Running Title: PolyQ tract length and huntingtin aggregation

SUPPLEMENTARY MATERIAL

Subcellular localisation and formation of huntingtin aggregates correlates with symptom onset and progression in a Huntington's disease model

Christian Landles¹, Rebecca E. Milton¹, Nadira Ali¹, Rachel Flomen¹, Michael Flower¹, Franziska Schindler², Casandra Gomez-Paredes¹, Marie K. Bondulich¹, Georgina F. Osborne¹, Daniel Goodwin¹, Grace Salsbury¹, Caroline L. Benn^{1,3}, Kirupa Sathasivam¹, Edward J. Smith¹, Sarah J. Tabrizi¹, Erich E. Wanker² and Gillian P. Bates¹

¹Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK.

²Neuroproteomics, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany and Berlin Institute of Health (BIH), 10178 Berlin, Germany.

³LoQus23 Therapeutics, Babraham Research Campus, Cambridge, CB22 3AT, UK.

Correspondence to: Gillian Bates (PhD) Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL Queen Square Institute of Neurology, UCL Queen Square LondonWC1N 3BG, UK Email: gillian.bates@ucl.ac.uk

Supplementary Figure 1. The migration of the exon 1 HTT protein becomes increasingly retarded with age in the R6/2(CAG)₉₀ mice.

Western blot analysis of soluble and aggregated exon 1 HTT protein in brain lysates from $R6/2(CAG)_{90}$ mice at 4, 8, 16 and 24 weeks of age immunoprobed with (**A**) S830 or (**B**) 4C9 antibodies. ATP5B was used as a loading control. Aggregated HTT was already prominent in the stacking gel for $R6/2(CAG)_{90}$ mice at 4 weeks of age. The migration of soluble exon1 HTT became increasingly retarded with age, possibly reflecting somatic instability of the CAG repeat. The full-sized loading control blots are shown in Supplementary Fig. 12. WT = wild type.

Supplementary Figure 2. Instability and expansion indices for the extent of somatic instability in the R6/2(CAG)₉₀ and R6/2(CAG)₂₀₀ mice. The mean, standard deviation and data points for the (A) instability and (B) expansion indices of each tissue are illustrated.

Supplementary Figure 3

Supplementary Figure 3. The R6/2 transcript was expressed at higher levels in R6/2(CAG)₉₀ as compared to R6/2(CAG)₂₀₀ brain regions.

(A) Comparative levels of the *HTT* exon 1 transgene mRNA as measured by qPCR in brain regions from R6/2(CAG)₉₀ and R6/2(CAG)₂₀₀ mice at 2 weeks of age. R6/2(CAG)₉₀ levels were 2.5 – 3 fold higher in R6/2(CAG)₉₀ than in R6/2(CAG)₂₀₀ brain regions. (B) Comparative levels of the *HTT* exon 1 transgene mRNA as measured by qPCR in the cortex of R6/2(CAG)₉₀ and R6/2(CAG)₂₀₀ mice at 2, 4, 8 and 14 weeks of age. R6/2(CAG)₉₀ transcript levels remained approximately 2 fold higher in R6/2(CAG)₉₀ than in R6/2(CAG)₂₀₀ mice from 4 to 14 weeks of age. (C) The levels of endogenous *Htt* were comparable in the cortex of R6/2(CAG)₉₀, R6/2(CAG)₂₀₀ and their wild type littermates at 2, 8 and 14 weeks of age. (A, C) R6/2(CAG)₉₀ (n = 9), R6/2(CAG)₂₀₀ (n = 7), wild type (CAG)₉₀ (n = 7), wild type (CAG)₂₀₀ (n = 8). (B) n = 8 / genotype. Statistical analysis was two-tailed Student's *t*-test or two-way ANOVA with Bonferroni *post hoc* correction. The test statistic, degrees of freedom and *p* values for the ANOVA are provided in Supplementary Table 8. ***p ≤ 0.001.

Supplementary Figure 4

Supplementary Figure 4. Brain sections from R6/2(CAG)₂₀₀ mice immunoprobed with MW8 and counterstained with thionin to show the location of nuclei.

Sections from the cortex, the CA1 region of the hippocampus and dentate gyrus from $R6/2(CAG)_{200}$ mice at 8 weeks of age immunoprobed with MW8 and counterstained with thionin. At this age, nuclear aggregation in the $R6/2(CAG)_{200}$ mice appeared as an inclusion, whereas in the $R6/2(CAG)_{90}$ mice, aggregated HTT appeared as a diffuse signal that filled the entire nucleus (Fig. 5) DG = dentate gyrus. n = 3 / R6/2 genotype and n = 1 / wild type control. Scale bar = 50 µm.

Supplementary Figure 5

Supplementary Figure 5. Antigen retrieval with formic acid revealed the presence of aggregated HTT in brain sections from R6/2(CAG)₉₀ and R6/2(CAG)₂₀₀ mice.

Sections from the (A) cortex, (B) striatum, (C) CA1 region of the hippocampus and (D) dentate gyrus of the hippocampus from R6/2(CAG)₉₀ and R6/2(CAG)₂₀₀ mice at 4 and 8 weeks of age were immunoprobed with the 4H7H7 antibody that detects polyglutamine peptides. No signal was obtained (-FA). Pre-treatment with formic acid (+FA) exposed the polyglutamine epitopes within huntingtin aggregates, allowing detection with 4H7H7, and demonstrating that the diffuse staining pattern detected with the MW8 antibody in Figs. 5 and 6 represented an aggregated form of HTT. The extent of cytoplasmic aggregation was greater in the R6/2(CAG)₂₀₀ hippocampus at 8 weeks of age than the R6/2(CAG)₉₀ hippocampus, both (C) dorsal to the CA1 and (D) in the hilus (cleft of the dentate gyrus). FA = formic acid. DG = dentate gyrus. n = 3 / R6/2 genotype and n = 1 / wild type control. Scale bar = 50 μ m.

Supplementary Figure 6. Huntingtin aggregation in R6/2(CAG)₉₀ brains.

The pattern of HTT aggregation in coronal sections from $R6/2(CAG)_{90}$ brains immunoprobed with MW8 at (**A**) 4 and (**B**) 8 weeks of age. The three boxes below the main panels indicate the location of the images shown in Figs. 5 and 6A. n = 3 / R6/2 genotype and n = 1 / wild type control. Scale bar = 1,000 µm (upper), 200 µm (lower).

Striatum

Hippocampus

Supplementary Figure 7. Huntingtin aggregation in R6/2(CAG)₂₀₀ brains.

The pattern of HTT aggregation in coronal sections from R6/2(CAG)₂₀₀ brains immunoprobed with MW8 at (**A**) 4 and (**B**) 8 weeks of age. The three boxes below the main panels indicate the location of the images shown in Figs. 5 and 6A. n = 3 / R6/2 genotype and n = 1 / wild type control. Scale bar = 1,000 μ m (upper), 200 μ m (lower).

Supplementary Figure 8. Wild Type controls for sections immunoprobed with MW8.

Coronal sections from wild type controls for the R6/2(CAG)₉₀ brains immunoprobed with MW8 at (**A**) 4 and (**B**) 8 weeks of age, shown in Supplementary Fig. 6. n = 3 / R6/2 genotype and n = 1 / wild type control. Scale bar = 1,000 μ m (upper), 200 μ m (lower).

В.

Wild type (R6/2(CAG)₂₀₀)

Cortex

Striatum

Hippocampus

Supplementary Figure 9. Wild Type controls for sections immunoprobed with MW8.

Coronal sections from wild type controls for the R6/2(CAG)₂₀₀ brains immunoprobed with MW8 at (**A**) 4 and (**B**) 8 weeks of age, shown in Supplementary Fig. 7. n = 3 / R6/2 genotype and n = 1 / wild type control. Scale bar = 1,000 μ m (upper), 200 μ m (lower).

Supplementary Figure 10. Huntingtin aggregation in R6/2(CAG)₉₀ and R6/2(CAG)₂₀₀ brains. The pattern of HTT aggregation in coronal sections from R6/2(CAG)₉₀ at (A) 16 and (B) 24 weeks of age and (C) R6/2(CAG)₂₀₀ at 14 weeks of age immunoprobed with MW8. The three boxes below the main panels indicate the location of the images shown in Fig. 6B. n = 3 / R6/2 genotype and n = 1 / wild type control. Scale bar = 1,000 μ m (upper), 200 μ m (lower).

Supplementary Figure 11. Wild Type controls for sections immunoprobed with MW8.

Coronal sections from wild type controls for the R6/2(CAG)₉₀ at (**A**) 16 and (**B**) 24 weeks of age and (**C**) R6/2(CAG)₂₀₀ at 14 weeks immunoprobed with MW8 and shown in Supplementary Fig. 10. n = 3 / R6/2 genotype and n = 1 / wild type control. Scale bar = 1,000 μ m (upper), 200 μ m (lower).

Supplementary Figure 12. Full-sized loading control blots.

Full-sized loading control blots immunoprobed with ATP5B for the western blots presented in (A) Fig. 3I, (B) Fig. 3J, (C) Supplementary Fig. 1A and (D) Supplementary Fig. 1B.

Supplementary Table 1. Real-time quantitative PCR assays

Gene	Supplier	Primer/Probe	Sequence (5' to 3') or Catalogue number
Atp5b	Primer Design		HK-DD-mo-900
Bdnf IV	Eurofins Genomics	Forward	CTGCCTTGATGTTTACTTTGACAAG
		Reverse	GCAACCGAAGTATGAAATAACCATAG
		Probe	TTCCACCAGGTGAGAAGAGTGATGACCAT
Canx	Primer Design		HK-DD-mo-900
Cnr1	Eurofins Genomics	Forward	CACAAGCACGCCAATAACACA
		Reverse	ACAGTGCTCTTGATGCAGCTTTC
		Probe	CAGCATGCACAGGGCCGC
Darpp32	Eurofins Genomics	Forward	CCCGACAGGTGGAGATGATC
		Reverse	GCTGCACAGCTTTCAGTGATG
		Probe	CTGCCATGCTTTTCCGGGTCTCAG
Drd2	Eurofins Genomics	Forward	ACACCACTCAAGGGCAACTGT
		Reverse	GGCGGGCAGCATCCA
		Probe	GGGTCAGGACATGAAACTCTGCACCG
Eif4a2	Primer Design		HK-DD-mo-900
Grm2	Thermo Fisher		Mm01235831_m1
Hrh3	Thermo Fisher		Mm00446706_m1
Htr1a	Thermo Fisher		Mm00434106 s1
HTT	Eurofins Genomics	Forward	GCTGCACCGACCGTGAGT
transgene		Reverse	CGCAGGCTGCAGGGTTAC
		Probe	CAGCTCCCTGTCCCGGCGG
Mouse	Eurofins Genomics	Forward	CTCAGAAGTGCAGGCCTTACCT
Htt		Reverse	GATTCCTCCGGTCTTTTGCTT
		Probe	TGAATCTTCTTCCATGCCTGACCCGA
lgfbp5	Eurofins Genomics	Forward	AAGGATTCTACAAGAGAAAGCAGTGTAA
		Reverse	ACTTGTCCACACCAGCAGAT
		Probe	TCCCGTGGCCGCAAACGTG
Kcnk2	Eurofins Genomics	Forward	GACTACGTGGCAGGTGGATCA
		Reverse	GCCAGCCCAACGAGGAT
		Probe	AATATCTGGACTTCTACAAGCCTGTGGTGTG
Nr4a2	Eurofins Genomics	Forward	ATTTCCTCGAAAACTCCAATAACTCT
		Reverse	TGAGGCGAGGACCCATACTG
		Probe	CTGAAGCCATGCCTTGTGTTCAGGC
Pcp4	Eurofins Genomics	Forward	CTGAGCTGTTCTGTGGGACCTA
		Reverse	CGCTCCGGCACTTTGTCT
		Probe	CTGCGGAGTCAGGCCAACATGA
Pde10a	Primer Design	Forward	TTGGCAAGTGGAGCATATTTAAC
		Reverse	CCTGGAAACCTTTGGAGAGAAA
		Probe	Custom assay / not supplied
Penk1	Eurofins Genomics	Forward	ATGCAGCTACCGCCTGGTT
		Reverse	GCAGCTGTCCTTCACATTCCA
		Probe	AGGCGACATCAATTTCCTGGCGTG
Pgam2	Primer Design	Forward	GGGAGGAGCAGGTGAAGAT
		Reverse	GATGGAGGTGTAGTAGTTGTGTT
		Probe	Custom assay / not supplied
Rpl13a	Primer Design		HK-DD-mo-900
Uchl1	Eurofins Genomics	Forward	GGTACCATCGGGTTGATCCA
		Reverse	AACTGTTTCAGGACGGATCCA
		Probe	AACCAAGACAAGCTGGAATTTGAGGA
Ubc	Primer Design		HK-DD-mo-900

Supplementary Table 2. Summary of antibodies

Name	Immunogen	Epitope	Species	Concentration	Reference / Source
S830	HTT exon1 (53Q)		Sheep	WB (1:2,000)	(Sathasivam et al.,
			polyclonal		2001)
					in-house
Biotinylated	HTT N171 (65Q)	PolyQ	Mouse	IHC (1:3,000)	(Landles <i>et al.,</i>
4H7H7			monoclonal		2010)
					Alex Osmand
4C9	HTT peptide:		Mouse	WB (1:1,000)	(Landles <i>et al.,</i>
	aa 51-71		monoclonal	ELISA (1:1,000)	2010)
					CHDI Foundation
MAB5374	HTT N256 (0Q)	Exon 1	Mouse	WB (1:500)	(Wang <i>et al.,</i> 2008)
(EM48)		HTT*	monoclonal		Millipore MAB5374
MW8	HTT exon1 (67Q)	aa 83-90	Mouse	WB (1:1,000)	(Ko <i>et al.,</i> 2001)
			monoclonal	IHC (1:2,000)	CHDI Foundation
				ELISA (1:2,000)	
ATP5B	Human heart		Mouse	WB (0.5 µg/ml)	Abcam, ab14730
	mitochondria		monoclonal		
α-tubulin	Chick brain		Mouse	WB (1:40,000)	Sigma, T9026
	tubulin		monoclonal		
Histone-H3	Human synthetic		Rabbit	WB (1:50,000)	Millipore, 07-690
	peptide		polyclonal		

aa = amino acid; WB = western blot; IHC = immunohistochemistry

*EM48 detects an epitope in the C-terminal region of human exon 1 HTT and requires the VA dipeptide present in human HTT but absent from the mouse protein.

REFERENCES

Ko J, Ou S, Patterson PH. New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res Bull 2001; 56(3-4): 319-29.

Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, *et al.* Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem 2010; 285(12): 8808-23.

Sathasivam K, Woodman B, Mahal A, Bertaux F, Wanker EE, Shima DT, *et al.* Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington's disease (HD) transgenic mice and HD patients. Hum Mol Genet 2001; 10(21): 2425-35.

Wang CE, Zhou H, McGuire JR, Cerullo V, Lee B, Li SH, *et al.* Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol 2008; 181(5): 803-16.

Striatal transcripts	4 weeks	8 weeks
Cnr1	F(3,24) = 10.260, <i>p</i> < 0.001	F(3,25) = 52.268, <i>p</i> < 0.001
Darpp32	F(3,24) = 3.776, <i>p</i> = 0.024	F(3,25) = 65.682, <i>p</i> < 0.001
Drd2	F(3,24) = 6.665, <i>p</i> = 0.002	F(3,25) = 57.767, <i>p</i> < 0.001
Pde10a	F(3,24) = 112.362), <i>p</i> < 0.001	F(3,25) = 147.738, <i>p</i> < 0.001
Penk1	F(3,24) = 15.791), <i>p</i> < 0.001	F(3,25) = 128.157, <i>p</i> < 0.001
Cortical transcripts		
BdnflV	F(3,26) = 3.236, <i>p</i> = 0.038	F(3,27) = 11.119, <i>p</i> < 0.001
Pgam2	F(3,25, = 4.012, <i>p</i> = 0.018	F(3,26) = 27.034, <i>p</i> < 0.001
Grm2	F(3,26) = 19.501, <i>p</i> < 0.001	F(3,25) = 9.842, <i>p</i> < 0.001
Hrh3	F(3,26) = 23.748, <i>p</i> < 0.001	F(3,25) = 73.196, <i>p</i> < 0.001
Hrt1a	F(3,26) = 6.085, <i>p</i> = 0.003	F(3,23) = 55.956, <i>p</i> < 0.001
Cerebellar transcripts		
lgfbp5	F(3,26) = 15.483, <i>p</i> < 0.001	F(3,25) = 49.670, <i>p</i> < 0.001
KcnK2	F(3,27) = 14.233, <i>p</i> < 0.001	F(3,25) = 21.277, <i>p</i> < 0.001
Nr4a2	F(3,26) = 2.210, <i>p</i> = 0.111	F(3,25) = 16.999, <i>p</i> < 0.001
Pcp4	F(3,27) = 20.598, <i>p</i> < 0.001	F(3,24) = 95.043, <i>p</i> < 0.001
Uchl1	F(3,27) = 1.552, p = 0.224	F(3,25) = 7.339, p = 0.001

Supplementary Table 3. One-way ANOVA for qPCR analysis (Fig. 2)

Supplementary Table 4. Two-way ANOVA for Seprion-ELISA analysis (Fig. 3A-H)

	2, 4 and 8 weeks of age	8, 16 weeks and end stage	
Striatum			
Genotype	F(1,30) = 27.055, <i>p</i> < 0.001	F(1,34) = 4.861, <i>p</i> = 0.034	
Age	F(2,30) = 262.161, <i>p</i> < 0.001	F(2,34) = 29.862, <i>p</i> < 0.001	
Genotype x Age	F(2,30) = 13.972, <i>p</i> < 0.001	F(1,34) = 6.974, <i>p</i> = 0.012	
Cortex			
Genotype	F(1,30) = 47.185, <i>p</i> < 0.001	F(1,33) = 0.668, <i>p</i> < 0.420	
Age	F(2,30) = 146.657, <i>p</i> < 0.001	F(2,33) = 36.133, <i>p</i> < 0.001	
Genotype x Age	F(2,30) = 10.992, <i>p</i> < 0.001	F(1,33) = 6.546, <i>p</i> = 0.0015	
Hippocampus			
Genotype	F(1,30) = 17.636, <i>p</i> < 0.001	F(1,34) = 3.203, <i>p</i> = 0.082	
Age	F(2,30) = 93.781, <i>p</i> < 0.001	F(2,34) = 35.686, <i>p</i> < 0.001	
Genotype x Age	F(2,30) = 5.161, <i>p</i> = 0.012	F(1,34) = 16.370, <i>p</i> < 0.001	
Cerebellum			
Genotype	F(1,29) = 19.696, <i>p</i> < 0.001	F(1,34) = 4.250, <i>p</i> = 0.047	
Age	F(2,29) = 127.696, <i>p</i> < 0.001	F(2,34) = 40.299, <i>p</i> < 0.001	
Genotype x Age	F(2,29) = 8.294, <i>p</i> = 0.001	F(1,34) = 0.312, <i>p</i> = 0.580	

Supplementary Table 5. Statistical analyses for the CAG instability data

Instability index		
R6/2(CAG) ₉₀	F(7,111) = 266.7, <i>p</i> < 0.001	
R6/2(CAG) ₂₀₀	F(7,110) = 176.5, <i>p</i> < 0.001	
Expansion index		
R6/2(CAG) ₉₀	F(7,111) = 351.8, <i>p</i> < 0.001	
R6/2(CAG) ₂₀₀	F(7,110) = 159.7, <i>p</i> < 0.001	

One-way ANOVA for CAG repeat instability (Supplementary Fig. 2)

Two-way ANOVA for CAG repeat instability (Supplementary Fig. 2)

Instability index		
Tissue	F(7,221) = 356.48, <i>p</i> < 0.001	
Genotype	F(7,221) = 541.5, <i>p</i> < 0.001	
Tissue x Genotype	F(7,221) = 34.79, <i>p</i> < 0.001	
Expansion index		
Tissue	F(7,221) = 340.22, <i>p</i> < 0.001	
Genotype	F(7,221) = 408.16, <i>p</i> < 0.001	
Tissue x Genotype	F(7,221) = 38.45, <i>p</i> < 0.001	

Supplementary Table 6. Two-tailed Student's *t*-test for the nuclear Seprion-ELISA analysis (Fig. 7B)

	4 weeks of age
4C9	t(10) = -6.762, <i>p</i> < 0.001
MW8	t(10) = -6.087, <i>p</i> < 0.001
	8 weeks of age
4C9	t(9) = 4.771 <i>p</i> = 0.001*
MW8	t(9) = 2.829, <i>p</i> = 0.020*

*equal variance not assumed

Supplementary Table 7: Two-way ANOVA for FRASE analysis (Fig. 8C)

Genotype	F(3,48) = 184, <i>p</i> < 0.001
Age	F(3,48) = 15.3, <i>p</i> < 0.001
Genotype x Age	F(9,48) = 13.6, <i>p</i> < 0.001

Supplementary Table 8. Statistical analyses for the huntingtin transcript analyses (Supplementary Fig. 3)

Two-tailed Student's *t*-test for *HTT-exon1* transcript at 2 weeks of age (Supplementary Fig. 3A)

Striatum	t(13) = 6.262, <i>p</i> < 0.001
Cortex	t(14) = 13.297, <i>p</i> < 0.001
Cerebellum	t(14) = 12.549, <i>p</i> < 0.001

Two-tailed Student's *t*-test for cortical *HTT-exon1* transcript (Supplementary Fig. 3B)

2 weeks of age	t(13) = 4.031, <i>p</i> = 0.001
4 weeks of age	t(12) = 7.184, <i>p</i> < 0.001
8 weeks of age	t(13) = 7.439, <i>p</i> < 0.001
14 weeks of age	t(11) = 14.610, p < 0.001

One-way ANOVA for cortical endogenous Htt transcript (Supplementary Fig. 3C)

2 weeks of age	F(3,27) = 0.936, p = 0.437
8 weeks of age	F(3,26) = 0.936, p = 0.493
14 weeks of age	F(3,27) = 2.368, p = 0.093