	DOT1L	HAND1	LTBP1	PAK4	SALL4	TSC22D1
BAG3	DRC1	HAND2	LTBP4	PARD3	SCN5A	TTBK2
BAZ1B	DSP	HAS2	LUM	PARVA	SCN8A	ТТС7А
BBX	DTNA	HBEGF	LUZP1	PATZ1	SCYL1	TTN
BCAR1	DUSP8	HCCS	LY6E	PAX3	SEC24B	TXNRD2
BCL6	DVL1	HDAC2	MAML1	PAXIP1	SEMA3C	UBE2U
BCOR	DVL2	HDAC5	MAML3	PBRM1	SEMA3D	UBE4B
BICC1	DVL3	HDAC9	MAP1S	PCNT	SENP2	UBP1
BIN1	DYNC2H1	HECTD1	MAP2K1	PCSK5	SGCB	UBR1
BMP1	DYNC2LI1	HECTD3	MAP2K2	PCSK6	SGCD	UBR2
BMP10	DYNLL1	HEG1	MAP2K5	PDCD10	SGCG	UBR4
BMP2	DYRK1A	HERC4	MAP3K3	PDGFA	SGPL1	USP12
BMP4	DYX1C1	HEXIM1	MAP3K7	PDGFB	SH3PXD2B	USP24
BMPR1A	ECE1	HEY1	MAPK1	PDGFC	SHC1	USP9X
BMPR2	ECE2	HEY2	MAPK11	PDGFRA	SHH	UTF1
BRAF	EDN1	HEYL	MAPK14	PDGFRB	SHOC2	UTRN
BTAF1	EDNRA	HGS	MAPK3	PDHA1	SHOX2	UVRAG
BTC	EDNRB	HHEX	MAPK6	PDLIM3	SIRT1	VANGL1
C2CD3	EFNA1	HIC2	MAPK7	PDLIM7	SIRT7	VANGL2
CACNA1C	EFNB2	HIF1A	MARVELD2	PDPK1	SIX1	VAV2
CACNA1H	EGFR	HIF3A	MATR3	PDPN	SLC22A8	VAV3

CACNA11	EGLN1	HIRA	MB	PDS5A	SLC2A4	VCAM1
CACNB2	EGLN3	HMOX1	MBTD1	PDS5B	SLC38A10	VCAN
CALCRL	EGR2	HOPX	MCU	PELI1	SLC39A4	VCL
CALR	EHMT1	HOXA1	MDM2	PEPD	SLC4A1	VDR
CAPNS1	EIF2B5	HOXA3	MECOM	PHC1	SLC6A6	VEGFA
CASP8	ELN	HOXB4	MED1	PHIP	SLC8A1	VEGFB
CASQ2	EMC10	HPRT1	MED12	PIBF1	SLC9A1	VPS54
CAV1	EMD	HRAS	MED24	PIFO	SLIT3	WASF2
CAV3	ENG	HSD11B2	MED30	PIGV	SMAD1	WDPCP
CC2D2A	EP300	HSD17B7	MEF2C	PIK3CA	SMAD2	WDR1
CCDC124	EPHA3	HSPB11	MEF2D	РІКЗСВ	SMAD3	WDR35
CCDC151	EPHB4	HSPB8	MEGF8	PIK3CG	SMAD4	WHSC1
CCDC160	EPO	HSPG2	MEIS1	PIK3R1	SMAD5	WNK1
CCDC39	EPOR	HTR2B	MEN1	PIK3R2	SMAD6	WNT11
CCM2	ERBB2	HTRA2	MEOX2	PIKFYVE	SMAD7	WNT3A
CCM2L	ERBB3	HUWE1	MESP1	PINK1	SMARCA4	WNT5A
CCND1	ERBB4	IDUA	MEST	PIP5K1C	SMG1	WRN
CCND2	ESR1	IER3	MFN2	PITX2	SMG9	WT1
CCND3	ESR2	IFT122	MFSD8	PKD1	SMN1	WWTR1
CCNE1	EYA1	IFT140	MGAT1	PKD2	SMO	XBP1
CCNE2	EZH2	IFT172	MGP	PKP2	SMYD1	XIRP1
CDC73	F11	IFT27	MGRN1	PLA2G4A	SNAI1	XIRP2
CDH2	F2R	IFT46	MIB1	PLAGL1	SNAI2	YAP1
CDH5	FADD	IFT57	MIXL1	PLCE1	SNX17	YWHAE
CDK2	FAT4	IFT74	MKL1	PLEC	SNX27	ZBTB14
CDK4	FBLN1	IFT88	MKL2	PLN	SOD1	ZFP36L1
CDK6	FBN1	IGF1R	MKS1	PLVAP	SOD2	ZFPM1
CDKN1A	FENDRR	IGF2	MMP21	PLXND1	SOS1	ZFPM2
CDKN1B	FES	IGF2R	MMP9	PNN	SOX11	ZIC3
CENPF	FGF10	IGFBP2	MORF4L1	PNPLA2	SOX12	ZNF366
CENPJ	FGF16	IGHMBP2	MOSPD3	POFUT1	SOX4	ZNF521
<i>CEP290</i>	FGF2	IKBKAP	MPZL3	POGLUT1	SOX9	ZSCAN10
CFC1	FGF8	IL17RD	MSX1	POLG	SPARC	
CFL1	FGF9	IL6	MSX2	POR	SPP1	
CFLAR	FGFR1	INSR	MT-CO1	POSTN	SPTA1	
CHD2	FGFR2	INTU	MT-RNR2	PPARA	SPTAN1	

Table S2. A list of 144 Human CHD disease genes. The list was curated from the literature (PMIDs 29106500, 23934094, 27058611, 28991257, 27479907, 28592524, 25996639, 29089047).

ACTC1	CITED2	FLT4	KIAA0196	MYH7	PKD2	SOS1
ACVR1	COL2A1	FOXC1	KMT2A	NF1	PLRG1	SRCAP
ACVR2B	COL9A1	FOXC2	KMT2D	NFATC1	PRDM1	STK4
ADNP	CREBBP	FOXH1	KRAS	NIPBL	PRKD1	STRA6
ALDH1A2	CRELD1	FOXL2	LBR	NKX2	PTGFRA	TAB2
ALK2	CYR61	FOXP1	LEFTY2	NKX2-5	PTPN11	TBX1
ANKRD1	DDX3X	GATA4	MAP2K1	NKX2-6	RAF1	TBX20
ANKRD11	DHCR7	GATA5	MAP2K2	NODAL	RBFOX2	TBX3
B3GALTL	DNAH11	GATA6	MCTP2	NOTCH1	RBM10	TBX5
B3GAT3	DNAH5	GDF1	MDM4	NOTCH2	RIT1	TDGF1
BBS2	DNAI1	GDF3	MED13L	NPHP2	RNF20	TFAP2B
BCOR	DVL1	GJA5	MEK1	NPHP3	ROBO1	TNNI3
BMPR1A	DYRK1A	GPC3	MESP1	NPHP4	ROR2	VCAN
BRAF	EHMT1	HAND2	MID1	NR1D2	SALL1	WNT5A
CBL	ELN	HAS2	MKKS	NR2F2	SALL4	ZEB2
CCDC11	EP300	HOXA1	MKRN2	NRAS	SEMA3D	ZFMP2
CDK13	EVC	HRAS	MKS1	NRP1	SH3PXD2B	ZFPM2
CEP152	EVC1	IRX4	MLL2	NSD1	SHOC2	ZIC3
CFC1	EVC2	JAG1	MMP21	PACS1	SHROOM3	
CHD4	FBN1	JARID2	MYH11	PDGFRA	SMAD6	
CHD7	FGFR3	KDM6A	МҮНб	PITX2	SMURF1	

Table S3. Primers used in the study

Name	5´-3´sequence
Primers for test of morpholinos	
zAdcy2a-SP-MO-test-F	GGAGTTTGAAAAGCGTCAGC
zAdcy2a-SP-MO-test-R	GGTACACCACCTGCTTCCAT
zltpr1b-SP-MO-test-F	TGTGGAGGTGGTGAGAAAGC
zItpr1b-SP-MO-test-R	AGAGGCTGTCCTGCGTTTAC
zPlcb2-SP-MO-test-F	ACGCTCTGCTTATCGACCTG
zPlcb2-SP-MO-test-R	GTCTGGTAGTTGAGGGCCAC
zAdcy2a-SP-MO2-test-F	GCCAGTCTGCAGTTCAACAT
zAdcy2a-SP-MO2-test-R	TGCCAGAATCTGCCATACCA
zPlcb2-SP-MO2-test-F	CTCTGATGAGGGAACGGCTG
zPlcb2-SP-MO2-test-R	AATCTTAATAGTGAGCGTGC
Primers for qRT-PCR	
mef2cb-F	ACTCGGACATAGTGGAGACCCTG
mef2cb-R	TTCTTTGCAGGCCGTGGTGGG
actb1-F	AGATCTTCACTCCCCTTGTTCAC
actb1-R	AAACCGGCTTTGCACATACC
rpl13a-F	TCTGGAGGACTGTAAGAGGTATGC
rpl13a-R	AGACGCACAATCTTGAGAGCAG

Gene	Variant	Mutation	Family	MAF ^a	Sub population with MAF >0.01 ^b	CADD score ^c	ClinVar interpretation (N) [ID]
ANKRDI	10-92675322-G-A	p.Ala276Val	346	0.002638	AJ (0.02086)	23.00	Benign(5);Likely benign(5);Uncertain significance(1) [45639]
CCDC11	18-47765069-C-T	p.Arg407Gln	3315	0.000025	n/a	25.70	n/a
CDK13	7-40132656-G-A	p.Val1170Met	3315	0.005165	n/a	26.10	n/a
CYR61	1-86048526-C-G	p.Ser316Cys	3540	0.004706	n/a	24.60	n/a
DNAH11	7-21600738-A-G	p.Gln311Arg	226	0.000077	n/a	14.36	n/a
	7-21760479-G-A	c.7287+5 G>A	346	0.000074	n/a	14.54	n/a
	7-21789835-G-A	c.8798-5 G>A	645	0.003759	n/a	14.13	Benign(1);Likely benign(2);Uncertain significance(1) [163114]
	7-21788220-C-G	p.Arg2845Gly	720	0.001274	n/a	16.60	Likely benign(1);Uncertain significance(1) [359658]
	7-21640338-G-T	p.Glu1015Asp	1722	0.002989	n/a	22.70	Benign (2) [238905]
DNAH5	5-13850914-C-T	p.Arg1654Gln	489	0.0002617	n/a	32.00	Uncertain significance (2) [238977]
	5-13914751-C-T	p.Val400Met	732	0.0008012	n/a	34.00	Likely benign (1) [219733]

Table S4. Variants identified in known human CHD genes.

	5-13786351-C-G	p.Glu2919Asp	1121	0.003120	n/a	15.84	Benign(2);Likely benign(1);Uncertain significance(1) [188365]
EVC2	4-5642347-G-C	p.Thr455Arg	545	0.003836	n/a	23.90	Benign(3);Likely benign(1);Uncertain significance(1) [193762]
	4-5620263-G-A	p.Ala803Val	1151	0.003752	FIN (0.01365)	16.90	n/a
FOXH1	8-145700381-C-G	p.Ser113Thr	346	0.004183	n/a	22.70	Benign/Likely benign (5) [94385]
KMT2A	11-118352769-G-A	p.Ser1325Asn	49	0.000906	n/a	19.46	n/a
KMT2D	12-49426025-G-T ^d	p.Pro4155Thr	346	0.0000281	n/a	14.07	n/a
	12-49431844-G-A ^d	p.Arg3099Cys	3505	0.00002884	n/a	24.80	n/a
MYH11	16-15797967-T-A	p.Thr1934Ser	732	0.001347	n/a	16.85	Likely benign(5);Uncertain significance(1) [201044]
МҮНб	14-23866451-G-T	Leu700Ile	1710	n/a	n/a	24.20	n/a
NFATC1	18-77246538-G-A	p.Gly795Arg	645	0.003186	n/a	14.95	n/a
NOTCH2	1-120468201-A-T	p.Leu1413His	1121	0.003299	n/a	15.52	Benign/Likely benign (5)[134975]
NPHP4	1-6012895-G-A	c.675 C>T (splice)	489	0.000086	n/a	5.49	n/a
PACS1	11-66008953-G-A	Gly829Ser	1151	n/a	n/a	23.10	n/a

PDGFRA	4-55161324-C-T	p.Thr1052Met	1151	0.0001769	n/a	25.20	Uncertain significance (2) [39618]
PKD2	4-88967919-T-G	p.Phe482Cys	545	0.001984	n/a	24.90	Benign (3) [219481]
ROR2	9-94487187-C-T	p.Arg530Gln	732	0.001915	n/a	20.90	Likely benign (4) [284633]
TBX5	12-114837364-T-C	p.Ile106Val	226	0.000933	AJ (0.01119)	21.80	Likely benign (3) [213825]
VCAN	5-82868257-A-G	p.Asn3253Ser	346	0.0002088	n/a	26.10	n/a
	5-82816284-T-C	p.Val720Ala	732	0.001995	n/a	0.001	Likely benign (3) [354403]

^a Minor allele frequency in gnomAD v2.1.1 (141,456 individuals, http://gnomad.broadinstitute.org). ^b GnomAD sub population with MAF >0.01. AJ: Ashkenazi Jewish, FIN: European (Finnish). MAF in subpopulation is shown in paranteses. ^c CADD score according to the Combined Annotation-Dependent Depletion prediction algorithm. n/a: not available. ^d None of the patients with these variants in *KMT2D* had features of Kabuki syndrome.

 Table S5. Significant protein-protein interaction clusters

with at least two CDGs. Statistical significance was determined by permutation analysis (k=10,000). *:P<0.05, **:P<0.01.

Cluster id.	Cluster size	Mut.Genes	p-value
cluster15	27	11	0.00331 **
cluster17	5	3	0.03872 *
cluster215	21	7	0.05427
cluster28	13	5	0.05775
cluster40	6	3	0.06705
cluster202	6	3	0.06807
cluster200	12	4	0.13646
cluster14	23	6	0.19057
cluster8	5	2	0.20428
cluster3	29	7	0.22072
cluster208	10	3	0.24048
cluster10	6	2	0.27304
cluster6	6	2	0.27311
cluster47	6	2	0.27341
cluster230	6	2	0.27429
cluster42	6	2	0.27477
cluster41	6	2	0.27558
cluster13	7	2	0.34492
cluster7	8	2	0.41017
cluster5	15	3	0.48476
cluster4	27	5	0.5071
cluster9	17	3	0.57995
cluster2	18	3	0.61678
cluster113	14	2	0.71902
cluster1	30	4	0.78055

Family	Gene	Gene	Variant	Mutation ^b	MAF °	Sub pop.	CADD	MPC	Heart malformations
		pLI ^a				With MAF>0.01 ^d	score ^e	score	
333	ITPR1 ^e	1.000	3-4704816-G-A	V479I	0.004560	AJ (0.01023)	22.2	1.77	PAPVR, ASDsv, VSD, COA
346	$ADCY2^{f}$	1.000	5-7695981-G-A	IVS6+5 G>A	0.005025	AJ (0.01529), FIN (0.02375)	15.1	n/a	VSD
	NFAT5 ^g	1.000	16-69660329-A-G	K51E	0.000042	n/a	27.0	1.95	VSD
489	$PLCB2^{h}$	0.000	15-40584565-C-A	K802N	0.000004	n/a	29.7	n/a	ASD, subAS, VSD, PDA, HCM
	PLCB2 ^h	0.000	15-40584570-T-A	M801L	n/a	n/a	24.9	n/a	ASD, subAS, VSD, PDA, HCM
	PLCB2 ^h	0.000	15-40584571-C-A	E800D	n/a	n/a	21.1	n/a	ASD, subAS, VSD, PDA, HCM
645	CACNA1D ⁱ	1.000	3-53707750-С-Т	A376V	0.00001591	n/a	32.0	2.04	ASD, VSD
702	CACNA1S ⁱ	0.000	1-201009430-G-T	P1767T	0.0002199	n/a	3.34	0.11	VSD, AVSD
732	CACNA1H ⁱ	0.756	16-1260783-G-A	IVS20-4 G>A	0.003458	AJ (0.03019)	22.9	n/a	TOF
	CACNA1H ⁱ	0.756	16-1270119-С-Т	R2063W	0.00009303	n/a	0.07	n/a	TOF
	GRIA4 ^j	0.989	11-105776016-G-C	G383R	0.000004002	n/a	26.5	n/a	TOF
1121	CACNA1F ⁱ	0.874	X-49088240-T-C	T59A	0.00005878	n/a	0.12	0.54	ASD, VSD, PVS
1151	CACNA1S ⁱ	0.000	1-201009011-C-T	S1857N	0.002224	n/a	23.3	0.17	ASD, EbA
1722	ADCY5 ^f	0.990	3-123046510-C-G	E634D	0.004502	n/a	15.1	n/a	ASD, COA, DCM
	ITPR1 ^e	1.000	3-4842276-G-A	A2352T	0.0008309	n/a	23.5	0.92	ASD, COA, DCM
2077	CACNA11 ⁱ	1.000	22-40059828-G-C	Q1193H	0.003735	AJ (0.03569)	23.7	n/a	PVS, InfPS

Table S6. Rare calcium signaling gene variants shared among affected individuals in multiplex CHD families.

^a Probability of loss of function intolerance of gene. ^b All 16 listed mutations were confirmed by Sanger sequencing. ^c Minor allele frequency in gnomAD v2.1.1 (141,456 individuals, http://gnomad.broadinstitute.org). n/a: not available in database.^c GnomAD sub population with MAF >0.01. AJ: Ashkenazi Jewish, FIN: European (Finnish). MAF in subpopulation is shown in paranteses. ^d C score according to the Combined Annotation-Dependent Depletion (CADD) prediction algorithm ²⁷. ^d MPC-score: score based on regional missense constraint. ^e IP3 receptor. ^f Adenylate cyclase. ^g Transcription factor. ^h Phospholipase C. ⁱ Voltage Dependent Calcium Channel. ^j Glutamate receptor. **Table S7.** Gene ontology term enrichment of 27 genes within the cluster shown in Figure 3A. P-values were adjusted for multiple testing.

Gene Ontology – Molecular Function	p-value
calcium-dependent protein kinase C activity (GO:0004698)	1.61E-06
calcium-dependent protein serine/threonine kinase activity (GO:0009931)	3.35E-05
calcium-dependent protein kinase activity (GO:0010857)	4.35E-05
protein kinase C activity (GO:0004697)	1.47E-04
histone kinase activity (H3-T6 specific) (GO:0035403)	9.01E-04
protein serine/threonine kinase activity (GO:0004674)	2.60E-03
ATP binding (GO:0005524)	2.99E-03
adenyl ribonucleotide binding (GO:0032559)	3.44E-03
adenyl nucleotide binding (GO:0030554)	3.57E-03
purine ribonucleoside triphosphate binding (GO:0035639)	1.03E-02
purine ribonucleoside binding (GO:0032550)	1.06E-02
purine nucleoside binding (GO:0001883)	1.07E-02
ribonucleoside binding (GO:0032549)	1.08E-02
cAMP-dependent protein kinase activity (GO:0004691)	1.10E-02
histone threonine kinase activity (GO:0035184)	1.10E-02
nucleoside binding (GO:0001882)	1.10E-02
purine ribonucleotide binding (GO:0032555)	1.18E-02
purine nucleotide binding (GO:0017076)	1.23E-02
ribonucleotide binding (GO:0032553)	1.31E-02
cyclic nucleotide-dependent protein kinase activity (GO:0004690)	1.82E-02
protein kinase activity (GO:0004672)	2.18E-02
adenylate cyclase activity (GO:0004016)	2.25E-02
carbohydrate derivative binding (GO:0097367)	3.51E-02
Gene Ontology – Biological Process	p-value
activation of phospholipase C activity (GO:0007202)	1.59E-07
positive regulation of phospholipase C activity (GO:0010863)	3.30E-07
regulation of phospholipase C activity (GO:1900274)	3.83E-07
positive regulation of phospholipase activity (GO:0010518)	1.03E-06
regulation of phospholipase activity (GO:0010517)	1.82E-06
positive regulation of lipase activity (GO:0060193)	2.14E-06
regulation of lipase activity (GO:0060191)	4.61E-06
activation of protein kinase A activity (GO:0034199)	3.76E-04
epidermal growth factor receptor signaling pathway (GO:0007173)	8.48E-04
fibroblast growth factor receptor signaling pathway (GO:0008543)	8.75E-04
regulation of body fluid levels (GO:0050878)	1.01E-03
ERBB signaling pathway (GO:0038127)	1.02E-03
cellular response to fibroblast growth factor stimulus (GO:0044344)	1.27E-03
response to fibroblast growth factor (GO:0071774)	1.38E-03
peptidyl-serine phosphorylation (GO:0018105)	2.19E-03

neurotrophin TRK receptor signaling pathway (GO:0048011)	2.37E-03
neurotrophin signaling pathway (GO:0038179)	2.46E-03
transmembrane receptor protein tyrosine kinase signaling pathway (GO:0007169)	2.51E-03
histone H3-T6 phosphorylation (GO:0035408)	2.74E-03
renal water homeostasis (GO:0003091)	2.74E-03
peptidyl-serine modification (GO:0018209)	3.18E-03
energy reserve metabolic process (GO:0006112)	3.27E-03
cellular response to glucagon stimulus (GO:0071377)	3.86E-03
activation of adenylate cyclase activity (GO:0007190)	4.52E-03
positive regulation of adenylate cyclase activity (GO:0045762)	8.41E-03
response to glucagon (GO:0033762)	8.41E-03
enzyme linked receptor protein signaling pathway (GO:0007167)	9.95E-03
synaptic signaling (GO:0099536)	1.11E-02
synaptic transmission (GO:0007268)	1.11E-02
trans-synaptic signaling (GO:0099537)	1.11E-02
multicellular organismal water homeostasis (GO:0050891)	1.48E-02
positive regulation of cyclase activity (GO:0031281)	1.72E-02
positive regulation of lyase activity (GO:0051349)	1.72E-02
water transport (GO:0006833)	1.90E-02
water homeostasis (GO:0030104)	1.99E-02
fluid transport (GO:0042044)	2.49E-02
regulation of adenylate cyclase activity (GO:0045761)	2.60E-02
histone-threonine phosphorylation (GO:0035405)	3.35E-02
positive regulation of cAMP biosynthetic process (GO:0030819)	3.87E-02
immune system process (GO:0002376)	3.91E-02
cellular response to forskolin (GO:1904322)	4.38E-02
response to forskolin (GO:1904321)	4.38E-02
regulation of cyclase activity (GO:0031279)	4.63E-02
regulation of lyase activity (GO:0051339)	4.97E-02

Table S8. Replication using WES data from 714 CHD cases and 4922 controls. The number of cases and controlswith rare variants (MAF < 0.001) in any of the genes ADCY2, ADCY5, CACNA1D, CACNA1H, CACNA1I, CACNA1S, GRIA4, ITPR1,</td>NFAT5 and PLCB2 was compared (see supplemental material for details). WES data was not available for CACNA1F.

Type of rare variant ^a	Cases	Controls	P-value ^b	Odds ratio
Protein sequence altering variants	116	877	3.18E-01 n.s.	0.89 [0.72-1.11]
Protein altering variants, MPC score >1	43	243	3.35E-01 n.s.	1.23 [0.86-1.73]
Protein altering variants, MPC score >2	21	55	3.69E-04 **	2.68 [1.53-4.54]
Protein truncating variants	3	16	7.25E-01 n.s.	1.29 [0.24-4.53]
Synonymous variants	94	630	7.65E-01 n.s.	1.03 [0.81-1.31]

^a Variants with pathogenic effect was defined by MPC score >2. ^b Fisher's exact test. **:P<0.01. n.s.: not significant.