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Neuromyelitis optica spectrum disorders lack imaging biomarkers associated with disease course and supporting prognosis. This

complex and heterogeneous set of disorders affects many regions of the central nervous system, including the spinal cord and visual

pathway. Here, we use graph theory-based multimodal network analysis to investigate hypothesis-free mixed networks and associa-

tions between clinical disease with neuroimaging markers in 40 aquaporin-4-immunoglobulin G antibody seropositive patients (age

¼ 48.16 6 14.3 years, female:male ¼ 36:4) and 31 healthy controls (age ¼ 45.92 6 13.3 years, female:male ¼ 24:7). Magnetic res-

onance imaging measures included total brain and deep grey matter volumes, cortical thickness and spinal cord atrophy. Optical

coherence tomography measures of the retina and clinical measures comprised of clinical attack types and expanded disability sta-

tus scale were also utilized. For multimodal network analysis, all measures were introduced as nodes and tested for directed con-

nectivity from clinical attack types and disease duration to systematic imaging and clinical disability measures. Analysis of variance,

with group interactions, gave weights and significance for each nodal association (hyperedges). Connectivity matrices from 80%

and 95% F-distribution networks were analyzed and revealed the number of combined attack types and disease duration as the

most connected nodes, directly affecting changes in several regions of the central nervous system. Subsequent multivariable regres-

sion models, including interaction effects with clinical parameters, identified associations between decreased nucleus accumbens

(b ¼ �0.85, P¼ 0.021) and caudate nucleus (b ¼ �0.61, P¼ 0.011) volumes with higher combined attack type count and longer

disease duration, respectively. We also confirmed previously reported associations between spinal cord atrophy with increased

number of clinical myelitis attacks. Age was the most important factor associated with normalized brain volume, pallidum volume,

cortical thickness and the expanded disability status scale score. The identified imaging biomarker candidates warrant further in-

vestigation in larger-scale studies. Graph theory-based multimodal networks allow for connectivity and interaction analysis, where

this method may be applied in other complex heterogeneous disease investigations with different outcome measures.
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Introduction
Neuromyelitis optica spectrum disorders (NMOSD) are in-

flammatory diseases of the central nervous system defined

by a clinical spectrum of optic neuritis (ON), myelitis, and

more rarely, brainstem and cerebral attacks (Wingerchuk

et al., 2015). The majority of patients (about 70%) are

seropositive for immunoglobulin (Ig)G antibodies against

the astrocytic water channel aquaporin-4 (AQP4-IgGþ)

(Mori et al., 2018; Cook et al., 2019). Magnetic resonance

imaging (MRI) identification of T2-hyperintense brain

lesions is useful for initial differential diagnosis and during

acute attacks, but brain lesions are often non-specific for

disability or prognosis in NMOSD (Kremer et al., 2015).

Several imaging markers have been proposed for quantify-

ing direct attack-related damage, including spinal cord at-

rophy after myelitis (Chien et al., 2018b), neuro-axonal

damage in the retina assessed by optical coherence tomog-

raphy (OCT) after ON (Schmidt et al., 2017;

Oberwahrenbrock et al., 2018; Oertel et al., 2018) and

T2-hyperintense lesions in symptomatic brainstem syn-

dromes (Kim et al., 2015).

However, it is unclear if the NMOSD disease course

also leads to covert or diffuse and clinically relevant cen-

tral nervous system damage, which can be systematically

assessed by imaging biomarkers, for example, in the grey

matter (Pache et al., 2016) or the retina (Oertel et al.,

2018). Normal MRI volumetric deep grey matter (DGM)
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measures have been reported by some (Finke et al.,

2016), and it has been difficult to attribute clinical dis-

ability in NMOSD to systematic measures (Mealy et al.,

2019). Others reported cortical grey matter atrophy (Kim

et al., 2016) or DGM affection with clinical relevance,

i.e. for cognition (Kim et al., 2017; Oertel et al., 2019).

Complex dependencies of clinical observations and cen-

tral nervous system measures can be captured using

graph theory models relying on a network of interactions

rather than individual pairwise analyses (Lambiotte et al.,

2019). Graph theory models distinct anatomical brain

regions as nodes with connections represented by edges,

which can be exploited to calculate the strength of inter-

action between multiple regions (Fleischer et al., 2017).

Graph theory-based network analysis is typically applied

in a single modality network, e.g. magnetic resonance

imaging measures. Here, we extend this approach to

evaluate multimodal connectivity (Heath and Sioson,

2009b) between distinct systematic MRI, OCT and clinic-

al measures to identify imaging correlates of disease activ-

ity in AQP4-IgGþ NMOSD patients.

Materials and methods

Participants

Cross-sectional data from 65 participants from an on-

going observational study at the Experimental and

Clinical Research Center and the NeuroCure Clinical

Research Center, Charité-Universitätsmedizin Berlin, were

screened for inclusion in this retrospective study.

Inclusion criteria were a minimum age of 18 years, a

diagnosis of NMOSD according to the 2015

International Consensus Diagnostic Criteria (Wingerchuk

et al., 2015) with seropositivity for AQP4-IgG in a cell-

based assay (Euroimmune, Lübeck, Germany) at any time

during the course of the disease, and availability of MRI,

OCT images and clinical data. No restrictions were made

as to type of attack preventing therapy. Ophthalmologic

comorbidities (e.g. glaucoma, myopia> 5dpt) were

excluded in OCT analysis only. We included data from

40 patients with NMOSD and 31 age- and sex-matched

healthy controls (HC) from our research database

(Table 1). Disease duration was calculated from the first

clinical symptom to the date of the MRI examination.

Clinical assessments consisted of the expanded disability

status scale (EDSS), number of ON attacks, myelitis

attacks, other NMOSD-related clinical attacks (i.e. area

postrema or brainstem syndrome) and combined attacks

(i.e. simultaneous myelitis and ON or myelitis and brain-

stem syndrome). The combined attacks were counted also

as separate types of attacks, for example, a patient with

a simultaneous myelitis and brainstem attack would have

a count of one myelitis and one other attack; however,

the total number of attacks would remain as one for that

patient. The study was approved by the ethics committee

at the Charité-Universitätsmedizin Berlin, Germany (EA1/

131/09, EA1/163/12 and EA1/077/11) and was conducted

in accordance to the Declaration of Helsinki in its current

Table 1 Participant demographics

HC AQP4-IgG1 NMOSD Test

statistics

Number of subjects [n] (total ¼ 71) 31 40 NA

Age [years] (mean 6 SD) 45.92 6 13.3 48.16 6 14.3 v2 ¼ 0.7164

P ¼ 0.3973

Female:male [n] (%female) 24:7 (77%) 36:4 (92%) v2 ¼ 1.2597

P ¼ 0.2617

Disease duration [years] [mean (range)] NA 4.6 (0.47–28.06) NA

Attack types [n] [median (range)] NA ON: 1 (0–14) NA

Myelitis: 1 (0–11)

Other: 0 (0–2)

Combined: 0 (0–2)

Total: 3 (1–14)

EDSS [median (range)] NA 4 (0–6.5) NA

Attack preventing therapies [n] (%) NA AZA: 8 (20) NA

BLM: 1(2.5)

GALA: 1 (2.5)

MTX: 1 (2.5)

MMF: 1 (2.5)

RIX: 17 (42.5)

N: 11 (27.5)

Clinical demographics of study cohort, where attack preventing therapy counts for all patients were included prior to the MRI date.

AQP4-IgGþ NMOSD ¼ aquaporin-4 immunoglobulin-G seropositive neuromyelitis optica spectrum disorders; AZA ¼ azathioprine; BLM ¼ belimumab; EDSS ¼ expanded disability

status scale; GALA ¼ glatiramer acetate; HC ¼ healthy control; MMF ¼ mycophenolate mofetil; MTX ¼ methotrexate; N ¼ none/unknown; ON ¼ optic neuritis; RIX ¼ rituximab.
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applicable version. All participants provided written

informed consent.

Magnetic resonance imaging

All MRI scans were performed on a 3-T Siemens

MAGNETOM Trio Tim (Erlangen, Germany) scanner at

the Berlin Center for Advanced Neuroimaging. The MRI

protocol for this study included: (i) a T1-weighted 3D

magnetization-prepared rapid gradient echo brain MRI

(1� 1� 1 mm resolution, repetition time (TR)¼ 1900

ms, echo time (TE)¼ 3.03 ms), including the upper cer-

vical cord; and (ii) a T2-weighted 3D fluid-attenuated in-

version recovery brain MRI (1� 1� 1 mm resolution,

TR¼ 6000 ms, TE¼ 388 ms). All mean upper cervical

cord area (MUCCA) measurements were performed at

the C2/C3 intervertebral space level using JIM7.0

(Xinapse Systems Ltd, UK) software as described in a

previous publication (Chien et al., 2018a). Brain lesion

segmentation was performed using the automated lesion

segmentation toolbox on fluid-attenuated inversion recov-

ery images (Schmidt et al., 2012) and manually corrected

by experienced radiology technicians at our centre.

Normalized brain volume (NBV), DGM and brainstem

volumes and cortical thickness were obtained from le-

sion-filled magnetization-prepared rapid gradient echo

scans using FSL SIENAX (Smith et al., 2002), FSL FIRST

(Patenaude et al., 2011) and the CAT12 toolbox

(Dahnke et al., 2013) for MATLAB SPM12. NBV and

the total volume of DGM and brainstem structures were

normalized by multiplication with the V-Scaling factor,

an approximation of head-size given by FSL SIENAX.

Optical coherence tomography

Retinal examinations were performed using a Heidelberg

Engineering Spectralis SD-OCT (Heidelberg Engineering,

Heidelberg, Germany) with automatic real-time (ART)

function. Scan quality was checked using the OSCAR-IB

Criteria (Schippling et al., 2015) with the Advised

Protocol for OCT Study Terminology and Elements

APOSTEL recommendations (Cruz-Herranz et al., 2016).

3.4 mm ring scans around the optic nerve head were used

to measure the peripapillary retinal nerve fibre layer (12�,

1536 A-scans 16�automated real time tracking

(ART)� 100). The ganglion cell inner plexiform (GCIP)

layer volume was measured using a 6 mm diameter cylin-

der around the fovea from macular volume scans (25� �
30�, 61 vertical B-scans, 768 A-scans per B-scan,

ART¼ 15). Layer segmentation was performed using Eye

Explorer 1.9.10.0, viewing module 6.3.4.0 (Heidelberg

Engineering, Heidelberg, Germany).

Multimodal network analysis

All systematic MRI, OCT and clinical measures were con-

sidered nodes in a network to test for strength of connec-

tion between the number of clinical attacks and disease

duration with EDSS, brain, spinal cord and retinal meas-

ures. Directed correlational analyses between clinical attack

counts and disease duration with all other nodes were per-

formed using ANOVA with Type III sum of squares anal-

yses, adjusted for group, thus accounting for only diseased

associations of imaging measures with clinical measures.

This type of multimodal network approach was proposed

by Heath and Siosan (Heath and Sioson, 2009a, b), where

multiple networks can be combined with interactions to

represent complex biological processes. We calculated the

union of three different networks (MRI measures, OCT

measures and clinical measures) to give a subnetwork with

‘hyperedges’ derived from the weights calculated from the

directed ANOVA F-statistics (Fig. 1A). A threshold F-stat-

istic value of 1.65 or greater was used (giving a probabil-

ity of 80% observed difference with a numerator degree

of freedom of 2 and denominator degree of freedom of

60) to define hyperedges between nodes in the network.

Significant network associations (95% F-distribution) were

then investigated by further thresholding the P-value from

each ANOVA to be <0.05. Connectivity matrices for each

network were constructed using the node pairs with F-sta-

tistics and P-values within the thresholds set for 80% and

95% probability. Both networks based on an 80% F-dis-

tribution and 95% F-distribution were evaluated for con-

nectivity, which depended on the sum of the degree,

output weight, closeness to nodes, and betweenness of

nodes, as well as the distance between nodes (Rubinov

and Sporns, 2010). These particular graph theory measures

were chosen since we employed a multimodal network

analysis, different than simple conventional directed net-

work analysis, thus we endeavoured to evaluate the com-

ponent measures which can lead to analysis of centrality,

network motifs and network comparison. Shortest distan-

ces between nodes are dependent on and calculated using

the edge list with corresponding weights (Opsahl et al.,

2010), which are related to betweenness in the nodes.

Thus, the higher the sum value for connectivity, the more

connected the node is with others in the network, suggest-

ing stronger directed associations of that node with clinical

measures. The two nodes showing the highest sum value

for connectivity were deemed as the most connected nodes

in these multimodal networks. Shortest distances were ana-

lysed in a matrix format to visualize the closeness of each

type of attack to each imaging and clinical measure. This

enabled a straightforward and interpretable post hoc ana-

lysis with covariates based on these matrices.

Statistical analysis

Proportional group differences of patient demographics in

age and sex were calculated using a Chi-squared test.

Group differences between NMOSD and HC for all MRI

and OCT measures were tested using a Mann–Whitney

U-test, without correction for multiple testing. Network

connections of MRI, OCT and EDSS measures within a

95% F-distribution that showed close distances (shortest
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weighted path length) with attack types and disease dur-

ation in the multimodal network analysis were further

investigated for effect sizes and changes in the brain, spi-

nal cord and retina of AQP4-IgGþ NMOSD patients,

using multivariable linear modelling corrected for by age.

Sex was not corrected for, due to the low number of

males in the cohort (4 out of 40). For connections with

multiple close distances with attack types and/or disease

duration, the attack types and/or disease duration were

used as interacting covariates. Leave-one-out-cross-valid-

ation was used to evaluate prediction error of multivari-

able linear models, where low overall mean squared error

(mean squared error < 20% of mean) over several fold

tests would indicate low prediction error. All statistical

analyses and plots were produced using R version 3.4.0.

Statistical significance in all tests was set to a P-value <

0.05, reflecting true test statistics (confidence intervals)

and correlation coefficients (effect sizes).

Data availability

All data from this study can be shared at the request of

other investigators for purposes of replicating procedures

and results.

Results

Group differences in magnetic
resonance imaging and optical
coherence tomography measures

Participant clinical demographics are given in Table 1.

Patient imaging measures were lower than HC (in order

of decreasing effect size) for MUCCA, GCIP, pallidum

volume, NBV and caudate nucleus volume in Mann–

Whitney U group comparisons (Table 2), but higher than

HC for T2-brain lesion count and volume. This is in line

with an earlier study using in part, overlapping data

from the same cohort study (HC: n¼ 12, NMOSD:

n¼ 32), showing none or minimal volumetric changes in

the DGM (Finke et al., 2016).

Multimodal network analysis with
80% probability of observed
correlation

We performed a multimodal network analysis with an

80% probability (F-distribution) threshold to minimize

false negatives. Analysis of nodal correlations within this

network revealed that all MRI, OCT and clinical meas-

ures were associated with different attack types and dis-

ease duration in AQP4-IgGþ NMOSD (Fig. 1B).

The number of combined attacks and disease duration

was shown to be the most connected nodes to NMOSD

MRI, OCT and clinical disability (EDSS) nodes. This was

calculated using the sum of the degree (number of con-

nections), output (directed weights of hyperedges between

nodes), closeness (strength of connections) and

Figure 1 Application of graph theory-based multimodal

network analysis on AQP4-IgG1 NMOSD MRI, OCTand

clinical data. (A) Representation of the nodes in the multimodal

network analysis employed in this study, where clinical attacks and

disease duration were investigated for their effects on retinal

measures, cortical thickness, DGM volumes, MUCCA, brain lesions

and EDSS; (B) Multimodal network analysis of 80% probability F-

distribution in AQP4-IgGþ NMOSD patient MRI, OCTand clinical

measures, where width of arrows indicate F-statistic value (wider ¼
higher value); (C) Multimodal network analysis of 95% probability F-

distribution in AQP4-IgGþ NMOSD patient MRI, OCTand clinical

measures, where width of arrows indicate F-statistic value (wider ¼
higher value). BLC ¼ brain lesion count; BLV ¼ brain lesion volume;

EDSS¼ expanded disability status scale; GCIP¼ ganglion cell inner

plexiform; INL ¼ inner nuclear layer; MUCCA ¼ mean upper

cervical cord area; NBV¼ normalized brain volume; ON ¼ optic

neuritis; pRNFL ¼ peripapillary retinal nerve fibre layer.
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betweenness (strength of interaction between two nodes)

shown in Table 3.

Multimodal network analysis with
95% probability of observed
correlation

Next, we increased the probability threshold to 95% to

limit false positives. When looking at significant

connections between attacks and disease duration with

the other MRI, OCT and clinical nodes, we found that

the number of combined attacks and disease duration

remained the most connected to changes in other meas-

ures, shown in Table 4. Meanwhile, disease-related

attacks were not found to be linked to brain lesion

counts or volume, nor thalamic or hippocampal volumes.

The number of other attacks (area postrema or brainstem

syndrome) also did not show a significant influence on

Table 3 Network analysis measures with an 80% probability of observed correlation

Node Degree Output Closeness Betweenness Sum

NBV NA NA NA NA NA

Thalamus NA NA NA NA NA

Caudate nucleus NA NA NA NA NA

Putamen NA NA NA NA NA

Pallidum NA NA NA NA NA

Hippocampus NA NA NA NA NA

Amygdala NA NA NA NA NA

Nucleus accumbens NA NA NA NA NA

Brainstem NA NA NA NA NA

Cortical thickness NA NA NA NA NA

Brain lesion number NA NA NA NA NA

Brain lesion volume NA NA NA NA NA

MUCCA NA NA NA NA NA

pRNFL NA NA NA NA NA

GCIP NA NA NA NA NA

INL NA NA NA NA NA

EDSS NA NA NA NA NA

No. of ON 10 37.639 7.996 0 55.635

No. of myelitis 8 39.863 8.468 0 56.331

No. of other attacks 4 9.118 1.937 0 15.055

No. of combined attacks 7 45.390 9.642 0 62.032

No. of total attacks 5 17.284 3.672 0 25.955

Disease duration 8 48.417 10.285 0 66.702

Directed multimodal network analysis from types of attacks and disease duration to MRI, OCTand EDSS scores. Bolded sums indicate the most connected nodes in the network.

EDSS ¼ expanded disability status scale; GCIP ¼ ganglion cell inner plexiform; INL ¼ inner nuclear layer; MUCCA ¼ mean upper cervical cord area; NBV ¼ normalized brain vol-

ume; ON ¼ optic neuritis; pRNFL ¼ peripapillary retinal nerve fibre layer.

Table 2 Group comparison of MRI and OCT measures

HC AQP4-IgG1 NMOSD Test statistics

NBV [mL] (mean 6 SD) 1542.5 6 79.4 1500.5 6 88.5 W 5 441, P 5 0.038

Thalamus [mL] (mean 6 SD) 20.8 6 1.76 20.5 6 1.82 W ¼ 604, P ¼ 0.858

Caudate nucleus [mL] (mean 6 SD) 9.46 6 1.12 8.96 6 1.05 W5 446, P 5 0.0439

Putamen [mL] (mean 6 SD) 13.0 6 1.33 12.6 6 1.53 W ¼ 498, P ¼ 0.160

Pallidum [mL] (mean 6 SD) 4.82 6 0.35 4.57 6 0.46 W 5 420, P 5 0.020

Hippocampus [mL] (mean 6 SD) 10.3 6 1.18 10.3 6 1.23 W ¼ 616, P ¼ 0.969

Amygdala [mL] (mean 6 SD) 3.66 6 0.52 3.86 6 0.58 W ¼ 745, P ¼ 0.150

Nucleus accumbens [mL] (mean 6 SD) 1.21 6 0.22 1.11 6 0.25 W ¼ 482, P ¼ 0.111

Brainstem [mL] (mean 6 SD) 29.7 6 2.41 29.9 6 2.51 W ¼ 653, P ¼ 0.708

Cortical thickness [mm2] (mean 6 SD) 2.68 6 0.09 2.71 6 0.15 W ¼ 703, P ¼ 0.341

T2 brain lesion count [n] [(median (range)] 3 (0–62) 13.5 (0–139) W 5 890, P 5 2.84e24

T2 brain lesion volume [mL] (mean 6 SD) 0.33 6 0.57 2.86 6 7.13 W 5 975, P 5 3.40e26

MUCCA [mm2] (mean 6 SD) 75.3 6 7.67 69.2 6 7.61 W 5 319, P 5 3.70e24

pRNFL [lm] (mean 6 SD) 95.0 6 9.70 82.6 6 24.1 W ¼ 276, P ¼ 0.130

GCIP [mm3] (mean 6 SD) 1.90 6 0.14 1.68 6 0.33 W 5 201, P 5 8.14e23

INL [mm3] (mean 6 SD) 0.94 6 0.06 0.95 6 0.08 W ¼ 343, P ¼ 0.908

Group comparisons of imaging measures from MRI and OCT, without adjustments or multiple testing correction. Bolded test statistics indicate statistical significance.

AQP4-IgGþ NMOSD ¼ aquaporin-4-immunoglobulin-G seropositive neuromyelitis optica spectrum disorders; GCIP ¼ ganglion cell inner plexiform; HC ¼ healthy controls; INL ¼
inner nuclear layer; MUCCA ¼ mean upper cervical cord area; NBV ¼ normalized brain volume; pRNFL ¼ peripapillary retinal nerve fibre layer.
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MRI, OCT or clinical disability measures in this cohort.

Nodes that were removed from the network due to non-

statistical significance were the inner nuclear layer, hippo-

campus, thalamus, putamen, amygdala, brainstem, brain

lesion count and volume and the number of other attacks

(Fig. 1C).

Multivariable linear analysis

We then used weighted path distances to select the closest

connections between imaging and clinical markers

(Fig. 2A and B). All connections in the 95% probability

network with a path length <2 were tested in multivari-

able linear regression models, corrected for by age, to de-

rive effect sizes of the associations. Path lengths <2 in a

binary shortest distance calculation indicate a direct con-

nection. While for instance, if two nodes are not con-

nected, but share a connection with another node, the

shortest distance (path length) between these two nodes

would be two (Opsahl et al., 2010). Thus, we specifically

chose directly connected nodes for further investigation.

Here, NBV, pallidum volume, cortical thickness and

EDSS score were only significantly associated with patient

age, but not with any clinical measures (Table 5).

Meanwhile, the number of combined attacks (i.e. simul-

taneous myelitis and ON or myelitis and brainstem syn-

drome) was significantly associated with a decrease in

the nucleus accumbens volume (b¼�0.85, P¼ 0.021,

Fig. 3A). The number of myelitis attacks was associated

with decreased MUCCA (b¼�4.1, P¼ 0.023), while the

number of other attacks and total number of attacks did

not affect any other node, independently. Finally, disease

duration was associated with a decrease in caudate nu-

cleus volume (b¼�0.61, P¼ 0.011, Fig. 3B). Using

leave-one-out-cross-validation (Sammut and Webb, 2010),

it was found over 6-folds that there were prediction

errors of 0.0465 (mean square error ¼ 4.2% of the

mean) and 1.37 (mean squared error ¼ 15.3% of the

mean) for the nucleus accumbens and caudate nucleus

multivariable linear models, respectively. Attack type

count distributions for this patient cohort are shown in

Fig. 3C.

Discussion
Our study identified the following imaging biomarker

candidates in AQP4-IgGþ NMOSD patients, where dam-

age seemed to occur indirectly from the attack site:

a. decreases in the nucleus accumbens volume is associated

with increased number of combined attacks, and

b. decreases in the caudate nucleus volume associates with

increased disease duration.

Regarding attack-site related damage, our study con-

firmed previously reported associations of myelitis and

MUCCA (Chien et al., 2018b) in a 95% probability net-

work, as well as ON and GCIP and peripapillary retinal

nerve fibre layer (Oertel et al., 2017) when looking

broader in the 80% probability network. Age was the

Table 4 Network analysis measures with a 95% probability of observed correlation

Node Degree Output Closeness Betweenness Sum

NBV NA NA NA NA NA

Thalamus NA NA NA NA NA

Caudate nucleus NA NA NA NA NA

Putamen NA NA NA NA NA

Pallidum NA NA NA NA NA

Hippocampus NA NA NA NA NA

Amygdala NA NA NA NA NA

Nucleus accumbens NA NA NA NA NA

Brainstem NA NA NA NA NA

Cortical thickness NA NA NA NA NA

Brain lesion count NA NA NA NA NA

Brain lesion volume NA NA NA NA NA

MUCCA NA NA NA NA NA

pRNFL NA NA NA NA NA

GCIP NA NA NA NA NA

INL NA NA NA NA NA

EDSS NA NA NA NA NA

No. of ON 1 13.217 1.628 0 15.845

No. of myelitis attacks 2 23.933 2.948 0 28.881

No. of other attacks 0 0 0 0 0

No. of combined attacks 5 39.634 4.882 0 49.516

No. of total attacks 2 9.023 1.111 0 12.134

Disease duration 6 44.089 5.431 0 55.520

Directed multimodal network analysis from types of attacks and disease duration to MRI, OCTand EDSS scores. Bolded sums indicate the most connected nodes in the network.

EDSS ¼ expanded disability status scale; GCIP ¼ ganglion cell inner plexiform; INL ¼ inner nuclear layer; MUCCA ¼ mean upper cervical cord area; NBV ¼ normalized brain vol-

ume; ON ¼ optic neuritis; pRNFL ¼ peripapillary retinal nerve fibre layer.
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most important factor in measures of the NBV, pallidum

volume, cortical thickness and EDSS score.

The most intriguing finding of our study is the poten-

tial evidence of neurodegeneration in non-attack localized

regions in NMOSD, the nucleus accumbens and the

caudate nucleus. Previous studies found possible covert

damage in the optic radiation and retina, but no occult

damage in lesion-free brain regions (Pache et al., 2016;

Oertel et al., 2017; Pasquier et al., 2019). Interestingly,

an earlier study looked at markers for cognitive impair-

ment in NMOSD patients and found that nucleus accum-

bens volume was associated with overall cognition and

cognitive impairment in these patients. Moreover, cogni-

tively impaired patients with NMOSD showed atrophy in

the caudate nucleus (Kim et al., 2017). Although we did

not specifically consider cognitive impairment in this

study, Kim et al.’s findings alongside ours, serve as inde-

pendent verification that the nucleus accumbens and

caudate nucleus are affected in AQP4-IgGþ NMOSD

patients. The nucleus accumbens has been implicated in

neuropathic pain and neuropsychiatric conditions and is

suggested to be modulated in an aquaporin-4-dependent

manner (Wu et al., 2018). Previously, we also found

moderate to severely depressed NMOSD patients are

more susceptible to insufficiently mediated neuropathic

pain and fatigue (Chavarro et al., 2016; Asseyer et al.,

2018). Together, these data suggest that nucleus accum-

bens and caudate nucleus affection in NMOSD may be a

true positive finding, warranting further confirmation, al-

though the underlying mechanism remains elusive. Due to

these interesting findings, we are encouraged to investi-

gate the potential changes in cognitive, executive and

mood functions of NMOSD patients and their associa-

tions with DGM volumes calculated from MRI scans.

The main suggested mechanism of damage by aqua-

porin-4 antibodies in NMOSD is immune-mediated

Figure 2 Nodal connections and their distances calculated from multimodal network analysis. (A) Distances calculated from the

80% probability multimodal network analysis of each attack node (x-axis) and their connection to different MRI, OCTand clinical disability

measures (y-axis); (B) Distances calculated from the 95% probability multimodal network analysis of each node connection to different MRI,

OCTand clinical disability measures. Magenta squares ¼ <1 unit away, grey squares ¼ >1 unit away. Distances (shortest path lengths) have no

measurement units, as the connection lengths are based on the weight of each hyperedge (F-statistic value). EDSS ¼ expanded disability status

scale; GCIP ¼ ganglion cell inner plexiform; INL ¼ inner nuclear layer; MUCCA ¼ mean upper cervical cord area; ON ¼ optic neuritis; pRNFL

¼ peripapillary retinal nerve fibre layer.
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Figure 3. Associations and distributions of disease-related attacks. Multivariable linear regression models of (A) the nucleus accumbens

volume versus the number of combined attacks and (B) the caudate nucleus volume versus the disease duration in AQP4-IgGþ NMOSD patients,

corrected for age. (C) Distribution of attack type counts in this cohort. Abbreviations: ON¼optic neuritis.
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attacks against astrocytes, subsequent metabolic break-

down at the attack site and resulting axonal transsection

throughout structural pathways, such as the anterior vis-

ual pathway (Kuchling et al., 2018). In line with attack-

related damage, associations of decreased MUCCA with

an increased number of clinical myelitis attacks were pre-

viously found (Chien et al., 2018b). Regarding retinal

measures, previous studies have established peripapillary

retinal nerve fibre layer and GCIP as potential measures

of NMOSD attack-related damage (Oertel et al., 2018).

Our results are in accordance with previous findings,

thus strengthening the likelihood that this multimodal

network analysis technique is yielding true positive

results.

Age is a well-known factor in brain atrophy measures

(Opfer et al., 2018), which we also observed. In fact, age

has been found to affect the majority of grey matter atro-

phy measures typically associated with disease, e.g. in

multiple sclerosis (Barkhof et al., 2009). Our study indi-

cates that there may also be disease-related atrophy in

the pallidum, cortical thickness and NBV in larger

cohorts, when adjusted for age. Despite earlier studies

finding no group differences with HC (Finke et al., 2016;

Pasquier et al., 2019), these studies did not look at the

complex interactions of MRI or OCT measures in rela-

tion to clinical attacks and disability measures, which

multimodal network analysis allows for. Therefore, this

study serves as an exemplary showcase for directed graph

theory-based multimodal network analysis.

The cross-sectional exploratory nature and small sam-

ple size, including the low number of other attacks

(brainstem or area postrema syndrome), are important

limitations. To account for both physiological fluctuations

and noisy data, we performed the multimodal network

analysis using F-statistics calculated from an ANOVA

with Type III sum of squares, including HC and patients.

This method allows for accurate testing of main effects

and interactions, as well as accounting for between-group

and within-group variances (Kim, 2014). Inclusion of HC

data and interaction effects in the models to minimize

physiological and disease-unrelated effects is a clear

strength of our approach. This method could be applied

to studies where patients were treated with different at-

tack preventing therapies to allow for evaluation of

treatment–imaging relationships. We were not able to in-

vestigate this in our study due to the cross-sectional and

retrospective nature, as well as subgrouping the heteroge-

neous attack preventing therapies would not have led to

sufficient group sizes for any meaningful analysis. It is

thus, a limitation that we cannot fully differentiate if

there are central nervous system volume effects based

on attack preventing therapy, neurodegeneration,

astrocytopathy or inflammation. However, one may find

it feasible to use therapies as interaction effects in future

larger and longitudinal studies. We were also limited by

the low number of attacks in our patient cohort, where

very few patients had combined attacks; however, we

performed a leave-one-out-cross-validation analysis of the

multivariable linear regression models used for the nu-

cleus accumbens and caudate nucleus volumes. This val-

idation analysis gave low mean squared error values,

thus, indicating that despite a skewness towards lower at-

tack counts, the complex regression models fit quite well

and can aid in the prediction of volumetric changes based

on real-world combined attack and disease duration data.

In summary, using graph theory-based multimodal net-

work analysis, we identified two DGM imaging biomark-

er candidates in AQP4-IgGþ NMOSD. Rather than

studying the localized region of disease-related attacks,

multimodal network analysis gives insights into connectiv-

ity and interactions between multiple regions in the cen-

tral nervous system that can lead to knowledge gain of

damage as part of a complex, dynamic system. The net-

work approach provides an avenue for future investiga-

tions of potential biomarkers, or associated changes to

monitor for clinical trials to treat many neurologically

complex diseases in large and heterogeneous datasets.
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