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Abstract

Background: New-generation, cell-based assays have demonstrated a robust association of serum autoantibodies
to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis,
and brainstem encephalitis, as well as with neuromyelitis optica (NMO)-like or acute-disseminated encephalomyelitis
(ADEM)-like presentations. However, only limited data are yet available on cerebrospinal fluid (CSF) findings in
MOG-IgG-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD).

Objective: To describe systematically the CSF profile in children with MOG-EM.
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Material and methods: Cytological and biochemical findings (including white cell counts [WCC] and
differentiation; frequency and patterns of oligoclonal bands; IgG/IgM/IgA and albumin concentrations and CSF/
serum ratios; intrathecal IgG/IgM/IgA fractions; locally produced IgG/IgM/IgA concentrations; immunoglobulin class
patterns; IgG/IgA/IgM reibergrams; Link index; measles/rubella/zoster [MRZ] reaction; other anti-viral and anti-
bacterial antibody indices; CSF total protein; CSF L-lactate) from 108 lumbar punctures in 80 pediatric patients of
mainly Caucasian descent with MOG-EM were analyzed retrospectively.

Results: Most strikingly, CSF-restricted oligoclonal IgG bands, a hallmark of multiple sclerosis (MS), were absent in
89% of samples (N = 96), and the MRZ reaction, the most specific laboratory marker of MS known so far, in 100%
(N = 29). If present at all, intrathecal IgG synthesis was low, often transient and mostly restricted to acute attacks.
Intrathecal IgM synthesis was present in 21% and exclusively detectable during acute attacks. CSF WCC were
elevated in 54% of samples (median 40 cells/μl; range 6–256; mostly lymphocytes and monocytes; > 100/μl in 11%).
Neutrophils were present in 71% of samples; eosinophils, activated lymphocytes, and plasma cells were seen only
rarely (all < 7%). Blood–CSF barrier dysfunction (as indicated by an elevated albumin CSF/serum ratio) was present
in 46% of all samples (N = 79) and at least once in 48% of all patients (N = 67) tested. CSF alterations were
significantly more frequent and/or more pronounced in patients with acute spinal cord or brain disease than in
patients with acute ON and varied strongly depending on attack severity. CSF L-lactate levels correlated significantly
with the spinal cord lesions load (measured in vertebral segments) in patients with acute myelitis (p = 0.0099). An
analysis of pooled data from the pediatric and the adult cohort showed a significant relationship of QAlb (p <
0.0005), CST TP (p < 0.0001), and CSF L-lactate (p < 0.0003) during acute attacks with age.

Conclusion: MOG-IgG-associated EM in children is characterized by CSF features that are distinct from those in MS.
With regard to most parameters, no marked differences between the pediatric cohort and the adult cohort
analyzed in Part 1 were noted. Our findings are important for the differential diagnosis of pediatric MS and MOG-
EM and add to the understanding of the immunopathogenesis of this newly described autoimmune disease.

Keywords: MOG antibody-associated disease (MOGAD), Myelin oligodendrocyte glycoprotein (MOG), Antibodies,
Encephalomyelitis, Cerebrospinal fluid, Lumbar puncture, Optic neuritis, Transverse myelitis, Neuromyelitis optica
(Devic syndrome), NMO spectrum disorders, Brainstem encephalitis, Acute disseminated encephalomyelitis (ADEM),
Children, Multiple sclerosis (MS), Oligoclonal bands

Introduction
Over the past few years, several studies using new-
generation cell-based assays (CBA) have demonstrated a ro-
bust association of immunoglobulin G (IgG) autoantibodies
targeting full-length, conformationally intact human myelin
oligodendrocyte glycoprotein (MOG) with (mostly recur-
rent) optic neuritis (ON), myelitis, and brainstem encephal-
itis, as well as with neuromyelitis optica (NMO)-like and
acute disseminated encephalomyelitis (ADEM)-like presen-
tations, rather than with classic multiple sclerosis (MS) [1–
11]. The suspected pathophysiological role of MOG-IgG
was first described in children, who more often present with
MOG-IgG-associated disorders than adults [12–15]. Based
on evidence from (a) immunological studies suggesting a
direct pathogenic impact of MOG-IgG, (b) neuropatho-
logical studies demonstrating discrete histopathological fea-
tures, (c) serological studies reporting a lack of aquaporin-4
(AQP4)-IgG in almost all MOG-IgG-positive patients, and
(d) cohort studies suggesting differences in clinical and
paraclinical presentation, treatment response, and prognosis,
MOG-IgG is now considered to denote a disease entity in
its own right, distinct from classic MS and from AQP4-IgG-
positive NMO spectrum disorders (NMOSD) [16–21],

which is now often referred to as MOG-IgG-associated en-
cephalomyelitis (MOG-EM) or MOG-IgG-associated auto-
immune disease [11, 22, 23]. Several studies have shown
that the proportion of patients with autoimmunity against
MOG among all patients with inflammatory demyelinating
CNS disorders is age-dependent with the highest seroposi-
tivity rates and highest MOG-IgG titers found in very young
children [1, 24, 25]. ADEM-like disease is the predominant
clinical presentation in young children, whereas in older
children with MOG-IgG there is a shift toward ON, myeli-
tis, and/or brainstem symptoms. MRI findings range from
normal to widespread brain and spinal cord white and grey
matter involvement [13].
So far, only limited data are available on the cerebrospinal

fluid (CSF) profile in MOG-EM in pediatric patients. Pre-
vious studies were either based on relatively small patient
numbers, included mainly adult patients, and/or did not
consider Caucasian patients. Moreover, all investigated only
a small number of selected CSF parameters.
In Part 1 of this article series, we report on the CSF

findings in MOG-EM in adults [26]. For the present
study, we systematically and comprehensively analyzed
the results of 108 lumbar punctures (LP) from a cohort
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of 80 pediatric patients of mainly Caucasian descent with
MOG-IgG-associated EM.

Patients and methods
Patients
Results from 108 lumbar punctures (LP) in 80 pediatric
patients with MOG-EM were analyzed retrospectively.
MOG-EM was defined as monophasic or relapsing acute
ON, myelitis, brainstem encephalitis, or encephalitis
associated with MRI or (in the case of ON only)
electrophysiological findings compatible with CNS de-
myelination and with MOG-IgG as detected by means of
a cell-based assay (CBA) employing human full-length
MOG as antigen [27]. Longitudinally extensive trans-
verse myelitis (LETM) was defined as acute myelitis with
at least one contiguous lesion extending over three or
more vertebral segments (VS) as detected by magnetic
resonance imaging (MRI) [28, 29]. Cases of acute myeli-
tis in which no lesion extended over more than two
segments were classified as non-longitudinally extensive
transverse myelitis (NETM). All patients were diagnosed
with MOG-EM at German (Aachen, Augsburg, Berlin,
Bochum, Datteln, Dusseldorf, Essen, Freiburg, Giessen,
Göttingen, Heidelberg, Karlsruhe, Kiel/Lübeck, Leipzig,
Munich, Neuburg, Oldenburg, Osnabrück, Vogtareuth),
Austrian (Innsbruck, Linz, Vienna, Zams), Italian
(Bozen), Latvian (Riga),and Swiss (Zurich) university
hospitals and other tertiary care centers. All eligible pa-
tients seen at the respective centers were included. The
participating centers are members of the BIOMARKER
study group [13] and/or the Neuromyelitis Optica Study
Group (NEMOS) [30]. All patients were tested for
MOG-IgG by means of a CBA employing full-length
human MOG as target antigen as recommended in the
international consensus statement on MOG-IgG testing
[27]. Assays used to detect MOG-IgG included three live
CBA (Medical University Innsbruck, Austria; University
of Vienna, Austria; Ludwig Maximilian University
Munich, Germany) [1, 31–33], an in-house fixed CBA
(University of Heidelberg, Germany) [2, 34], and a
commercial fixed CBA (Euroimmun, Lübeck, Germany).
Results from serial LP were available for 21/80 (26.3%)
patients. In total, 28 follow-up CSF examinations were
performed (median 1 follow-up sample per patient;
range 1–3). The first LP was performed after a median
of 2 days after disease onset and the follow-up LPs after
a median of 12 days of the last attack; the proportion of
samples taken during relapse did not significantly differ
between the two groups (86% vs. 80%). The mean time
interval between LPs was 256 days (median 52 days).
None of the patients was positive for AQP4-IgG. The
study was approved by the review boards of the partici-
pating centers. Patients gave written informed consent.

LPs were performed for diagnostic purposes in all cases;
no samples were obtained for this study.

Evaluation of the humoral immune response
Oligoclonal IgG bands were assessed by isoelectric focus-
ing and evaluated according to an international consensus
[35]. Immunoglobulins and albumin were measured
immunonephelometrically. Quantitative expressions of
the intrathecal humoral immune response were based on
calculation of the CSF/serum quotients QIgG, QIgM, and
QIgA with QIg = IgCSF[mg/l]/Igserum[g/l]. The upper limits of
the respective reference ranges, Qlim(IgG), Qlim(IgM), and
Qlim(IgA), were calculated against QAlb according to
Reiber’s revised hyperbolic function [36]. Values for QIg

exceeding Qlim(Ig) were considered to indicate intrathecal
immunoglobulin synthesis [36]. The fraction (in %) of
intrathecally produced Ig (IgIF) and the absolute amount
of locally, i.e., intrathecally, produced Ig (IgGloc) were
calculated according to the following formulas: IgIF[%] =
[QIgG – Qlim(Ig)] × Igserum × 100 and Igloc[mg/L] = [QIg –
Qlim(Ig)] × Igserum, respectively [36]. CSF and serum
concentrations for immunoglobulins and albumin, respec-
tively, were analyzed within the same analytical series.

Evaluation of the blood–CSF barrier
The CSF/serum albumin quotient, QAlb = AlbCSF[mg/l]/
Albserum[g/l], was used to assess the blood–CSF barrier
(BCB) function. As the upper reference limit of QAlb is
age dependent, Qlim(Alb) was calculated as 4 + (a / 15)
× 10−3 with a representing patient’s age according to
Reiber et al. (1994) [37]. Dysfunction of the BCB was
defined as QAlb > Qlim(Alb).

Cytological examination, total CSF protein, and L-lactate
A white cell count > 5/μl was classified as increased [38].
An age-dependent reference range for CSF L-lactate was
applied (0–15 years of age: 1.8 mmol/l, ≥ 16: 2.1 mmol/l)
[38]. The upper reference limit for total CSF protein was
set at 0.45 mg/l [38].

Statistics
Samples were analyzed in total as well as after stratifica-
tion according to disease status and treatment status.
Fisher’s exact test, the Mann–Whitney U test, and the
Kruskal–Wallis test were used to detect statistical differ-
ences between groups. Spearman’s rho was assessed to
test for correlations. Due to the exploratory nature of
this study, no correction for multiple testing was applied
other than Dunn’s post-test. Reiber diagrams (reiber-
grams) were generated using Protein Statistics in CSF
analysis V3.0 software (Comed, Soest, Germany).
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Results
Patient characteristics
The male:female ratio was 1:1.3. The median age at the
time of LP was 6 years (range 0.6–17.7). A total of 99.1%
of all samples were obtained from patients of Caucasian
descent. The median disease duration was 0 months at
the time of LP (maximum 118 months) and 34.5 months
(range 0–229) at last follow-up. Information on the date
of onset of the last attack prior to LP was available from
the patient records for 105 samples. Of those, 94 (89.5%)
were obtained within 45 days (median 2 days; range 0–
44) after the onset of an acute attack (acute myelitis with
or without other symptoms in 31.9% [“acute MY sub-
group”]; acute ON but no myelitis in 28.7% [“acute ON
subgroup”]; neither myelitis nor ON but isolated brain
or brainstem/cerebellar disease in 39.4% [“acute BRAIN
subgroup”]). Thirty-four of 37 samples (92%) samples in
the acute BRAIN subgroup were obtained from patients
who met the diagnostic criteria for ADEM [39] at the
time of LP. Eleven samples were obtained more than 45
days after attack onset (“remission subgroup”). Of the
16.7% of samples that came from patients with acute
myelitis and available MRI data, 25 (83.3%) were ob-
tained during episodes of LETM. The cumulative spinal
cord lesion load (summing up lesions in patients with
multiple lesions) was six VS (up to 16 VS) in the total
myelitis group and six VS in the LETM subgroup [28, 29].
Of the ON samples, 55.6% were taken during attacks of
unilateral and 44.4% during attacks of bilateral ON. Attack
severity was classified by the treating physicians as “mild”
or “moderate” in 29% and as “severe” in 69.2% (missing
data in the remainder). At last follow-up, 51.9% of all
patients had experienced at least two attacks (“relapsing
subgroup”) and 48.1% of patients had not relapsed
(“monophasic subgroup”). The median disease duration at
last follow-up was 63 months (range 1–229) in the relaps-
ing subgroup and 21 months (range 0–65) in the mono-
phasic subgroup. At first LP, 69/77 (89.6%) patients had
been neither treated with steroids nor with immunosup-
pressants or immunomodulatory drugs (no precise data
on the treatment status at the time of LP available for
three patients). If all LPs are considered, 92/108 (85.2%)
were obtained from patients who were untreated at the
time of LP (information missing for 3 samples).

Cellular immune response
An increased CSF white cell count (WCC) was found in
56/103 (54.4%) samples, which is almost exactly the rate
found in adults [26], with a median of 40 cells/μl (range 6–
256). WCC ≥ 50 cells/μl, which are very rare in MS (and
thus considered a 'red flag' that should prompt physicians
to challenge the diagnosis MS) [35, 40], were present in
21.4% (22/103) of samples and thus with virtually the same
frequency as in adults. Marked pleocytosis, defined as CSF

WCC ≥ 100 cells/μl, was found in 11/103 (10.7%) samples
(median 179; range, 103–256), which compares to 12.1% in
adults, all of which were taken during an acute attack in un-
treated patients. CSF WCC exceeded 200 cells/μl in only 3/
103 (2.9%; vs. 4.5% in adults) samples and 300 cells/μl in no
sample (vs. 1.9% in adults). In total, pleocytosis was noted
at least once in 45/76 (59.2%) patients with available data
(vs. 56.6% in adults).
As in adults, lymphocytes, which were found in 45/45

(100%) samples with available cytological data, and mono-
cytes, detected in at least 35/45 (77.8%) samples, were the
predominant immune cell types in the CSF. Relative
lymphocyte counts ranged between 32 and 100% (median
90%; N = 37) of all CSF cells and relative monocyte counts
between 4 and 39% (median 20%; N = 14).
Importantly, however, neutrophils were present in

71.1% (32/45) of samples (and thus even more frequent
than in adults [43%; p < 0.003]). Neutrophils represented
up to 69% of all leukocytes (data available for 28 sam-
ples) and up to 69% in samples with pleocytosis (N =
26). If only LPs with pleocytosis and available cytological
data are considered, neutrophil granulocytes were
present even in 88.2% (30/34) of samples (vs. 50% in
adults). As in the adults, neutrophils were more com-
monly found during acute attacks in the MY and BRAIN
subgroups (81% of all samples with available data) than
in the ON subgroup (45%). The higher frequency of
neutrophils in the pediatric cohort may thus reflect the
higher proportion of ON attacks in the adult cohort
(41% vs. 26% among samples with cytology data). In
total, neutrophil granulocytes were present at least once
in 29/38 (76.3%) patients with available cytology data
(vs. 46% in adults).
By contrast, eosinophils and basophils were rare find-

ings, present in only 3/45 (6.7%) (accounting for 20%,
2%, and a “high proportion” of all WCC; all reported in
patients with pleocytosis [87, 21 and 179 cells/μl, re-
spectively]) and 2/45 (4.4%) samples with available cy-
tology data, respectively. Activated lymphocytes were
noted in 3/45 (6.7%) samples, and plasma cells in 2/45
(4.4%). The results did not differ significantly from those
in the adult cohort.
Pleocytosis was significantly less common in the acute

ON subgroup than in the acute myelitis (19.2% vs.
82.8%; p < 0.000003) and in the acute brain subgroup
(19.2% vs. 66.7%; p < 0.0003). Similarly, median cell
numbers were lower in the acute ON subgroup (2, range
0–18) than in the acute MY (41, range 2–256; p <
0.000001) and the acute brain subgroup (22, range 0–
179; p < 0.000004) (Fig. 1). CSF WCC ≥ 50 cells/μl were
found exclusively in patients with acute myelitis and to a
lower extent in patients with acute brain disease at the
time of LP but not in acute ON patients (present in
48.3%, or 14/29, in the acute MY subgroup, vs. 22.2%, or
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Fig. 1 CSF white cell counts, IgG, IgA, IgM, and albumin CSF/serum ratios and CSF concentrations, CSF total protein concentrations, and CSF L-
lactate concentrations in MOG-IgG-positive EM. A statistically significant difference between the acute MY subgroup and the acute ON subgroup
was found regarding all parameters studied. IgG/A/M immunoglobulin G/A/M, QIgG/A/M CSF/serum IgG/A/M ratios, QAlb CSF/serum
albumin ratio
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8/36, in the acute brain subgroup, vs. 0%, or 0/26, in the
acute ON subgroup). This is all highly similar to what
was observed in the adult cohort [26]. See Table 1 and
Supplementary Figure 1 for further details.
As in the adult cohort, CSF WCC were significantly

higher during acute attacks than during remission (p <
0.03) (Fig. 2, Table 1, and Supplementary Figure 1).
Activated lymphocytes, plasma cells, macrophages,
eosinophils, and basophils were noted only during acute
attacks.
CSF WCC tended to decline over time after acute at-

tacks (Fig. 3). Different from the adult cohort, no correl-
ation between WCC and the cumulative spinal cord lesion
load during acute myelitis attacks was found (Fig. 4). Me-
dian CSF WCC during acute attacks were slightly lower in
the pediatric cohort than in the adult cohort (81 vs. 100
cells/μl if the first LP per event is considered); however,
the difference was not statistically significant.

Intrathecal IgG synthesis
CSF-restricted OCB were positive in only 11/96 (11.5%)
samples (OCB pattern 2 [OCBs that are exclusively
present in the CSF but not in serum] in 7/96 or 7.3%;
pattern 3 [same as pattern 2 plus identical OCBs in the
CSF and serum] in 4/96 or 4.2%), and QIgG was ele-
vated in only 14/78 (18%) (median QIgG 2.4; range 1.5–
7) (Table 2). This compares to an almost identical rate
of OCB-positive and QIgG-positive samples of 13.2%
and 8%, respectively, in the adult cohort [26]. In 7/96
(7.3%) samples, identical OCB in serum and CSF but no
CSF-restricted bands were present (pattern 4). Pattern 5,

indicating monoclonal gammopathy, was present in 1/96
samples (1%). Overall, 10/72 (13.9%) patients (vs. 16% in
adults) showed CSF-restricted OCB at least once, and
QIgG was elevated in 13/67 (19.4%) patients (vs. 10.2%
in adults; p = n.s.) at least once.
Not only the frequency but also the degree of intra-

thecal synthesis (IS) was low: QIgG was elevated in only
50% of the OCB-positive samples (which is similar to
the 41.2% of samples in the adult cohort). In those sam-
ples with elevated QIgG, the intrathecal IgG fraction
exceeded the first decile (values < 10% may result from
imprecision of nephelometric IgG testing and should
thus not be taken as proof of IS according to current
guidelines [38]); in only 30% of cases, the median IF-IgG
was only 7.6% (range 0.03–27%), and the median absolute
amount of intrathecally produced IgG was just 2.4 mg/l
(range 0.01 to 15.4 mg/l); similar values were found in the
adult cohort (19%, 10.5%, and 2.3 mg/l, respectively) [26].
OCB were detected only in samples obtained during

acute attacks (11/86; 12.8%) but not during remission
(0/8; 0%; p = n.s.). Similarly, larger amounts of intra-
thecally produced IgG as indicated by an IgG-IF > 10%
were found exclusively in samples obtained during acute
attacks, just as in the adult cohort (Table 2) [26]. To
evaluate whether the frequency of OCB increases with
disease duration, we compared samples obtained within
the first month since onset and samples obtained more
than 1 year after onset but, as in the adult cohort,
found no statistically significant difference regarding
the rate of OCB-positive samples (13.4% or 9/67, vs.
14.3% or 2/14).

Table 1 CSF white cell counts (WCC) and cytology results in MOG-IgG-positive EM. WCC in the various subgroups are reported as
medians; ranges and total sample numbers are given in brackets

Units Total Attack Remission Acute MY
subgroup

Acute ON
subgroup

Acute BRAIN
subgroup

CSF white cell counts

Pleocytosis Samples 56/103 (54.4%) 53/91 (58.2%) 3/11 (27.3%) 24/29 (82.8%) 5/26 (19.2%) 24/36 (66.7%)

WCC, all samples Cells/μl 11.5 (0–256; 102) 14 (0–256; 91) 4 (0–35; 11) 41 (2–256; 29) 2 (0–18; 25) 22 (0–179; 36)

WCC, if elevated Cells/μl 40 (6–256; 56) 42 (6–256; 53) 23 (18–35; 3) 70.5 (13–256; 24) 10 (6–18; 5) 44.5 (9–179; 24)

WCC, ≥ 100 Samples 11/103 (10.7%) 11/91 (12.1%) 0/11 (0%) 9/29 (31%) 0/26 (0%) 2/36 (5.6%)

WCC, ≥ 100 Cells/μl 179 (103–256; 11) 179 (103–256; 11) n.a. (n.a.; 0) 179 (103–256; 9) n.a. (n.a; 0) 176 (173–179; 2)

Lymphocytes Samples 45/45 (100%) 43/43 (100%) 2/2 (100%) 20/20 (100%) 11/11 (100%) 12/12 (100%)

Monocytes Samples 35/45 (77.8%) 34/43 (79.1%) 1/2 (50%) 15/20 (75%) 7/11 (63.6%) 12/12 (100%)

Neutrophils Samples 32/45 (71.1%) 31/43 (72.1%) 1/2 (50%) 15/20 (75%) 5/11 (45.5%) 11/12 (91.7%)

Eosinophils Samples 3/45 (6.7%) 3/43 (7%) 0/2 (0%) 2/20 (10%) 0/11 (0%) 1/12 (8.3%)

Basophils Samples 2/45 (4.4%) 2/43 (4.7%) 0/2 (0%) 1/20 (5%) 1/11 (9.1%) 0/12 (0%)

Plasma cells Samples 2/45 (4.4%) 2/43 (4.7%) 0/2 (0%) 1/20 (5%) 0/11 (0%) 1/12 (8.3%)

Lymphoid cells Samples 3/45 (6.7%) 3/43 (7%) 0/2 (0%) 2/20 (10%) 1/11 (9.1%) 0/12 (0%)

Macrophages Samples 3/45 (6.7%) 3/43 (7%) 0/2 (0%) 1/20 (5%) 2/11 (18.2%) 0/12 (0%)

No pleocytosis Samples 47/103 (45.6%) 38/91 (41.8%) 8/11 (72.7%) 5/29 (17.2%) 21/26 (80.8%) 12/36 (33.3%)
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CSF-restricted OCB (pattern 2 or 3) were more frequently
seen in the acute MY subgroup than in the acute BRAIN
and were completely absent in the acute ON subgroup (25%
or 7/28 vs. 12.9% or 4/31 vs. 0% or 0/26; p < 0.03) (Table 2
and Fig. 1). Similarly, QIgG was more frequently elevated
(34.8% vs. 4.8%; p < 0.03) and median IgG CSF/serum ratios
(3.13 vs. 1.61; p < 0.002) as well as CSF IgG levels
(37.6 vs. 15.1 mg/dl; p < 0.00008) were significantly
higher in the acute MY subgroup than in the acute
ON subgroup (Table 2 and Fig. 1). This is similar to

what was observed in the adult cohort [26]. However,
different from adults, no significant correlation between
QIgG and the spinal cord lesion load (as measured in VS)
was found (Fig. 4), possibly owing to the lower number of
samples in the pediatric cohort.
Median IgG serum concentrations did not differ sig-

nificantly between acute samples and samples obtained
during remission (Table 2) and also not between the
acute MY, the acute BRAIN, and the acute ON sub-
group (Supplementary Figure 2).

Fig. 2 CSF white cell counts, IgG, IgA, IgM and albumin CSF/serum ratios, CSF total protein concentrations, and CSF L-lactate concentrations
during acute attacks and remission in MOG-IgG-positive EM. IgG/A/M immunoglobulin G/A/M, MY myelitis, QIgG/A/M CSF/serum IgG/A/M ratios,
QAlb CSF/serum albumin ratio
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Intrathecal IgM synthesis
QIgM was increased in 16/65 (25%) samples (median
1.7; range 0.4–7.3) from 16 patients. In those samples
with elevated QIgM, the fraction of intrathecally pro-
duced IgM varied between 0.2 and 71.3% (median
26.3%), corresponding to a median absolute amount of
intrathecally produced IgM of 0.53 mg/l (range 0–4.47),
and was > 10% in 13/16 (81%) samples. More samples in
the acute MY subgroup than in the acute ON subgroup
showed IgM IS (50% vs. 24%), but the difference was not
statistically significant. Median QIgM and the median
CSF IgM concentration were significantly higher in the
MY subgroup than in the ON subgroup (p < 0.02 and p
< 0.006, respectively) (Fig. 1). This might explain the
lower frequency of QIgM (12%) and the lower median
IgM levels (0.32 mg/l) in the adult cohort, which in-
cluded a higher proportion of samples from patients
with ON than the pediatric cohort.
As with IgG, an intrathecal IgM fraction of > 10% was

observed only during acute attacks but not during remis-
sion (Table 3). However, based on comparison of the

first LP taken during acute attacks (to avoid a bias due to
multiple sampling during the same event) and the last LP
taken during remission following the same event, the
difference did reach statistical significance neither in the
pediatric cohort alone nor when data from the pediatric
and the adult cohort [26] were pooled. Accordingly, QIgM
was also only elevated during acute attacks. Just as in the
adult cohort, most LPs did not show any evidence for
intrathecal IgM synthesis during acute attacks (QIgM nor-
mal and IgM-IF ≤ 10% in 72% and 76.4%, respectively, of
acute pediatric samples and 85% and 92.8%, respectively,
of acute adults samples), which rather argues against an
essential pathogenetic role of intrathecal IgM synthesis.
By contrast, median IgM serum concentrations were

significantly lower during acute attacks (p < 0.03) (Table 3).
However, the latter finding could simply be an effect of the
higher rate of female patients (80% vs. 48.4%) and the me-
dian age at the time of LP (10 vs. 6 years) in the remission
group (normal serum IgM values are higher in female chil-
dren and tend to rise with age [41, 42]) and/or of the low
number of samples in the remission group (N = 5) and thus

Fig. 3 Correlation analyses for CSF white cell counts, QAlb and CSF total protein, respectively, and days since attack onset in patients with acute
disease. Although the correlations were not statistically significant, a clear trend towards normal values over time is discernible. Given that clear
trend and the significant correlations seen in adults, it is likely that the lack of statistical significance is an effect of the lower number of samples
in the pediatric cohort. QAlb albumin CSF/serum ratio, TP total protein, WCC white cell count
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be artificial rather than reflect consumption of IgM during
acute attacks. No difference in median IgM serum concen-
trations was observed in the larger adult cohort [26].

Intrathecal IgA synthesis
QIgA was increased in 18/65 (28%) samples (median
QIgG 4.2; range 1.3–16.1) from 18 patients. Among
patients with elevated QIgA, the fraction of intra-
thecally produced IgA varied between 1.1 and 82.4%
(median 17.2), corresponding to an absolute amount
of intrathecally produced IgA between 0 and 6.5 mg/l
(median 0.8).
QIgA tended to be more frequently elevated in the

acute MY subgroup than in the acute ON subgroup
(44.4% vs. 11.8%; p = n.s.) (Table 3), and median CSF
IgA concentrations and IgA CSF/serum ratios were sig-
nificantly higher (p < 0.006 and p < 0.03, respectively) in
the acute MY subgroup than in the acute ON subgroup
(Table 3 and Fig. 1). This might may partly explain the
lower values observed in the adult cohort (QIgA elevated
and IgA-IF > 10% in 5% and 5%, respectively) which
included more samples from patients with acute ON.
IgA-IF exceeded 10% in 13/63 (20.6%) samples with

available data and, as IgG-IF and IgM-IF, was seen only
in samples obtained during acute attacks (Table 3).

QIgA was elevated during remission in a single
sample; however, IgA-IF was low (3.5%) in this
case. Median IgA concentrations in the serum did not
differ significantly between acute samples and samples
obtained during remission (Table 3 and Fig. 2).

Immunoglobulin (Ig) class patterns
Only three out of 63 (4.8%) samples and three out of 54
(5.6%) patients tested exhibited a so-called three-class im-
mune response as defined by elevation of QIgG, QIgM,
and QIgA (2 × IgM-dominant, 1 × IgA-dominant) (no
data in the remainder). Based on a stricter definition (IgG-
IF, IgM-IF and IgA-IF all > 10%), only 2/63 (3.2%) samples
from two patients showed a three-class reaction. In one of
these samples, IgG-IF was just borderline positive (10.18%;
cut-off: 10%) and IgG-OCB were negative, raising doubts
about the presence of IgG IS and reducing the number of
samples with a true three-class reaction to one. A three-
class reaction was also extremely rare in the adult cohort
(1/107 samples [0.9%] or 1/75 [1.3%] patients; possibly
artificial due to plasma exchange) [26].
A two-class reaction defined by either positive QIgG

and QIgM, positive QIgM and QIgA, or positive QIgG
and QIgA was detected in 12/63 (19%) samples and 12/54
(22.2%) patients tested based on QIg > Qlim(Ig) (Table 4).

Fig. 4 Significant correlation of CSF L-lactate (r = 0.549, p < 0.01) and CSF albumin concentrations with the spinal cord lesion load (as measured
in vertebral segments) in patients with acute MOG-IgG-positive myelitis. QAlb albumin CSF/serum ratio, QIgG IgG CSF/serum ratio, TP total protein,
WCC white cell count
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In only one of these 12 samples (i.e., in just one out of 63
[1.6%] samples), a dominant IgG two-class reaction was
noted; in six, a dominant IgM reaction; and in five, a dom-
inant IgA response. If the stricter definition based on Ig-IF
> 10% is used, the number of samples with a positive two-
class reaction drops to 6/63 (9.5%) (3 × IgM-dominant, 3
× IgA-dominant; IgG-dominant in none) from six patients
(Table 4), which compares to 1/107 (0.9%) (IgM-domin-
ant) samples in the adult cohort. By contrast, an IgG-
dominant two-class response has been reported to occur
in 20–40% of cases in MS [43].
Intrathecal Ig synthesis was restricted to one immuno-

globulin class in 13/63 (20.6%) samples (IgG in four;
IgM in five; IgA in four) from 13 patients based on Ig
CSF/serum ratios and also in 13/63 (20.6%) samples
based on Ig-IF > 10% (Table 4).
In three children (vs. two adults [26]) with intrathecal

IgM and/or IgA synthesis but no quantitative evidence
of intrathecal IgG synthesis, qualitative evidence for

intrathecal IgG synthesis, i.e., CSF-restricted OCB, were
detectable.

MRZ reaction
The measles virus (M), rubella virus (R), and varicella
zoster virus (Z) reaction (MRZR) was assessed in 29
samples from 25 MOG-IgG-positive patients. All three
antibody indices (AI) were tested in 17 samples and two
AI in another seven samples; for five LPs, the MRZ reac-
tion (MRZR) was reported as “negative” but the exact AI
values not given. A positive MRZ reaction, as defined by
the presence of a positive IgG AI for at least two of its
three constituents M, R, and Z (i.e., by any of the follow-
ing combinations: MR, MZ, RZ, or MRZ), is detectable
in around 63% of all MS patients [44]. By contrast, the
MRZ reaction was absent in all samples in the present
cohort of MOG-IgG-positive patients (p < 0.000001
when compared to data from a reference paper on the
MRZ reaction in MS [45]) (Table 5 and Fig. 5). Similarly,

Table 2 Frequency of intrathecal IgG synthesis, oligoclonal IgG pattern, IgG CSF/serum ratios, intrathecal IgG fractions, absolute
amount of locally produced IgG, and absolute IgG concentrations in the CSF and serum

Units Total Attack Remission Acute MY
subgroup

Acute ON
subgroup

Acute BRAIN
subgroup

Intrathecal IgG synthesis

OCB positive or IgG-IF
≥ 10%

Samples 14/97 (14.4%) 14/87 (16.1%) 0/8 (0%) 8/28 (28.6%) 0/27 (0%) 6/32 (18.8%)

OCB positive Samples 11/96 (11.5%) 11/86 (12.8%) 0/8 (0%) 7/28 (25%) 0/26 (0%) 4/31 (12.9%)

OCB pattern 1 Samples 77/96 (80.2%) 68/86 (79.1%) 7/8 (87.5%) 19/28 (67.9%) 24/26 (92.3%) 24/31 (77.4%)

OCB pattern 2 Samples 7/96 (7.3%) 7/86 (8.1%) 0/8 (0%) 6/28 (21.4%) 0/26 (0%) 1/31 (3.2%)

OCB pattern 3 Samples 4/96 (4.2%) 4/86 (4.7%) 0/8 (0%) 1/28 (3.6%) 0/26 (0%) 3/31 (9.7%)

OCB pattern 4 Samples 7/96 (7.3%) 6/86 (7%) 1/8 (12.5%) 2/28 (7.1%) 2/26 (7.7%) 2/31 (6.5%)

OCB pattern 5 Samples 1/96 (1%) 1/86 (1.2%) 0/8 (0%) 0/28 (0%) 0/26 (0%) 1/31 (3.2%)

OCB pattern 2 or 3 Samples 11/96 (11.5%) 11/86 (12.8%) 0/8 (0%) 7/28 (25%) 0/26 (0%) 4/31 (12.9%)

OCB pattern 3 or 4 Samples 11/96 (11.5%) 10/86 (11.6%) 1/8 (12.5%) 3/28 (10.7%) 2/26 (7.7%) 5/31 (16.1%)

OCB pattern 1, 4, or 5 Samples 85/96 (88.5%) 75/86 (87.2%) 8/8 (100%) 2/28 (75%) 2/26 (100%) 3/31 (87.1%)

QIgG > Qlim(IgG) Samples 14/78 (18%) 13/69 (19%) 0/7 (0%) 8/23 (34.8%) 1/21 (4.8%) 4/25 (16%)

QIgG, all LPs – 2.3 (0.8–8.2; 76) 2.4 (0.8–8.2; 68) 1.6 (1.3–1.7; 6) 3.13 (0.83–8.06; 22) 1.61 (0.84–8.16; 20) 2.3 (0.95–7.94; 26)

QIgG, if positive – 2.4 (1.5–7; 14) 2.4 (1.5–7; 13) n.a. (n.a.; 0) 2.64 (1.79–6.97; 8) 1.53 (1.53–1.53; 1) 2.3 (1.66–4.22; 4)

IgG IF, all LPs %IgGCSF 0 (0-27; 75) 0 (0-27; 67) 0 (0-0; 6) 0 (0-13.2; 22) 0 (0-4.4; 20) 0 (0-27; 25)

IgG IF, QIgG pos %IgGCSF 7.6 (0.03–27; 14) 7.8 (0–27; 13) n.a. (n.a.; 0) 7.6 (0–13.2; 8) 4.4 (4.4–4.4; 1) 17.9 (4–27; 4)

IgG IF, > 10% Samples 6/75 (8%) 6/67 (9%) 0/6 (0%) 3/22 (13.6%) 0/20 (0%) 3/25 (12%)

IgG Loc, all LPs mg/l 0 (0–15.4; 75) 0 (0–15.4; 67) 0 (0–0; 6) 0 (0–4.8; 22) 0 (0–15.4; 25) 0 (0–15.4; 67)

IgG Loc, QIgG pos mg/l 2.4 (0–15.4; 14) 2.5 (0–15.4; 13) n.a. (n.a.; 0) 2.7 (0–4.8; 8) 0.6 (0.6–0.6; 1) 3.8 (0.9–15.4; 4)

IgG CSF, all LPs mg/l 21.6 (5.4–107; 79) 24.6 (5.4–107; 71) 14.8 (10–21.6; 6) 37.6 (5.7–107; 22) 15.1 (5.4–72.6; 20) 22.8 (9–79.9; 29)

IgG CSF, QIgG pos mg/l 22.5 (13.7–74.3; 14) 22.8 (13.7–74.3; 13) n.a. (n.a.; 0) 27.9 (20–74.3; 8) 13.7 (13.7–13.7; 1) 22.5 (19–57; 4)

IgG serum, all LPs g/l 9.6 (3.1–46.9; 78) 9.9 (3.1–46.9; 70) 9 (6.3–13.9; 6) 10.66 (5.27–46.9; 23) 9.29 (5.69–11.6; 20) 9.61 (3.11–15.3; 27)

IgG serum, QIgG pos g/l 10.4 (6.2–13.8; 14) 10.7 (6.2–13.8; 13) n.a. (n.a.; 0) 10.7 (6.2–12.7; 8) 9 (9–9; 1) 11.9 (7.8–13.8; 4)

Link index, all Samples 10/75 (13%) 10/67 (15%) 0/6 (0%) 5/22 (22.7%) 1/20 (5%) 4/25 (16%)

Link index, if positive Index 0.8 (0.7–0.9; 10) 0.8 (0.7–0.9; 10) n.a. (n.a.; 0) 0.8 (0.7–0.8; 5) 0.7 (0.7–0.7; 1) #Value!

Quotients, indices, concentrations, and fractions are given as median and range. QIgG/A/M CSF/serum IgG/A/M ratio, IgG/A/M IF intrathecally produced
IgG/IgA/IgM fraction, IgG/A/M loc locally (intrathecally) produced IgG/A/M, LP lumbar puncture, pos positives

Jarius et al. Journal of Neuroinflammation          (2020) 17:262 Page 10 of 28



a negative MRZ reaction was found in 62/62 (100%)
samples from 48 MOG-IgG-positive patients with avail-
able data in the adult cohort.
Intrathecal production of antibodies to measles (with or

without concomitant antibodies against rubella and zoster
virus) is the most common intrathecal antiviral immune
response in MS, both in adults and in children [45]. While
it is present in up to 86% of patients with MS, it was
present in 0/25 (0%) MOG-IgG samples in the present co-
hort (p < 0.000001 when compared to data from [45]; N =
177) and in only 2/61 (3.3%) samples in the adult cohort
[26]. A positive rubella virus AI was found in 0/19 (0%)
samples (p < 0.000001 vs. MS [45]), and a positive varicella
zoster virus AI in 0/28 (0%) (p < 0.000001 vs. MS [45]).
Median AI for M, R, and Z were significantly lower in

patients with MOG-EM than those in two previously pub-
lished cohorts of patients with MS (p < 0.0001) (Fig. 5).
The MRZ reaction was negative not only in OCB-

negative samples but also in 3/3 (100%) OCB-positive
samples tested for this marker. Similarly, 7/7 (100%)
OCB-positive patients tested for MRZ were negative in
the adult cohort [26].

Other antibody indices
A positive IgM AI (AI = 13.28) for Borrelia burgdorferi
was present in one of 26 samples (3.8%) from 25 patients
tested. The Borrelia IgG AI was negative in all 27 sam-
ples from 27 patents tested, including the Borrelia IgM
AI-positive sample. None of 14 samples tested exhibited
a positive cytomegalovirus (CMV)-IgG AI, 12/12 (100%)
samples tested showed a negative IgG AI for Epstein–
Barr virus (EBV), and 21/21 (100%) a negative IgG AI
for herpes simplex virus (HSV). See also Table 5.

Blood–CSF barrier integrity
An elevated CSF/serum ratio for albumin, indicating
dysfunction of the BCB, was found with 36/79 (45.6%)
samples and was present at least once in 32/67 (47.8%)
patients tested for this marker (vs. 54.5% in the adult co-
hort [26]). QAlb ranged between 4.52 and 15.04 (median
6.9) (Table 6). QAlb decreased over time after an attack
(Fig. 3) and was normal during remission in all six
samples tested. By contrast, BCB dysfunction remained
present during remission at almost the same frequency

Table 3 Frequency of intrathecal IgM and IgA synthesis, IgM and IgA CSF/serum ratios, intrathecal IgM and IgA fractions, amount of
locally produced IgM and IgA, and absolute IgM and IgA concentrations in the CSF and serum

Units Total Attack Remission Acute MY
subgroup

Acute ON
subgroup

Acute BRAIN
subgroup

Intrathecal IgM synthesis

QIgM > Qlim(IgM) Samples 16/65 (25%) 16/57 (28%) 0/6 (0%) 9/18 (50%) 4/17 (24%) 3/22 (14%)

QIgM, all LPs – 0.4 (0–7.3; 63) 0.5 (0–7.3; 56) 0.2 (0.1–0.5; 5) 0.79 (0–6.72; 17) 0.35 (0–7.33; 16) 0.38 (0–4.17; 23)

QIgM, if positive – 1.7 (0.4–7.3; 16) 1.7 (0.4–7.3; 16) n.a. 1.8 (0.45–6.72; 9) 0.76 (0.39–7.33; 4) 1.[74 (1.73–1.81; 3)

IgM IF, all LPs %IgMCSF 0 (0–71.3; 62) 0 (0–71.3; 55) 0 (0–0;5) 0.2 (0–71.3; 17) 0 (0–51.3; 16) 0 (0–53.6; 22)

IgM IF, QIgM pos %IgMCSF 26.3 (0.2–71.3; 16) 26.3 (0.2–71.3; 16) n.a. (n.a.;0) 25.8 (0.2–71.3; 9) 17.5 (2.3–51.3; 4) 51 (26.8–53.6; 3)

IgM IF, > 10% Samples 13/62 (21%) 13/55 (23.6%) 0/5 (0%) 7/17 (41.2%) 3/16 (18.8%) 3/22 (13.6%)

IgM Loc, all LPs mg/l 0 (0–4.5;62) 0 (0–4.5; 55) 0 (0–0; 5) 0 (0–4.5; 17) 0 (0–3.5; 16) 0 (0–2.3; 22)

IgM Loc, QIgM pos mg/l 0.53 (0–4.47; 16) 0.53 (0–4.47; 16) n.a. 0.6 (0–4.5; 9) 0.1 (0–3.5; 4) 1.3 (0.2–2.3; 3)

IgM CSF mg/l 0.43 (0–9.2; 67) 0.5 (0–9.2; 60) 0.41 (0.21–0.6; 5) 0.8 (0–9.2; 17) 0.3 (0–6.89; 16) 0.6 (0–4.2; 27)

IgM serum g/l 1.04 (0.35–2.6; 69) 1.03 (0.35–2.53; 62) 1.63 (0.9–2.6; 5) 1.09 (0.4–2.53; 20) 0.83 (0.52–1.34; 17) 1.18 (0.35–2.32; 25)

Intrathecal IgA synthesis

QIgA > Qlim(IgA) Samples 18/65 (28%) 17/58 (29%) 1/5 (20%) 8/18 (44.4%) 2/17 (11.8%) 7/23 (30.4%)

QIgA, all LPs – 1.4 (0–16.1; 64) 1.4 (0–16.1; 57) 0.8 (0.6–1.6; 5) 2.62 (0–7.4; 17) 0.83 (0–8.52; 16) 1.39 (0–16.06; 24)

QIgA, if positive – 4.2 (1.3–16.1; 18) 5 (1.3–16.1; 17) 1.6 (1.6–1.6; 1) 5.08 (1.26–7.4; 8) 7.45 (6.38–8.52; 2) 3.06 (1.41–16.06; 7)

IgA IF, all LPs %IgACSF 0 (0–82.4; 63) 0 (0–82.4; 56) 0 (0–3.4; 5) 0 (0–48.9; 17) 0 (0–63.9; 16) 0 (0–82.4; 23)

IgA IF, QIgA pos %IgACSF 17.2 (1.1–82.4; 18) 19.5 (1.1–82.4; 17) 3.4 (3.4–3.4; 1) 13.7 (1.6–48.9; 8) 43.6 (23.3–63.9; 2) 36 (1.1–82.4; 7)

IgA IF, > 10% Samples 13/63 (20.6%) 13/56 (23.2%) 0/5 (0%) 6/17 (35.3%) 2/16 (12.5%) 5/23 (21.7%)

IgA Loc, all LPs mg/l 0 (0–6.5; 63) 0 (0–6.5; 56) 0 (0–0.1; 5) 0 (0–2.8; 17) 0 (0–3.3; 16) 0 (0–6.5; 23)

IgA Loc, QIgA pos mg/l 0.8 (0–6.5; 18) 1 (0–6.5; 17) 0.1 (0.1–0.1; 1) 0.8 (0.1–2.8; 8) 2.5 (1.7–3.3; 2) 0.6 (0–6.5; 7)

IgA CSF mg/l 1.6 (0–17.4; 66) 1.8 (0–17.4; 59) 0.98 (0.9–2.1; 5) 2.95 (0–17.4; 17) 0.9 (0–7.24; 16) 2.12 (0–10.4; 26)

IgA serum g/l 1.16 (0.05–6.6; 69) 1.16 (0.05–6.6; 62) 1.18 (0.94–2.7; 5) 1.22 (0.69–2.69; 20) 0.84 (0.3–2.61; 16) 1.21 (0.05–6.6; 26)

Quotients, concentrations and fractions are given as median and range. QIgG/A/M CSF/serum IgG/A/M ratio, IgG/A/M IF intrathecally produced
IgG/IgA/IgM fraction, IgG/A/M loc locally (intrathecally) produced IgG/A/M, LP lumbar puncture, pos positives
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as during acute attacks in the adult cohort (43.5% vs.
46.7%) [26].
In eight samples (from eight different patients) of 36

tested (22.2%; vs. 34.3% in the adult cohort), an albu-
min–cellular dissociation (ACD), i.e., compromised

integrity of the BCB in the absence of CSF pleocytosis,
was found (Table 6).
In line with what was found in the adult cohort, the

frequency of BCB dysfunction was higher during acute
MY attacks (65.2% [15/23]) than during acute ON
attacks (28.6% [6/21]) (p < 0.02) (Table 6). As in adults,
QAlb was positively linked to the spinal cord lesion load
as detected by MRI and measured in VS in patients with
acute myelitis (r2 = 0.175); however, the correlation did
not reach statistical significance (p = 0.053) (Fig. 4).

CSF total protein
Total protein (TP) concentrations in the CSF were ele-
vated in 22/98 (22.4%) samples (median 58.3 mg/dl;
range 46.3–97.2) and at least once in 19/75 (25.3%) pa-
tients with available data. As in the adult cohort, a sig-
nificant relationship of QAlb and CSF TP levels was
found by regression analysis (r2 = 0.75, p < 0.00001)
(Supplementary Figure 3). QAlb was elevated in 94.1%
of samples with increased CSF TP levels and available
data on both parameters. Elevated CSF TP levels were
> 45 and < 50 mg/dl (“borderline”) in 4/22 (18.2%)
samples, ≥ 50 and ≤ 100 mg/dl in 18/22 (81.8%). Different
from the adult cohort, in which 7/48 (14.6%) samples

Table 4 Immunoglobulin class response patterns in MOG-IgG-positive EM

Units Total Attack Remission Acute MY
subgroup

Acute ON
subgroup

Acute BRAIN
subgroup

a. Based on QIg > Qlim(Ig)

3-class reaction Samples 3/63 (4.8%) 3/56 (5.4%) 0/5 (0%) 2/18 (11.1%) 0/16 (0%) 1/22 (4.5%)

2-class reaction Samples 12/63 (19%) 12/56 (21.4%) 0/5 (0%) 6/18 (33.3%) 2/16 (12.5%) 4/22 (18.2%)

IgG + IgM Samples 2/63 (3.2%) 2/56 (3.6%) 0/5 (0%)

IgG + IgA Samples 4/63 (6.3%) 4/56 (7.1%) 0/5 (0%)

IgM + IgA Samples 6/63 (9.5%) 6/56 (10.7%) 0/5 (0%)

1-class reaction Samples 13/63 (20.6%) 11/56 (19.6%) 1/5 (20%) 6/18 (33.3%) 3/16 (18.8%) 2/22 (9.1%)

Only IgG Samples 4/63 (6.3%) 3/56 (5.4%) 0/5 (0%)

Only IgM Samples 5/63 (7.9%) 5/56 (8.9%) 0/5 (0%)

Only IgA Samples 4/63 (6.3%) 3/56 (5.4%) 1/5 (20%)

b. Based on Ig-IF > 10%

3-class reactiona Samples 2/63 (3.2%) 2/56 (3.6%) 0/5 (0%) 1/18 (5.6%) 0/16 (0%) 1/22 (4.5%)

2-class reactionb Samples 6/63 (9.5%) 6/56 (10.7%) 0/5 (0%) 2/18 (11.1%) 1/16 (6.3%) 3/22 (13.6%)

IgG + IgM Samples 0/63 (0%) 0/56 (0%) 0/5 (0%)

IgG + IgA Samples 1/63 (1.6%) 1/56 (1.8%) 0/5 (0%)

IgM + IgA Samples 5/63 (7.9%) 5/56 (8.9%) 0/5 (0%)

1-class reaction Samples 13/63 (20.6%) 13/56 (23.2%) 0/5 (0%) 9/18 (50%) 3/16 (18.8%) 1/22 (4.5%)

Only IgG Samples 3/63 (4.8%) 3/56 (5.4%) 0/5 (0%)

Only IgM Samples 6/63 (9.5%) 6/56 (10.7%) 0/5 (0%)

Only IgA Samples 4/63 (6.3%) 4/56 (7.1%) 0/5 (0%)
aIF in samples with a three-class reaction: IgG-IF 10.18%, IgM-IF 71.35% and IgA-IF 48.89%; IgG-IF 26.97%, IgM-IF 53.58% and IgA-IF 11; respectively
bIF in samples with a two-class reaction: IgM-IF 27.03% and IgA-IF 19.52%; IgG-IF 23.91% and IgA-IF 35.97%; IgM-IF 36.11% and IgA-IF 12.59%; IgM-IF 26.83% and
IgA-IF 82.42%; IgG-IF 10.18% and IgM-IF 71.35%; IgM-IF 50.99% and IgA-IF 62.57%; IgM-IF 51.32% and IgA-IF 23.29%; IgG-IF 26.97% and IgM-IF 53%; respectively

Table 5 MRZ reaction and antibody indices for measles virus
(M), rubella virus (R), varicella zoster virus (V), herpes simplex
virus (HSV), Epstein Barr virus (EBV), cytomegalovirus (CMV), and
Borrelia burgdorferi (BB)

Units Total cohort

MRZ reaction (M+R, M+Z, R+Z or M+R+Z) Patients 0/24 (0%)

MRZ reaction (M+R, M+Z, R+Z or M+R+Z) Samples 0/28 (0%)

AI measles virus (M) Samples 0/25 (0%)

AI rubella virus (R) Samples 0/19 (0%)

AI varizella zoster virus (Z) Samples 0/28 (0%)

Other antibody indices

AI HSV Samples 0/21 (0%)

AI EBV Samples 0/12 (0%)

AI CMV Samples 0/14 (0%)

AI B. burgdorferi, IgG Samples 0/27 (0%)

AI B. burgdorferi, IgM Samples 1/26 (3.8%)
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showed CSF TP levels > 100 mg/dl (> 150 mg/dl in 2)
[26], CSF TP levels exceed 100 mg/dl in none of the
pediatric samples. CSF TP levels were elevated in 21/87
(24.1%) samples obtained during relapse and in a single
sample obtained during remission (1/9; 11.1%) (Table 6).
Like QAlb, CSF TP levels were more commonly elevated
in the acute MY subgroup than in the acute ON subgroup
(p < 0.006; Table 6); also, median CSF TP levels were
higher in the MY subgroup than in the acute ON
subgroup (p < 0.00008; Fig. 1).
When applying a stricter cut-off of 35 mg/dl as used by

some laboratories in children > 12 months of age, the fre-
quency of CSF TP elevation was 38.7% among pediatric
samples and 43.8% among adult samples, corresponding to
44.4% of the pediatric patients and 48.4% of the adult pa-
tients presenting at least once with elevated CSF TP. If age-
partitioned upper reference limits recently proposed by
Kahlmann et al. (2017) [47], which were derived from a
large European pediatric cohort, were applied (0.25 g/l for
patients 6 months–≤ 6 years at the time of LP, 0.28 g/l
> 6–≤ 12 years, 0.34 g/l for >12–≤ 18 years; higher
upper reference limits have been reported for children
< 6 months of age, but no patient was younger than 6
months at the time of LP in the present cohort), the
rate of pediatric samples with elevated CSF TP levels
was 60.2% and the number of pediatric patients who

exhibited elevated CSF TP levels at least once was 64%.
The difference between the acute MY and the acute
ON group remained highly significant also when apply-
ing the 35 mg/dl cut-off or the age-partitioned cut-off
intervals proposed by Kahlmann et al. (p < 0.0001 and
p < 0.000006, respectively; Table 6).
Like QAlb, CSF TP levels were negatively yet not statisti-

cally significantly correlated with the time (in days) since
onset of the last attack, especially in the acute MY subgroup
(r = − 0.308, p = n.s.) (Fig. 3). CSF TP tended to
correlate positively with the spinal cord lesions load
(r = 0.361, p = 0.065) (Fig. 4).

CSF L-lactate
Lactate levels were increased in 22/72 (30.6%; vs. 26.2%
in the adult cohort) CSF samples (and at least once in
21/60 [35%] patients tested), with a median concentra-
tion of 2 mmol/l (range 1.8–2.83; compared to 2.68 in
the adult cohort, p < 0.00001) (Table 6 and Fig. 2).
As in the adult cohort [26], elevation of lactate levels was

more common in the MY subgroup than in the acute ON
subgroup (45.5% vs. 19%), although the difference did not
reach statistical significance in the smaller pediatric cohort,
and CSF lactate concentrations were significantly higher in
the MY subgroup (p < 0.04) (Fig. 1). Importantly, CSF lac-
tate concentrations were—just as in the adult cohort—

Fig. 5 MRZ reaction. Panel a shows the antibody indices for M, R and Z in multiple sclerosis (pooled data from ref. [44, 46]) and in samples from
MOG-IgG-positive patients (present study). Groups were compared using the Kruskal–Wallis test with Dunn’s post-test. Note that in those cases in
which a negative AI was documented but no exact value was available, the AI was set to 1.5, i.e., just below the cut-off for AI positivity (> 1.5); in
consequence, the real differences between MOG-EM and MS may be even more pronounced than shown here. Panel b shows the frequency of
a positive MRZ reaction (MR, MZ, RZ, or MRZ) in MOG-EM (present study), in neuromyelitis optica spectrum disorders (NMOSD), and in healthy
controls (HC) (data from [44]). AI antibody index, M measles virus AI, R rubella virus AI, Z varicella zoster virus AI

Jarius et al. Journal of Neuroinflammation          (2020) 17:262 Page 13 of 28



Ta
b
le

6
Bl
oo

d–
C
SF

ba
rr
ie
r
fu
nc
tio

n,
C
SF

al
bu

m
in
,C

SF
to
ta
lp

ro
te
in
,a
nd

C
SF

L-
la
ct
at
e
in

M
O
G
-Ig

G
-p
os
iti
ve

EM

U
ni
ts

To
ta
l

A
tt
ac
k

Re
m
is
si
on

A
cu
te

M
Y
su
bg

ro
up

A
cu
te

O
N
su
bg

ro
up

A
cu
te

BR
A
IN

su
bg

ro
up

Bl
oo

d–
C
SF

ba
rr
ie
r
fu
nc
tio

n

Q
A
lb

>
Q
A
lb
(li
m
)

Sa
m
pl
es

36
/7
9
(4
5.
6%

)
36
/7
1
(5
0.
7%

)
0/
6
(0
%
)

15
/2
3
(6
5.
2%

)
6/
21

(2
8.
6%

)
15
/2
7
(5
5.
6%

)

Q
A
lb
,a
ll
LP
s

–
4
(1
.8
–1
5;
78
)

4.
5
(1
.8
–1
5;
70
)

3.
3
(2
.6
–3
.7
;6
)

6
(1
.8
–1
1.
5;
23
)

3.
2
(1
.9
–1
1.
6;
20
)

4.
6
(1
.9
–1
5;
27
)

Q
A
lb
,i
f
po

si
tiv
e

–
6.
9
(4
.5
2–
15
.0
4;
35
)

6.
9
(4
.5
2–
15
.0
4;
35
)

0
(0
–0
;0
)

8
(4
.5
–1
1.
5;
15
)

5.
1
(4
.6
–1
1.
6;
5)

6.
7
(4
.5
–1
5;
15
)

A
lb

C
SF

m
g/
l

18
6
(7
6.
8–
62
4;
78
)

19
8
(7
6.
8–
62
4;
70
)

13
1.
5
(1
13
–1
61
;6
)

23
7
(7
6.
8–
57
2;
23
)

14
3
(8
2–
52
0;
19
)

19
8
(7
7–
62
4;
28
)

A
lb

se
ru
m

g/
l

43
.3
5
(3
0.
5–
53
.9
;7
8)

43
.4
(3
0.
5–
53
.9
;7
0)

42
.6
(3
6–
45
.3
;6
)

43
.4
(3
2–
53
.8
;2
5)

44
(3
7.
3–
48
.5
;1
9)

42
.2
(3
0.
5–
53
.9
;2
6)

A
lb
um

in
–c
el
lu
la
r
di
ss
oc
ia
tio

n
Sa
m
pl
es

8/
36

(2
2.
2%

)
8/
36

(2
2.
2%

)
0/
0
(0
%
)

1/
15

(6
.7
%
)

4/
6
(6
6.
7%

)
3/
15

(2
0%

)

C
om

bi
ne

d
in
tr
at
he

ca
lI
gG

sy
nt
he

si
s
an
d
BC

B
di
sr
up

tio
n

Sa
m
pl
es

7/
36

(1
9.
4%

)
7/
36

(1
9.
4%

)
0/
0
(0
%
)

6/
15

(4
0%

)
0/
6
(0
%
)

1/
15

(6
.7
%
)

C
SF

to
ta
lp

ro
te
in

C
SF

TP
,a
ll
LP
s

m
g/
dl

30
.9
5
(1
0–
97
.2
;9
8)

32
.2
(1
3.
4–
97
.2
;8
7)

22
.1
(1
0–
56
.6
;9
)

42
.1
(1
4–
89
;2
8)

25
.6
(1
3.
4–
64
;2
3)

32
.6
(1
4.
2–
97
.2
;3
6)

C
SF

TP
,>

10
0
m
g/
dl

Sa
m
pl
es

0/
98

(0
%
)

0/
87

(0
%
)

0/
9
(0
%
)

0/
28

(0
%
)

0/
23

(0
%
)

0/
0
(0
%
)

C
SF

TP
,e
le
va
te
d
(>

45
m
g/
dl
)

Sa
m
pl
es

22
/9
8
(2
2.
4%

)
21
/8
7
(2
4.
1%

)
1/
9
(1
1.
1%

)
10
/2
7
(3
7%

)
1/
25

(4
%
)

10
/3
5
(2
8.
6%

)

C
SF

TP
,i
f
el
ev
at
ed

(>
45

m
g/
dl
)

m
g/
dl

58
.3
(4
6.
3–
97
.2
;2
2)

60
(4
6.
3–
97
.2
;2
1)

56
.6
(5
6.
6–
56
.6
;1
)

57
(4
6.
3–
89
;1
0)

64
(6
4–
64
;1
)

57
(4
9–
97
.2
;1
0)

C
SF

TP
,e
le
va
te
d
(a
ge

–a
da
pt
ed

a )
Sa
m
pl
es

59
/9
8
(6
0.
2%

)
54
/8
7
(6
2.
1%

)
3/
9
(3
3.
3%

)
55
/8
5
(6
4.
7%

)
2/
11

(1
8.
2%

)
52
/7
7
(6
7.
5%

)

C
SF

TP
,i
f
el
ev
at
ed

(a
ge

-a
da
pt
ed

a )
m
g/
dl

41
(2
6.
1–
97
.2
;5
9)

42
.6
(2
6.
1–
97
.2
;5
4)

40
(3
1.
7–
56
.6
;3
)

42
(2
6.
1–
97
.2
;5
5)

38
.7
(2
8.
4–
49
;2
)

42
.6
(2
6.
1–
97
.2
;5
2)

C
SF

L-
la
ct
at
e

C
SF

L-
la
ct
at
e,
el
ev
at
ed

sa
m
pl
es

22
/7
2
(3
0.
6%

)
20
/6
6
(3
0.
3%

)
2/
6
(3
3.
3%

)
10
/2
2
(4
5.
5%

)
4/
21

(1
9%

)
6/
23

(2
6.
1%

)

C
SF

L-
la
ct
at
e,
al
lL
Ps

m
m
ol
/l

1.
6
(0
.9
–2
.8
3;
70
)

1.
6
(0
.9
–2
.8
3;
64
)

1.
7
(1
–2
.1
1;
6)

1.
74

(1
–2
.6
;2
2)

1.
5
(0
.9
7–
2.
56
;1
9)

1.
57

(0
.9
–2
.8
3
;2
3)

C
SF

la
ct
at
e,
if
el
ev
at
ed

m
m
ol
/l

2
(1
.8
–2
.8
3;
22
)

2
(1
.8
–2
.8
3;
20
)

2.
01

(1
.9
–2
.1
1;
2)

2.
04

(1
.3
8–
2.
6;
6)

1.
53

(1
.5
3–
1.
53
;1
)

1.
57

(1
.1
–2
.8
3;
7)

C
SF

L-
la
ct
at
e,
>
3
m
m
ol
/l

sa
m
pl
es

0/
70

(0
%
)

0/
64

(0
%
)

0/
6
(0
%
)

0/
22

(0
%
)

0/
19

(0
%
)

0/
23

(0
%
)

Ra
tio

s
an

d
co
nc
en

tr
at
io
ns

ar
e
gi
ve
n
as

m
ed

ia
n
(w

ith
ra
ng

e
an

d
sa
m
pl
e
nu

m
be

rs
in

br
ac
ke
ts
)

A
lb

al
bu

m
in
,B

CB
bl
oo

d
–C

SF
ba

rr
ie
r,
LP

lu
m
ba

r
pu

nc
tu
re
,Q

A
lb

C
SF
/s
er
um

al
bu

m
in

ra
tio

,T
P
to
ta
lp

ro
te
in

a A
ge

-d
ep

en
de

nt
up

pe
r
re
fe
re
nc
e
lim

its
ad

ap
te
d
fr
om

[4
7]

(0
.2
5
g/
lf
or

pa
tie

nt
s
0.
5
m
on

th
s–
≤
6
ye
ar
s
at

th
e
tim

e
of

LP
,0

.2
8
g/
l>

6–
≤
12

ye
ar
s,
0.
34

g/
lf
or

>
12

–≤
18

ye
ar
s)

Jarius et al. Journal of Neuroinflammation          (2020) 17:262 Page 14 of 28



significantly correlated with spinal cord lesion load in pa-
tients with acute myelitis (r = 0.549, p < 0.01) (Fig. 4). Simi-
lar to the adult cohort, we also found a significant
correlation of L-lactate with the CSF WCC (r = 0.257, p <
0.04) and with CSF total protein (r = 0.356, p < 0.003) (Fig.
6). CSF L-lactate was elevated in only 16.7% (6/36) samples
without pleocytosis but in 44.4% (16/36) of samples with
pleocytosis, in 61.5% (8/13) of samples if CSF WCC
exceeded 50 cells/μl, and in 71.4% (5/7) if CSF WCC
exceeded 100 cells/μl. A similar relationship was also found
in the adult cohort (7.8%, 42.9%, 73.9% and 82.4%, respect-
ively). The difference was even more pronounced in the
“acute MY” subgroup (0% vs. 58.8%, 75%, and 80%, respect-
ively, in the pediatric and 0% vs. 52.9%, 76.2%, and 86.7%,
respectively, in the adult cohort). In patients with pleocyto-
sis, the frequency of samples with elevated CSF L-lactate
did not significantly differ between samples with or without
neutrophil granulocytes, neither in the total cohort (31.3%
[5/16] vs. 44.4% [16/36]) nor in the “acute myelitis” sub-
group (33.3% [2/6] vs. 58.8% [10/17]); there was also no sig-
nificant difference when the pediatric and adult data were
pooled (23/59 [39%] vs. 40/92 [43.5%] among all patients
and 14/29 [48.3%] vs. 28/51 [54.9%] in the acute MY sub-
group). This renders it at least unlikely that granulocytes
were the main source of L-lactate in patients with elevated
CSF L-lactate levels. When considering not only the pres-
ence or absence of neutrophils but absolute neutrophil
numbers, a weak trend toward a correlation (p = 0.067) was
found between CSF L-lactate levels and neutrophil cell
numbers in the small subgroup of samples with available
data (N = 19); however, this was neither seen in the adult
cohort nor in a pooled analysis of the pediatric and the
adult data. CSF lactate levels showed a trend toward lower
values with increasing time (in days) since onset of the last
attack (p = 0.055) (Fig. 3).
Median CSF L-lactate concentrations during acute attacks

were slightly lower in the pediatric cohort than in the adult

cohort, if the first LP/event is considered (1.6 vs. 1.815
mmol/l; p < 0.02). While CSF L-lactate levels exceed 3
mmol/l in 10/103 (9.7%) patients in the adult cohort [38];
such high levels were noted in none of the pediatric patients.

First vs. follow-up LP
As in adults [26], the frequency of OCB did not differ
significantly between the initial sample and the follow-
up samples (8/72 [11.1%] vs. 3/24 [12.5%]). The same
holds true if only the first LP performed during each
event is considered (11.9% [8/67] vs. 8.3% [1/12]) (Table
7). Similarly, the frequency of IgG-IF elevation, as a quan-
titative marker for intrathecal IgG synthesis, did not differ
significantly between the first LP and follow-up LP as well
as the frequencies of pleocytosis, BCB dysfunction, CSF
TP elevation, and CSF L-lactate elevation during acute
attacks (Table 7).
However, as in the adult cohort, changes were noted

in individual patients over time. A total of 20 repeat tests
for OCB were performed in 17 patients. OCB turned
negative in at least one repeat sample in one patient over
the course of the disease (absent 61 days after the initial
LP and following treatment with high-dose methylpred-
nisolone) (Supplementary Table 2). In one patient, OCB
were negative at first LP and turned positive at repeat
examination 24 days later, respectively. Similarly, OCB
turned negative in at least one repeat sample in one pa-
tient in the adult cohort, and in two adult patients OCB
were negative at first LP and turned positive at repeat
examination. QIgG was normal in all of the OCB-
positive samples, indicating low levels of IgG IS.
In 14 patients, OCB were initially negative and remained

negative at follow-up. In two of these patients, OCB pat-
tern changed from pattern 1 to pattern 4, or vice versa,
over time (Supplementary Table 2). In one patient, OCB
were positive at all (N = 2; 2 × pattern 2) LP performed.

Fig. 6 Correlation of CSF L-lactate concentrations with CSF WCC (r = 0.257, p < 0.04) and CSF TP (r = 0.356, p < 0.003). TP total protein, WCC
white cell count
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Nine of 10 (90%) patients who were tested more than once
had a normal IgG CSF/serum ratio both at first LP and at
follow-up (as was the case in 24/28 [85.7%] adult patients
[26]); in one patient, QIgG remained positive at follow-up.
An IgM to IgG IS switch was observed in none of eight pa-
tients in whom QIgG and QIgM were both determined more
than once (and was rare [1/21] also in the adult cohort).
In MRZ-negative patients, repeat lumbar puncture was

reported to increase the sensitivity of MRZ testing in
MS due to 'broadening' of the MRZ reaction over time
[48]. It is therefore of note that some of the sample used
for MRZ testing were obtained at first LP (N = 23),
whereas others were obtained at follow-up LP (N = 6);
however, all were negative, irrespective of disease dur-
ation at the time of MRZ testing (median 7 days since
onset of first attack; range 0–3595), just as in the adult
cohort. Moreover, in three patients, MRZ was tested
more than once. All four retests (1–2 per patient;

median 1.5) in these patients were negative as well
(as were 14 follow-up samples from adult patients [26];
the median latency between first and last MRZ testing was
309 days (range 56–724).

Attack severity
In line with the adult cohort, many CSF parameters
assessed were higher and/or more frequently pathologic-
ally altered in patients classified as having a severe attack
at the time of LP by the treating physician than in patients
classified as having mild or moderate disease at the time
of LP (Table 8), including, median CSF WCC (28.5 vs. 3
cells/μl; p < 0.0000002); median CSF WCC in patients
with pleocytosis (48 vs. 12cells/μl; p = 0.016); proportion
of samples with pleocytosis (73.4% vs. 23.1%; p < 0.00001);
QIgG values (p < 0.004); QAlb positivity rate (60% vs.
30%; p = 0.023); median QAlb (5.2 vs. 3.3; p = 0.004); and
median CSF TP concentration (p = 0.008). Moreover, a

Table 7 CSF findings at the time of the first LP and at follow-up LP. To control for the fact that the number of CSF samples
obtained per event differed among patients in the subgroup with follow-up LPs, only the first LP obtained during each attack was
taken into account for this analysis

Units First LP ever Follow-up LPs, first LP/event

Pleocytosis, all acute attacks Samples 41/70 (58.6%) 4/11 (36.4%)

Pleocytosis, acute MY Samples 21/25 (84%) 1/2 (50%)

Pleocytosis, acute ON Samples 4/21 (19%) 1/4 (25%)

Pleocytosis, acute BRAIN Samples 16/24 (66.7%) 2/5 (40%)

OCB, all acute attacks Samples 8/67 (11.9%) 1/12 (8.3%)

OCB, acute MY Samples 6/25 (24%) 1/2 (50%)a

OCB, acute ON Samples 0/21 (0%) 0/5 (0%)

OCB, acute BRAIN Samples 2/21 (9.5%) 0/5 (0%)

IgG-IF > 10%, all acute attacks Samples 4/53 (7.5%) 6/12 (50%)

IgG-IF > 10%, acute MY Samples 2/20 (10%) 1/1 (100%)

IgG-IF > 10%, acute ON Samples 0/18 (0%) 0/1 (0%)

IgG-IF > 10%, acute BRAIN Samples 2/15 (13.3%) 0/5 (0%)

QAlb > Qlim(Alb), all acute attacks Samples 28/56 (50%) 3/8 (37.5%)

QAlb > Qlim(Alb), acute MY Samples 14/21 (66.7%) 0/1 (0%)

QAlb > Qlim(Alb), acute ON Samples 3/18 (16.7%) 2/2 (100%)

QAlb > Qlim(Alb), acute BRAIN Samples 11/17 (64.7%) 1/5 (20%)

CSF TP elevated, all acute attacks Samples 16/66 (24.2%) 2/11 (18.2%)

CSF TP elevated, acute MY Samples 9/23 (39.1%) 1/2 (50%)

CSF TP elevated, acute ON Samples 1/20 (5%) 0/4 (0%)

CSF TP elevated, acute BRAIN Samples 6/23 (26.1%) 1/5 (20%)

CSF L-lactate elevated, all acute attacks Samples 17/49 (34.7%) 2/10 (20%)

CSF L-lactate elevated, acute MY Samples 9/18 (50%) 1/2 (50%)

CSF L-lactate elevated, acute ON Samples 2/16 (12.5%) 1/4 (25%)

CSF L-lactate elevated, acute BRAIN Samples 6/15 (40%) 0/4 (0%)

Time since attack onset, acute LPs Days 2 (0–33) 4.5 (0–40)

IgG-IF intrathecal IgG fraction, OCB oligoclonal bands, QAlb CSF/serum albumin quotient, TP total protein, WCC white cell count
ap = n.s.
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higher proportion of samples from patients with severe
disease at the time of LP exhibited a positive QIgG posi-
tivity rate (24% vs. 9%), positive OCB (17% vs. 4%), neutro-
phils (51.6% vs. 33.3%), and a positive Link index (i.e., IgG
index) (20% vs. 5%), although the differences did not reach
statistical significance. See Table 8 for details.

LETM vs. non-longitudinally extensive transverse myelitis
While CSF L-lactate concentrations were significantly cor-
related (p < 0.010) with the spinal cord lesion load and
while QAlb (p = 0.053) and CSF TP concentrations (p =
0.064) tended to correlate with the spinal cord lesion load,
no statistically significant differences regarding the fre-
quency of CSF pleocytosis, CSF-restricted OCB, IF-IgG
elevation > 10%, BCB dysfunction, or CSF TP elevation
were noted when samples were simply stratified into
“acute LETM” and “acute NETM” based on the presence
or absence of at least one lesion extending over three or
more VS (Supplementary Table 3), i.e., if the exact lesion
load was not considered. Similarly, no significant differ-
ence was found also in the adult cohort (except for CSF L-
lactate; p < 0.05). However, the rate of samples with pleo-
cytosis, WCC > 100 cells/μl, IgG-IF > 10%, disturbed
blood–CSF barrier, or TP elevation, respectively, were all
more frequent and CSF WCC and TP concentrations
higher in samples obtained during acute LETM when

compared to samples obtained during acute NETM, sug-
gesting that the lack of statistical significance may well be
an effect of the small sample size in the NETM group.

Bilateral vs. unilateral ON
As in the adult cohort [26], CSF findings in acute bilateral
ON and unilateral ON did not differ significantly, al-
though more samples from patients with bilateral ON ex-
hibited an elevated CSF WCC (Supplementary Table 4).

Disease course
In line with the adult cohort, no statistically significant dif-
ferences between samples from patients with a monopha-
sic disease course at last follow-up and patients with a
relapsing disease course were observed during acute
attacks with regard to the frequency of CSF-restricted
OCB, CSF pleocytosis, IgG-IF > 10%, IgM-IF > 10%, IgA-
IF > 10%, QAlb elevation, CSF L-lactate elevation, and CSF
TP elevation (Table 9).
The slightly yet statistically non-significantly higher

values in the monophasic subgroup noticeable in Table 9
may simply reflect differences in subgroup composition
(more samples from patients with acute myelitis [38% vs.
25%], less samples from patients with ON [26% vs. 31.8%],
and less samples obtained during mild attacks [4% vs.
25.6%] in the monophasic subgroup; by contrast, the two

Table 8 CSF findings and attack severity

Units Severe attacks Mild/moderate attacks p value

WCC, all Cells/μl 28.5 (0–256; 64) 3 (0–179; 26) 0.0000002

WCC, elevated Samples 47/64 (73.4%) 6/26 (23.1%) 0.00001

WCC, if elevated Cells/μl 48 (9–256; 47) 12 (6–179;6) 0.016

Neutrophils, all LPs Samples 16/31 (51.6%) 4/12 (33.3%) n.s.

OCB, pattern 2 or 3 Samples 10/58 (17.2%) 1/27 (3.7%) n.s.

Link index Samples 9/45 (20%) 1/22 (4.5%) n.s.

QIgG, all Ratio 2.7 (0.8–8.1; 47) 1.7 (0.8–8.2;23) 0.004

QIgG, elevated Samples 11/46 (23.9%) 2/23 (8.7%) n.s.

QIgG, if elevated Ratio 2.4 (1.5–7; 11) 2.1 (1.7–2.5; 2) n.s.

QAlb, all Ratio 5.2 (1.8–15; 48) 3.3 (1.9–11.6; 23) 0.004

Qalb, elevated Samples 29/48 (60.4%) 7/23 (30.4%) 0.023

QAlb, if elevated Ratio 7 (4.5–15; 29) 5.3 (4.6–11.6; 7) n.s.

CSF TP, all mg/dl 36.5 (14–97.2; 63) 26.1 (13.4–64; 25) 0.008

CSF TP, elevated Samples 19/61 (31.1%) 2/25 (8%) 0.027

CSF TP, if elevated mg/dl 60 (46.3–97.2; 19) 59 (54–64; 2) n.s.

CSF TP, >100 mg/dl Samples 0/70 (0%) 0/26 (0%) n.s.

CSF L-lactate, all mmol/l 1.7 (0.9–2.8; 44) 1.5 (1–2.6; 22) n.s.

CSF L-lactate, elevated Samples 16/44 (36.4%) 4/22 (18.2%) n.s.

CSF L-lactate, if elevated mmol/l 2 (1.8–2.8; 16) 2.3 (1.9–2.6; 4) n.s.

CSF L-lactate, >3 mmol/l Samples 0/48 (0%) 0/22 (0%) n.s.

Ratios and concentrations are given as median (with range and sample numbers in brackets)
IgG-IF intrathecal IgG fraction, OCB oligoclonal bands, QAlb CSF/serum albumin quotient, TP total protein, WCC white cell count
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subgroups did not differ with regard to the proportion of
samples from patients untreated at the time of LP [88% vs.
88.6%]). When analyzing the data in a stratified manner
according to disease manifestations, the differences were
much less pronounced (Table 9). Similarly, when analyz-
ing only patients with severe attacks to eliminate the bias
introduced by the overrepresentation of samples obtained
during mild attacks in the relapsing subgroup, most differ-
ences between the two groups became negligibly small
(e.g., pleocytosis: 66.7% vs. 60.7%; OCBs: 14.3% vs. 16%;
IgG-IF > 10%: 13.8% vs. 10%; positive QAlb: 47.1% vs.
52%; elevated CSF TP: 25% vs. 33.3%).

Treatment status
OCB were negative in 12/12 samples in the treated sub-
group, QIgG in 8/8, the IgG index in 8/8, CSF L-lactate
in 7/9, and CSF TP in 10/11, suggesting a possible effect
of treatment on CSF findings. However, no statistically

significant differences were found between the treated
(N = 13) and the untreated subgroup (N = 92) with re-
gard to OCB frequency, frequency of QIgG positivity,
Link index, QAlb, CSF TP, or CSF L-lactate elevation,
possibly due to the low number of samples in the former
subgroup. Steroids used included methylprednisolone,
prednisolone, and “low dose corticosteroids” (N = 11);
immunosuppressive and immunomodulatory drugs (N =
2) used at the time of LP comprised interferon beta (1×)
and intravenous immunoglobulins (1×).

OCB-positive vs. OCB-negative MOG-EM
Interestingly, OCB were exclusively found during acute
attacks (11/11), exclusively during attacks of myelitis or
encephalitis (7 × myelitis, 4 × encephalitis, 0 × optic
neuritis), and exclusively in untreated patients (11/11).
When comparing the CSF findings in the OCB-positive
subgroup to that in a similar group of OCB-negative pa-
tients (acute and untreated, no ON attacks, no mild

Table 9 CSF findings in patients with monophasic disease and patients with relapsing disease. To control for differences in the
number of follow-up samples available per patient, only the first LP performed during each acute event was considered

1st LP/event Units Monophasic Relapsing

Pleocytosis, acute attacks Samples 26/41 (63.4%) 19/40 (47.5%)a

Pleocytosis, acute MY Samples 14/16 (87.5%) 8/11 (72.7%)

Pleocytosis, acute ON Samples 3/12 (25%) 2/13 (15.4%)

Pleocytosis, acute BRAIN Samples 9/13 (69.2%) 9/16 (56.3%)

OCB, acute attacks Samples 5/39 (12.8%) 4/40 (10%)a

OCB, acute MY Samples 4/17 (23.5%) 3/10 (30%)

OCB, acute ON Samples 0/12 (0%) 0/14 (0%)

OCB, acute BRAIN Samples 1/10 (10%) 1/16 (6.3%)

IgG-IF > 10%, acute attacks Samples 3/36 (8.3%) 2/24 (8.3%)a

IgG-IF > 10%, acute MY Samples 2/16 (12.5%) 1/5 (20%)

IgG-IF > 10%, acute ON Samples 0/12 (0%) 0/7 (0%)

IgG-IF > 10%, acute BRAIN Samples 1/8 (12.5%) 1/12 (8.3%)

QAlb > Qlim(Alb), acute attacks Samples 18/36 (50%) 13/28 (46.4%)a

QAlb > Qlim(Alb), acute MY Samples 11/16 (68.8%) 3/6 (50%)

QAlb > Qlim(Alb), acute ON Samples 3/12 (25%) 2/8 (25%)

QAlb > Qlim(Alb), acute BRAIN Samples 4/8 (50%) 8/14 (57.1%)

CSF TP elevated, acute attacks Samples 10/39 (25.6%) 8/38 (21.1%)a

CSF TP elevated, acute MY samples 7/15 (46.7%) 3/10 (30%)

CSF TP elevated, acute ON Samples 1/12 (8.3%) 0/12 (0%)

CSF TP elevated, acute BRAIN Samples 2/12 (16.7%) 5/16 (31.3%)

CSF L-lactate elevated, acute attacks Samples 14/33 (42.4%) 5/26 (19.2%)a

CSF L-lactate elevated, acute MY Samples 8/14 (57.1%) 2/6 (33.3%)

CSF L-lactate elevated, acute ON Samples 2/10 (20%) 1/10 (10%)

CSF L-lactate elevated, acute BRAIN Samples 4/9 (44.4%) 2/10 (20%)

Time since attack onset, acute LPs Days 2 (0-33) 2 (0-40)

IgG-IF intrathecal IgG fraction, OCB oligoclonal bands, QAlb CSF/serum albumin quotient, TP total protein
ap = n.s.
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attacks), no statistically significant differences were
found between the two groups in respect of pleocyto-
sis [73% vs. 70%], median CSF WCC [52 vs. 23 cells/
μl], WCC > 150 cells/μl (18% vs. 14%), presence of
granulocytes [80% vs 83%], BCB dysfunction [50% vs.
66%], CSF L-lactate elevation [44% vs 35%]. There
was no significant difference regarding the median
time since onset of the last attack between OCB-
positive and OCB-negative samples (8 vs. 2 days).
Moreover, as in the adult cohort, the age at the first
OCB-positive LP did not differ from that of the first
OCB-negative LP in patients who never tested positive
for OCB (6.5 years vs. 6 years).

Acute attacks vs. remission
CSF WCC (p < 0.03) and median QIgG (p < 0.03) were
significantly higher in the subgroup of samples obtained
during acute attacks if all samples are taken into account
(see Tables 1, 2, 3, 4, and 6). In the larger adult cohort, a
higher frequency of CSF L-lactate elevation was found in
addition to higher CSF WCC and a higher pleocytosis
rate during acute attacks.
When considering only the first LP performed during

acute events and the latest LP performed during remission
of an event (in order to control for differences in the num-
ber of follow-up samples available per patient), some dif-
ferences were more pronounced (Table 10 and Fig. 2). Of

note, almost all parameters assessed were higher or more
frequently present during acute attacks. However, statis-
tically significant differences were found only for CSF
WCC numbers (p < 0.04; vs. p < 0.0007 in the larger
adult cohort), absolute QIgG values (p < 0.03), fre-
quency of BCB dysfunction (p < 0.04), possibly owing
to the low number of samples in the remission group.
Finally, separate analyses of the acute MY, the acute

ON, and the acute BRAIN subgroups revealed more pro-
nounced differences between the acute phase and remis-
sion with respect to some parameters than is evident
from the unstratified analysis of the total cohort (see
Supplementary Table 1, Table 10, and Fig. 2).

'Normal' CSF
A clinically relevant number of CSF samples exhibited
no pathological changes. If CSF WCC, OCB, QIgG, Link
index, QIgM, QIgA, QAlb, CSF TP, and CSF L-lactate
are taken into account, 8/108 (7%; vs. 9% in the adult co-
hort) samples showed exclusively normal values. Of
these eight samples, two were taken during remission
and six during acute attacks (no data in 0). Two of the
'acute' yet negative samples belonged to the acute ON
group, three to the acute BRAIN group, and one to the
acute MY group (no data in 0). If only a basic panel con-
sisting of CSF WCC, CSF TP, and CSF L-lactate is con-
sidered (reflecting clinical practice in some non-tertiary

Table 10 CSF findings during acute attacks (first LP/event) and during remission (last LP/event)

Units Attack, all, first LP/event Remission, all, last LP/event p values

Pleocytosis Samples 45/81 (55.6%) 3/11 (27.3%) p = n.s.

WCC Cells/μl 13 (0–256;81) 4 (0–35;11) p < 0.04

WCC > 100/μl Samples 10/81 (12.3%) 0/11 (0%) p = n.s.

OCB Samples 9/79 (11.4%) 0/8 (0%) p = n.s.

QIgG > Qlim(IgG) Samples 12/62 (19.4%) 0/7 (0%) p = n.s.

QIgG Ratio 2.35 (0.83–8.16; 61) 1.63 (1.32–1.74; 6) p < 0.03

IgG–IF > 10% Samples 5/60 (8.3%) 0/6 (0%) p = n.s.

QIgM > Qlim(IgM) Samples 15/51 (29.4%) 0/6 (0%) p = n.s.

QIgM Ratio 0.43 (0–7.33; 50) 0.23 (0.13–0.46; 5) p = n.s.

QIgA > Qlim(IgA) Samples 15/52 (28.8%) 1/5 (20%) p = n.s.

QIgA Ratio 1.42 (0–16.06; 51) 0.83 (0.64–1.6; 5) p = n.s.

QAlb > Qlim(Alb) Samples 31/64 (48.4%) 0/6 (0%) p < 0.04

QAlb Ratio 4.52 (1.79–11.73; 63) 3.29 (2.63–3.66; 6) p = n.s.

CSF TP elevated Samples 18/77 (23.4%) 1/9 (11.1%) p = n.s.

CSF TP concentrations mg/dl 31 (13.4–97.2; 77) 22.1 (10–56.6; 9) p = n.s.

CSF TP > 100 mg/dl Samples 0/79 (0%) 0/9 (0%) p = n.s.

CSF L-lactate elevated Samples 19/59 (32.2%) 2/6 (33.3%) p = n.s.

CSF L-lactate concentrations mg/dl 1.6 (0.9–2.83; 57) 1.7 (1–2.11; 6) p = n.s.

CSF L-lactate > 3 mmol/l Samples 0/59 (0%) 0/6 (0%) p = n.s.

Time since attack onset Days 2 (0–40; 84) 48 (48–3595; 11)

IgG-IF intrathecal IgG fraction, OCB oligoclonal bands, QAlb CSF/serum albumin quotient, TP total protein
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centers and in emergency room settings), 29/108 (26.9%;
vs. 20.9% in the adult cohort) samples would have been
classified as 'normal'. Of those, 21/108 (19.4%; vs. 20.9%
in the adult cohort) would have been false-negatives
(with the full panel serving as gold standard).

Influence of age
A significant relationship of age at LP with CSF WCC,
QIgG, QAlb, CSF TP, and CSF L-lactate, respectively,
during acute attacks was neither found in the pediatric
cohort nor in the adult cohort (data not shown). How-
ever, an analysis of pooled data from the pediatric and
the adult cohort showed a significant relationship of age
at LP and CST TP (p < 0.0001), QAlb (p < 0.0005), and
CSF L-lactate (p < 0.0003) during acute attacks; a less
pronounced relationship was seen for QIgG (p < 0.04),
whereas no significant relationship was found for CSF
WCC (Supplementary Figure 4).

Quotient diagrams (“reibergrams”)
Plots of QIgG, QIgA, and QIgM, respectively, against
QAlb as a measure of BCB function are shown in Fig. 7.

Discussion
This study, which consists of two parts, is the largest
and most comprehensive study on CSF findings in
MOG-EM conducted to date. Considering that children
often show clinical and laboratory features different from
those in adult patients, that detailed data on CSF find-
ings in MOG-EM in pediatric patients are lacking so-far,
and that children are often treated differently, we
decided to analyze the pediatric cohort separately. We
demonstrate that CSF findings in MOG-EM are clearly
different from those reported in MS [35, 49] not only in
adults [26] but also in children. Our findings add further
evidence in favor of the hypothesis that MOG-IgG-
associated EM is a distinct disease entity rather than a
subvariant of MS [50–53].
Most strikingly, 85/96 (89%) samples showed no signs

of intrathecal synthesis (IS) of IgG, as indicated by a lack
of CSF-restricted OCB. This is in stark contrast to MS,
in which OCB are detectable in ≥ 95% of cases [35, 49].
Similarly, IS of IgG was absent in 131/151 (87%) samples
in the adult cohort. In those samples positive for OCB,

Fig. 7 CSF/serum quotient diagrams for IgG, IgM, and IgA
(“reibergrams”). Individual CSF/serum ratios of IgG, IgA, and IgM are
plotted against CSF/serum albumin ratios. Values above the upper
hyperbolic discrimination line, Qlim, indicate intrathecal synthesis of
the respective immunoglobulin (Ig) class. Individual intrathecal
fractions, IgIF, can be directly read by interpolation from the
percentiles above Qlim (median values are given in Tables 2 and 3).
IgG/A/M immunoglobulin G/A/M, QIgG/A/M CSF/serum IgG/A/M
ratios, QAlb CSF/serum albumin ratio
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the amount of intrathecally produced IgG was often low,
as indicated by normal QIgG in 5/10 samples. In the few
samples with quantitative evidence of intrathecal IgG
synthesis (i.e., with elevated QIgG), the intrathecal IgG
fraction was below the second decile in the IgG-specific
reibergram in 12/14 (86%) cases and was even below
10% in 8/14 (57%). Moreover, quantitative evidence of
intrathecal total IgG synthesis, if present at all, was
found only during acute disease attacks.
Of note, OCB were only transiently positive in 2/3

OCB-positive patients tested more than once (Supple-
mentary Table 2). This is in line with findings in the
adult cohort but in contrast to the temporal invariance
of intrathecal IgG synthesis deemed typical for MS [54],
again suggesting a differential immunopathogenesis of
the two disorders. Temporal variance of the patients’
OCB status has also been observed in patients with
AQP4-IgG-positive NMOSD [17, 55].
The specificity of the intrathecally produced IgG frac-

tion in the few OCB-positive patients with MOG-EM is
unknown. MOG-IgG have been previously reported to be
present in the CSF in a subset of patients with MOG-EM
[2]. However, MOG-IgG is primarily produced in the per-
iphery, as suggested by a negative MOG-specific AI [2].
This corresponds with AQP4-IgG-positive NMOSD, in
which the pathogenic antibody is also predominantly pro-
duced extrathecally [55–57]. Alternatively, the intra-
thecally produced IgG could reflect secondary B cell
activation, e.g., targeted at antigens unmasked by primary
inflammatory tissue damage. Finally, it might be related to
coexisting conditions in some patients. Connective tissue
disorders (CTD), for example, which relatively frequently
co-exist with AQP4-IgG-positive NMOSD [58–60], are
associated with OCB in neurological patients in about
25–30% of cases [61, 62]. However, as in the adult
cohort, signs of CTD were documented in none of
the OCB-positive MOG-EM patients in the present
study. OCB can be observed also in CNS infection.
While attacks in MOG-EM have been indeed reported
to be preceded by viral or bacterial infections (or vac-
cination) in up to 30% of adult cases [63], no system-
atic data is available for pediatric patients so far. It is
noteworthy in this context that OCB patterns 3 and 4,
which indicate systemic immune activation (e.g., during
infection) at the time of LP, were present in 11/96 (11.5%)
samples.
As in the adult cohort [26], the intrathecal, polyspecific

antiviral IgG response typically found in MS (also termed
MRZ reaction) [44, 45] was absent in all children tested
(N = 29), both at onset and at follow-up. Similarly, the
MRZ reaction has also been shown to be typically absent
in NMOSD (although systematic data on children with
NMOSD is missing so far) [45, 46, 64]. The lack of a posi-
tive MRZ reaction in patients with MOG-EM, one of the

most important differential diagnoses of MS, adds to pre-
vious evidence indicating a very high specificity of the
MRZ reaction for MS. The MRZ reaction is currently con-
sidered the laboratory marker with the highest positive
likelihood ratio for MS [44, 46, 64, 65]. Its absence in
MOG-IgG-positive patients strongly supports the notion
that MS and MOG-EM are two pathophysiologically dis-
tinct diseases. If the MRZ results in the pediatric and in
the adult cohort [26] are combined, the MRZ reaction was
negative in 91/91 (100%) samples, irrespective of OCB
status, and in 73/73 (100%) patients tested.
It is a limitation that most studies that evaluated the

MRZ reaction in pediatric patients with bona fide MS
did not test for MOG-IgG and AQP4-IgG, two markers
that have become available only relatively recently [44].
In young children, however, MOG-EM is more frequent
than conventional MS, the relative prevalence of which
increases with age, and many (and in particular young)
children with MOG-EM were falsely diagnosed with MS
in the past. In consequence, the rate of MRZR positivity
in MS reported in studies published before CBA employ-
ing full-length human MOG became available (40–44%
[49, 66], compared to around 67% in adults [44]) may
well represent an underestimate resulting from acciden-
tal inclusion of patients with MOG-EM. By contrast, the
prevalence of MOG-EM is many times lower than that
of MS in adults. Accordingly, the number of patients
with MOG-EM accidentally included in adult studies on
MRZR was probably low. This makes the available data
on MRZR in adults with MS more reliable.
Due to the retrospective design of this study, we can-

not know whether MRZR testing was possibly more fre-
quently considered in patients in whom the differential
diagnosis between MOG-EM and MS was particularly
difficult. However, as all samples tested were negative
for MRZR, the use of the test in such clinically highly
relevant subpopulation would only underline its differen-
tial diagnostic significance. No other potential biases
were identified: MRZ results were provided by 13 differ-
ent centers (median 1 sample/center; range 1–6), widely
ruling out a major center-specific selection bias. MRZ
was both negative in samples from the acute MY and
BRAIN subgroups (which more frequently exhibited
pathological features; 52% of all MRZR-tested samples)
and in samples from patients with acute ON (which
exhibited overall less pronounced CSF pathology; 48% of
all MRZR-tested samples). Median age of the MRZR-
tested patients was 8 years (range 1–17), which was very
similar to that among all samples and that in the non-
tested subgroup (6 years, range 0–17; p = n.s.). The
MRZR-tested cohort comprised an approximately equal
proportion of female and male patients (55.2%% vs.
44.8%%), and the proportion of female patients among
all MRZR-tested samples was virtually identical to that
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among all samples (55.2% vs. 55.6%). This strongly ar-
gues against an effect of age and sex. Finally, MRZR was
negative both in all OCB-positive and all OCB-negative
samples tested and the proportion of OCB-positive sam-
ples tested for MRZR (27%) did not differ from the total
proportion of samples tested for MRZR (27%). Similarly,
MRZR was also negative in all tested OCB-positive
samples in the adult cohort.
Finally, the possibility of false-positive results needs to

be appreciated when considering why a few patients
showed signs of intrathecal IgG synthesis. QIgG results
should be interpreted with caution whenever IgG-IF
values are below 10%, owing to the limited precision of
IgG measurements in serum and CSF, which are inherent
to the methods (mostly nephelometry) used, if supporting
evidence from OCB determination (which, performed
properly, is substantially more sensitive than QIgG) is
lacking. Current guidelines on CSF diagnosis set the upper
limit for imprecision at 7–10%, for incorrectness at 10%,
and for deviation between single measures at 24–30%
[38]. In fact, IgG-IF was below 10% and OCB were nega-
tive or were not tested in nine samples from nine patients.
If QIgG results not supported by either an IF-IgG > 10%
or CSF-restricted OCBs are not considered true-positive
(as recommended by some authors [38]), QIgG was posi-
tive only in 5/78 (6.4%) samples from four out of 67 (6%)
patients tested at least once, which is nearly identical to
the frequency found in the adult cohort (6%) [26].
A substantial number (N = 16, or 25%, based on Qlim,

and N = 13, or 21%, based on IgM-IF > 10%) of pediatric
samples showed evidence of possible low intrathecal
production of IgM antibodies. Like IgG, IgM synthesis
was also found only during acute attacks (just as in the
adult cohort [26]). Interestingly, in 5/63 (7.9%) cases, IS
exclusively of IgM but not of IgG was observed, whereas
in the remaining cases IgM IS was accompanied by IgG
IS (n = 2) or IgA IS (n = 6) or both IgG IS and IgM IS
(n = 3). By contrast, isolated IgM IS is atypical in MS
and should prompt doubt regarding that diagnosis. The
specificity of the IgM antibodies in our MOG-EM pa-
tients is unknown. While in the adult cohort, five of the
16 CSF samples with elevated QIgM were available for
retrospective testing but were all negative for MOG-IgM
(testing performed after preabsorption of total IgG to
rule out false-positive or false-negative IgM results [67]),
no paired CSF/serum samples were retrospectively avail-
able in the pediatric cohort. To the best of our know-
ledge, there are also no reports on marked IgM
deposition in MOG-EM lesions (as seen in NMOSD
[68]). A previous study on mostly adult patients found
MOG-IgM in 2/23 MOG-IgG-positive serum samples
but did not test for MOG-IgM in the CSF [3]. Alterna-
tively, blood contamination could have played a role in a

subset of cases. QIgM is much more sensitive to blood
contamination than QIgG, and a relevant number of
erythrocytes were detectable in at least 2/14 QIgM-posi-
tive patients (no or only minor contamination in 12). Fi-
nally, the intrathecal IgM fraction was < 10% in 3/16
QIgM-positive patients. In patients with such low IF values,
false-positive QIgM results (owing to unavoidable impreci-
sion of IgM measurements [38]) cannot be ruled out.
Blood–CSF barrier disturbance as indicated by QAlb

elevation was common and more severe than in MS.
While QAlb is normal in around 90% of MS patients
[35, 40], it was elevated in almost every second MOG-
EM sample both in the pediatric and in the adult cohort.
This is very similar to the high frequency of BCB disrup-
tion seen in a study on mostly adult patients with
AQP4-IgG-positive NMOSD (51%) [55]. This is of im-
portance, since extrathecally produced MOG-IgG might
gain access to the CNS via regions of disturbed BCB
function. In the adult cohort, long-lasting BCB damage
in MOG-EM (as previously seen also in AQP4-IgG-
positive NMOSD [55]) was observed. It is unclear
whether this reflects slow recovery from severe damage
or rather ongoing subclinical inflammation. In agree-
ment with the latter notion, MOG-IgG (just like AQP4-
IgG [69]) remains detectable, partly at high levels, in
many patients with MOG-EM also during remission.
Different from the adult cohort, QAlb elevation was
found exclusively during acute attacks in the pediatric
cohort. However, the pediatric 'remission group' was too
small to draw definite conclusions in that regard. More
differences between adults and children were observed
in terms of BCB dysfunction: Absolute QAlb values were
significantly lower in the pediatric cohort than in the
adult cohort (median 6.46 vs. 4.52, based on results from
the first LP/event; p < 0.0001) and QAlb values exceed-
ing 12 × 10−3, which were found in more than a quarter
of the adult patients with elevated QAlb, were present
only in a single sample (2.9%) in our pediatric patients
(p < 0.002). Nonetheless, brain–CSF barrier dysfunction
was not rare. Based on age-related upper reference inter-
vals, QAlb was elevated in almost every second sample.
It should be kept in mind, as a general rule, than QAlb

rather than CSF TP levels should be used to evaluate
blood–CSF barrier function, since CSF TP levels depend
on both intrathecal synthesis and serum levels [38, 43].
However, in both the pediatric and the adult cohort, a
close and statistically highly significant relationship be-
tween QAlb and CSF TP levels was found, suggesting
that CSF TP levels are mainly dependent on brain–CSF
barrier function in MOG-EM. Accordingly, QAlb was el-
evated in nearly all samples with elevated CSF TP.
Age may also influence the extent of CSF pathology.

Regression analyses of the pooled dataset from the
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pediatric and the adult cohort suggest a relationship of
age and QAlb, CSF TP, CSF L-lactate and, possibly,
QIgG in patients with MOG-EM.
In children, the CSF TP upper reference is age-

dependent, with very high values in newborns, a rapid
decline over the first months, and, after remaining low
for some years, a gradual increase until adult values are
reached, though some differences in dynamics observed
exist between studies [47, 70]. It has thus been suggested
that the standard use of adult reference values in the
pediatric population may not be ideal [70]. In conse-
quence, we provide additional data on age-partitioned
reference intervals for CSF TP in this study [47]. Appli-
cation of age-dependent reference limits resulted in a
slightly higher frequency of TP elevation in the pediatric
cohort despite slightly lower median absolute CSF TP
levels (different from the adult cohort, CSF TP levels
exceeded 100 mg/dl in none of the children tested).
Similarly, age-adapted upper reference limits were re-
ported for QAlb and L-lactate and applied in our study.
Age-adapted L-lactate CSF levels were elevated in almost
one-third of our pediatric patients (Table 6 and Fig. 2),
which was not significantly different from the proportion
seen in adults (26%). This is similar to AQP4-IgG-
positive NMOSD [55] but in contrast to MS, in which L-
lactate levels are usually normal [71]. In line with the
lower CSF L-lactate levels reported in healthy children,
median CSF L-lactate levels were slightly lower in chil-
dren with MOG-EM and CSF lactate levels > 3 mmol/l
as observed in some of the adult patients were present
in none of the children tested. CSF L-lactate levels were
significantly higher in patients with acute myelitis than
in acute ON in the adult cohort, and a trend toward
higher values was observed also in the smaller pediatric
cohort. Importantly, CSF L-lactate levels were strongly
correlated with the cumulative spinal cord lesion load at
the time of acute myelitis in both adult (p < 0.0001) and
pediatric patients (p < 0.01) (Figs. 1 and 4). In contrast
to albumin and TP, median L-lactate levels are physiolo-
gically higher in the CSF than in the serum and inde-
pendent from peripheral L-lactate levels [72, 73]. This
makes it per se highly unlikely that the observed in-
crease in CSF L-lactate levels was related to the BCB
dysfunction observed in many MOG-IgM patients. In
fact, no correlation of CSF L-lactate levels with QAlb
was found. It thus seems more likely that CSF L-lac-
tate and QAlb independently reflect the extent of
intrathecal inflammation. CSF L-lactate levels were
also correlated with the CSF WCC both in adults and
children.
Granulocytes are a known source of CSF L-lactate

[74–78]. However, neither the frequency of L-lactate ele-
vation nor median L-lactate levels differed significantly
between samples with and without granulocytes, both in

the pediatric and in the adult cohort. Moreover, no statis-
tically significant correlation between CSF granulocyte
counts and CSF L-lactate levels could be demonstrated
(although a trend was noticeable in the pediatric cohort).
As a limitation, the number of samples with exact data on
CSF granulocyte numbers was small. CSF L-lactate is
thought to be produced also by astrocytes following glu-
tamate stimulation [79, 80]. In NMOSD, in which we
could also demonstrate a correlation between CSF L-lac-
tate levels and the spinal cord lesion load [55], AQP4-IgG
has been reported to result in increased extracellular glu-
tamate concentrations due to coupled endocytosis of
AQP4 and the excitatory amino acid transporter 2
(EAAT2) [81]. However, there is no evidence so far for
marked astrocytic dysfunction (e.g., resulting from inflam-
matory bystander damage) in MOG-EM. As previously
discussed [82], an increase in extracellular glutamate could
exert potentially detrimental effects also by overstimulat-
ing glutamate receptors in neurons and MOG-expressing
oligodendrocytes [81]. It also renders oligodendrocytes
susceptible to immunoglobulin-independent (alternative
pathway) complement attack [81, 83]. Finally, neurons
may switch to glycolysis, in particular if their capacity to
metabolize anaerobically the lactate of astrocytic origin is
exhausted [80]. Further studies are needed to better
characterize the sources of intrathecal L-lactate in MOG-EM.
An elevated WCC was found in about 60% of samples

from pediatric patients with active disease at the time of
LP, which is identical to the rate found in adult patients
[38]. Median WCC did also not differ significantly between
children and adults. Among CSF white cells, lymphocytes
and monocytes were predominant, followed—as in adults—
by neutrophils, an immune cell type never observed in MS
(but in around 50% of samples from patients with acute at-
tacks of AQP4-IgG-positive NMOSD [55]). In line with our
demonstration of a lack of intrathecal MOG-IgG produc-
tion in MOG-EM in a previous study [2], the lack of OCB
and the normal QIgG values in most patients, and the lack
of a positive MRZ reaction in our patients, antibody-
secreting plasma cells were reported only for 4.4% of all
samples, which is almost identical to the rate found in
adults (3.9%). The proportion of samples with activated
lymphocytes (6.7%) was insignificantly lower than in the
adult cohort (15.6%), which exhibited a frequency similar to
that in AQP4-IgG-positive NMOSD (20.5%), and was much
lower than that usually seen in MS (> 75%) [40].
While a CSF WCC > 50 cells/μl is rare in MS and

should prompt physicians to challenge the diagnosis,
white cell numbers > 50 were observed in 22% of all
pediatric samples, in 28% of all samples with pleocytosis,
and in as many as 48% of those taken during acute mye-
litis (50% if lesions were longitudinally extensive). In the
acute MY subgroup, WCC exceed even 100 cells/μl in
every third patient; such high white cell numbers are
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virtually never seen in MS. These numbers are almost
identical to those in the adult cohort (19%, 27%, 46%,
and 52%, respectively) [26].
Neutrophil granulocytes or elevated L-CSF lactate

levels, two laboratory features of bacterial CNS infection,
were frequently observed during acute attacks both in
children and adults. Granulocytes are also detectable in
the CSF during very early-stage viral encephalomyelitis.
Given the fact that MOG-EM attacks (in common with
NMOSD attacks [17, 63]) are often preceded by infec-
tions [3, 4] which may result in fever or blood
leukocytosis, this might well lead to the false suspicion
of infectious disease in some cases. However, in most
samples, both CSF lactate levels and absolute CSF white
cell numbers were much lower in MOG-EM than in typ-
ical bacterial meningitis. While lactate concentrations
exceeded the age-dependent reference range in 31% of
samples in the pediatric cohort and 26% in the adult co-
hort, lactate concentrations > 3 or > 4 mmol/l, as seen in
a majority of patients with acute bacterial meningitis,
were absent in all samples tested in the pediatric cohort
and in over 90% in the adult cohort.
Eosinophilic infiltration is not a typical feature of

MOG-EM [84, 85]. In line with that observation, eosino-
phils were absent in all but three samples in the present
pediatric cohort and in all but two samples in the adult
cohort. This is similar to MS, in which eosinophils are
typically absent in the CSF, too. By contrast, previous
studies have demonstrated the presence of eosinophil at-
tractants in the CSF of patients with NMO [86], eosino-
philic infiltration in NMO lesions [68], and the presence
of eosinophils in 10–15% of acute CSF samples from pa-
tients with AQP4-IgG-positive NMOSD [55].
It is of note that CSF pathology was strikingly less se-

vere and less frequent in samples obtained during acute
attacks of ON than in acute myelitis (Fig. 1), both in
children and adults. Patients presenting with isolated
brain lesions exhibited CSF alterations more severe than
in ON but mostly less severe than in myelitis. These
findings are well in line with the fact that the lesion vol-
ume is rather small in ON compared with myelitis (me-
dian lesion load six VS; up to 16 VS; LETM in 83%).
Moreover, lumbar CSF in general does not reflect supra-
tentorial lesions well due to its remoteness from the ac-
tual site of inflammation (so-called caudal–rostral CSF
gradient). Moreover, we found highly significant differ-
ences in terms of CSF pathology (especially with regard
to WCC, pleocytosis rate, QAlb, and TP) between at-
tacks classified as “severe” by the treating physicians and
attacks classified as only “mild” or “moderate” in this
study. Future studies should attempt to define more ob-
jective measures for attack severity classification.
With the re-integration of OCB in the latest revision

of the diagnostic criteria for MS [87] and the

demonstration of substantial differences in CSF profiles
between MS and its most important mimics [44, 46, 55,
64, 88–90], LP may be performed more often in the fu-
ture. Although LP is a relatively safe procedure and rou-
tinely used in many countries, adverse event such as
headache (post-puncture CSF pressure syndrome, the
frequency of which can be substantially lowered by use
of so-called atraumatic 22–24 gauge needles with conical
tip and lateral opening [“Sprotte needles”]), radicular
symptoms, non-specific back pain, disc prolapse or asep-
tic disc necrosis (extremely rare), bleeding, or infection
rarely occur and a number of absolute (increased intra-
cranial pressure with progressive herniation as indicated
clinically and/or by MRI or CT; inflammatory infiltration
of the skin in the puncture area) and relative (platelet
counts < 50 GPt/L; therapeutic heparinization; oral
anticoagulation) contraindications exist [40]. In conse-
quence, patients should be thoroughly examined and con-
traindications carefully considered before performing LP.
For a more detailed review of LP techniques and the pre-
vention and management of complications, see [40, 43].

Strengths and limitations
We count among the strengths of this study the high
number of pediatric patients included (given the rarity
of the disease), the large number of both samples and
parameters analyzed, and the stratified analysis taking
into account the clinical presentation at the time of LP.
It is a potential limitation that our study included a large
number of centers. However, the rarity of MOG-IgG-
associated EM means that monocenter studies cannot be
performed if sufficient sample numbers are to be ana-
lyzed. Moreover, the multicenter approach reduces the
risk of selection bias. Finally, no standardized MRI pro-
tocols were used. Although the correlation of lactate and
TP levels with the spinal cord lesions lesion load found
in our cohort is intriguing, further studies are needed to
confirm this finding in a prospective and more standard-
ized fashion.

Conclusion
In summary, our study, the first to review comprehen-
sively and systematically the CSF findings in children
with MOG-EM in a large cohort of patients of mainly
Caucasian descent, demonstrates that (i.) in sharp con-
trast to classic MS, intrathecal IgG synthesis is rare in
MOG-IgG-associated EM, as shown both qualitatively
and quantitatively; (ii.) if present, intrathecal IgG synthe-
sis is low in most patients, partly transient, and re-
stricted mainly to acute attacks (again in contrast to
MS); (iii.) CSF findings in acute myelitis differ substan-
tially and significantly from those in acute ON (normal
CSF findings are not rare in ON and do not exclude the
diagnosis); (iv.) CSF findings in “monophasic” MOG-EM
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are not significantly different from those in relapsing
MOG-EM; (v.) different from MS, the degree of CSF al-
teration depends on disease activity and attack severity
(and could thus have potential prognostic value); (vi.) in
patients with acute myelitis, CSF L-lactate levels as well
as CSF albumin and CSF TP levels correlated with the
spinal cord lesion load (again suggesting a potential
prognostic value of LP in MOG-EM); (vii.) CSF white
cell numbers in MOG-EM may well exceed those typic-
ally observed in MS, in particular in acute myelitis (> 50
cells/μl in around 50% during acute LETM); (viii.) a lack
of pleocytosis, on the other hand, does not rule out the
condition but is a frequent finding (around 80% in acute
ON); (ix.) the intrathecal, polyclonal antiviral immune
response (so-called MRZ reaction) discriminates sharply
between MOG-EM and MS; and (x.) neutrophilic pleo-
cytosis and elevated L-lactate CSF concentrations render
the condition—just like AQP4-IgG-positive NMOSD—a
relevant differential laboratory diagnosis of (especially
nonpurulent or chronic) bacterial infection in a subset
of patients. In many respects, CSF findings in MOG-EM
share much more similarities with NMOSD than with
MS. Our data may help to improve the differential diagno-
sis of MOG-EM and MS and to extend our understanding
of the immunopathology of this newly described entity.
Except for lower QAlb values and L-lactate levels during
acute attacks, CSF findings in the pediatric cohort did not
differ substantially from those in the adult cohort. A de-
tailed analysis of the CSF findings in adult patients with
MOG-EM can be found in Part 1 of this article series [26].
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