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Abstract

The presentation and identification of cardiovascular disease in women pose unique diagnostic challenges compared to
men, and underrecognized conditions in this patient population may lead to clinical mismanagement.
This article reviews the sex differences in cardiovascular disease, explores the diagnostic and prognostic role of
cardiovascular magnetic resonance (CMR) in the spectrum of cardiovascular disorders in women, and proposes the added
value of CMR compared to other imaging modalities. In addition, this article specifically reviews the role of CMR in
cardiovascular diseases occurring more frequently or exclusively in female patients, including Takotsubo cardiomyopathy,
connective tissue disorders, primary pulmonary arterial hypertension and peripartum cardiomyopathy. Gaps in knowledge
and opportunities for further investigation of sex-specific cardiovascular differences by CMR are also highlighted.
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Background
Women are commonly underrepresented in cardiovas-
cular research, comprising as little as 15–35% of popula-
tions in randomized clinical trials [1], and when
included, are most often in the postmenopausal stage of
life [2]. Even though both men and women are affected
by cardiovascular disease, there are only limited num-
bers of sex-specific and age-balanced imaging and man-
agement guidelines for women with cardiovascular
disease [2]. In the setting of growing awareness of pro-
viding personalized precision medicine, addressing sex
differences in cardiovascular disease is a key goal [1].
Anatomically, women have smaller hearts even after

adjustment for body size, and, as a result, have different
disease phenotypes, which may influence the choice and

accuracy of diagnostic tests. Further, there are intrinsic
imaging difficulties with transthoracic echocardiography
in women due to reduced image quality from breast tis-
sue attenuation and reluctance to use cardiac computed
tomography (CCT) in pre-menopausal women due to
breast tissue sensitivity. Cardiovascular magnetic reson-
ance (CMR) imaging provides a comprehensive evalu-
ation of cardiovascular disease, including assessment of
myocardial structure and function, inflammation, ische-
mia, viability, and valvular disease, with the additional
benefit of excellent reproducibility [3]. The advantage of
lack of exposure to ionizing radiation is particularly
beneficial in women, especially in those of childbearing
and premenopausal age.
The literature on sex-specific differences in cardiovas-

cular conditions, including sex-specific CMR reference
values, is limited. The aims of this paper are to review
the applications of CMR in the spectrum of cardiovascu-
lar diseases that affect women, with a particular focus on
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sex-related differences in conditions that occur more fre-
quently or exclusively in women.

Comparison of normative CMR sex-specific values
in healthy subjects
Table 1 lists normative values of ventricular volumes
and mass in women and men.
Both absolute and indexed left ventricular (LV) and

right ventricular (RV) volumes and LV mass are smaller
in women compared to men. LV and RV ejection frac-
tion (EF) are greater or equal in women compared to
men [4–7, 11]. Absolute left atrial (LA) maximal volume
is significantly smaller in women compared to men,
however indexed LA volumes and emptying fraction are
similar between sexes [4, 8, 9]. Absolute right atrial
(RA) maximal volume is significantly smaller, indexed
RA volume is smaller or equal, and RA emptying frac-
tion is higher in women [4, 9, 10].
Current evidence suggests that T1 and extracellular vol-

ume (ECV) values are higher in women, especially pre-
menopausal women, compared with men, at both 1.5 T
and 3 T [12–15]. There is conflicting evidence whether
CMR T2 mapping values are influenced by sex [15–18],
although current studies used different T2-mapping tech-
niques, and may be underpowered to detect sex-
dependent effects. Large population based studies that in-
clude equal sex representation will allow for sex-specific
reference values for T1, T2 and ECV [19].

Ischemic heart disease
Acute myocardial infarction
Acute myocardial infarction (MI) in women differs from
men in presentation, underlying pathophysiology, and
outcomes [20, 21]. This includes a higher mortality after
acute MI in women < 50 years of age (odds ratio 1.37 for
female sex) [22]. Women have a higher prevalence of non-
obstructive coronary plaques [21, 23–25] and less ather-
oma volume than men [26], which may affect strategies
for diagnosing acute coronary syndrome (ACS) in women.
CMR can characterize myocardial tissue following MI,

independently of the presence of obstructive coronary
lesions. Studies have shown that infarct size and myocar-
dial salvage are smaller in women than men (myocardial
salvage index: women 0.4 vs. men 0.5, p = 0.013), reflect-
ing a smaller acute infarct size (women 14% of LV vs.
men 22% of LV) and follow up infarct size (women 8%
vs. men 13% LV) [27]. In addition, microvascular ob-
struction (MVO) burden has been shown to be smaller
in women than in men by Canali et al. (women 1.1 ±
1.0% LV vs. men 3.4 ± 2.2% LV, p = < 0.001) [27] and by
Langerhans et al. (women 0.48 ± 1.3% LV vs. men 1.2 ±
3.0% LV, p = 0.03) [28].

Myocardial infarction with non-obstructed coronary arteries
(MINOCA)
There is over-representation of women with MI with
non-obstructed coronary arteries (MINOCA) relative to
those with elevated troponin and obstructive coronary
artery disease (CAD) (24–30% are women) [29, 30].
Mechanisms of MINOCA more commonly observed in
women include coronary microvascular dysfunction
[31–33] and coronary artery plaque erosions [34, 35].
Identification of underlying etiology of MINOCA is im-
portant for risk stratification and treatment decision-
making [36, 37]. CMR is a key diagnostic imaging tool in
the assessment of patients with MINOCA, providing de-
tailed myocardial tissue characterization, location of
myocardial inflammation/edema, scarring/fibrosis, and
discriminating between ischemic and non-ischemic eti-
ologies. CMR has been shown to identify the underlying
etiology in up to 87% of patients with MINOCA [38]. In
particular, the more common causes of MINOCA, such
as myocarditis, acute MI without obstructing plaque,
and Takotsubo cardiomyopathy (TCM), can be easily di-
agnosed with CMR. Ischemic patterns of late gadolinium
enhancement (LGE) may be seen in women presenting
with MINOCA [39], and abnormal perfusion on stress
CMR is commonly noted, likely to be related to multiple
mechanisms, including microvascular dysfunction [40].
Despite the absence of angiographically significant CAD,
patients with MINOCA have worse outcomes with a 12
month all-cause mortality rate of 4.7% [29]. A recent
study demonstrates that CMR can inform prognosis in
MINOCA patients, independent of sex [41].

Differential diagnosis of MINOCA

Myocarditis CMR is an important tool for diagnosis of
myocarditis in both sexes [42, 43]. The CMR diagnosis
of myocarditis is based on the “Lake Louise criteria” of
myocardial edema, hyperemia, and fibrosis (Fig. 1) [44].
In addition, parametric mapping techniques, including
native T1 mapping, extracellular volumes of distribution,
and T2 mapping are promising techniques and may sig-
nificantly improve the diagnostic accuracy of CMR [14,
45–48].
Although there are no differences in the CMR diag-

nostic criteria for myocarditis in women versus men,
sex-differences are noted specifically related to the sub-
sequent risk of chronic dilated cardiomyopathy [49].

Takotsubo cardiomyopathy Takotsubo cardiomyop-
athy (TCM) should be considered in the differential
diagnosis of MINOCA, with a prevalence of 10–27% [36,
38, 50–52]. TCM is a condition more prevalent in
women and is often precipitated by an emotional or
physical stress and a characteristic finding is mid-cavity

Bucciarelli-Ducci et al. Journal of Cardiovascular Magnetic Resonance           (2020) 22:71 Page 2 of 17



Table 1 Normative CMR values of cardiac volumes and function in women and men

Author, year N (women +men), age Women Men Women compared to men

Left ventricle

LVEDV (ml) Petersen et al., 2017 [4] 433 + 371, 45–74 years 124 (88–161) 166 (109–218) ↓

Maicera et al., 2006 [5] 60 + 60, 20–80 years 128 (88–168) 156 (115–198) ↓

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 135 (96–174) 169 (102–235) ↓

LVEDVi (ml/m2) Petersen et al., 2017 [4] 433 + 371, 45–74 years 74 (54–94) 85 (60–110) ↓

Maicera et al., 2006 [5] 60 + 60, 20–80 years 75 (57–92) 80 (63–98) ↓

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 78 (56–99) 82 (53–112) ↓

LVESV (ml) Petersen et al., 2017 [4] 433 + 371, 45–74 years 49 (31–68) 69 (39–97) ↓

Maceira et al., 2006 [5] 60 + 60, 20–80 years 42 (23–60) 53 (30–75) ↓

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 49 61 ↓

LVESVI (ml/m2) Petersen et al., 2017 [4] 433 + 371, 45–74 years 29 (19–40) 36 (21–49) ↓

Maceira et al., 2006 [5] 60 + 60, 20–80 years 24 (15–34) 27 (16–38) ↓

LVSV (ml) Petersen et al., 2017 [4] 433 + 371, 45–74 years 75 (49–100) 96 (59–132) ↓

Maceira et al., 2006 [5] 60 + 60, 20–80 years 86 (58–114) 104 (76–132) ↓

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 86 108 ↓

LVSVI(ml/m2) Petersen et al., 2017 [4] 433 + 371, 45–74 years 45 (30–59) 49 (32–67) ↓

Maceira et al., 2006 [5] 60 + 60, 20–80 years 50 (38–63) 53 (41–65) ↓

LVEF (%) Petersen et al., 2017 [4] 433 + 371, 45–74 years 61 (51–70) 58 (48–69) ↑

Maceira et al., 2006 [5] 60 + 60, 20–80 years 67 (58–76) 67 (58–75) →

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 64 (54–74) 64 (55–73) →

LVM (g) Petersen et al., 2017 [4] 433 + 371, 45–74 years 70 (46–93) 103 (64–141) ↓

Maceira et al., 2006 [5] 60 + 60, 20–80 years 108 (72–144) 146 (108–184) ↓

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 90 (66–114) 133 (85–181) ↓

LVMI (g/m2) Petersen et al., 2017 [4] 433 + 371, 45–74 years 42 (29–55) 53 (35–70) ↓

Maceira et al., 2006 [5] 60 + 60, 20–80 years 63 (48–77) 74 (58–91) ↓

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 52 (37–67) 65 (46–83) ↓

Right ventricle

RVEDV (ml) Petersen et al., 2017 [4] 433 + 371, 45–74 years 130 (85–168) 182 (124–258) ↓

Maceira et al., 2006 [7] 60 + 60, 20–80 years 126 (84–168) 163 (113–213) ↓

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 131 (83–178) 177 (111–243) ↓

RVEDVI (ml/m2) Petersen et al., 2017 [4] 433 + 371, 45–74 years 77 (53–99) 93 (68–125) ↓

Maceira et al., 2006 [7] 60 + 60, 20–80 years 73 (55–92) 83 (60–106) ↓

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 75 (48–103) 86 (58–114) ↓

RVESV (ml) Petersen et al., 2017 [4] 433 + 371, 45–74 years 55 (27–77) 85 (47–123) ↓

Maceira et al., 2006 [7] 60 + 60, 20–80 years 43 (17–69) 57 (27–86) ↓

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 52 79 ↓

RVESVI (ml/m2) Petersen et al., 2017 [4] 433 + 371, 45–74 years 33 (17–46) 43 (25–63) ↓

Maceira et al., 2006 [7] 60 + 60, 20–80 years 25 (12–38) 29 (14–43) ↓

RVSV (ml) Petersen et al., 2017 [4] 433 + 371, 45–74 years 75 (48–99) 97 (68–125) ↓

Maceira et al., 2006 [7] 60 + 60, 20–80 years 83 (57–108) 106 (72–140) ↓

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 78 98 ↓

RVSVi (ml/m2) Petersen et al., 2017 [4] 433 + 371, 45–74 years 45 (30–59) 50 (34–67) ↓

Maceira et al., 2006 [7] 60 + 60, 20–80 years 48 (36–60) 54 (38–70) ↓

RVEF (%) Petersen et al., 2017 [4] 433 + 371, 45–74 years 58 (47–68) 54 (45–65) ↑
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to apical akinesia with sparing of the basal seg-
ments though many atypical variants have been de-
scribed. While previously thought to have a favorable
prognosis, recent data suggest that TCM is associated
with increased arrhythmic risk and worse prognosis [53,
54]. CMR has added diagnostic value in TCM, detecting
myocardial edema in regions with focal wall motion ab-
normalities, without the presence of myocardial scarring
(Fig. 2) [55]. The typical pattern of myocardial edema is
circumferential, transmural in extent, and resolves
within 2–3 months along with recovery of regional wall

motion abnormality [56]. In TCM, absence of LGE rules
out acute MI or myocarditis; although a subtle patchy
LGE may be present, which has been attributed to the
presence of edema [51, 56], sub-microscopic cell death,
and transient increase in levels of extracellular matrix
proteins, particularly collagen-1 [57].

Chronic coronary syndrome
The diagnosis of chronic coronary syndrome (previously
referred to as stable CAD) presents several challenges in

Table 1 Normative CMR values of cardiac volumes and function in women and men (Continued)

Author, year N (women +men), age Women Men Women compared to men

Maceira et al., 2006 [7] 60 + 60, 20–80 years 66 (54–78) 66 (53–78) →

Alfakih et al., 2003 [6] 30 + 30, 20–65 years 60 (50–70) 55 (48–63) ↑

RVM (g) Maceira et al., 2006 [7] 60 + 60, 20–80 years 48 (27–69) 66 (38–94) ↓

RVMi (g/m2) Maceira et al., 2006 [7] 60 + 60, 20–80 years 28 (18–38) 34 (19–43) ↓

Left atrium

LAV max (ml) Petersen et al., 2017 [4]a 433 + 371, 45–74 years 62 (33–93) 71 (37–108) ↓

Maceira et al., 2010 [8]c 60 + 60, 20–80 years 68 (42–95) 77 (48–107) ↓

LAVi max (ml/m2) Petersen et al., 2017 [4]a 433 + 371, 45–74 years 37 (21–55) 36 (19–55) →

Maceira et al., 2010 [8]c 60 + 60, 20–80 years 40 (27–52) 39 (26–53) →

LA emptying fraction (%) Petersen et al., 2017 [4]a 433 + 371, 45–74 years 61 (49–74) 60 (47–73) →

Maceira et al., 2016 [9]c 60 + 60, 20–80 years 60 (48–72) 58 (47–68) ↑

Right atrium

RAV max (ml) Petersen et al., 2017 [4]b 433 + 371, 45–74 years 69 (38–101) 93 (43–143) ↓

Maceira et al., 2013 [10]c 60 + 60, 20–80 years 91 (58–124) 109 (64–124) ↓

RAVi max (ml/m2) Petersen et al., 2017 [4]b 433 + 371, 45–74 years 41 (23–59) 48 (22–74) ↓

Maceira et al., 2013 [10]c 60 + 60, 20–80 years 53 (36–70) 55 (33–78) →

RA emptying fraction (%) Petersen et al., 2017 [4]b 433 + 371, 45–74 years 46 (31–63) 41 (23–58) ↑

Maceira et al., 2016 [9]c 60 + 60, 20–80 years 58 (46–69) 54 (40–68) ↑

Data expressed as mean and in parenthesis the lower and upper reference limits (95% interval) when noted in original publication
LV Left ventricular, EDV End-diastolic volume, I Indexed to body surface area, ESV End-systolic volume, EF Ejection fraction, LVM Left ventricular mass, RV Right
ventricular, LAV Left atrial volume, LA Left atrial, RAV Right atrial volume, RA Right atrial
aVolumes from biplane, b Volumes from single plane 4ch view, c Volumes from short axis stack

Fig. 1 Acute Myocarditis. Four chamber long-axis view T2-weighted image (a) and corresponding late gadolinium enhancement (LGE) image (b).
The white arrows indicate patchy epicardial and mid-wall areas of myocardial edema a with corresponding epicardial and mid-wall late
enhancement (b)
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women partially due to a more atypical presentation and
lower prevalence in women compared to men [58].
Women have a higher prevalence of angina [59] but
lower prevalence of atherosclerosis and obstructive
CAD, despite presenting at an older age and with a
greater risk factor burden than men [22, 60]. The greater
prevalence of non-obstructive CAD in women challenges
the traditional diagnostic goal of detecting obstructive
CAD needing revascularization and shifts the diagnostic
focus to detecting ischemia. The Women’s Ischemia
Syndrome Evaluation (WISE) study demonstrated that,
even in the absence of obstructive coronary atheroscler-
osis, many women who present with chest pain have evi-
dence of exercise-induced myocardial ischemia and
coronary vasomotor dysfunction posing diagnostic chal-
lenges [61, 62].
The role of non-invasive imaging modalities available

to evaluate women with stable ischemic heart disease
has been illustrated [63]. The intrinsic advantages of
CMR versus other methods are the ability to overcome
the technical limitations of conventional stress imaging
modalities, such as breast tissue, obesity, lung disease,
and patients’ poor exercise capacity.
CMR studies in women with signs and symptoms of

ischemia with or without obstructive CAD have made a
number of observations, including the presence of in-
creased native T1 values compared to controls, which
was associated with reduced myocardial perfusion re-
serve index (MPRI), a potential surrogate measure of is-
chemia severity [64].
Stress CMR for detection of ischemia has proven to be

an effective and robust risk stratification tool in patients
of both sexes presenting with suspected CAD [65]. The
CMR for Myocardial Perfusion Assessment in Coronary
Artery Disease Trial (MR-IMPACT 2) was the first study

demonstrating better diagnostic performance of stress
CMR vs. single-photon emission computed tomography
(SPECT) in certain populations, such as women [66].
The Magnetic Resonance Perfusion or Fractional Flow
Reserve (FFR) in Coronary Artery Disease trial (MR-IN-
FORM) showed that in patients with stable angina and
risk factors for coronary artery disease, stress CMR was
associated with a lower incidence of coronary revascular-
ization than FFR and was noninferior to FFR with re-
spect to major adverse cardiac events [67]. The study
included only 28% women and sex-difference outcomes
were not reported. The Clinical Evaluation of Magnetic
Resonance Imaging in Coronary Heart Disease (CE-
MARC) study demonstrated that the accuracy of SPECT
was significantly worse in women than in men (P <
0.0001), whereas stress CMR outperformed SPECT in
both women (area under the curve [AUC], 0.90 vs. 0.67)
and in men (AUC, 0.89 vs. 0.74) [68]. In addition,
women with false positive nuclear stress testing results
who have a negative dobutamine stress CMR have a low
likelihood of major adverse cardiovascular events [69].
While traditional non-invasive imaging tests are often

normal in coronary microvascular dysfunction, stress
CMR presents a diagnostic opportunity as highlighted by
two studies. Painting et al. [70] showed that in patients
with Syndrome X, semi-quantitative stress CMR could
demonstrate subendocardial hypoperfusion compared to
controls. Thomson et al. confirmed these findings in a
larger cohort of patients with microvascular dysfunction
confirmed by coronary reactivity testing [71].
Based on the available evidence, a sex-based diagnostic

work up in ischemic heart disease by using CMR and
CCT has been recently proposed [58, 72]. The American
Heart Association (AHA) consensus statement on the
role of non-invasive testing in the clinical evaluation of

Fig. 2 Takotsubo cardiomyopathy. Three-chamber view of a patient with Takotsubo cardiomyopathy. a shows the T2 weighted image with
increased signal intensity of the mid-cavity and apical segments (white arrows) without late gadolinium enhancement (b)
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women with suspected ischemic heart disease [73] rec-
ommends CMR in symptomatic women with intermedi-
ate risk of CAD and resting ST-segment abnormalities
or inability to exercise. In premenopausal women with
functional disability, stress CMR may be reasonable for
the identification of obstructive CAD and estimation of
prognosis [73].

Non-ischemic cardiomyopathies
Peripartum cardiomyopathy
Peripartum Cardiomyopathy (PPCM) is defined as an
idiopathic cardiomyopathy manifesting as heart failure
due to LV systolic dysfunction in the final weeks of preg-
nancy or in the first 6 months after delivery when no other
cause of heart failure is found [74]. The incidence of
PPCM is highly variable among geographic regions, re-
ported as 0.1% of pregnancies, but with high morbidity
and mortality rates ranging 7 to 50% [75, 76]. Cardiovas-
cular adaptive changes occur normally during pregnancy
[77], and there are published reference CMR values for
cardiac indices during pregnancy and the postpartum
period in healthy pregnant women aged 18 to 35 years
[77]. Typically, there is an increased left ventricular end-
diastolic volume (LVEDV) and increased LV mass
(LVM) during pregnancy, with these values consistently
underestimated by echocardiography.
While the initial imaging diagnosis of PPCM is based

on echocardiography, CMR has a significant added value
by accurately assessing LVEF and identifying myocardial
edema and LGE [78, 79]. The mid-wall and subepicardial
LGE pattern observed in PPCM can be seen in up to
40% of patients in the acute phase or in the follow up
examinations. The presence and extent of LGE in PPCM
has been linked to an unfavorable prognosis with slower
recovery, higher risk of prolonged or permanent systolic
dysfunction, and higher rate of developing heart failure
exacerbation in future pregnancies (Fig. 3) [78, 79].

RV dysfunction evaluated serially by CMR has
emerged as a negative prognostic indicator in patients
with PPCM, as it is associated with increased dilation of
both ventricles and lower LVEF, suggestive of more ex-
tensive biventricular cardiac involvement [78, 80].

Breast cancer related chemotherapy-induced
cardiomyopathy
Current therapy for breast cancer with anthracyclines
and trastuzumab has resulted in significantly improved
survival in women; however, it is associated with
increased cardiovascular events, with over 7 times
increased risk of heart failure and cardiomyopathy
compared to patients who were not treated with chemo-
therapy [81]. Therefore, cardiac monitoring of women
undergoing treatment for breast cancer is of extreme im-
portance, as cardiovascular disease is now the leading
cause of death in these survivors, accounting for 15.9%
of deaths in one study [82].
Transthoracic echocardiography (TTE) is the first line

imaging modality to screen and monitor cardiac func-
tion in breast cancer patients undergoing anti-cancer
treatment [83]. However, CMR plays a growing role in
this field [84]. Current guidelines offer recommendation
for administration of potentially cardio-toxic chemother-
apy based on LVEF assessment, with a decrease in the
LVEF of as little as 10% prompting consideration of
withholding therapy in some cases [85]. Therefore, the
precise LVEF assessment provided by CMR is of utmost
importance in cancer patients in need of cardiotoxic
chemotherapy. In addition, a study of patients exposed
to anthracyclines has demonstrated that, compared with
CMR, 2D echo and 3D TTE had a false-negative rate of
75 and 47%, respectively, for detection of LVEF less than
50% [86]. Finally, TTE examination is often not well tol-
erated in post-surgical breast cancer patients due to sig-
nificant discomfort at the post-surgical site. The use of

Fig. 3 Peripartum cardiomyopathy. Cine long-axis four chamber view, end-diastolic frame (a), late gadolinium enhancement short-axis (b), and
three chamber view (c) in a woman with postpartum cardiomyopathy. The images show only a mildly dilated LV cavity (a) and mid-wall late
gadolinium enhancement of the basal inferolateral wall (white arrows)
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CMR for assessment of LVEF is indicated to confirm an
abnormal LVEF measured by TTE, when TTE images are
non-diagnostic, or when the patient cannot tolerate a TTE
[87].
Myocardial tissue characterization by CMR guides

decision-making on further cardiotoxic therapeutic strat-
egies. CMR can identify preexisting unrecognized myo-
cardial infarctions as well as non-ischemic scar patterns,
such as the sub-epicardial linear LGE pattern seen in pa-
tients with trastuzumab cardio-toxicity [88]. In some cir-
cumstances, stress perfusion CMR may aid in excluding
underlying ischemia as the etiology of the cardiomyo-
pathic process [89].
Further advanced cardiac imaging to detect early cardiac

dysfunction in women receiving breast cancer therapy is
on the horizon. Myocardial strain measured by CMR is
clinically feasible [90] and holds promise for monitoring
of cardio-toxicity, as determined in one study where strain
decreased after low to moderate anthracycline-based ther-
apy (− 17.7 ± 0.4% to − 15.1 ± 0.4%; p = 0.0003) [91]. Other
reports [92, 93] suggest that CMR can detect a reduction
of LV mass early after anthracycline-based chemotherapy,
which was associated with worsening heart failure symp-
toms, independently of LVEF.
Novel CMR tools such as ECV and native T1 mapping

can detect abnormality in the myocardial interstitial spaces
after anthracycline exposure as compared to pretreatment
values and cancer-free controls (ECV: 30.4 ± 0.7% vs 27.8 ±
0.7% and 26.9 ± 0.2%, respectively, P < 0.01) [94, 95].

Cardiac involvement in autoimmune and rheumatic disease

Rheumatoid arthritis Rheumatoid arthritis is a multi-
system inflammatory disorder affecting 1% of the popu-
lation, and is 3 times more frequent in women [96]. This
condition can be associated with severe cardiovascular

disease that contributes to reduction in life expectancy,
especially in patients who are sero-positive for rheuma-
toid factor [97]. Heart disease in rheumatoid arthritis
can present in various forms including: 1) inflammatory
reactions of the pericardium, myocardium, and/or endo-
cardium [98] (Fig. 4a), 2) coronary artery disease as
ACS, acute MI, or as coronary microvascular dysfunc-
tion [99] (Fig. 4b), 3) heart failure due to inflammatory,
valvular, or ischemic causes [100], and 4) amyloidosis
and restrictive cardiomyopathy [100].
Currently, echocardiography, SPECT, CCT and CMR

are used to evaluate the presence and extent of cardiovas-
cular disease in rheumatoid arthritis patients. The advan-
tage of CMR in patients with rheumatoid arthritis is that
it is the only currently available non-invasive test that can
directly visualize the extent of myocardial involvement in
the various forms as mentioned above [101].

Systemic sclerosis Systemic sclerosis is an autoimmune
connective tissue disorder that mainly affects women,
characterized by vascular dysfunction and multi-organ
fibrosis [102, 103]. The heart is commonly involved
[102], and the pericardium can also be affected [104].
Direct cardiac involvement may be seen in the form of
cardiac fibrosis, myocarditis, dilated cardiomyopathy,
heart failure, premature CAD, conduction system abnor-
malities, and valvular disease. Indirect cardiac involve-
ment can also develop as sequela of pulmonary
hypertension (PH) and renal crisis. Cardiovascular dis-
ease can remain subclinical, but systemic sclerosis pa-
tients with cardiovascular clinical features are at greater
risk of deterioration and premature cardiovascular death
[105], highlighting the importance of early detection and
monitoring of myocardial and vascular involvement in
all systemic sclerosis patients [106].

Fig. 4 Rheumatoid arthritis and cardiac injury. Short-axis LGE image in 2 patients with rheumatoid arthritis: the left panel shows epicardial LGE of
the basal inferolateral wall (a white arrows), due to myocarditis; the right panel shows near transmural anteroseptal myocardial infarction (b white
arrows) with areas of microvascular obstruction (MVO, black arrow), due to left anterior descending coronary artery occlusion
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Currently, TTE is the cornerstone investigation for car-
diac function, valve morphology, and pulmonary pressure
assessment in this population. However, CMR can dem-
onstrate early cardiac abnormalities before cardiac dys-
function. LGE imaging with CMR in systemic sclerosis
patients may show evidence of focal fibrosis with a non-
ischemic pattern. In the largest CMR study of systemic
sclerosis to date, Hachulla et al. found evidence of focal fi-
brosis in 21% of patients [107]. In the same cohort, CMR
detected findings suggestive of myocardial edema in 12%
of patients presenting with high signal intensity ratio on
T2-weighted imaging [107]. Other authors have reported
even higher prevalence of focal LGE in systemic sclerosis
patients approaching 43 to 66% [102, 108–110]. In sys-
temic sclerosis patients with LGE (fibrosis or infarction),
LV and RV strain have been found to be impaired (− 18 to
− 17% for LV and − 22% for RV) compared to systemic
sclerosis patients without LGE (− 20% for LV and − 27%
for RV) [111], highlighting the potential role of CMR for
detection of early cardiac dysfunction. In systemic scler-
osis patients with preserved global ventricular function,
Thuny et al. demonstrated impairment in peak LV systolic
circumferential strain and peak LV diastolic strain rate by
CMR [102].
Other advanced CMR techniques can also detect abnor-

mal myocardial tissue characteristics in systemic sclerosis,
including T1 mapping and ECV quantification. Ntusi et al.
demonstrated significantly higher native myocardial T1
values in systemic sclerosis patients compared to controls
[102]. The same investigators were able to detect a larger
area of abnormal myocardial native T1 values (> 990ms)
and expansion of ECV beyond the boundaries of myocar-
dial edema on T2-weighted imaging of systemic sclerosis
patients, suggesting a combination of low-grade inflam-
mation and increased interstitial volume [102]. The abnor-
mal native T1 and ECV values were associated with worse
disease activity and severity [102].
In addition to abnormalities in myocardial tissue char-

acteristics, evidence of microvascular dysfunction has
been demonstrated with adenosine stress perfusion
CMR in systemic sclerosis patients, with the identifica-
tion of mostly non-segmental perfusion defects. Kobaya-
shi et al. reported 56% of patients with systemic sclerosis
had stress perfusion defects that did not necessarily
match the focal fibrosis on LGE [112]. In another study,
all systemic sclerosis patients had non-segmental perfu-
sion defects, which were most commonly seen in those
with Raynaud’s phenomenon and digital ulceration
[113]. Finally, perfusion defects in asymptomatic sys-
temic sclerosis patients have also been found to correlate
with impaired strain [114].

Systemic lupus erythematosus Systemic lupus erythe-
matosus (SLE) is a chronic, relapsing and remitting,

multisystem inflammatory disorder, occurring 8 to 15
times more commonly in women [115]. Cardiovascular
disease is relatively common in SLE, up to 9 times com-
pared to healthy members of the population [116], and
many patients have subclinical cardiovascular involve-
ment [117]. Pericarditis, myocarditis, and valve involve-
ment are frequently seen, but most of the excess
mortality is due to accelerated atherosclerosis and CAD
[116, 118, 119] and lupus coronary arteritis can occur
[120]. The rate ratio for MI in women with SLE aged 35
to 44 years is 52 times that of a comparative healthy
population in the Framingham cohort [121]. SLE is char-
acterized by several vascular processes, namely inflam-
mation, Raynaud’s phenomenon, and a propensity to
vascular thrombosis associated with antiphospholipid
antibodies, typically in the absence of traditional cardio-
vascular risk factors [122].
Advanced CMR methods can detect silent myocardial

involvement in SLE [123], offering the potential to im-
prove risk stratification and monitor disease progression
beyond or in supplement to assessment by echocardiog-
raphy. Stress perfusion CMR has demonstrated evidence
of inducible myocardial ischemia in 44% of subjects with
SLE in the absence of obstructive CAD [124]. Myocardial
necrosis and fibrosis have been demonstrated by CMR in
SLE, with both ischemic and non-ischemic patterns of in-
jury [125–127]. Evidence of active myocarditis has been
demonstrated in SLE using T2-weighted imaging [128].
Additional recent evidence suggests that patients with SLE
exhibit an increased native T1 and ECV and impaired
strain [125], the latter associated with increased arterial
stiffness. Finally, impaired myocardial energetics in lupus
and rheumatoid arthritis on phosphorous CMR spectros-
copy correlated with presence of LGE, myocardial perfu-
sion abnormalities, LA size, ECV and native T1 [129].
Coronary vessel wall imaging by contrast enhanced CMR
can detect subclinical enhancement of the coronary vessel
wall, a potential novel direct marker of vessel wall injury
and remodeling in patients with lupus coronary arteritis
[130].

Vasculitis Primary vasculitis is more prevalent in the fe-
male population and may be associated with episodic
myocardial inflammation, accelerated atherosclerosis,
and premature CAD [131]. CMR angiography (CMRA)
provides a broad overview of the potential vascular ab-
normalities in these diseases, including detection and
morphologic characterization of aneurysms, aortic valve
involvement, coronaries, and branch vessels (subclavian,
renal, iliac). CMR can readily detect additional abnor-
malities of great importance in large vessel vasculitis like
Takayasu arteritis, including thrombus, dissection, sten-
osis of aorta and proximal vessels, vascular inflamma-
tion, and pericardial effusions [132]. In addition,
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inflammatory, stenotic, or occlusive lesions in the aorta,
pulmonary arteries, subclavian, or other peripheral arter-
ies detected by CMRA have been shown to correlate
with disease activity [133].
Myocardial injury can be demonstrated using CMR

in patients with vasculitis that preferentially involve
the heart such as Churg-Strauss syndrome. In a small
series of patients with this syndrome and a normal
TTE, CMR showed impairment of LV function in
about half of the patients, myocardial edema by T2
imaging in a third, and LGE in more than 80% [134].
A pattern of subendocardial LGE has been described
in these patients [135].

Duchenne and Becker muscular dystrophies
Duchenne and Becker muscular dystrophies result from
mutations in the gene encoding for dystrophin. Female
carriers of this X-linked recessive disorder also carry a
risk of random X-inactivation that may leave cardiomyo-
cytes with only the abnormal copy, fostering the under-
standing that these patients may also develop
cardiomyopathy [136]. CMR demonstrates a high preva-
lence of myocardial disease in these patients with nearly
half of serially screened female carriers showing either
LV dysfunction (14%) or LGE abnormality (44%) in a re-
cent series [137]. The lateral wall epicardial damage
identified by LGE mirrors that seen in affected men
(Fig. 5), underscoring the genetic mechanism of myocar-
dial disease in these women. Given the high sensitivity
of CMR in detecting often subclinical cardiac involve-
ment in female carriers of dystrophin mutations, CMR
studies that evaluate the long-term utility of initiating
cardioprotective therapy in females are needed, as this is
now considered standard of care for men with dystro-
phinopathies [138].

Women carriers of rare diseases
Fabry Disease is an X-linked lysosomal storage disorder
caused by deficiency of the enzyme alpha-galactosidase
A, and female carriers have significant cardiac involve-
ment [139, 140]. In the United States, there is an esti-
mated prevalence of 1 in 40,000 to 60,000 males affected
by Fabry Disease according to the National Institutes of
Health (https://www.fabrydisease.org, https://www.fabry-
disease.org/index.php/about-fabry-disease/how-many-
people-have-fabry-disease), but the number of affected
female carriers is less understood.
Irrespective of sex, CMR can identify a pre-hypertrophic

phenotype in Fabry Disease consisting of both sphingo-
lipid deposits within the myocardium (detect by T1 map-
ping) and cardiac functional changes [141]. CMR is ideally
suited to detect intramyocardial sphingolipid deposits with
T1 mapping [142]; LGE and morphological abnormalities
are also readily demonstrated.
Global longitudinal strain in Fabry Disease correlates

with increased LV mass and presence of electrocardio-
gram (ECG) abnormalities [143]. In the LV hypertrophy-
negative patients, global longitudinal strain is associated
with a reduction in T1 mapping, consistent with
sphingolipid deposition [143], which can potentially de-
tect early disease in female carriers.

Pulmonary arterial hypertension
Pulmonary hypertension (PH) is characterized by sus-
tained elevation of pulmonary resistance with high mor-
tality rate due to right heart failure [144]. Pulmonary
arterial hypertension (PAH) is a rare disease, with mani-
fest precapillary PH characterized by a resting mean pul-
monary artery pressure ≥ 25 mmHg, in the presence of
LA pressure ≤ 15 mmHg, and with preserved or reduced
cardiac output. Survival rates are 67–73% after 3 years
[145–147].

Fig. 5 Duchenne muscular dystrophy. A woman with dystrophin mutation carrier status was screened for myocardial disease with CMR. Late
gadolinium enhancement images demonstrated epicardial enhancement of the basal lateral wall in both the short-axis (a) and long-axis views
(white arrows), a typical subtle pattern of myocardial injury seen in Duchenne muscular dystrophy
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PAH is more common in women, with a particularly
high female predominance in patients with PAH second-
ary to systemic sclerosis, where women constitute more
than 80% of the population [144, 148]. CMR studies
have shown that women with PAH have better RV func-
tion than men at baseline [149], and show greater im-
provement in RVEF following initiation of PAH-targeted
medical treatment [150] compared to men (Fig. 6).
CMR is a reliable method to evaluate cardiac structure

and function in PAH patients (Fig. 7), and can be used
to predict prognosis [151, 152]. CMR-derived estimation
of mean pulmonary arterial pressure has been suggested
using septal angle and ventricular mass [153]. Early and
reliable detection of ventricular dysfunction is important
in patients with PH, and CMR has unique capabilities to
quantify RV dysfunction and ventricular septal abnor-
malities [154]. Fibrosis at the RV insertions on the inter-
ventricular septum has been shown by LGE CMR
technique in PH [155]. Of note, presence of LGE is re-
lated to the degree of RV dysfunction, severity of PH
[155, 156], and poorer clinical outcomes [152] in these
patients. RA volume measured by CMR can also predict
clinical outcomes in PH patients. After multivariate ad-
justment for RVEF, increased RA volume was still asso-
ciated with worse clinical outcome in a study of patients
with pre-capillary PH, with a lung-transplantation or
death hazard ratio of 2.1 (95%CI: 1.1–4.0) [157].
Several CMR biomarkers have been shown to predict

mortality in idiopathic PAH, such as RV dilation, smaller
RV stroke volume, low RVEF, and impaired LV filling
[151]. Deterioration in these variables at follow up are
the strongest predictors of poor outcome after 1 year

[151]. The EURO-MR Study suggested that CMR could
be used to assess clinical benefit of PAH-targeted med-
ical therapy, where improvement of RV and LV function
and volumes was associated with patient survival [158].

Turner syndrome
Turner Syndrome is a genetic disorder affecting 1 in
2500 live female births, characterized by short stature,
gonadal dysgenesis, as well as renal and cardiovascular
anomalies [159]. Cardiovascular anomalies are present in
at least 50% of women with Turner Syndrome [160], and
there is an approximately 3-fold increase in age-related
risk of mortality primarily due to cardiovascular abnor-
malities and atherosclerosis [161]. Currently, there is
lack of a standardized cardiovascular risk assessment in
Turner Syndrome. However, early detection of cardio-
vascular disorders is critical for initiation of appropriate
therapies, and CMR has an expanding role in this popu-
lation [162].
The most common cardiovascular anomalies in

Turner Syndrome include bicuspid aortic valve , aortic
dilation, coarctation of the aorta, and anomalous pul-
monary venous return [163]. Bicuspid aortic valve (Fig. 8)
occurs in up to 30% of women with Turner Syndrome,
and has been shown to be associated with an accelerated
aortopathy in these patients [164].
CMR is an excellent tool to identify and monitor pro-

gression of Turner Syndrome abnormalities [164]. Hjer-
rild et al. reported CMR findings in 102 women with
Turner Syndrome and found aortic diameter assessed by
CMR correlated with age, blood pressure, bicuspid aortic
valve, and a history of aortic coarctation [165]. Aortic

Fig. 6 Sex differences in transplantation-free survival in pulmonary arterial hypertension. Transplant-free survival in male (solid line) and female
(dashed line) patients with pulmonary arterial hypertension starting first-line pulmonary arterial hypertension-specific therapies (P = 0.002) [150].
Reprinted from CHEST, 145 [5], Jacobs W et al., The Right Ventricle Explains Sex Differences in Survival in Idiopathic Pulmonary Arterial
Hypertension, 1230–1236. Copyright (2014), with permission from Elsevier
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dilation is present in 40% of women with Turner Syn-
drome, and the use of standard absolute values for aortic
diameters in these women is inaccurate, owing to their
body size. A more appropriate CMR parameter is as-
cending aortic size indexed to the body surface area, as

25% of the women with absolute values above 3.5 cm
and 33% of the women with indexed values > 2.5 cm/m2

are subject to aortic dissection (6- to 100 fold higher)
within 3 years of follow-up [166]. Women with
Turner Syndrome have an increased risk of aortic dissec-
tion, and dissection occurs at a much earlier age than in
the general population (30.4 years vs. 77 years) [167,
168]. In addition to assessment of aortic abnormalities,
CMR can confirm the presence of anomalous pulmonary
venous drainage, which is found in 10–15% of
Turner Syndrome cases and can be particularly challen-
ging to diagnosis in adults by TTE [169].
Cardiovascular abnormalities in Turner Syndrome pa-

tients may be under-diagnosed in childhood in the ab-
sence of screening, as shown in a study of 150 women
with Turner Syndrome, where more than 40% of the
subjects were found to have unknown cardiac anomalies
[170]. As a result, CMR is recommended for screening
in all children with Turner Syndrome, regardless of
whether any cardiac anomalies have been detected by
TTE; however, optimal timing of imaging is unclear. In
general, it is recommended that CMR be performed at
an age when sedation is not needed [171].

CMR in pregnancy
CMR is a well-established method for imaging cardio-
vascular disease in pregnant women with potentially life-
threatening abnormalities that cannot be completely
characterized by TTE [172, 173]. As such, CMR can
identify and characterize the severity of cardiovascular
conditions that impose a significant risk for mother and
offspring, and for which pregnancy is not recommended.
Such conditions include Marfan Syndrome with signifi-
cantly dilated aortic root, complex congenital heart dis-
ease (CHD), as well as severe left heart obstructive
lesions and LV dysfunction [174]. The main role of
CMR in pregnancy is risk stratification to inform the
most suitable mode of delivery, to plan adequate cardio-
vascular care during delivery and postpartum, and to as-
sist in recommendation for pregnancy interruption only
when indicated.
The most common indications for CMR during preg-

nancy are suspected aortic dissection, aortic aneurysm,
aortic coarctation, cardiomyopathy/myocarditis, and
postoperative complex CHD. While aortic dissection is a
rare event during pregnancy, it is associated with up to
10% mortality rate [175]. If dissection occurs, it is most
frequently during the third trimester or the postpartum
period. Patients with bicuspid aortic valve, aortic coarc-
tation, and collagen vascular diseases have increased risk
of aortic dissection [176]. Therefore, it has been sug-
gested that a dilated aorta with a maximum diameter of
> 50mm (Fig. 9) in bicuspid aortic valve patients, and >
45mm in Marfan Syndrome patients, is a threshold for

Fig. 8 Bicuspid valve. Balanced steady-state, free precession cine
CMR in the short-axis plane demonstrating a bicuspid aortic valve in
a young woman with Turner syndrome. Echocardiography is first-
line modality for assessment of cardiac valves. However, CMR can
corroborate the valve morphology in case of suboptimal image
quality with echocardiography. RA, right atrium; LA, left atrium; RV,
right ventricle

Fig. 7 Pulmonary arterial hypertension. Short axis balanced steady
state free precession cine image in patient with precapillary
pulmonary hypertension in diastole demonstrating right ventricular
dilatation and hypertrophy as well as bulging of the interventricular
septum into the small left ventricle as a sign of high pulmonary
arterial pressure. The septal flattening can easily be demonstrated by
echocardiography, but the biventricular mass, volumetric, and
functional quantification using CMR is superior to
echocardiographic estimates
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potential pregnancy interruption during the first trimes-
ter [176]. Any woman with Marfan Syndrome presenting
with chest or intrascapular pain during pregnancy
should have urgent cross-sectional imaging of the aorta
to exclude dissection, and this should preferably be with
CMR [174].
In pregnant women with postoperative CHD, CMR

evaluation should be optimized for quantification of ven-
tricular volumes and function, functionality of conduits,
baffles and grafts, as well as assessment of the pulmon-
ary and aortic valves [174, 176]. Of note, high maternal
and fetal mortality rates occur with a LVEF < 40%, di-
lated and dysfunctional systemic RV, as well as pulmon-
ary or aortic valve obstructive lesions [177, 178].
Women with a systemic RV are at particular risk of ma-
ternal pregnancy related complications, and a recent
analysis of 17 women with transposition of the great ar-
teries who had undergone atrial switch surgery revealed
that all pregnancy related cardiac complications oc-
curred in women with a systemic RVEF < 35% [179].
Many women with CHD undergo serial imaging by

CMR for cardiovascular surveillance and risk stratifica-
tion prior or after pregnancy [180, 181]. CMR may be
particularly useful in women with moderate or severe
forms of CHD for risk stratification. In 28 women with
aortic coarctation (4 native, 24 repaired) who underwent
CMR within 2 years of pregnancy, a minimum aortic
diameter ≤ 12mm was identified as an important

anatomic determinant of adverse cardiovascular out-
comes. For each decrease in absolute aortic diameter of
1 mm, or indexed aortic diameter of 1 mm/m2, there was
a three-fold increase in odds of occurrence of a cardio-
vascular event during pregnancy [180]. CMR has also
been used to determine the degree of RV remodeling
following pregnancy in women with repaired tetralogy of
Fallot (TOF). Egidy-Assenza et al. compared data from
sequential CMRs from 13 women with repaired TOF
who completed pregnancy and from a matched compari-
son group of 26 nulliparous women with repaired TOF.
The rate of increase of indexed RVEDV in the pregnancy
group was higher than the comparison group (4.1 ± 1.1
ml/m2/year vs. 1.6 ± 0.6 ml/m2/year, p = 0.07) [181].
According to CMR safety guidelines, there are no re-

ports of clinical CMR during pregnancy inducing dele-
terious effects to mother or fetus [182]. Indeed, a recent
large cohort study demonstrated that exposure to MRI
during the first trimester of pregnancy compared with
non-exposure was not associated with increased risk of
harm to the fetus or in early childhood [183]. However,
the same study showed that exposure of gadolinium-
based contrast agent (GBCA) at any time during preg-
nancy was associated with an increased risk of a broad
set of rheumatological, inflammatory, or infiltrative skin
conditions and risk of stillbirth or neonatal death [183].
Accordingly, the American College of Radiology does
not recommend GBCA administration during pregnancy
based on the absence of sufficient evidence to conclude
no risk, unless the benefits significantly outweigh the
risks to mother and fetus [182]. GBCA should only be
administered for CMR examination after non-contrast
techniques have been attempted and failed to answer the
clinical question.

Conclusions
CMR is high-spatial/temporal resolution, non-invasive,
non-ionizing radiation imaging modality that adds value
in the identification and prognostication of cardiovascu-
lar diseases in both sexes, with unique advantages in
women. CMR is particularly suitable to identify early
cardiovascular disease by means of myocardial
characterization and cardiac functional assessment with-
out the use of radiation. In women with chest pain,
CMR is unique in precisely identifying ischemia in the
absence of obstructive coronary lesion and in establish-
ing alternate diagnoses for MINOCA. CMR is also useful
in early detection, severity assessment and monitoring of
cardiac diseases specific to women, such as peripartum
cardiomyopathy, chemotherapy induced cardiomyopathy
after breast cancer treatment, PAH, rheumatological
conditions affecting the heart, and Takotsubo
cardiomyopathy.

Fig. 9 Dilated ascending aorta in pregnant patient. 3D volume
rendering reformation of a non-contrast CMR angiogram in a patient
with bicuspid aortic valve and Marfan Syndrome shows dilatation of
the ascending aorta (arrow). In this patient with a maximum
ascending aortic dimension of 45 mm, close clinical monitoring was
recommended during pregnancy and delivery
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Finally, in CHD and pregnancy related issues, CMR
also provides added benefits compared to other non-
invasive imaging modalities. CMR is an excellent tool to
evaluate cardiovascular anatomy, function, and path-
ology in women with cardiovascular diseases.
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