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A B S T R A C T

Pain arising from musculoskeletal disorders such as arthritis is one of the leading causes of disability. Whereas
the past 20-years has seen an increase in targeted therapies for rheumatoid arthritis (RA), other arthritis con-
ditions, especially osteoarthritis, remain poorly treated. Although modulation of central pain pathways occurs in
chronic arthritis, multiple lines of evidence indicate that peripherally driven pain is important in arthritic pain.
To understand the peripheral mechanisms of arthritic pain, various in vitro and in vivo models have been de-
veloped, largely in rodents. Although rodent models provide numerous advantages for studying arthritis pa-
thogenesis and treatment, the anatomy and biomechanics of rodent joints differ considerably to those of humans.
By contrast, the anatomy and biomechanics of joints in larger animals, such as dogs, show greater similarity to
human joints and thus studying them can provide novel insight for arthritis research. The purpose of this article
is firstly to review models of arthritis and behavioral outcomes commonly used in large animals. Secondly, we
review the existing in vitro models and assays used to study arthritic pain, primarily in rodents, and discuss the
potential for adopting these strategies, as well as likely limitations, in large animals. We believe that exploring
peripheral mechanisms of arthritic pain in vitro in large animals has the potential to reduce the veterinary burden
of arthritis in commonly afflicted species like dogs, as well as to improve translatability of pain research into the
clinic.

1. Introduction: Brief overview of mechanisms driving arthritic
nociception and pain

“Arthritis” is derived from the Greek words “arthros” meaning joint
and “itis” meaning inflammation. One crucial feature that the ety-
mology of arthritis excludes is the concept of nociception and pain,
although arthritis is a broad term encompassing musculoskeletal dis-
orders in which chronic pain is the leading cause of morbidity (Neogi,
2013). Indeed, arthritic pain has been recognized and managed globally
since antiquity. Between 1000 and 300 BCE, both the Indian medico-
religious text Atharvaveda and the Greek philosopher Hippocrates,
described the etiology of arthritis as pain originating from joints and
spreading to the rest of the body (Sharma and Arora, 1973; Short,
1974). Modern research attributes the pain experienced first at the site
of the disease (e.g. joints), and subsequently at other parts of the body,
to peripheral and central components of pain respectively. Further-
more, Roman Emperor Claudius’ physician Scribonius Largus (~40 CE)

described a chronic polyarthritis, which he treated by administering a
shock of static electricity to the patient’s feet using torpedo fish, pre-
sumably in an attempt to modulate neuronal activity and thus suppress
nociceptive input and the sensation of pain (Kellaway, 1946). From this
brief look into history, it is clear that pain management by targeting
peripheral inputs has been acknowledged by the medical community
since ancient times.

The current understanding of arthritic pain is that disease progres-
sion causes marked changes in the function of non-neuronal cells (e.g.
synoviocytes and immune cells, such as macrophages), which results in
inflammation of the joint environment, and aberrant communication
between these non-neuronal cells and sensory neurons at the site of the
disease causes pain. Although differences exist between arthritic con-
ditions, i.e. osteoarthritis (OA) pain is considered to be more degen-
erative in nature, primarily affecting cartilage and bone (French et al.,
2017), whereas rheumatoid arthritis (RA) is perceived as more in-
flammatory (Walsh and McWilliams, 2014), the important role of

https://doi.org/10.1016/j.ynpai.2020.100051
Received 19 May 2020; Received in revised form 22 July 2020; Accepted 22 July 2020

⁎ Corresponding author at: Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
E-mail address: es336@cam.ac.uk (E.S.J. Smith).

Neurobiology of Pain 8 (2020) 100051

Available online 28 July 2020
2452-073X/ © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/2452073X
https://www.elsevier.com/locate/ynpai
https://doi.org/10.1016/j.ynpai.2020.100051
https://doi.org/10.1016/j.ynpai.2020.100051
mailto:es336@cam.ac.uk
https://doi.org/10.1016/j.ynpai.2020.100051
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ynpai.2020.100051&domain=pdf


inflammation in OA pain is becoming increasingly clear (Goldring and
Otero, 2011; Miller et al., 2019; Neogi et al., 2016).

Joint-innervating nerves, the cell bodies of which are located in the
dorsal root ganglia (DRG), detect both innocuous and noxious stimuli,
the latter occurring through a subset of sensory neurons called noci-
ceptors that transmit nociceptive information using a variety of stra-
tegies (which can occur exclusive to each other or in combination).
Firstly, inflammatory mediators can directly activate joint nociceptors
to fire action potentials (AP), for example, protons present in the in-
flammatory milieu can activate a variety of receptors expressed by
nociceptors (Pattison et al., 2019). Secondly, peripheral sensitization
can occur, whereby the threshold required for AP generation is reduced,
which can result from changes in the sensitivity and/or expression of
ion channels either involved in transduction of noxious stimuli (Dubin
et al., 2012; Lechner and Lewin, 2009; Vellani et al., 2001; Zhang et al.,
2005), or in AP generation (Staunton et al., 2013). Thirdly, a further
form of peripheral sensitization involves the inflammatory milieu un-
masking previously ‘silent’ nociceptors (reviewed in (Schaible et al.,
2002), with recent evidence identifying nerve growth factor (NGF) as
being key to unmasking silent nociceptors to become mechanically
sensitive and thus provide extra nociceptive input (Prato et al., 2017).
From the periphery, APs from joint nociceptors are transmitted to the
dorsal horn of the spinal cord where they synapse with the spinal in-
terneurons and projection neurons, although the molecular detail of
this connectivity is poorly understood compared to our growing un-
derstanding of the spinal circuitry involved in cutaneous sensory nerve
function (Peirs et al., 2020). In chronic arthritis, there is tonic noci-
ceptive input, which is enhanced by peripheral sensitization, and this
barrage of information being received by the spinal cord can lead to
central sensitization (hyperexcitability in the central nervous system,
reviewed in (Harte et al., 2018; Wood et al., 2019; Woolf, 2011)); there
is also evidence that this effect might be longer lasting when it involves
deep tissue nociceptors (Wall and Woolf, 1984). For example, one study
found that in a model of chronic OA, injection of NGF into the knee
joint can increase extension-evoked firing of wide-dynamic range dorsal
horn neurons (Sagar et al., 2015). The three major mechanisms of
central sensitization are 1) glutamatergic neurotransmission mediated
(summation of sub-threshold excitatory post-synaptic currents from
acute pain leads to AP firing in higher order neurons), 2) loss of tonic
inhibitory controls due to disinhibition of γ-amino butyric acid re-
ceptors (GABA) and glycinergic pathways and 3) glia-mediated
(Basbaum et al., 2009; Old et al., 2015). The glia-mediated mechanisms
rely on inflammatory mediators, for example, elevated levels of inter-
leukin 1β (IL-1 β) have been detected in the cerebrospinal fluid of RA
patients (Lampa et al., 2012). The cytokine fractalkine (shown to be
upregulated in protein isolated from human OA synovium (Gowler
et al., 2019)) might also play a role in central sensitization because its
receptor CX3CR1 is upregulated in spinal microglia following neuro-
pathic pain generation in rats (Lindia et al., 2005). Indeed, it has been
shown that the microglial protease, cathepsin S exerts pro-nociceptive
effects in the central nervous system (CNS) by cleaving fractalkine from
neuronal membranes which can then activate CX3CR1 receptors (Clark
et al., 2009). Furthermore, in a rat model of RA, both a cathepsin S
inhibitor and a fractalkine neutralizing antibody normalized mechan-
ical hypersensitivity (Clark et al., 2012).

Advances in neuroimaging have also revealed the brain networks
involved in processing of arthritic pain. Specifically, OA patients show
disruption of resting state default mode network and a decrease in grey
matter volume in the thalamus, as well as increased activity of the
periaqueductal gray region (PAG, part of the descending pain mod-
ulation system) (Gwilym et al., 2010, 2009). Importantly, imaging of
the PAG, nucleus cuneiformis and rostral ventromedial medulla has
provided evidence that OA patients with neuropathic pain (as opposed
to nerve injury pain) have a poorer outcome post-arthroplasty, thus
suggesting that neuroimaging could be a useful tool to stratify patients
(Soni et al., 2019). Overall, these results demonstrate that both

peripheral and central mechanisms are important in arthritic pain and
the direct behavioral outcomes of these pain generating mechanisms for
the individual in pain: allodynia (in which a previously non-painful,
innocuous stimulus causes pain) and/or hyperalgesia (in which a nox-
ious, painful stimulus is perceived to be more painful).

1.1. Relevance and scope of the review

The relative importance of peripheral vs central pain mechanisms is
unknown in arthritis, however, several lines of evidence demonstrate
that controlling peripheral mechanisms of nociception can provide pain
relief: 1) local administration of analgesics relieves arthritic pain
(Creamer et al., 1996; Uziel et al., 2003), 2) peripherally restricted anti-
NGF antibody administration relieves OA pain (Schnitzer et al., 2019)
and 3) total joint replacement can provide pain relief in OA and RA
(Neogi, 2013; Wolfe and Zwillich, 1998). Given the importance of pain
originating from the periphery in arthritis, it is useful to understand the
underlying mechanisms of nociceptor activation and peripheral sensi-
tization to identify drug targets and subsequently develop therapeutics.
This has led to the establishment of multiple pre-clinical in vivo and in
vitro inflammatory pain models to simulate human arthritic pain, each
of which has its strengths and weaknesses. The three main strategies
used for generating arthritic pain in animal models are: 1) altering the
joint environment by administering irritants that lead to direct tissue
damage or recruit the immune system to attack joints 2) trauma that
leads to either acute or chronic development of joint pain (induced
models) and 3) utilizing animals that naturally develop arthritis. Cur-
rently, these experimental models are largely conducted in rodents, due
to them being amenable to genetic manipulation, having a short re-
production time and ease/cost of housing. These in vivo rodent models
of arthritis and the behavioral outcomes measured in such models have
been extensively reviewed (Gregory et al., 2013; Krock et al., 2018;
Kuyinu et al., 2016; Samvelyan et al., 2020) and hence this review will
focus on in vivo models of arthritis in large animals. However, a review
of in vitro models and assays for dissecting arthritic pain in the per-
iphery is lacking, a gap this review will address in rodents and in large
animals, and conclude that leveraging large animals for in vitro studies
could potentially accelerate the field of arthritic pain research.

2. Potential for use of large animals in arthritic pain research

The inefficiency of translating therapeutics to humans following
demonstration of efficacy in rodents has been a major concern for the
pain community with a ~10% likelihood of FDA approval for studies
entering a Phase I clinical trial (Hay et al., 2014). A number of reasons
have been suggested for this translational gap including innate differ-
ences in rodent and human pain biology due to their phylogenetic
distance (Blackburn-Munro, 2004; Klinck et al., 2017; Mao, 2012). In
the context of preclinical research, large animals are considered to be
animals larger than rabbits and rodents, for example horses, cattle,
sheep, goats, pigs and dogs. Studying pain pathologies in these larger
animals that are phylogenetically closer to humans, could potentially
help bolster the translational potential of therapeutics, since these an-
imals might share a greater sequence homology with the molecular
drug target in man (Kruger and Light, 2010). For example, the pain
managing drug for migraine, the calcitonin gene-related peptide
(CGRP) receptor antagonist, MK-0974, was found to be > 10 fold
more potent in human and rhesus/marmoset monkeys than in rodents
because of greater sequence homology in receptor activity modifying
protein 1 (RAMP1), which combines with the calcitonin receptor-like
receptor to act as a receptor for CGRP (Hershey et al., 2005; Salvatore
et al., 2008). The smaller body sizes and differences in drug metabo-
lizing pathways of rodents compared to humans also complicate pre-
diction of pharmacokinetics and drug efficacy. For example, pregabalin
appears to be more rapidly effective in rodents than in humans, possibly
due to smaller body size (Arezzo et al., 2008; Field et al., 1999), and,
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when considering opioid pharmacokinetics, cytochrome P450 2D
(CYP2D), a key enzyme in the opioid metabolism pathway, has nine
active forms in mice compared to one in humans (Dagostino et al.,
2018; Ingelman-Sundberg, 2005). Rodents also tend to display less
nocifensive/pain behavior than non-prey species since overt portrayal
of pain behavior can hinder survival in nature, thus posing another
barrier to translation (Rice et al., 2008). By contrast, dogs and horses
typically live in less hostile environments and show similar pain be-
haviors to humans, which can be assessed (e.g. lameness grading) and
validated (e.g. medical imaging techniques) using clinical procedures
developed for humans, as well as being treated using anti-inflammatory
and analgesic drugs in clinical practice (Meeson et al., 2019). Ad-
ditionally, using large animals as model organisms provides specific
advantages in the field of arthritis (summarized in Fig. 1). For example,
large animals in general replicate human joint biomechanics better than
rodents because of more similar joint anatomy to that of humans
(Malfait et al., 2013; Proffen et al., 2012). In particular, cartilage and
subchondral bone thickness in the joint of large animals, particularly in
the horse, is more similar to humans than in small animals (average
cartilage thickness in mouse = ~0.03 mm vs. horse = ~1.5 mm vs.
human = ~2.0 mm) (Cook et al., 2014; Malda et al., 2012; McCoy,
2015).

Along similar lines, the diameter of DRG neurons is also greater in
large animals, such as in sheep (unpublished observation), and humans
(Rostock et al., 2018a) compared to rodents. Furthermore, a recent
study demonstrated that in humans there is considerable overlap be-
tween the peptidergic and non-peptidergic markers CGRP and P2X3R
respectively, markers which in rodents label distinct populations of
DRG neurons (Shiers et al., 2020), thus suggesting that the molecular
identities of sensory neurons might also be different in larger animals
compared to rodents

Additionally, the longer life span of large animals enables

longitudinal studying of both the early stages of arthritis, which is ra-
ther difficult in small animal models with a short initial phase and in
humans where it goes unnoticed, as well as the long-term effects of
interventional therapeutic use. Finally, it is possible to evaluate the
safety and efficacy of new therapies in naturally occurring arthritis,
usually found in large animals such as horse and dog, before advancing
to human clinical trials (Koch and Betts, 2007). Although this discus-
sion has focused on the possible benefits to human medicine of studying
large animals, cases of naturally occurring arthritis in large animal
species contribute a considerable veterinary burden (Anderson et al.,
2018a) and thus more holistic study of arthritis in these animals
themselves will likely provide beneficial clinical insight to veterinary
practice, as well as the potential translational benefits to human pain
therapeutics. However, several factors contribute to the current limited
use of large animals in pre-clinical pain research as discussed below.

3. Limitations of large animal research

The major limitation most researchers face when considering the
use of large animals in arthritic pain research, is the significantly higher
cost associated with their housing and upkeep, both with regard to the
facilities required for animal husbandry and lifespan. Secondly, there is
the ethical question of using ‘higher’ species. For example, in the United
Kingdom, use of animals in research is governed by the Animals
(Scientific Procedures) Act 1986 Amendment Regulations 2012 and in
applications to the Home Office to work with animals it is necessary to
provide an explanation as to “why no other species is either suitable for
the purpose or practically available” when considering the use of cats,
dogs, primates and Equidae. Lastly, there is also the technical question
surrounding the expertise required for in vivo study, as well as har-
vesting and culture of neurons/non-neuronal tissues required for in vitro
analysis.

Fig. 1. Schematic diagram emphasizing the
potential for large animals in translational ar-
thritic pain research. Large animals have si-
milar sized knee and cartilage thickness com-
pared to humans (McCoy, 2015; Proffen et al.,
2012), longer lifespan (Carey and Judge,
2000), and larger DRG neurons compared to
rodents (brighter neurons indicate CGRP im-
munoreactivity, Scale bar = 50 um). Unlike
rodents which are prey species (Rice et al.,
2008), large animals are less likely to hide pain
behavior and are susceptible to naturally-oc-
curring arthritis (mostly OA) similar to humans
(K. L. Anderson et al., 2018; Centers for
Disease Control and Prevention, 2015; Slater,
2016).
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Compared to some large animal species, sheep and goats have a
lower maintenance cost, are easily handled and are commonly used in
arthritis research. However, since both sheep and goats are ruminants,
comparing the pharmacokinetics and efficacy of experimental oral
therapeutics to what might be observed in non-ruminant humans is
particularly difficult. Although human joints are more similar to those
of large animals than those of rodents, differences do still exist because,
unlike humans, these animals are quadrupeds. For example, in dogs,
total joint forces are split 60:40 between forelimbs and hindlimbs and
thus the manifestation of hindlimb reduced load bearing in arthritis
might be less pronounced in dogs (Meeson et al., 2019). Additionally,
the trochlea of the distal femur is deeper in quadrupeds (Little et al.,
2010). However, the major limitation to conducting studies in large
animals is the lack of research tools. For example, it is difficult to obtain
commercially available molecular biology reagents (e.g. validated
polymerase chain reaction (PCR) primers, antibodies etc.) specific for
large animal species to perform and analyze large scale genomic ex-
periments in these species. Immunohistochemical analysis is further
complicated by the fact that large animals, such as sheep and goats, are
often used for the production of secondary antibodies, but such anti-
bodies could not be easily employed for probing tissue in sheep and
goat respectively.

The following sections will discuss the most commonly used large
animals in arthritis research (See Table 1 for a summary of these models
and key findings).

4. Naturally occurring and models of arthritis in large animals

4.1. Naturally occurring

As mentioned above, large animals (e.g. dogs, horses, pigs and
rhesus monkeys) are, similar to humans, prone to naturally occurring
arthritis. Pain caused by arthritic conditions is a major veterinary
burden with significant cost to the global economy, the equine industry
being the flagship example. Lameness occurs in ~ 60% of horses, most
cases of which are attributed to naturally-occurring OA and cost mil-
lions of US dollars to the global economy because the equine business is
a multibillion dollar industry (Conners and Feldman, 2009; McIlwraith
et al., 2012). Naturally occurring arthritis is useful for identifying me-
chanisms associated with various stages of arthritis and for in-
vestigating the disease in a similar environment to which humans are
exposed to. For example, dogs are human companion animals and, as in
humans, show an increased risk of OA with age and obesity with an
annual prevalence rate of 2.5% in UK veterinary primary care practices
(Meeson et al., 2019). Recently, 75% of > 80 week old commercial
pigs (female, Large white × Landrace × Duroc) were also observed to
develop arthritis naturally with associated pain behavior (Macfadyen
et al., 2019), thus opening doors for more in-depth research in this
species, alongside dogs and horses. Although naturally occurring ar-
thritis is ideal for studying clinical disease progression, the major dis-
advantage is cost because the animals have to be monitored for a
prolonged period of time. In addition, there are significant individual
variations in arthritis presentation, as well as the requirement of a large
number of animals to achieve sufficient statistical power.

4.2. Degeneration-focused models of arthritis

Given the propensity of naturally occurring arthritis in both humans
and non-humans to be OA, a number of degeneration-focused (i.e. OA-
like) models have been developed in large animals. Experimentally, OA
can be induced by numerous methods, including: injection of chemical
substances like monosodium iodoacetate (MIA), surgical damage to the
joint, joint destabilization, and by impact trauma on the joint surface.
Among chemically induced OA models, MIA injection into the joint is
most commonly used and acts by inhibiting glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH, an enzyme involved in glycolysis),

which leads to the death of chondrocytes and has proven useful for
understanding OA pain mechanisms (Combe et al., 2004; Samvelyan
et al., 2020). The MIA model of OA has been successfully induced in
pigs and dogs, as evidenced by both lameness and structural changes in
the joints being observed in these animals following MIA administration
(Budsberg et al., 2019; Uilenreef et al., 2019). Joint damage models, for
example osteochondral fragment models, are well described in the
horse, whereas destabilization of the joint is more commonly described
in ruminant and dog models. Joint destabilization can be achieved
surgically in a reproducible manner, making such procedures the
models of choice for understanding the immediate response to altered
joint biomechanics and the subsequent chronic stages of arthritis. Of
the models that have been developed, anterior cruciate ligament
transection (ACLT), meniscectomy and medial meniscal transection are
the most commonly used surgical approaches that have been shown to
induce arthritis (Table 1). However, given the invasive nature of in-
ducing joint destabilization, such models may not be particularly useful
to study the early stages of OA development that is not associated with
traumatic injury (Malfait et al., 2013). Correspondingly, non-invasive
models have been developed, in dogs, where OA is produced by
transarticular impact without the requirement of invasive surgical in-
tervention (Lahm et al., 2005).

4.3. Inflammation-focused

Inflammation is a common clinical symptom for both OA and RA,
and is often accompanied by pain, consequently, several inflammation-
based models of arthritis have also been developed. Such models can
also provide important insights into naturally occurring RA that has
been observed in dogs (Carter et al., 1999) and monkeys (Rothschild
et al., 1997), similar to naturally occurring RA in humans, i.e. IgM
rheumatoid factors are upregulated in sera and synovial fluid. Among
the induced animal models of arthritis, perhaps the most commonly
used is injection of complete Freund’s adjuvant (CFA, a paraffin oil
emulsion of heat killed mycobacteria, usually Mycobacterium tubercu-
losis) that causes both acute and chronic inflammation, characterized by
leukocyte infiltration, synoviocyte hyperplasia, pannus formation and
pain. Intra-articular CFA injection has been successfully used to induce
arthritis in horses, dogs and sheep as evidenced by persistent lameness
for ~ 2 weeks (Deng et al., 2018; Haak et al., 1996; White et al., 1994).
The major criticisms of this model are firstly, that it bypasses the au-
toimmune component of RA and secondly, that it causes milder carti-
lage damage compared to human RA, and therefore the collagen-in-
duced arthritis (CIA) model was developed in which type II collagen is
administered in combination with CFA. To generate CIA, large animals
are first sensitized with collagen type II emulsified in CFA by sub-cu-
taneous injection, following which arthritis is induced by subsequent
injection of collagen type II (Abdalmula et al., 2014); however, collagen
based models engage only a subset of T helper (Th) cells that are in-
volved in human RA (Stoop et al., 2013). In addition to collagen, other
antigens such as bovine serum albumin and ovalbumin have also been
utilized to induce arthritis in large animals and are classified as antigen-
induced arthritis (AIA) (Highton et al., 1997; Naujokat et al., 2019).
Alongside the above mentioned chronic models of arthritic pain, var-
ious acute models exist, whereby joint inflammation and pain are in-
duced by intra-articular injection of an inflammatory substance (e.g.
amphotericin, carrageenan or lipopolysaccharide) that causes similar
behavioral changes to those observed in chronic models, albeit for a
more limited time frame (~48 h), a significant benefit being reduced
time and cost to the investigator (Neuenschwander et al., 2019; Owens
et al., 1996).

Arthritic pain in the above-mentioned models can be studied be-
haviorally by measuring several outcomes in vivo or mechanistically at a
cellular level in vitro. The two main categories of behavioral pain
measures are evoked and spontaneous pain measures. Evoked pain
behaviors measure the reaction of an animal to exogenous stimuli, e.g.
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withdrawal threshold to mechanical stimulation of the hind paw;
however, it is controversial whether these reflexive behaviors reflect
true “pain” (Deuis et al., 2017). In contrast, non-reflexive, spontaneous
pain behaviors might better recapitulate the human experience of
persistent, ongoing pain that decreases quality of life. However, one
important factor to note is that by definition pain has a sensory and
emotional component, and hence use of the term here is anthro-
pomorphic owing to our inability to know the true emotional state of
any non-human animal, and hence we can only comment about “pain-
like” states in animal models.

The most commonly assessed non-reflexive behavioral outcome in

large animal models of arthritis is lameness. Lameness is historically
scored visually, based upon previously established criteria and by the
stride length of an animal when walking on sand (Thomsen et al., 2008;
White et al., 1994). More recently, however, technologically advanced
systems have been developed where in-depth quantitative kinematic
gait analysis can be conducted by implanting an instrumented spatial
linkage device on bones (Barton et al., 2019) or by analysis using a
motion capture camera while an animal walks on a treadmill
(Bockstahler et al., 2009; Sanchez-Bustinduy et al., 2010). Simpler
methods have also been developed to quantify force applied by each
limb using pressure mat systems (Uilenreef et al., 2019) or force plates

Table 1
Large animal models of arthritic pain.

Model Large animals Key features Rodent equivalent? (Y/N)

Naturally occurring arthritis Horse (Coppelman et al., 2019; Mariñas-Pardo
et al., 2018; C. W. McIlwraith et al., 2012; Pujol
et al., 2018)Dog (Alves et al., 2020; Carter et al.,
1999; Malek et al., 2020; Moreau et al., 2014;
Riley et al., 2016)Pig (Kreinest et al., 2016;
Macfadyen et al., 2019)Monkey (Carlson et al.,
1994; Rothschild et al., 1997)

Behavior: Clinical signs of lamenessAppearance: Inflamed
(for inflammatory arthritis)Pathology: anterior cruciate
ligament deficiency; cartilage erosion; synovium thickening
and fibrosis; osteophytes formation; subchondral bone
thickening and neovascularisationMolecular: Proteoglycans
and type II collagen loss in cartilage

N, but occurs in transgenic
animals (Christensen et al.,
2016; Staines et al., 2017)

Degeneration-focused models of arthritis
Monosodium Iodoacetate

(MIA) induced arthritis
Pig (Uilenreef et al., 2019; Unger et al., 2018)
Dog (Budsberg et al., 2019; Goranov, 2012;
Pomonis et al., 2018)

Behavior: Lameness; increased asymmetric weight
bearing;Pathology: cartilage necrosis and discoloration;
synovial membrane thickening; subchondral bone
necrosisMolecular: Increased pro-inflammatory cytokine
expression profile in synovium

Y (Harvey and Dickenson,
2009; Udo et al., 2016)

Osteochondral chip fragment
model

Horse (Broeckx et al., 2019; Frisbie et al., 1997;
Knych et al., 2017)

Behavior: LamenessPathology: Subintimal hyperplasia and
fibrosisMolecular: Inflammatory genes expression change in
synovial fluid; structural genes (collagen and aggrecan)
expression change in cartilage

N

Osteochondral/Chondral
defect induced arthritis

Horse (Niemelä et al., 2019; Salonius et al., 2019;
Virén et al., 2012)Sheep (Crovace et al., 2019;
Filardo et al., 2018; Newell et al., 2018; Olive
et al., 2020; Pingsmann et al., 2005; Yucekul
et al., 2017)Dog (Shortkroff et al., 1996; Zhang
et al., 2018)Pig (Cunniffe et al., 2017; Pérez-Silos
et al., 2019)

Behavior: Reduction in free movement as assessed by
telemetryPathology: Fibrous and bone tissues at defect site;
Subchondral bone pathologiesMolecular: Proteoglycan
depletion in cartilage; increased expression of IL-6, IL-7, and
TNF-α in synovium

Y (Matsuoka et al., 2015)

Meniscus injury induced
arthritis

Sheep/Goat (Burger et al., 2007; Cake et al.,
2013; Delling et al., 2015; Murphy et al., 2003;
Song et al., 2014)Dog (Carlson et al., 2002)Pig
(Otsuki et al., 2019)Monkey (Lutfi, 1975)

Behavior: Lameness; persistent gait abnormalityPathology:
Cartilage erosion; Moderate osteophyteMolecular:
Proteoglycan loss in cartilage; increased cytokine expression
profile in synovium

Y (Glasson et al., 2007)

Anterior ligament transection
induced (ACLT) arthritis

Sheep/Goat (Al Faqeh et al., 2012; Atarod et al.,
2014; Barton et al., 2019; Delling et al., 2015;
Murphy et al., 2003; Song et al., 2014)Dog
(Smith et al., 2002; Widmer et al., 1994)

Behavior: Kinematic changes in gaitPathology: Significant
gross joint damage; Meniscal damage; Osteophyte
formationMolecular: Increased expression of type II collagen
in cartilage; decreased MMP-3 expression in synovium

Y (Xie et al., 2018)

Trans-articular load model
(non-invasive)

Dogs (Lahm et al., 2005; Thompson et al., 1991) Pathology: Subchondral fractures and microfractures, but
intact ligaments and menisci

Y (Poulet et al., 2011)

Inflammation-focused models of arthritis
Complete Freund’s adjuvant

(CFA) induced arthritis
Horse (White et al., 1994)Sheep/goat (Deng
et al., 2018)Dog (Haak et al., 1996)

Behavior: Severe lamenessPathology: inflammatory synovitis,
pannus formationMolecular: notable infiltration of
mononuclear cells in joint

Y (Chillingworth and
Donaldson, 2003)

Collagen induced arthritis Sheep (Abdalmula et al., 2014)Monkey (Korver
et al., 2019)Pig (Lee et al., 2016)

Behavior: Clinical signs of lamenessAppearance: Joint
swellingPathology: Synovium thickening; cartilage
erosionMolecular: increased monocytes and lymphocytes
count in synovial fluid; increased expression of TNF-α, IL-1β
and VCAM-1 in synovium

Y (Brand et al., 2007;
Pietrosimone et al., 2015)

Antigen induced arthritis Pig (Naujokat et al., 2019; Vela et al., 2017)
Sheep (Highton et al., 1997)

Pathology: synovial inflammation; cartilage surface
alteration; chondrocyte clusters formationMolecular:
increased expression of IL-1β, IL-6, TNFα and VEGF in
synovium

Y (Brackertz et al., 1977)

Amphotericin induced
synovitis-arthritis

Horse (Barrachina et al., 2016; Suominen et al.,
1999)Pig (Whalin et al., 2016)

Behavior: Increased lamenessAppearance: Joint effusion and
local joint heatPathology: Cartilage discoloration, fibrillation
and erosions; synovium subintimal changesMolecular:
increased white blood cell count and haptoglobin expression
in synovial fluid

Y (Lee et al., 2008)

Carrageenan induced arthritis Horse (Owens et al., 1996)Dog (Hansen et al.,
1990; Søballe et al., 1991)Pig (Uruchurtu
Marroquin and Ajmal, 1970)

Behavior: Increased lamenessAppearance: Local joint
heatPathology: Increased synovium volumeMolecular:
increased PGE2 expression in serum

Y (Hansra et al., 2000;
Ikeuchi et al., 2009)

Lipopolysaccharide (LPS)
induced arthritis

Horse (Banse and Cribb, 2017; Cokelaere et al.,
2018; Neuenschwander et al., 2019; Ross et al.,
2012)

Behavior: Severe lamenessAppearance: Joint
swellingPathology: SynovitisMolecular: Appearance of Serum
amyloid A in blood and synovial fluid; increased white blood
cell count and total protein in synovial fluid; increased PGE2
expression in serum

Y (Tanaka et al., 2006)
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on treadmills (Belshaw et al., 2016). Additionally, telemetry based
analysis of distance travelled in freely moving animals has also shown
promise for evaluating pain behavior in sheep (Newell et al., 2018).
Besides lameness, inflammation is another widely assessed in vivo out-
come in arthritis models, although it should be noted that although
inflammation and pain often occur concomitantly, inflammation can
occur in the absence of pain and vice versa (Bedson and Croft, 2008;
Salaffi et al., 2018). Similar to lameness, inflammation is primarily
assessed by visual scoring according to previously standardized guide-
lines and/or by using Vernier’s calipers (Abdalmula et al., 2014; Lee
et al., 2016). Joint heat is another measure of inflammation due to the
fact that increased temperature often accompanies joint swelling and
this can be recorded using an infra-red laser thermometer (Barrachina
et al., 2016). In large animals, inflammation can also be assessed by
imaging technologies such as X-ray radiography, computer tomography
and magnetic resonance imaging (Crovace et al., 2019; Lee et al., 2016;
Salonius et al., 2019). For specifically measuring pain in a non-reflexive
manner, grimace scales have been developed for horses (Dalla Costa
et al., 2014), sheep (Häger et al., 2017) and pig (Viscardi et al., 2017),
although these have not yet been widely utilized in arthritis research. In
addition to the above described non-reflexive outcome measures, a
limited set of reflexive pain behavior can also be measured by manually
flexing/palpating the joint until the animal shows sign of discomfort
(Lee et al., 2016; White et al., 1994).

5. In vitromodels to study peripheral mechanisms of arthritic pain

Although considerable progress has been made in the field to de-
velop large animal models of arthritis and assessment of behavioral and
structural outcomes, the understanding of cellular mechanisms of ar-
thritic pain from in vitro analysis in these animals is surprisingly lim-
ited. The rationale for developing in vitro models of arthritic pain is
based on the philosophy of reductionism (Kaiser, 2011), such that a
complex disease like arthritis can be studied at the cellular and mole-
cular level, away from confounding systemic effects. Even so, an in vitro
model must still show some manifestation of the in vivo phenotype of
interest to facilitate understanding of disease mechanisms and dis-
covery of drug targets. Consequently, multiple in vitro models of pain
and assays to test these models have been developed. The major
strategy utilized in these models is to harvest tissues from animals
undergoing a model of arthritis (primarily from rodents) or from human
biopsy, surgery or biobank samples. The technological toolbox and
validated techniques available to pain researchers working with rodents
is currently much more diverse and efficient, than what is available and
validated for researching arthritis pain mechanisms in large animals.
The following paragraphs review the in vitro models and assays com-
monly used to study arthritic pain in rodents, with a focus on those
which we believe can be adapted in large animal research (Summarized
in Fig. 2).

5.1. Drg neurons

Each DRG contains cell bodies of primary sensory neurons that in-
nervate the periphery, apart from the head and neck that are innervated
by sensory neurons arising from the trigeminal ganglia. Somatosensory
information from the periphery is first processed by the primary sensory
neuron, which relays the information to the CNS, and hence DRG
neurons act as the gatekeeper between the PNS and CNS (St. John
Smith, 2018). DRG neurons are pseudo-unipolar, one branch extending
to the peripheral organ and the other branch synapsing with neurons in
the dorsal horn of the spinal cord. In addition to DRG neurons being
equipped with the receptors and ion channels required for detecting
noxious stimuli and thus being critical in the pain pathway, they are
relatively easy to dissect and culture, which makes DRG neurons an
important in vitro model for studying mechanisms of pain. Experimen-
tally, DRG neurons have been studied in vivo, ex vivo and in vitro, with

acutely dissociated neuronal cultures from control and diseased rodents
in vitro being the most commonly used setup in recent years (Melli and
Höke, 2009); mouse DRG neuron cell lines are also available, but these
are typically less physiologically relevant (Doran et al., 2015). The first
AP recordings from rodent DRG neurons were conducted electro-
physiologically in vivo in terminally anesthetized rats using sharp
electrodes (Harper and Lawson, 1985; Ritter and Mendell, 1992). This
technique enabled both morphological and functional characterization
of mechanoreceptors based on their conduction velocity and site of
innervation, as well as to record changes in these sensory neurons when
an inflammatory agent was injected at the distal site. However, this
system is technically challenging since a laminectomy has to be per-
formed on an anaesthetized, live animal before recordings can be
conducted; additionally, not all DRG neurons can be accessed using this
technique. By contrast, DRG can be seeded as explants in vitro to per-
form experiments in a more controlled manner than in vivo (Gong et al.,
2016). In explant cultures, the in vivo morphology of DRG and asso-
ciated non-neuronal Schwann cells and macrophages is retained, fea-
tures that are lost when using dissociated cultures (Melli and Höke,
2009). Since DRG explants grow nerve processes, the interaction be-
tween DRG axons and other cells/inflammatory mediators can be stu-
died using Campenot chambers (Campenot, 1977). By contrast, al-
though acutely dissociated DRG neuron cultures in vitro do not allow for
the study of axons, they do offer the experimenter an unparalleled
opportunity to characterize individual neuronal cell bodies, which have
been shown to have largely similar properties to their terminals
(Harper, 1991; Wangzhou et al., 2020a). Furthermore, acute DRG
neuron cultures have emerged as robust in vitro models of pain since
they reflect the hypothesized neuronal basis of pain in experimental
animal models, such as changes in nociceptive gene expression and
excitability. For example, in a rat AIA-induced ankle inflammation
model, whole-cell patch clamp recordings from in vitro acutely cultured
DRG neurons revealed increased excitability of joint neurons, which
was consistent with the joint inflammation and mechanical hyper-
algesia observed behaviorally in the affected limb (Qu and Caterina,
2016). Precise mechanisms of an inflammatory mediator’s effect on
sensory neurons can also be elucidated in these cultures (von Banchet
et al., 2005). In addition to the reasons described above, acutely cul-
tured DRG neurons enable whole-cell patch clamp recording of in-
dividual retrograde-labelled neurons from a peripheral organ, which is
not possible in a more intact preparation.

Although there is a substantial body of literature on the expression
profile of nociceptive genes and neuronal excitability of DRG neurons in
arthritic pain, limited information is available on how arthritis speci-
fically modulates joint-innervating DRG neuron gene expression and
excitability. The importance of studying joint-specific disease me-
chanisms is highlighted by the high level of heterogeneity of DRG
neurons (Zeisel et al., 2018) and the demonstration of specific sub-
populations innervating the colon (Hockley et al., 2019), i.e. site of
innervation is important. Data from our lab have demonstrated that the
AP threshold of retrograde-labelled knee-innervating DRG neurons is
lower in ipsilateral neurons than in contralateral neurons in a mouse
model of inflammatory arthritis (Chakrabarti et al., 2018) and, fur-
thermore, specifically tuning down the excitability of joint-innervating
neurons using adeno-associated virus chemogenetic tools can provide
pain relief (Chakrabarti et al., 2020c). Given the utility of DRG neurons
in studying pain, efforts have been made to characterize human DRG
neurons derived from pain pathologies, although not yet in the field of
arthritis (Haberberger et al., 2019). This is perhaps because arthritis has
a high incidence rate in the population and hence the likelihood of
obtaining “control” human DRG (i.e., with no known joint disease) is
low. Therefore, identifying a large animal model that reproducibly si-
mulates human arthritis pain features, and thus likely the underpinning
pain mechanisms, would be a very useful and relevant research tool.

Comparative analysis of human and rodent DRG neurons has
highlighted important differences. Firstly, human DRG neurons are
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larger than those of rodents (range of soma size: 12–40 µm in mouse vs.
20–100 µm in humans) (Davidson et al., 2014; Rostock et al., 2018b;
Silos-Santiago et al., 1995), but are similar to DRG neurons of large
animals like those of sheep ((Domenico Russo et al., 2010b), range of
soma size: 20 – 70 µm unpublished observation by the authors – see
representative image in Fig. 1). Secondly, expression and function of
some receptors important in pain pathologies are differentially regu-
lated in humans compared to mice (Ray et al., 2018; Shiers et al., 2020;
Wangzhou et al., 2020a). For example, in human DRG neurons, the
voltage-gated sodium channel (NaV) 1.8 blocker A-803467 is much less
effective at blocking NaV-mediated currents in human DRG neurons
than in rat DRG neurons, suggesting that NaV blockers with efficacy in
rodents might not translate to clinical pain relief in human diseases due
to different expression levels (Zhang, et al., 2017). The feasibility of
obtaining DRG from large animals has been demonstrated in many
species including horses (Russo et al., 2010a), sheep (Deng et al., 2018;
Dudek et al., 2017; Domenico Russo et al., 2010b), pigs (Jonas et al.,
2015; Klusch et al., 2018; Kozłowska et al., 2017; Obreja et al., 2008;
Sandercock et al., 2019) and dogs (Ganchingco et al., 2019; Schwarz
et al., 2019), providing proof-of-concept that DRG neurons from large
animals can be utilized as in vitro models for arthritis pain.

5.2. Non-neuronal tissues

The previous section emphasized the importance of DRG neuron
hyperexcitability in chronic pain conditions like arthritis. However,
hyperexcitability is often mediated by neuronal exposure to an in-
flammatory environment produced by non-neuronal cells and thus in-
vestigating these non-neuronal cells is also important for understanding
arthritis pain mechanisms and identifying new therapeutic targets.
Indeed, with regard to the inflammatory environment of arthritis, it

should be noted that exposure of knee-innervating neurons to synovial
fluid from OA patients in pain causes neuronal sensitization
(Chakrabarti et al., 2020b). The on-going pathology of both RA and OA
register as tissue damage in the body, which leads to triggering of in-
nate immune responses and recruitment of a variety of cells through
damage associated molecular patterns (Miller et al., 2019; Sokolove and
Lepus, 2013). A non-neuronal cell of significant interest in arthritis is
the fibroblast-like synoviocytes (FLS), a cell type thought to be one of
the key effectors of arthritis and can be maintained in culture for pro-
longed period of time (Bartok and Firestein, 2010). Indeed one of the
mechanisms of action of the disease-modifying anti-rheumatic drug
methotrexate is reduction in FLS proliferation (Lories et al., 2003) and a
reduction in FLS number leads to a reduction in the levels of in-
flammatory mediators that they secrete and which drive arthritic pain
(Sokolove and Lepus, 2013). In vitro analysis of FLS has mostly focused
on gene expression and protein assessment of factors released into the
culture medium to show that cytokine stimulated rodent FLS or human
arthritic joint-derived FLS show upregulated pro-inflammatory gene
expression and cytokine release (Hong et al., 2018; Jones et al., 2016;
Kawashima et al., 2013); similar results have been obtained in some
rodent models, such as K/BxN (Hardy et al., 2013) and AIA (von
Banchet et al., 2007). In addition, whole-cell patch clamp performed on
rodent FLS has identified the presence of various voltage-gated K+ and
Ca2+ channels (Clark et al., 2017; Haidar et al., 2020). However, these
results need to be verified in human-derived FLS and the effect of in-
flammatory mediators on these channels investigated.

In addition to FLS, T cells, B cells and macrophages have also been
studied to understand their role in arthritic pain. In brief, investigation
of T cells has identified a range of distinct subtypes based upon their
cytokine secretion profile (Raphael et al., 2015), which play distinct
roles in arthritis by sensitizing joint nociceptors. Additionally, in a co-

Fig. 2. Pictorial representation of existing in vitro models to study and assess mechanisms of arthritic pain.
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culture study it was found that IL-21 producing T cell mediated joint
destruction occurs because these cells stimulate FLS to secrete matrix
metalloproteases, which in turn contribute to joint destruction (Lebre
et al., 2017), thus underlining the importance of cross-talk between
non-neuronal cell types. B cells on the other hand have been shown to
inhibit osteoblast formation in RA through activity of the cytokines
CCL3 and β), tumor necrosis factor α (TNF- α) (Sun et al., 2018).
Macrophages are another heterogeneous cell class that plays prominent
inflammatory roles in both RA and OA (reviewed in (Udalova et al.,
2016; Wu et al., 2020)), although their lineage characteristics might be
lost in culture, thus limiting extensive studies in vitro (Chamberlain
et al., 2015).

A handful of studies have also attempted to study non-neuronal cells
in combination with DRG neurons to understand the inflammation-pain
axis (Massier et al., 2015; von Banchet et al., 2007). For example, in
neuron-macrophage co-cultures, lipopolysaccharide (LPS)/IFN- γ sti-
mulated macrophages were observed to increase CGRP release from
DRG neurons in both direct (cells cultured together) and indirect
(neurons only come into contact with macrophage-derived soluble
mediators) co-cultures, thus demonstrating the importance of in-
flammatory mediators in neuronal activation. FLS co-cultured with
DRG neurons have also been shown to increase excitability and mod-
ulate the mechanosensory micro-environment of neurons (Chakrabarti
et al., 2020a; Ita and Winkelstein, 2019). Looking to the future, the field
of co-culture study has recently received a boost with the development
of microfluidics techniques (Vysokov et al., 2019), which can also be
useful to study arthritic pain in vitro.

With regard to examining the roles of non-neuronal cells in large
animal models of arthritis, successful culture of FLS from synovium
punch or synovial fluid has been conducted in horses (Ghasemi et al.,
2017; Warnock et al., 2014), sheep (Smith et al., 2008) and dogs
(Pelletier et al., 1997). Macrophages and lymphocytes have also been
cultured from large animals such as, sheep, pigs and dogs (Beya et al.,
1986; Herrmann et al., 2018; Jungi et al., 1992; Saalmüller et al.,
1994). These results thus demonstrate that non-neuronal/neuronal co-
culture studies can also be set up with cells derived from large animals.
Consequently, such techniques could be employed more widely in the
pain research field to better understand inflammatory pain based upon
the points made earlier regarding the benefits of large animal use in
general, as well as specific differences in immune system between hu-
mans and mice. For example, laboratory mice show clear dichotomy in
polarization of Th1/Th2 cells when stimulated with specific cytokines
(such as, IL-4 stimulates Th1 and IFN- γ stimulates Th2), while cattle
and humans appear not to strictly adhere to this paradigm (Estes and
Brown, 2002; Guzman and Montoya, 2018; Mestas and Hughes, 2004).
Since the underlying motivation of in vitro analysis is to better under-
stand the cellular and molecular pathways generating pain in arthritis,
multiple assays have been developed to enable interrogation of cellular
function as described in section 5.3 below.

5.3. In vitro assays to understand arthritic pain

The in vitro assays for investigating cellular basis of arthritic pain
can be largely divided into three categories that seeks to assess: 1) gene
expression changes, 2) protein expression changes, and 3) functional
changes. It is important to separate these categories to understand
disease mechanisms because their interactions are not always pre-
dictable.

5.3.1. Gene expression
Gene expression studies enable assessment of how different genes

might contribute to a particular pathology and are typically conducted
by comparing differential expression patterns in healthy vs. diseased
tissues. One of the first modern gene expression assays to be developed
that is still widely used today, was the quantitative PCR (qPCR). In this
technique, primers are used to amplify a specific region of DNA. One

method for quantifying the amount of starting material is to measure
the fluorescence emitted by a fluorophore that is initially attached to
the primers and kept non-fluorescent by the presence of a quencher
which is cleaved off as the primer becomes incorporated into the DNA
product freeing the fluorophore as it becomes separated from the
quencher leading to an increase in fluorescence (San Segundo-Val and
Sanz-Lozano, 2016). qPCR has helped identify genes that are upregu-
lated in the synovium in the MIA model of joint pain in mice, hence
providing useful insights into disease mechanisms in OA (Dawes et al.,
2013), although follow up work is always required to determine the
impact of changes in gene transcription with regard to disease pa-
thology and pain sensation. Although PCR based techniques are easy
and fast to conduct, their primary drawback is that they are of low-
throughput and do not allow for unbiased probing of differential gene
expression. By contrast, microarray-based transcriptomics enable low
cost, high throughput studies for a limited set of genes using the prin-
ciple of hybridization of cDNA with oligonucleotides (Starobova et al.,
2018). Application of microarray analysis to mRNA extracted from
joints of naturally-occurring RA mouse models has identified patho-
genic gene clusters, such as chemokine genes and histocompatibility
genes (Fujikado et al., 2006). This result was further validated using
Northern blot, a technique where denatured RNA is loaded in an
agarose gel and separated by electrophoresis to assess gene expression.

The field of gene expression studies has been revolutionized in re-
cent years with the advent of RNA-sequencing, whereby whole tran-
scriptome analysis, either from tissues or single cells, enables unbiased
analysis of differential gene expression. The focus of transcriptomics in
pain research has largely been on DRG neurons and large databases
have been generated to compare between different species and between
healthy and painful conditions (Megat et al., 2019; North et al., 2019;
Ray et al., 2018). With the recent advances in bioinformatic tools it was
also possible to combine these datasets to construct interactomes of
neuronal and non-neuronal communications (Wangzhou et al., 2020b).
Although most of these studies were conducted with rodent and human
samples, recently a whole DRG RNA-sequencing study in sheep and
goat models of inflammatory pain (CFA in the foot) and a microarray
analysis of tail amputated pigs have identified clusters of genes asso-
ciated with inflammatory and neuropathic pain (Deng et al., 2018;
Sandercock et al., 2019). RNA-sequencing data from canine DRG neu-
rons have also been obtained in a cross-species (rat, dog and human)
study demonstrating the efficacy of ablating TRPV1 nerves in providing
pain relief (Sapio et al., 2018).

Additionally, single cell transcriptomics has been instrumental in
arthritis and pain research by identifying clusters of sensory neurons
(Hockley et al., 2019; Hu et al., 2016; Usoskin et al., 2015; Zeisel et al.,
2018), synovial fibroblasts (Croft et al., 2019; Zhang et al., 2019) and
chondrocytes (Ji et al., 2019), but at the time of writing there has not
been a single-cell RNA-sequencing analysis that specifically examines
how joint-innervating neuron gene expression changes in arthritis in
any species, but such a study would clearly provide important insight
into pain mechanisms and potential drug targets in arthritis.

5.3.2. Protein expression
Although gene expression analysis provides insights into disease

mechanisms, gene expression does not always translate to protein ex-
pression. Therefore, several assays that measure protein expression
have been developed. A widely used antibody based, semi-quantitative
technique for measuring protein expression is immunohistochemistry
which is regularly used in the pain field and enables the investigator to
observe protein expression on a cell-by-cell basis (Cregger et al., 2006).
Two dimensional electrophoresis is another semi-quantitative method
that involves electrophoresis, staining, fixing and densitometry, but it
does not provide the cellular level of detail that immunohistochemistry
can provide (Greenbaum et al., 2003). More quantitative methods have
also been developed, the simplest of which is the enzyme linked im-
munosorbent assay (ELISA) where antibody-conjugated enzyme activity
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is monitored to measure protein expression, usually of a mediator re-
leased into the extracellular environment, e.g. a cytokine or neuro-
peptide (Engvall, 1980). Mass spectrometry (MS) is a more sophisti-
cated way of quantifying proteins and has become popular in pain
research in recent years (reviewed in (Wood et al., 2018)). In this
technique protein extracts from tissues are cleaved into short peptides
and separated by chromatography before being analyzed in a mass
spectrometer. Using MS on DRG protein extracts from pre-clinical
murine models has provided useful insights in chronic pain (Rouwette
et al., 2016); and proteomic analysis of synovial fluid taken from ar-
thritis patients has verified known proteins (e.g. matrix metallopro-
teases) as well identified as novel proteins (e.g. thymidine phosphor-
ylase, reticulon 4 receptor-like 2) involved in the disease mechanism
(Balakrishnan et al., 2014). Additionally, quantitative methods of
identifying components of ion channel protein complexes, such as Navs,
have also been developed in recent years (Kanellopoulos et al., 2018;
Rees et al., 2017).

The field of large animal research has used, and continues to rely
mostly on, histological analysis of joints using a modified Mankin or
O’Driscoll scoring system (Abdalmula et al., 2014; Haak et al., 1996;
Naujokat et al., 2019; Newell et al., 2018), often accompanied by
protein level immunoprecipitation of inflammatory mediators such as
prostaglandins E2 (PGE2), IL-6 and IL-1 β, TNF- α in the serum, syno-
vial fluid and/or synovium tissue (Barrachina et al., 2016;
Neuenschwander et al., 2019; Owens et al., 1996). A handful of studies
have also revealed expression of pain-related proteins (e.g. CGRP and
substance P) in the DRG neurons of sheep, pigs, horses and dogs
(Hoover et al., 2008; Obreja et al., 2008; Domenico Russo et al., 2010b;
Russo et al., 2010a; Tamura et al., 1996). However, how protein ex-
pression changes in the context of pain and specifically arthritic pain,
remains to be elucidated. The promise of this strategy has been de-
monstrated in a study where immunohistochemical analysis of healthy
and laminitic horses showed increased expression of neuronal injury
marker, ATF3, and neuropeptide Y in DRG neurons indicating a likely
neuropathic contribution to pain in laminitis (Jones et al., 2007).

Results from these studies suggest that generating omics datasets
from large animals and integrating them with the high-resolution and
varied datasets already available from mouse and humans could boost
the field of pain research. However, the current data rich era of cross-
species proteomics and transcriptomics highlights the need for bioin-
formatics in pain research, as well as development of online platforms
for sharing data collected by different labs to enable researchers to
compare datasets (e.g., http://rna-seq-browser.herokuapp.com/,
https://bbs.utdallas.edu/painneurosciencelab/sensoryomics/, accessed
on 10/4/2020) and identify key pain mechanisms (Jamieson et al.,
2014; Platzer et al., 2019).

5.3.3. Functional assays: Electrophysiology and voltage imaging
Although transcriptomics and proteomics can help identify pro-

mising targets for pain research, functional tests are essential for as-
sessing their actual contribution of a target to the disease. This is largely
because, in addition to changes in gene, and thus potentially also pro-
tein, expression levels, post-translational modification of numerous ion
channels occurs, including many involved in nociceptor function, such
as TRPV1 and NaVs, which can also have a significant impact on no-
ciceptor excitability, but would not be picked up by simple expression
analysis (Hall et al., 2018; Laedermann et al., 2015). Additionally,
functional assays can form an efficient bridge for understanding per-
ipheral pain mechanisms between in vitro and in vivo technologies,
because of the development of ex vivo and semi-intact setups. For ex-
ample, electrophysiological recordings from ex vivo skin-innervating
nerve endings (Walcher et al., 2018) can help reconcile findings from in
vivo behavioral assays (such as von Frey) with detailed in vitro cellular
insights from DRG neurons. This desire to probe the nociceptive cir-
cuitry from the peripheral nerve endings to the spinal cord has also led
to the development of a semi-intact preparation in which the skin

through DRG to spinal cord is intact and recordings can be performed at
multiple sites throughout this circuit (Hachisuka et al., 2016).

The two most commonly used cellular functional assays in pain
research are electrophysiology to measure changes in current or voltage
across the cell membrane in response to different stimuli, or, alter-
natively, fluorescent dyes that enable measurement of the intracellular
[Ca2+] as a readout of cellular excitation can be used.

Measurement of voltage changes across nerve fibers began with the
seminal work of Hodgkin and Huxley where they recorded intracellular
APs in squid giant axons using electrodes (Hodgkin and Huxley, 1939).
Their work also led the way for the groundbreaking development of
whole-cell patch clamp techniques by Neher and Sakmann, where a cell
could be held at any command voltage, to record current and voltage
either across a whole cell or single ion channels. Multiple conforma-
tions of the patch clamp technique enable recording the activity of ion
channels when stimuli are applied to the outside (whole cell recording
and outside out patch) or inside (inside out patch) of the cell membrane
(Sakmann and Neher, 1984), achieved by appropriate maneuvering of
the electrode. Electrophysiological techniques have provided many
fundamental insights about inflammatory pain, such that the excit-
ability of DRG neurons is observed to increase when comparing neurons
isolated from healthy animals to those isolated following an in-
flammatory insult in cats (Xu et al., 2000), rats (von Banchet et al.,
2000), guinea pig (Djouhri and Lawson, 1999) and mice (Belkouch
et al., 2014). Correspondingly, in vivo recordings from rat joint afferents
have shown increased neuronal excitability after PGE2-induced in-
flammation (Grubb et al., 1991). Furthermore, single channel record-
ings have demonstrated the sensitization of mechanosensitive ion
channels in DRG neurons isolated from mice with OA (He et al., 2017).

Although patch clamp is a very precise way of understanding ion
channel function, it is relatively low throughput, labor intensive and
requires substantial expertise of the experimenter. To increase the
throughput of this assay multi-electrode arrays have been used that can
simultaneously record from multiple neurons (Mis et al., 2019). In
order to bypass the manual expertise, automated micropipette based
platforms have been developed that capture and seal cells in suspension
and can produce results at a higher throughput (reviewed in
(Annecchino and Schultz, 2018)), but such devices are not generally
suited to measuring the function of ion channels in DRG neurons that
grow neurites in culture and whose function is modulated by the sur-
face they are grown on. Additionally, there are currently no automated
patch clamp platforms for assessing mechanical stimuli on DRG neu-
rons. However, several ion channels important in pain pathologies have
been studied in cell lines using this technique including NaVs, hy-
perpolarization activated cyclic nucleotide gated (HCN) and voltage-
gated Ca2+ channels (CaVs) (Payne et al., 2015; Swensen et al., 2012;
Vasilyev et al., 2009). Overall, the relatively high throughput of these
platforms makes them very useful for compound screening, but further
development and cost optimization is necessary before automated patch
clamp platforms replace the manual patch clamper in the lab.

The advantage of the patch clamp technique is that it provides di-
rect access to neurons, however, it is also a disadvantage because direct
contact with the neuron, even in perforated patch clamp technique
where the aim is to minimize disruption of neuronal function, can
change membrane properties and disrupt cytoplasmic content.
Therefore, an ideal experiment would be to image changes in neuronal
voltage in a high throughput manner (reviewed in (Bando et al.,
2019a)). This can be achieved by loading voltage sensitive dyes into
neurons and measuring the membrane potential especially in large
neurons in vitro. In vivo, single cell resolution is difficult to achieve with
voltage sensitive dyes and hence genetically encoded voltage indicators
(GEVIs) have been developed. Technically this can be achieved by three
different ways: coupling the voltage sensor to a fluorescent protein
(e.g., ArcLight (Bando et al., 2019b)), using rhodopsin to act as both a
voltage sensor and reporter (e.g., VARNAM (Kannan et al., 2018)) and
lastly by using chemicals that activate GEVIs (e.g., HAPI-Nile
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(Sundukova et al., 2019)). However, imaging voltage in neurons is not
without challenges, the most important ones being thinness of the
membrane which demands high sensitivity chromophores, difficulty in
specifically targeting the plasma membrane and photo-damage of the
plasma membrane (Bando et al., 2019a).

Utilization of patch clamp electrophysiology in large animal re-
search in the field of pain is largely unchartered territory. A PubMed
search (conducted on 19/5/2020) with the terms “patch clamp mouse
neuron pain” yielded 316 results, however, when the term mouse was
replaced by sheep, dog or horse no results were found and only one
article was found for pig (Note: a “NOT guinea” clause was added for
pig and one result obtained for dog actually conducted the patch clamp
experiments on rat DRG neurons). The study on porcine DRG neurons
demonstrated the presence of a subclass of DRG neurons that are cap-
saicin responsive, but lacks HCN mediated currents, therefore sug-
gesting analgesics targeting HCN might have restricted success in pigs
(Obreja et al., 2008). Another study aiming to understand functional
responses of porcine DRG neurons to the inflammatory agent NGF
found release of CGRP from the neurons as well as neurite sprouting
(Klusch et al., 2018). Therefore, although there is a considerable gap in
knowledge about how the sensitization of neurons changes in arthritic
pain in large animals, it is clear that DRG neurons can be cultured from
large animals and that patch clamp analysis could be conducted.
Therefore, the arthritic pain community would benefit if current in-
vestigators using large animals in the field establish collaborations with
those with patch clamp electrophysiology skill set.

5.3.4. Functional assays: Ca2+-imaging
Although electrophysiology is considered to be the gold standard for

recording neuronal activity, there are several caveats of the technique
as discussed previously. An alternative technique is Ca2+-imaging,
which is a less technically demanding technique and provides an in-
direct measurement of cellular response and, in neurons, AP firing by
algogens. In addition, Ca2+ signals in the nucleus can regulate gene
transcription and an increase in intracellular Ca2+ can release neuro-
transmitter that has both short- and long-term effects (Berridge et al.,
2003; Lyons and West, 2011). Therefore, quantifying the intracellular
[Ca2+] in response to different stimuli offers distinct advantages to
understanding pain mechanisms. The two major breakthroughs that
enabled imaging and quantification of Ca2+ signals in cells were the
development of fluorescent Ca2+ indicators, such as fura-2 and fluo-3,
and the development of genetically encoded Ca2+ indicators (GECIs),
both from the laboratory of Roger Tsien (Miyazawa et al., 1998; Tsien,
1980). The principle underlying fluorescent Ca2+ indicators is that
these dyes undergo large increases in fluorescence (or spectral shifts)
depending upon the amount Ca2+ bound and can be either non-ratio-
metric (excited by one wavelength of light) or ratiometric (can be ex-
cited by more than one wavelength of light, e.g. fura-2, or have a dual
emissions peak, e.g. indo-1). For example, the commonly used non-ra-
tiometric fluophore for imaging neurons, fluo-4, can be efficiently
loaded into cells in salt form or acetoxymethyl ester form, has an ab-
sorbance wavelength of 488 nm and has low Ca2+ binding affinity thus
making it suitable for imaging a broad range of cells using microscopes
equipped with standard fluorescein filter sets (Gee et al., 2000). In
comparison, a ratiometric Ca2+ indicator like fura-2 allows for more
precise quantitative measurements and comparison of Ca2+ signals
because it is excited at 350 and/or 380 nm thus allowing for ratioing of
the signals. Specifically, the dye is excited at 380 nm in the Ca2+ free
form (resting fluorescent signal) and at 350 nm in the Ca2+ bound
form, both of which emits at 500 nm. Dividing these two emitted
fluorescence values gives an accurate measure of Ca2+ concentration
and cancels out the effects of differential dye loading and photo-
bleaching between experiments (Paredes et al., 2008).

A large number of cells can be imaged at the same time using this
technique and it has provided useful insights into pain signaling me-
chanisms. For example, DRG neurons have been profiled based on their

intracellular Ca2+ response to a multitude of algogens in order to
functionally distinguish between the different neuronal subtypes
(Teichert et al., 2012). Furthermore, Ca2+ imaging of FLS has revealed
the link between an increase in intracellular Ca2+ via acid-sensing ion
channel 3 (ASIC3) and cell death, a pathway that might be important in
understanding arthritic inflammation and pain (Gong et al., 2014).

To enable in vivo Ca2+ imaging, GECIs have also been developed,
with the GCaMP family being the current GECI of choice for neu-
roscientists (Anderson et al., 2018b). This technique has been used to
visualize some fundamental somatosensory pathways, such as identifi-
cation of unmyelinated sensory fibers expressing the G protein-coupled
receptor, MRGPRB4, that detects massage-like stroking of hairy skin
(Vrontou et al., 2013). In vivo Ca2+ imaging has also helped visualize
the polymodality of nociceptors and increase in DRG neuron excit-
ability following induction of an inflammatory environment (Chisholm
et al., 2018; Emery et al., 2016). However, the proportion of observed
polymodal nociceptors differed between the studies of Emery et al and
Chisholm et al, possibly due to the different methods utilized to sti-
mulate nociceptors (i.e. order of mechanical and thermal stimuli ap-
plication), as well as differences in the statistical tools utilized to ana-
lyze the data. Application of this technology on large animals could
further validate the extent of polymodality of nociceptors innervating
the skin and, more importantly for the field of arthritis, joints. Indeed,
in vivo imaging of knee-innervating DRG neurons in GCaMP3 mice has
revealed increased response to noxious mechanical stimuli following
DMM compared to the same neurons in healthy mice, thus directly
relating pain behavior to neuronal function (Miller et al., 2017).
However, the apparatus required for conducting in vivo imaging (e.g.
anesthesia combined with microscopy) might preclude such analysis in
larger animals becoming a standard experimental procedure.

In addition to the practicalities involved, the major disadvantage of
Ca2+ imaging is that it is an indirect measure of AP firing and a sub-
threshold increase in intracellular Ca2+ can be mediated via ion
channels such as, TRP channels, CaVs, NMDA receptors, α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and/or
through Ca2+ release from internal stores through inositol 1,4,5-tri-
sphosphate receptors (IP3Rs) and ryanodine receptors (reviewed in
(Grienberger and Konnerth, 2012; Taylor et al., 1999)). Indeed, a recent
analysis demonstrates that GECIs are not suitable for resolving high
frequency (> 3 Hz) AP firing in cultured trigeminal neurons (Hartung
and Gold, 2020). Therefore, efforts have been made to simultaneously
perform Ca2+ imaging and patch clamp on DRG neurons (Hayar et al.,
2008).

Similar to patch clamp electrophysiology, very few studies have
investigated large animal neurons using Ca2+ imaging in the context of
nociception. In vitro Ca2+ imaging of canine DRG neurons demon-
strated their ability to respond to algogens such as, capsaicin and
pruritogens such as, histamine (Ganchingco et al., 2019). Similarly a
recent in vitro study imaged sheep DRG neurons to show hypoxia and
acidosis induced increase in Ca2+ response (Ma et al., 2020). Ca2+

imaging of neurites from porcine DRG neurons has also revealed that
“silent” nociceptors (characterized by tetrodotoxin-resistance) are
likely to have larger amplitude Ca2+ transients upon electrical stimu-
lation (Jonas et al., 2015). These studies provide evidence that func-
tional assays developed in rodents can be adopted in large animals and
that they warrant future investigation using these techniques in the
field of arthritic pain.

6. A recommendation to leverage large animals to understand
cellular pain mechanisms

Given that musculoskeletal disorders are the principle contributing
factor to the years lived with disability index of the global disease
burden (Vos et al., 2012), there is an urgent need to understand me-
chanisms of arthritic pain and this review has highlighted how large
animals can help in this endeavor by providing a more anatomically
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appropriate alternative to rodents. It is clear from the discussion above
that proof-of-concept studies demonstrating the in vitro models and
techniques described can be adapted to large animal research. We
propose that utilizing in vitro assays established in the rodent pain field
in large animals, to complement the in vivo studies already being con-
ducted, can provide answers to major outstanding questions in the ar-
thritic pain field with regard to if and how neuronal properties change
during naturally occurring arthritis and how peripheral non-neuronal
cells facilitate nociception. Insights gained from studying large animals
are likely to be more relevant to clinical translation than those arising
from studies with rodents, with the added benefit of being easier to
conduct than research with human tissues because animal tissues can
be obtained from veterinary research facilities, farms, abattoirs and
veterinary biobanks (e.g. the Cornell Veterinary BioBank or Vetmeduni
Vienna VetBioBank). However, if more pain studies on large animals
are to be conducted, it will require collaboration between veterinary
practitioners, clinicians and basic scientists along with co-operation of
funding agencies. An analysis of published articles on veterinary sci-
ences showed that research that does not involve zoonotic diseases with
animal vectors (e.g. Lyme disease and influenza), is less likely to receive
funding, and is more likely to be published in lower impact factor
journals, compared to human biomedical research (Ducrot et al., 2011).
However, given the potential of large animal research leading to the
discovery of breakthrough pain relief in both humans and animals, a
concerted effort needs to be made at organizational and personal level
in keeping with the philosophy of “one medicine” which recommends
cooperation between human and animal health (Zinsstag et al., 2005).
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