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Polymer physics indicates chromatin folding
variability across single-cells results from state
degeneracy in phase separation
Mattia Conte 1, Luca Fiorillo 1, Simona Bianco 1, Andrea M. Chiariello 1, Andrea Esposito1 &

Mario Nicodemi 1,2,3✉

The spatial organization of chromosomes has key functional roles, yet how chromosomes

fold remains poorly understood at the single-molecule level. Here, we employ models of

polymer physics to investigate DNA loci in human HCT116 and IMR90 wild-type and cohesin

depleted cells. Model predictions on single-molecule structures are validated against single-

cell imaging data, providing evidence that chromosomal architecture is controlled by a

thermodynamics mechanism of polymer phase separation whereby chromatin self-assembles

in segregated globules by combinatorial interactions of chromatin factors that include CTCF

and cohesin. The thermodynamics degeneracy of single-molecule conformations results in

broad structural and temporal variability of TAD-like contact patterns. Globules establish

stable environments where specific contacts are highly favored over stochastic encounters.

Cohesin depletion reverses phase separation into randomly folded states, erasing average

interaction patterns. Overall, globule phase separation appears to be a robust yet reversible

mechanism of chromatin organization where stochasticity and specificity coexist.
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In the cell nucleus, chromosomes are folded into a complex 3-
dimensional (3D) architecture1–5 including a hierarchy of
interactions, from loops6 and TADs7,8 to, above the megabase

scale, metaTADs9 and A/B compartments10 as revealed by
population-averaged contact maps6,10–12. Such an organization
serves important functional purposes as genes and enhancers
have to form specific physical contacts to regulate transcription.
TADs, for instance, are thought to act as insulating structures,
spatially confining the activity of enhancers to their proper
targets2,3,5.

Different molecular factors and mechanisms have been
involved in the 3D organization of chromatin. CTCF binding sites
and cohesin have been proposed to shape loops and TADs6, for
example via the cohesin/CTCF based loop-extrusion model13–15.
However, while acute depletion of CTCF or cohesin leads to loop
loss in bulk Hi-C data, signals persist at the compartment level
and finer contact patterns remain within former loops or
TADs16–18. Compartments A and B are known to correlate to
different transcriptional states10, and homotypic interactions
between active and poised gene promoters, linked respectively to
Pol-II-S2p and PRC2, have been observed at the Mb scale and
traced back to phase separation mechanisms19–21. Indeed, phase
separation has emerged as a paradigm of cell organization22 and
of transcriptional control23, as combinations of Pol-II with
transcription factors and coactivators, such as Mediator, appear
to form condensates24–26, or more fleeting interactions27, linked
to gene regulation23,28–30. Yet, it remains unclear how those
mechanisms act and combine to shape chromatin architecture.

Single-cell Hi-C experiments, for example, have highlighted the
stochastic nature of TADs and the strong variability of their
contacts31–34. Recent super-resolution imaging approaches have
shown that TAD-like structures are present in single cells with
chromatin folded in globular 3D conformations, but they broadly
vary from cell to cell35–39. In particular, TAD boundaries were
discovered to occur with nonzero probability at all genomic
positions and to have enrichments associated to only a subset of
the CTCF sites in the considered regions37. In addition, cohesin
depletion was found to leave contact patterns at the TAD-scale
intact in single cells, albeit domain boundaries become equally
likely to locate at any genomic position, hence abolishing TADs at
the population-average level. That hinted that chromatin contacts
could arise from mechanisms distinct from the loop-extrusion37.

Those diverse results raise questions on the nature and origin
of contact patterns in single DNA molecules. Are there other
folding mechanisms beyond loop-extrusion? How does phase
separation act? If interactions are stochastic, how is specificity
controlled? What is the origin of structural variability across cells
and in time? To attack those questions, here we use a chromatin
model from polymer physics to derive predictions about DNA
single-molecule 3D structures that we compare with super-
resolution imaging data in single cells37. In particular, we inves-
tigate two 2Mb wide DNA regions in human HCT116 and
IMR90 cells, where bulk Hi-C6,16 and single-cell imaging37 data
are available. To reconstruct chromatin 3D conformations dif-
ferent computational methods40–43 and polymer models have
been developed13–15,19,20,44–52. In this work, we focus on the
textbook scenario where contacts between distal DNA binding
sites are established by diffusing cognate binding factors, as
described by the Strings and Binders (SBS) polymer physics
model of chromatin19,20,47 (Fig. 1a). By machine learning from
only Hi-C data6,16, we infer the genomic location of the putative
binding sites of the SBS polymer model of the loci of interest,
which are shown to correlate with specific combinations of
known chromatin organizing factors. Next, by Molecular
Dynamics (MD) simulations we derive a thermodynamics
ensemble of single-molecule 3D structures of those loci.

As dictated by polymer physics53, we find that the model 3D
conformations fall in two main folding classes corresponding to
its thermodynamics phases, the coil, i.e., randomly folded, and the
globule state, where distinct globules self-assemble along the
chain by the interactions of cognate binding sites. According to
the concentration or affinity of binders, the system switches from
one to the other state via a phase transition mechanism of
polymer phase separation. We show that those 3D structures
recapitulate bulk Hi-C data and we validate model predictions on
single-molecule 3D conformations against independent imaging
single-cell data in both wild-type (WT) and cohesin depleted
cells37. The consistent agreement provides evidence that, in the
studied loci, chromatin folding is explained at the single-molecule
level by such a thermodynamics mechanism, different from loop-
extrusion. In particular, in the model of WT cells we find that the
loci fold mostly in globule conformations, whose inherent ther-
modynamics degeneracy manifests in the broad variability of
TAD-like domains across single-molecules. We also explore the
time dynamics of chromatin structure at the single molecule level.
Globule formation produces dynamic, yet stable local compact
environments highly favoring close contacts between sites enri-
ched for cognate binding sites, within and, less frequently, across
globules. That exemplifies how stochasticity of DNA interactions
can coexist with contact specificity. Acute cohesin depletion
reverses phase separation into the coil state in the majority of
cells, producing much more variable and transient contact
patterns.

Results
Model phase transition to the globule phase separated state.
We focused, first, on modeling a 2.5 Mb DNA region
(chr21:34.6–37.1 Mb) in human HCT116 cells. The SBS is a
simplified, coarse-grained model where a chromatin filament is
represented as a self-avoiding chain of beads and along the chain
are located specific binding sites for cognate, diffusing molecular
binders19,20,47 (Fig. 1a), as well as unspecific binding sites. To
check that our general conclusions are robust, as expected from
Statistical Mechanics53, in our study we explored a spectrum of
specific and unspecific affinities between binders and binding sites
in the weak biochemical energy range, respectively from 3.1 to
8.0KBT (for simplicity equal across the different types) and from 0
to 2.7KBT (“Methods”).

To infer the genomic location and the types of the putative
binding sites of the SBS polymer model of the locus, we developed
a machine learning procedure (“Methods” and Supplementary
Fig. 1) based on the PRISMR approach50, which employs as input
only bulk Hi-C data16, with no use of epigenetic tracks to avoid
biases toward a subset of factors. The procedure returns four
distinct types of specific binding sites (visually represented by
different colors, Fig. 1b), each defining a binding domain. After
setting the affinities, the system is investigated at different binder
concentrations (equal for all types), from 0 to 0.5 μmol/l, by MD
simulations to derive, for each different concentration, a
thermodynamic ensemble of single-molecule 3D conformations
of the model of the locus.

Upon increasing the binder concentration, we find that at a
characteristic threshold (Fig. 1c) the polymer undergoes a
thermodynamics phase transition from a coil to a globule phase
separated state53, corresponding to a sharp conformational
rearrangement. In our HCT116 main case study, the threshold
concentration is about 50 nmol/l (Fig. 1c) and, more generally, for
the explored weak biochemical affinities it falls in the fractions of
μmol/l range47, values compatible with transcription factor
concentrations. As known in block-copolymers20,54,55, in the coil
state entropic forces keep the polymer in randomly folded
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conformations, while in the phase separated state attractive forces
thermodynamically prevail and the different binding domains
self-assemble by action of (and along with) their cognate binders
in more compact and partially separated globules, as signaled
respectively by a sharp drop in the gyration radius, Rg, and
separation score, the order parameters of the system (as well as in
its binding energy, Supplementary Fig. 2). Differently from usual
linear block-copolymers, though, the separation of the globules is
only partial because of the overlapping genomic distribution of
the underlying binding sites that increases the degeneracy of the
system microstates, which can fold in a multiplicity of 3D
conformations (Fig. 1d). The self assembly of globules is guided
by the nontrivial genomic arrangement of the four binding
domains of the model that are enriched each in a distinct,
successive genomic region and hence form the polymer core
globules, which result into the main TAD-like structures of the
median distance map of the model (Fig. 2a).

To gain insights into the molecular nature of the inferred
model binding sites, which are responsible of folding, we
correlated their genomic positions with available epigenetic data
in the same cell type16 (Supplementary Fig. 3). Interestingly, we
find that each single binding type (color) has statistically
significant Pearson correlations with a specific combination of
known architecture organizing factors. The first putative
binding domain (green, in Fig. 1b) correlates mainly with the
CTCF/Smc1 (Cohesin) system, the second one (red) with active
marks (e.g., H3K27ac and transcription factors) and less with
Smc1, the third (brown) with repressive marks (e.g., H3K27me3),
whereas the fourth (blue) with H4K16ac and specific transcrip-
tion factors.

Summarizing, our polymer model undergoes a phase transition
from a coil to a phase separated globular state as the number of
binders (or affinity strength) grows above a threshold point. For a
given binder concentration, the system can fold in a variety of 3D
conformations, not just in a unique, naïve structure. As dictated

by polymer physics53, however, the system 3D conformations fall
in two main folding classes corresponding to its thermodynamics
phases, the coil and the globule separated states. Folding is
controlled by the system binding sites and cognate binders, each
type correlated with a different combination of chromatin
architecture factors.

Model validation against independent imaging distance data.
To check that the model derived 3D structures recapitulate the
Hi-C data used to infer its putative binding sites, we computed
the average contact matrix in the two thermodynamic phases.
While in the coil state the contact matrix is structureless, in the
globular state it exhibits a pattern of TADs and sub-TADs similar
those in Hi-C data (Supplementary Fig. 4a), as highlighted by the
high Pearson, r= 0.88, and genomic distance corrected Pearson
correlation coefficient, r′= 0.68, between model and Hi-C
contact data.

In a first validation of our model and of its Hi-C inferred
putative binding sites, we also compared its predictions about the
locus median distance matrix in the globular state against
independent super-resolution imaging data37 (Fig. 2a) and found
that they have a Pearson, r= 0.95, and distance-corrected
correlation, r′= 0.84, even higher than correlations with Hi-C
data. Hence, the basic physics ingredients of our polymer model
and its inferred binding sites are sufficient to recapitulate bulk Hi-
C and independent imaging data.

Next, to demonstrate that our model provides a bona fide
representation of chromatin conformations in single cells, we
performed an all-against-all comparison between its predicted
single-molecule 3D structures and single-cell 3D structures from
imaging data37 (Fig. 2b). By use of a method33 that finds the
optimal rotation between two centered 3D structures to minimize
the mean squared deviation (RMSD) of their coordinates
(Supplementary Fig. 5a), each experimental 3D structure was
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Fig. 1 The model phase transition from a coil to a globule phase separated state. a Cartoon of the Strings and Binders (SBS) polymer model of chromatin
showing the specific binding sites along the chain (top) and a 3D conformation of the system folded by the action of cognate binders (bottom). b The SBS
model of the studied chr21:34.6-37.1 Mb locus in human HCT116 cells has four types of binding sites, forming four binding domains each represented with a
different color. Their genomic location and abundance are shown. A cartoon is sketched (bottom) of the model polymer chain and the color scheme used in
the 3D representations in c). c Upon increasing the binder concentration, the model has a phase transition from a coil to a globule phase separated state, a
more condensed structure made of partially separated globules, as signaled by a sharp decrease of the system order parameters, respectively the
equilibrium gyration radius Rg (top) and average separation score (bottom). d The intrinsic degeneracy of the globule phase separated state, enhanced by
the overlapping genomic organization of the binding domains, corresponds to a variety of 3D conformations: two structures are shown where, for example,
the green binding domain collapses respectively onto the brown and the blue domain.
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univocally associated to a corresponding model 3D structure by
searching for the least RMSD (Supplementary Fig. 6a). Consistent
with the results on average contact and distance matrices, in the
HCT116 case we find that all experimental structures map onto
model conformations in the thermodynamics globule state
(Supplementary Fig. 5b). To test the significance of the
association, we compared the RMSD distribution of the
experiment-model optimal matches to the RMSD distribution
of pairwise comparisons between experimental structures (null
model): the two distributions are statistically different
(Mann–Whitney test p value= 0) with only 2% of entries of
the former falling above the first quartile of the latter
(Supplementary Fig. 6b). In addition, we find that each model
globule conformation is significantly associated to at least one
experimental structure, showing that the model well represents
the experimental ensemble.

Degeneracy in phase separation explains variability of single-
molecule conformations. To further validate our model, we
compared the architectural features of its predicted single-
molecule 3D conformations against single-cell 3D structures
from imaging37 (Fig. 2b). In single cell experiments, the locus
folds in spatially segregated globules, as highlighted by the
separation score as a function of the genomic coordinate (Fig. 2a),
which produce the TAD and sub-TAD-like domains of the dis-
tance matrix. However, the 3D structures are broadly varying
across single cells, and TAD boundaries are found to be spread
along the entire locus (see the boundary probability in Fig. 2a).
We aimed to test whether the model ensemble of single-molecule
conformations has features similar to those found in single-cell
experiments and whether it has a similar variability (Fig. 2b).

First, we found that: (i) the model derived TAD-like boundary
probability and, (ii), separation score along the locus are very
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Fig. 2 Phase separation degeneracy explains variability of single-molecule conformations. a In the considered 2.5Mb wide locus chr21:34.6Mb-37.1 Mb
of human HCT116 cells, the model median distance matrix in the globule separated state compares well against imaging data37 (top, the Pearson and
genomic-distance corrected correlations are, respectively, r= 0.95 and r′= 0.84). The probability of a domain boundary in 3D conformations along the
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single-cell imaged37 (top) and model predicted (bottom) 3D structures by the RMSD method shows that all imaged conformations statistically map onto
model single molecules in the globule state (bottom, see text and Supplementary Figs. 5b, 6). The varying TAD-like domains result from the intrinsic
conformational degeneracy of such a thermodynamic state. c The degree of variability of single-molecules is measured by the genomic-distance corrected
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model r′ distribution is in red and in light gray a control. d The model and experimental average boundary strength (error bars s.d.), and e the gyration
radius distributions are also not distinguishable (two-sided Mann–Whitney p value= 0.40). Overall, the polymer globule phase separated state of the
model returns single molecule structures with features consistent with both single-cell imaging and bulk Hi-C (Supplementary Fig. 4a) data.
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similar to the experimental ones (respectively r= 0.79 and r=
0.85, Fig. 2a); (iii), the average boundary strengths are similar
(Fig. 2d); (iv) the average boundary probabilities and, (v), the
boundary strength distributions are similar too (Supplementary
Fig. 7a, b), albeit there are no free parameters in all those
comparisons. In addition, the gyration radius distributions of the
model and experiment are also found to be statistically not
distinguishable from each other (Mann–Whitney p value= 0.40,
Fig. 2e). Conversely, a control block-copolymer model with four
non-intertwining binding domains designed specifically to
reproduce the main TAD-like structures visible in bulk Hi-C
data, which has also a coil-to-globule transition, was found to
poorly reflect the complexity of the observed contact patterns
(Supplementary Fig. 8).

Second, to quantify the variability of experimental single-cell
3D structures, we measured the distance-corrected correlation, r′,
between pairs of single-cell distance matrices, and found that it
has a broad distribution with an average correlation r′= 0.27
(Fig. 2c and “Methods”, similar results are found for the Pearson
correlation, r). We found that the model-model r′ distance
correlation has a similar distribution and, additionally, the
distribution of correlations between model and experimental
single-molecule distance matrices (average r′= 0.22) is not
statistically distinguishable from the one between experiments
(Fig. 2c, Mann–Whitney p value= 0.19).

Those results show that the features of the 3D structures
predicted by our model are similar to those observed in single-cell
experiments, to the point that single-molecules from the model
are statistically indistinguishable from experimental single-cell
structures. Finally, we implemented our modeling and all the
above analyses in another 2Mb locus (chr21:28–30Mb) investi-
gated in human IMR90 cells by super-resolution imaging
experiments37 and found analogous results (Supplementary
Figs. 3, 4, 7, 9, 10).

The overall agreement between single-cell imaging data and the
independently derived model conformations supports the view
whereby, in the studied HCT116 and IMR90 loci, chromatin
folding is explained at the single-cell level by a thermodynamics
mechanism of globule phase separation, driven by the interac-
tions of a few different types of binding sites, non-trivially
arranged along the genome and each associated to specific
combinations of chromatin organizing factors, including, but not
limited to CTCF (Fig. 2a). Within that framework, the broad
variability of single-molecule 3D globular structures, reflected in
the varying locations of TAD-like domain boundaries, naturally
results from the inherent folding degeneracy of the phase
separated conformations, enhanced by the overlapping genomic
organization of the different binding domains. Whereas CTCF
sites are distributed over the entire locus, the boundary
preferential positions correspond to the location of the edges
between binding domains (Fig. 2a) as they are prone to fold in
separated globules.

Cohesin depletion reverses phase separation. To investigate how
acute cohesin depletion impacts single-molecule chromatin con-
formations, we considered the same locus in HCT116 Auxin
treated cells (HCT116+ Auxin)37. We inferred the new SBS
polymer binding sites, as before, from Hi-C data in HCT116+
Auxin cells16 and derived by MD the model 3D conformations to
be compared with imaging data in the new cells37. Interestingly,
in this case our approach finds only three types of specific binding
sites in the locus (Fig. 3a). The domain strongly correlated with
cohesin in WT HCT116 cells (green, Fig. 2a) disappears, whereas
the other WT domains are overall maintained at their genomic
locations, although weakened and shrunk, and their epigenetic

signatures partially preserved (Fig. 3a and Supplementary
Fig. 3b). We find that the new polymer model also undergoes a
phase transition from a coil to a globule phase separated state, yet
at around 400 nmol/l if the same affinities of the HCT116 case
study model are used (Supplementary Fig. 2).

The Hi-C map of the cohesin depleted locus lacks the WT
TAD-like structures and retains only a faint pattern of
interactions16. The model recapitulates well those data too (r=
0.93, r′= 0.33, Supplementary Fig. 4b), but we find that a mixture
of 3D structures is required, composed 80% of single-molecule
3D conformations in the coil and 20% in the globule phase
separated thermodynamics state. Consistently, in the HCT116+
Auxin case by the least RMSD method we find that 80%
experimental structures from independent imaging data37

(Fig. 3b) map onto model conformations in the coil and 20%
in the globule state (Supplementary Fig. 5c) in a statistically
significant association (Supplementary Fig. 11). Again, the
comparison of our mixture model prediction on the median
distance matrix against the independent imaging data37 gives
high correlations (r= 0.96, r′= 0.57, Fig. 3a).

Upon cohesin depletion, although the population-averaged
distance map is as featureless as the Hi-C map, in single-cell
imaging data contact patterns persist, including TAD-like
structures in some instances (Fig. 3b). The domain boundary
strength and the average number of boundaries are similar to
WT37. However, the imaged single-cell 3D conformations have a
higher variability than WT ones: the average distance-corrected
correlation, r′, between pairs of distance matrices is r′= 0.0 and
its distribution is broader (Fig. 3c). The model single-molecule
conformations have also a high variability and resemble the
experimental structures (Fig. 3b). Again, they have an r′
correlation distribution with imaged distance matrices (and with
each other, average respectively r′= 0.0 and r′= 0.0) statistically
similar to the one between experiment pairs (Mann-Whitney p
value= 0.48, Fig. 3c). The 3D conformations of the model
mixture include globular states as in WT (Fig. 3b right), but 80%
of single-molecules are in the coil state (Fig. 3b left) whose
contact patterns reflect transient, random chromatin collisions
rather than more stably folded contacts as in WT (see “Time
dynamics” section below). Consistent with such a picture, the
average separation score is flat along the locus in both model and
experiment (Fig. 3a). The model domain boundary probability
along the locus is also as flat as the experimental one (Fig. 3a)
with a similar average boundary strength (Fig. 3d); and similar
are the average boundary probability and the boundary strength
distribution (Supplementary Fig. 7c, d), as much as the gyration
radius distribution (Mann-Whitney p value= 0.10 Fig. 3e), whose
average value is 23% larger than in the WT case (540 nm vs.
440 nm) showing that the locus is more open.

The overall agreement between model and independent
microscopy data in the HCT116+ Auxin case depicts a scenario
where, consistent with the known role of cohesin as a key
architecture organizing factor, cohesin depletion reverses chro-
matin globule phase separation to the coil thermodynamics state
in single cells, whose diverse contact patterns originate mainly
from random chromatin collisions rather than from phase
separated domains.

Single-molecule time dynamics. Next, we investigated how the
spatial conformations of single DNA molecules change in time
and how specific patterns of contact or insulation are established,
which can be uniquely achieved within our model. In the steady-
state, the 3D structure of a single-molecule varies and breathes
under thermal fluctuations in both the coil and phase separated
states, but important differences mark the two phases (Fig. 4).
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In the coil state, the contacts visible in the distance matrix of a
single molecule have a highly transient nature and their pattern
fully changes in time (Fig. 4a, HCT116+ Auxin model), as
signaled by the average value of the r′ correlation between
different time points that approaches zero for large time
separations (Supplementary Fig. 12a), consistent with the zero
average correlation between different replicates discussed before.
In the phase separated state, the 3D structure also varies in time,
but the long-time average r′ correlation remains well above zero
(in the HCT116 model r′ plateaus to 0.39, Supplementary
Fig. 12b), showing that the folded globules change, but persist in
time (Fig. 4b), again consistent with the average non-zero
correlation between replicates. The conformation average decay

time (i.e., the time for correlations to plateau) is almost one order
of magnitude larger in the globule state than in the coil state; its
scale can be roughly guessed by using estimates of the viscosity of
the nuclear medium reported in the literature45,56: for example, it
results to be 9 s and 60 s respectively in the coil state of the
HCT116+Auxin and in the phase separated state of the HCT116
model (Supplementary Fig. 12).

Finally, we explored how domain boundaries and specific
contact loops are established at the single-molecule level, in the
face of a varying environment, by the formation of globules. To
that aim, we investigated the relative distances of a particular set
of sites: (i) a pair of sites (orange, Fig. 4) having in HCT116 cells a
strong point-wise (loop) interaction in bulk Hi-C data, albeit
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Fig. 3 Cohesin depletion tends to reverse phase separation. a Top: In cohesin depleted HCT116 cells treated with Auxin (HCT116+ Auxin), the model
predicted median distance matrix of the considered locus chr21:34.6–37.1 Mb also compares well against independent imaging data37; the Pearson and
genomic-distance corrected correlations are, respectively, r= 0.96 and r′= 0.57. A mixture of model 3D structures is required, however, 80% in the coil
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with the wild-type domains of Fig. 2a. b Consistently, the RMSD based all-against-all comparison of single-cell37 (top) and model predicted (bottom) 3D
structures shows that imaged conformations correspond to model structures belonging 80% to the coil (bottom left) and 20% to the globule state
(bottom right, see text and Supplementary Figs. 5c, 11). The distance matrix of single molecules has non-trivial patterns in both states, but in the coil state
(bottom left) contacts originate from random collisions rather than stable phase separated globule domains (bottom right). c The distribution of genomic-
distance corrected correlations between distance matrices from single-cells (blue) is broader than in wild-type and its average is r′= 0.0, highlighting a
higher variability; it is statistically not distinguishable from the correlations between imaged and model distance matrices (dark gray, two-sided
Mann–Whitney p value= 0.48). d In model and experiment the average boundary strength is similar (error bars s.d.), and similar to wild-type (Fig. 2d),
and e the gyration radius distributions are not distinguishable too (two-sided Mann–Whitney p value= 0.10) and have a higher average value than wild-
type (540 nm vs. 440 nm of Fig. 2e). The model-experiment agreement points out that cohesin depletion reverses phase separation in most cells as their
corresponding model single-molecule structures are mainly in the coil rather than in the globule state, contrary to HCT116 (Fig. 2).
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located 1.2 Mb apart from each other in different subTADs; (ii) a
pair of 0.6 Mb distant sites (green) with a strong TAD boundary
in between; (iii) a control pair of sites (brown), almost 0.6 Mb
apart, enclosed within a subTAD.

In the HCT116+ Auxin model, where molecules are mostly in
the coil state, the average physical distances of the green and
brown pair are comparable to each other (around 620 nm,
Supplementary Table 1) and the orange pair is more open (660
nm) for its larger genomic separation. The distance distributions
are comparatively broad and similar across the three pairs
(Fig. 4c, d and Supplementary Fig. 13a). The situation drastically
changes in the globule phase separated state of the model of
HCT116 cells as the average distance of the orange and of the
brown pairs is reduced of factor 2.5 down to around 280 nm. That
occurs because the orange (and brown) genomic regions are
enriched with cognate binding sites, which in their globule
compact environment are highly likely to be bridged hence
resulting in a loop visible in Hi-C bulk data. Conversely, the green
sites tend to become trapped each in a different globule,
remaining at roughly their coil-state distance. In this way,
globules form an insulating “boundary” between them. The
distance distribution of the orange (and brown) pair is much
narrower in the HCT116 than in HCT116+ Auxin case, whereas
the distribution of the green pair is similar in both (Fig. 4c, d and
Supplementary Figs. 13a, 14a–c).

We performed an initial validation of the model time
behavior by comparing the predicted distance distributions of

the mentioned site pairs with single-cell imaging data,
although a full test would need experiments following in real
time the entire chromatin locus. Interestingly, considering
the basic character of the model, its predicted distributions are
comparatively close to the experimental ones, albeit there are
no free parameters available in the comparison (Fig. 4e, f and
Supplementary Fig. 13b). That is consistent with the above
interpretation that chromatin folds in different thermody-
namics states in WT and cohesin depleted cells. Finally, the
time tracks (Fig. 4a, b) also clarify that the distances of
all site pairs change in time subject to thermal fluctuations
and, in particular, the strong point-wise loop interaction of
the orange pair visible in the median distance matrix in
HCT116 cells does not reflect a fixed-length permanent
contact. Again, analogous results are found for the locus in
IMR90 cells.

Overall, the analysis of the steady-state time dynamics shows
that, while in the coil state contacts within a single molecule are
fleeting and variable, in the phase separated state globules breathe
and rearrange, but persist in time, as discussed in polymer
physics53. Hence, globules can create spatially compact environ-
ments, visible as TADs and sub-TADs in Hi-C data, where
specific contacts (e.g., the loops of the brown and orange pairs)
are enhanced between regions sharing abundant cognate binding
sites, albeit based on weak biochemical interactions. Globule
boundaries also change in time, but they can efficiently separate
neighboring regions along the sequence (see, e.g., the green pair),
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Fig. 4 The time dynamics of single molecules illustrates how globules establish specific contacts and boundaries. The steady-state time behavior is
shown of a single-molecule and its distance matrix in the model of the chr21:34.6–37.1 Mb locus in cohesin depleted (HCT116+ Auxin coil state, a) and
wild-type cells (HCT116 globule state, b). The relative distances are also plotted of: (i) a pair of sites (orange), 1.2 Mb apart, in different subTADs, having a
strong point-wise (loop) interaction in WT HCT116; (ii) a pair of 0.6Mb distant sites (green) with a TAD boundary in between; (iii) a pair of sites (brown),
almost 0.6Mb apart within the same subTAD. a In the coil state, the distance time tracks of those sites have all wide fluctuations, as contact patterns are
fleeting. b In the globule phase separated state, the interaction pattern shows that globules vary, but persist in time (see text). Hence, within their
stochastic environment, close, specific contacts are enhanced between site pairs sharing abundant cognate binding sites (orange and brown,
Supplementary Fig. 13), whereas pairs in different globules remain insulated (green). c The orange pair is on average much closer (Supplementary Table I)
and its distance distribution much narrower in the HCT116 than in the HCT116+ Auxin model, d whereas the green pair behaves similarly in both. e, f The
model distributions are close to the corresponding experimental ones37 in HCT116 and in HCT116+ Auxin cells, consistent with the view that chromatin
folds in different thermodynamics states in WT and cohesin depleted cells.
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although specific contacts across proximal globules can also form
(e.g., the loop of the orange pair).

Discussion
DNA loop-extrusion has recently emerged as an important
mechanism of chromatin organization13–15. It envisages that a
cohesin complex acts as an active motor extruding loops between
CTCF anchor points, in a non-equilibrium process requiring
energy influx to work, e.g., ATP molecule consumption. The key
role of CTCF/cohesin in chromatin architecture has been con-
firmed, for example, by bulk Hi-C data in systems depleted for
those factors16–18. However, in the 2Mb-wide loci in human
HCT116 and IMR90 cells considered here, super-resolution sin-
gle-cell imaging experiments hinted that DNA interactions could
arise from a distinct molecular process37. Here, we discussed a
mechanism of chromatin folding, different from the loop-extru-
sion, that is based on the thermodynamics of polymer phase
separation and is consistent with both Hi-C and single-cell
imaging data.

Specifically, we considered a schematic polymer model of
chromatin, the Strings and Binders model19,20, where contacts
between distal binding sites are mediated by diffusing cognate
bridging molecules (but our results also hold if DNA sites have
direct physical interactions rather than mediated by binders).
The genomic arrangements of the model putative binding sites are
learned from Hi-C bulk data6,16 of the loci of interest, and the
thermodynamics 3D conformations of the system derived from
physics. Upon increasing the binder concentration, or affinity,
the model undergoes a phase transition from a coil to a globule
phase separated state where compact globules self-assemble by the
interactions with their cognate binders. Importantly, as dictated by
polymer physics53, the model 3D structures spontaneously fall in
the conformational class corresponding to its thermodynamics
phase, i.e., the coil or globule state (Fig. 5a). The consistent
agreement between the predicted structures and independent
single-cell super-resolution microscopy data37 provides evidence
that, in the studied loci, chromatin folding is driven at the single-
molecule level by such a mechanism of polymer phase separation.

The emerging scenario shows that in WT cells the loci fold
mostly in the globule phase separated state, whose intrinsic

thermodynamics degeneracy is manifested in the varying geno-
mic positions of TAD-like patterns across single-molecules and in
time (Fig. 5b). Population-averaged contact maps, such as Hi-C
bulk data, capture ensemble averages and their TADs match the
location of the globules that more frequently form. The analysis
of the time dynamics of single molecules illustrates the diverse
modes of action of globules in shaping spatial interactions or
insulation between distal sites. While segregating neighboring
regions, they create stable, compact local environments enhan-
cing specific contacts between sites enriched for cognate binding
sites, within and less frequently across sub-TADs and TADs. That
explains how the observed stochasticity of DNA interactions,
typical of weak biochemical affinities, can coexist with specificity,
providing a quantitative picture on how contacts, e.g., between
genes and distal regulators can be controlled at the molecular
level. Finally, our results are consistent with a scenario where
acute cohesin depletion tends to reverse globule phase separation
into the coil state in most cells, resulting in much more variable
and transient contact patterns in single molecules (Fig. 5c), hence
abolishing population-averaged TAD-like domains. We find that
the model inferred binding site types have significant correlations
each with a specific combination of chromatin architecture fac-
tors, rather than a single one, including CTCF, Smc1, H3K27ac,
or H3K27me3. That strengthens the view that the combinatorial
action of different molecules, modulating each other activity,
shapes the 3D architecture of the genome.

We explored a minimal model of strings and binders, but a
huge diversity of microphase and phase separated structures, well
beyond TAD or pled-like patterns, can be achieved by adding
molecular parameters to the system54,55, although whether true
equilibrium self-assembly can be reached in such complex sys-
tems remains to be clarified. In addition, in different chromoso-
mal regions different physical processes could contribute or co-
exist to define the architecture. Nevertheless, an organizational
mechanism based on phase transitions has the advantage to be a
robust and reversible procedure to trigger conformational chan-
ges: the system only needs, e.g., to establish an above threshold
concentration of binders (or affinity), with no need of fine tuning
their number (or strength)19. And phase transitions occur
spontaneously sustained by the thermal bath. That could explain
how simple cell strategies of upregulation of genes associated to
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transcription factors or epigenetic modifications can reliably
shape the self-assembly of chromatin architectures in the nucleus.

Methods
Loci and datasets. The coordinates of studied 2.5 Mb-wide locus in human WT
HCT116 and cohesin depleted HCT116+ Auxin cells are
chr21:34600000–37100000 (hg38), those of the locus in IMR90 cells are
chr21:28000000–30000000. For those regions, published single-cell imaging data at
30 kb resolution were taken from37. Published independent in situ Hi-C data in
HCT116, HCT116+ Auxin cells were taken from16 and in IMR90 cells from6. We
employed KR normalized57, 5 kb resolution Hi-C data, re-binned at 30 kb by
summation as in37.

The strings and binders (SBS) polymer model. To investigate the 3D folding of
the considered loci we used the Strings and Binders (SBS) polymer model of
chromatin19,20. In the SBS model, a chromatin region is represented as a Self-
Avoiding Walk (SAW) chain of beads, having different specific types of binding
sites for cognate diffusing molecular binders. Each different type is visually
represented by a different color in our notation. In our model a specific attractive
interaction is only allowed between polymer beads and binders of the same color.
We also considered the case where along the chain there are unspecific binding
sites for binders, characterized by a lower affinity (see “Molecular Dynamics”
section below). In addition, we explored a variant of the model where direct
interactions between cognate DNA sites are used, rather than mediated by binders,
and our conclusions remain unchanged, as expected from Statistical Mechanics. To
derive the SBS model of a locus of interest, i.e., the minimal number of distinct
types of specific binding sites and their positioning along the polymer chain, we
developed a machine learning procedure based on our previously published
PRISMR method50. As explained below, the procedure returned polymer models
made of 830 beads in HCT116, with four different binding types in WT (Fig. 1) and
three distinct binding domains in cohesin depleted cells (Fig. 3). In IMR90 cells the
model has 650 beads with seven different types of sites (Supplementary Fig. 9).
Once derived the optimal polymer models for our genomic loci, we performed
massive parallel MD simulations47 to produce an ensemble of single-molecule
conformations at thermodynamic equilibrium.

Machine learning the polymer models of the studied loci. In this study we
developed an improved machine learning procedure to infer the minimal, best
polymer model for a given genomic locus, based on our previously published
PRISMR method50. For sake of clarity, we first summarize the main points of the
original PRISMR method and next discuss the important developments here
implemented to improve it.

The PRISMR procedure infers the best, minimal SBS polymer model of a given
genomic locus starting from only its corresponding bulk Hi-C data. It finds the
minimal arrangement of binding sites on the polymer chain that best reproduces
the input Hi-C matrix based only on physics. To take into account the possibility of
multiple binding sites within a DNA window at the considered Hi-C data
resolution (here 30 kb), we suppose that our model can accommodate up to r
binding sites (beads) in each DNA window. Hence, the total number of beads in
the SBS model chain of the considered locus is the product of the number of DNA
windows of the locus times r. The procedure also estimates the optimal value of r.
For the loci considered in this study, we used 30 kb resolution Hi-C data and found
that the optimal value of r, r* is ≤10 (see below).

PRISMR is based on a Simulated Annealing Monte Carlo (SA) procedure that
minimizes a cost function H0, chosen to be the standard mean squared error
function, i.e., the average squared distance between the input and model derived
contact matrix. In order to reduce overfitting, the cost function also includes an
additional Bayesian term (a chemical potential), Hλ, that penalizes the addition of
new interacting beads. The Bayesian term is weighted by a regularization parameter
λ ≥ 0, which sets the cost of adding a single new interacting binding site to the
polymer model. PRISMR seeks the minimum of the total cost function, H, in the
space of all SBS polymers with n allowed colors by the SA iterative procedure: at
each iteration the color (type) of a randomly chosen bead is changed at random,
the contact matrix of the new polymer is computed out of physics, and the cost
function computed until convergence. The procedure is repeated many times using
different initial conditions to scan the space of the parameters n and λ, in order to
find the optimal values of n* and λ* to explain the input Hi-C contact matrix
within a given accuracy50.

In this study, we changed and redesigned different aspects of the PRISMR
algorithm. First, to better take into account genomic distance effects within our
procedure, we implemented a new cost function. In brief, that is achieved by
scaling each term of the mean squared error H0 by the average Hi-C intensity at the
corresponding genomic distance. That improves the method performances at larger
genomic separations as it prevents the data close to the diagonal of the Hi-C matrix
dominating the calculations due to their much higher values with respect to those
corresponding to large genomic separations.

Next, we improved the method to estimate the optimal number n* of different
types of binding sites of the putative polymer model of the genomic locus of
interest. That is a crucial parameter, as it corresponds to the number of predicted

different types of binding molecular factors that give rise to the locus contact
matrix. To this aim, in an approach standard to supervised learning, we split our
Hi-C dataset in two complementary sets: a training set and a test set
(Supplementary Fig. 1a). PRISMR is run on the training set, i.e., in the SA
procedure the cost function is evaluated only on those matrix elements. In all the
cases discussed here, we split randomly the Hi-C data into a 70% training set and a
30% test set. However, we checked that the estimated model parameters are robust
by varying the training set size from 50 to 80% of the Hi-C data. To estimate the
best number of colors, n*, the SA procedure is repeated for different values of n,
and the cost function is evaluated for the output models, both on the training and
test sets. For each value of n, we ran at least 20 independent SA simulations with
varying initial conditions, i.e., with different random initializations of the polymer
model, and with different random selections of the training dataset. Supplementary
Fig. 1b, c shows the cost function minimum H0(n) as function of n, for the HCT116
and HCT116+ Auxin loci, normalized by its value for a polymer having no binding
sites, H0(n= 0). As expected, the cost function evaluated over the training set
decreases with n, toward an asymptotic plateau, as previously found50, so that the
agreement between the experimental data and the theoretical model improves more
and more by increasing n. Conversely, the cost function evaluated over the test set
first decreases with n up to reach a minimum and then it increases, signaling that
overfitting sets in. The value of n corresponding to the minimum of H0 over the
test set is the sought optimum n*, for which the model has the best predictive
power. Such a procedure allows thus to identify in a clear, quantitative way the
optimal number of different binding site types in the model. It returns n*= 4 in
HCT116, n*= 3 in HCT116+ Auxin and n*= 7 in IMR90. In order to further
reduce overfitting, for a given n, the cost function of our procedure also includes
the regularization term Hλ discussed above, which penalizes the addition of colored
beads. To find the optimal λ value, λ *, we fixed n* and minimized the total cost
function H=H0+Hλ at varying values of λ, so to find λ * as the minimum of H0

in the test set. We proceeded as for the estimation of n*. Precisely, we split Hi-C
data in a 70% training and a 30% test data and performed the PRISMR
optimization only on the training set. We ran at least 20 independent simulations
with varying initial conditions and evaluated the optimal λ* as the value for which
the minimum of H0 over the test set is attained. That returns λ*= 10−5 in HCT116
and HCT116+Auxin and λ*= 10−4 in IMR90. Next, we fixed n*and λ* and
proceeded to estimate the minimal number of polymer beads per 30 kb window, r*,
required to explain data within a given accuracy, as done in50. We find r* values
ranging from 7 to 10 in the considered loci and for simplicity we set r*= 10 in all
cases. Finally, by using the estimated optimal parameters n*, r*, λ*, we ran an
additional battery of up to 5 × 102 independent SA simulations from different
initial conditions to identify the final output of the procedure, i.e., the polymer
model corresponding to the absolute minimum of the cost function (Figs. 2a, 3a
and Supplementary Fig. 9a, bottom panels). As discussed in50, the models
corresponding to the lower 10% minima are consistently similar to each other,
showing the robustness of the procedure.

Correlation of model binding domains with epigenetic data. We compared the
model inferred binding domains with a set of epigenetic tracks available in the
studied cell types (Supplementary Fig. 3a–c). In HCT116 cells we used Chip-seq
data available from16 (GEO accession: GSM2809609, GSM2809611, GSM2809613,
GSM2809617–30) and from the ENCODE database58 (ENCODE accession:
ENCFF175RBN, ENCFF001UDL, ENCFF001UDN, ENCFF001UDP,
ENCFF001UDT, ENCFF001UDV, ENCFF001UDX, ENCFF001UEB,
ENCFF001UED, ENCFF001UEJ, ENCFF001UEL, ENCFF001UEN,
ENCFF001UEP, ENCFF001UER, ENCFF088WYS, ENCFF144BSH,
ENCFF617QEN). In IMR90 we used data from ENCODE (ENCFF195CYT,
ENCFF116RLU, ENCFF453XKM, ENCFF899APS, ENCFF474OJM,
ENCFF752IXO, ENCFF178QVF, ENCFF741WIY, ENCFF625BTD). After binning
the epigenetic tracks at 30 kb resolution, we calculated the Pearson correlation
coefficient between each binding domain—epigenetic mark pair, in the considered
loci. To test the statistical significance of the obtained correlations, we compared
them with a random control model. The control correlation distribution was built
by computing correlations between the above chromatin marks and randomized
binding domains (103 different realizations for each case), obtained by boot-
strapping their binding sites positioning50. We then considered positive correla-
tions significant if above the 90th percentile and negative correlations significant if
below the 10th percentile of the random control distribution. The resulting sig-
nificant correlations are represented in the heatmaps of Supplementary Fig. 3a, b, c.

Molecular dynamics simulations. Our polymer system is subject to a Langevin
dynamics, numerically solved using the Verlet algorithm within the LAMMPS
package59. Its interactions potentials are taken from classical polymer physics
studies60 and detailed in47. The initial states of our MD simulations are distinct
open SAW conformations. The binders also move under the Langevin equation
within the simulation box (which has periodic boundary conditions) and interact
with the specific and unspecific polymer binding sites, so driving the folding of the
chain. We let the system evolve up to when stationarity is reached, as shown by the
plateauing of the gyration radius and binding energy as function of the MD time
iteration steps (Supplementary Fig. 2a). The features of our MD simulations and all
details are discussed in47. In our simulations we computationally sampled a range
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of specific and unspecific binding energy affinities, in the weak biochemical energy
range, respectively from 3.1 to 8.0KBT and from 0 to 2.7KBT (KB is the Boltzmann
constant and T is the system temperature in Kelvin). For sake of simplicity, we kept
the affinities equal respectively across the different specific and across the unspe-
cific binding sites. The dimensionless parameters of our MD simulations are
converted into physical units via the standard MD procedure61,62. The length scale
of the model, i.e., the bead diameter σ, is calibrated by equating the medians of the
model and experimental37 gyration radius distributions (Figs. 2e, 3e and Supple-
mentary Fig. 9e). We find σ= 45 nm in the HCT116, σ= 22 nm in HCT116+
Auxin, and σ= 60 nm in IMR90 model. In the HCT116+ Auxin modeling, where a
coil-globule mixture of model conformations best explains the experimental data,
as an additional exercise we also tried to estimate independently the length scales,
σ’s, of the structures in the two thermodynamic phases, as done for instance in
Fig. 4c. The MD time scale, τ, is τ= 6πησ3/(KBT), where η is the solvent viscosity.
Reference values of the nucleoplasm viscosity range around η= 0.03P45,56, which
we use here. Changes to the viscosity proportionally change the time scale. The
molar binder concentration, c, is c= P/(VNA), where P is the total number of
binders in the simulation cubic box, V is the box volume (whose linear size is taken
to be equal to the gyration radius of a SAW polymer with a corresponding number
of beads), and NA is the Avogadro number. We explored with our MD simulations
almost three orders of magnitude in binder concentrations for each of the HCT116,
HCT116+ Auxin and IMR90 models (Fig. 1c, Supplementary Fig. 2a, b). For
example, our case study concentration for the globule phase separated state (see
next section) is: c= 0.11 μmol/l in HCT116, c= 0.78 μmol/l in HCT116+ Auxin,
c= 0.05 μmol/l in IMR90. Analogously, the case study coil state concentration is:
c= 0.01 μmol/l in HCT116, c= 0.08 μmol/l in HCT116+ Auxin, c= 0.007 μmol/l
in IMR90. For each studied locus and for each considered binder concentration
and affinity, we produced a statistical ensemble of 1000 distinct equilibrium single-
molecule 3D configurations by massive MD simulations as described above. The
POV-RAY software (Persistence of Vision Pty. Ltd., 2004) is used to produce the
plots of the 3D experimental37 and model conformations. The conformation spatial
coordinates are interpolated by simple linear splines.

System order parameters and phase transition. The SBS polymer models of
each of the studied genomic loci undergo, upon increasing the binder concentra-
tion or affinity, a phase transition from a coil to a more compact, globule phase
separated state, as signaled by the system order parameters, the gyration radius (or
binding energy) and the average separation score (see sections below for definitions
and computational details). Figure 1c (top) and Supplementary Fig. 2b (top),
corresponding respectively to HCT116 and HCT116+ Auxin, show the equili-
brium value of the polymer gyration radius normalized respect to its SAW value at
increasing binder concentrations. In both cases, a sharp drop of the gyration radius
occurs at a characteristic concentration threshold, around 50 nmol/l in HCT116
and 400 nmol/l in HCT116+ Auxin for the case study affinity considered in the
Main Text. At the same threshold a drop is also found for the system binding
energy (Supplementary Fig. 2a, b), i.e., the total potential energy of the simulated
system. Analogously, at the same threshold the system average separation score37

drops (Fig. 1c, Supplementary Fig. 2b). The separation score measures the level of
spatial separation between chromatin segments on either side of a given genomic
position. Its sharp decrease signals that, when the number of binders (or their
affinity) increases above threshold, distinct spatially segregated globules self-
assemble along the polymer chain. As known in polymer physics53, the simulta-
neous sharp drop of the gyration radius (and binding energy) and separation score
signals the phase transition of the system from the coil state, where the polymer is
in randomly folded conformations, to a globule state in which the polymer, due to
attractive interactions, forms more compact, separated globules. A similar transi-
tion occurs in the IMR90 model. By the least RMSD method (Supplementary Fig. 5,
see “Structural comparison of experimental and model 3D conformations by
RMSD” section below), we find in the HCT116 case that 100% of experimental
structures are mapped in a statistically significant association onto conformations
of the model belonging to the thermodynamics globule states. Similarly, 99% of
experimental structures in IMR90 become mapped onto model conformations in
the globule state and 1% in the coil state. In the case of HCT116+ Auxin cells, 80%
experimental structures map onto model 3D conformations in the coil and 20% in
the globule state.

Contact frequency matrices and correlations. To compute the model average
pairwise contact matrix, we adopted a standard method used in the literature45,50.
Briefly, for each polymer 3D conformation, we consider two sites in contact if their
relative Euclidean distance is less than a threshold Aσ, where A is a dimensionless
constant. The model-predicted average (or median) matrix is simply the average
(or median) of the single-molecule matrices across the considered ensemble. We
checked that by changing A in a window ranging from three to ten, similar results
are found. In all the studied loci, we found very high Pearson correlations, r,
between the experimental6,16 and the contact matrices of the mixture models: r=
0.88 in HCT116 (Supplementary Fig. 4a), r= 0.93 in HCT116+ Auxin (Supple-
mentary Fig. 4b), and r= 0.94 in IMR90 (Supplementary Fig. 4c). To get a better
measure of similarity, we also evaluated the genomic distance-corrected Pearson
correlation coefficient, r′50. Specifically, r′ is the Pearson correlation computed on
contact matrices where from each element the mean value of the diagonal to which

it belongs to is subtracted. The r′ correlations between model and Hi-C bulk data
are: r′= 0.68 in HCT116, r′= 0.33 in HCT116+Auxin, r′= 0.74 in IMR90.

Spatial distance matrices. The single-molecule distance matrix is the matrix of all
pairwise Euclidean distances between the beads of the considered polymer con-
formation and we computed it with the Python SciPy package. As above, the
model-predicted median distance matrix is simply the median of the single-
molecule distance matrices across the considered ensemble. As in the experimental
paper37, distance matrices are represented as two-dimensional heatmaps with the
seismic reversed color bar. In Fig. 3b, the color bar scale is set by use of the same
percentiles in both the experimental and model matrices to have a fair comparison.
In the investigated loci, the model median spatial matrices have correlation values
with the experimental ones equal to: r= 0.95 and r′= 0.84 in HCT116 (Fig. 2a),
r= 0.96 and r′= 0.57 in HCT116+ Auxin (Fig. 3a), and r= 0.96 and r′= 0.77 in
IMR90 (Supplementary Fig. 9a). Here and in the following analyses, we filtered out
the experimental single-cell distance matrices37 having NaN values for more than
80% of the entries and, in order to remove outliers, the matrices having a Pearson
correlation <0.01 with the others are also removed in both models and
experiments.

Gyration radius and separation score. We analyzed the ensemble distribution of
the gyration radius in models and experiments37, filtering out outliers. In the three
studied loci, we find that the model and experimental gyration radius distributions
are not statistically distinguishable (p= 0.40 in HCT116, p= 0.10 in HCT116+
Auxin, p= 0.68 in IMR90, two-sided Mann–Whitney p value). In both the
HCT116 and IMR90 loci, the experimental and model average gyration radius is
440 nm (Fig. 2e, Supplementary Fig. 9e), while in the HCT116+ Auxin case the
average value increases to 540 nm (Fig. 3e).

We employed the definition of the separation score and the computational
algorithm to compute it reported in37. We studied in our three loci the separation
score as a function of the genomic coordinate, comparing the model predictions
with the experimental curves and finding overall high correlations (r= 0.85 in
HCT116, Fig. 2a; r= 0.41 in HCT116+ Auxin, Fig. 3a; r= 0.79 in IMR90,
Supplementary Fig. 9a, errors represent the 95% confidence interval). Note that no
free parameters are available in the calculations and in the comparisons.

TAD boundary probability and boundary strength. To compute boundary
probabilities and strengths we used the methods and algorithms discussed in37. The
algorithm parameters used for the experimental data37 are: gb= 1, valley= 1, su=
10, sl= 6. We checked that small changes in those parameters do not strongly
affect the results, such as the location of boundaries. For instance, in the HCT116
and HCT116+Auxin models, we used: gb= 1, valley= 4, su= 5, sl= 5. In the
IMR90 model: gb= 1, valley= 8, su= 4, sl= 4. We obtained high Pearson cor-
relations in the comparison of the experimental and model derived boundary
probability along the locus in HCT116 (Fig. 2a) and IMR90 (Supplementary
Fig. 9a), respectively r= 0.79 and r= 0.60. In HCT116+ Auxin (Fig. 3a), where the
boundary probability is flat because the positions of the domain boundaries fluc-
tuate uniformly along the genomic coordinate, a lower Pearson, r= 0.19, is found
as expected. To curate noise, we performed a two-point running average in the
plots of the boundary probabilities. Importantly, in agreement with the experi-
ments37, we found that the model boundary probability averaged on the genomic
coordinates is comparable in HCT116 and HCT116+ Auxin and those are similar
to their experimental values (Supplementary Fig. 7a, c, error bars are the standard
deviation of the mean). Also in IMR90, the average boundary probability is
comparable with the experimental value (Supplementary Fig. 7e) and, interestingly,
it is similar to HCT116 as experimentally found. The distributions of boundary
strengths for the three analyzed loci are reported in Supplementary Fig. 7b, d, f.
The average model boundary strengths are also very similar to the corresponding
experimental values (Figs. 2d, 3d, Supplementary Fig. 9d, bars are the standard
deviation). Note that no free parameters are available in those comparisons.

Variability of single-molecule 3D structures. To measure the degree of varia-
bility of single-molecule conformations we analyzed the distribution of the Pearson
r′ correlations between pairs of single-molecule distance matrices from both
experiments and models. Specifically, we computed (Figs. 2c, 3c, and Supple-
mentary Fig. 9c): (a) the r′ correlation between all the pairs of experimental single-
cell distance matrices37 (blue histogram, referred hereafter as exp.-exp. r′ dis-
tribution); (b) the r′ correlation between all the pairs of model single-molecule
distance matrices (red, model-model r′ distribution in the following); (c) the dis-
tribution of r′ correlations between model and experimental single-molecule dis-
tance matrix pairs (dark gray, model-exp. r′ distribution); (d) the r′ correlations in
a random control case (gray), i.e., between pairs of randomized single-molecule
distance matrices derived from single-cell experimental data37 with bootstrapped
diagonals. To smooth the effects of random noise in those calculations, we applied
a Gaussian filter on single-cell distance matrices, using a standard deviation of the
Gaussian kernel equal to 1. We performed a two-sided Mann–Whitney test to
quantify the statistical similarity between the r′ distributions of the different cases.
Importantly, in the test we only considered independent pairs of distance matrices,
selecting samples of the same size in both models and experiments. In addition, we
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averaged the test over ten distinct samples of independent pairs of matrices so to
refine our estimate. As an example, in the comparison between the exp.–exp. and
the model-exp. r′ distribution, we computed a Mann–Whitney p value > 0.01 in all
three examined cases (p= 0.19 in HCT116, p= 0.48 in HCT116+ Auxin, p= 0.02
in IMR90), meaning that the two distributions are not statistically distinguishable
from each other.

Structural comparison of experimental and model 3D conformations by
RMSD. To show that the model structures of the studied loci are a bona-fide
representation of the conformational space explored in single cells, we also directly
compared pairs of 3D structures from experiments and model. To this aim, we
employed an accepted method that finds the optimal rotation between two cen-
tered 3D structures to minimize their coordinate difference, measured as their
mean squared deviation (RMSD)33. In this way each 3D structure from imaging
data is univocally associated to a corresponding model 3D structure by searching
for the minimal RMSD (Supplementary Fig. 5a). To fairly compare 3D structures
from imaging data and modeling, we normalized both experimental and model
coordinates by a standard z-score.

In the case of the HCT116 cell locus, we found that 100% of experimental
structures are mapped onto conformations of the model belonging to the
thermodynamics globule state (Supplementary Fig. 5b). To test that the association
is far from random, we compared the RMSD distribution of the experiment-model
optimal matches to the RMSD distribution of pairwise comparisons between
experimental structures (null model): the two distributions are statistically different
(Mann-Whitney test p value= 0) with only 2% of entries of the former falling
above the first quartile of the latter (Supplementary Fig. 6b). In the HCT116, as well
as in the HCT116+Auxin and IMR90 models, we also found that, by matching
model to experimental conformations, the RMSD distribution is well within the
distribution of RMSDs of the experiment-model optimal pairs (and below the
bottom 5% of the null model), showing that each model structure is significantly
similar to at least one corresponding experimental conformation. That highlights
that our modeling structures are well represented in the experimental ensemble
(Supplementary Fig. 6a).

In the case of HCT116+ Auxin cells we found that ~80% of experimental
structures map onto model conformations in the coil (open) state and the
remaining 20% onto model globule states (Supplementary Fig. 5c), confirming that
a mixture of thermodynamics states describes the experimental data, consistent
with our other findings (see Main Text). Note that, also in this case, best match
pairs have indeed very similar distance matrices (Supplementary Fig. 11a),
supporting our other method to perform an all-against-all comparison by
computing distance matrix correlations. Again, to test that the above association
between structures is statistically significant we compared the distribution of
RMSDs of the experiment-model optimal matches to the distribution of RMSDs
from pairwise comparisons between experimental structures (null model)
(Supplementary Fig. 11b). The two distributions are statistically different
(Mann–Whitney test p value= 0) and, additionally, they are well separated: only
8% of entries of the former fall above the first quartile of the latter. That highlights
that our association criterion is statistically significant and far from random.

In the case of the IMR90 cell locus, we also found that 99% of experimental
structures are mapped onto model conformations in the globule states
(Supplementary Fig. 5d); again, each model conformation is significantly similar to
at least one experimental structure (Supplementary Fig. 10a). Finally, the RMSD
distribution of the experiment-model optimal matches and the RMSD distribution
of pairwise comparisons between experimental structures are statistically different
(Mann–Whitney test p value= 0) with only 2% of entries of the former falling
above the first quartile of the latter (Supplementary Fig. 10b).

Control block-copolymer model. As a comparison with our SBS model, we also
considered a control block-copolymer model designed specifically to reproduce the
four main TAD-like structures visible in bulk Hi-C data of the HCT116 cell locus.
By construction the block-copolymer has precisely the same number of degrees of
freedom of our SBS model, i.e., the same number of binding site types (colors) and
of beads, but with no intertwining between them (Supplementary Fig. 8a). We used
such a model as a control where to repeat all our analyses.

We found that the block-copolymer model poorly reflects the complexity of the
observed contact patterns and, in particular, inter- and intra-TAD signals
(Supplementary Fig. 8b). Its correlation with median imaged distance data is r′=
0.54, while our model has r′= 0.84. Note that the pattern of intra-TAD signals is
confirmed by two independent technologies, Hi-C and super-resolution
microscopy37, so it must be accounted for by models, as done by our SBS model.
Thus, the intertwining of colors (i.e., of binding sites) in our SBS model is necessary
to capture important experimental evidences, missed by the control block-
copolymer model. Importantly, the arrangement of colors in our SBS model is
statistically different from a random arrangement as well as from an arrangement
where colors are perfectly separated as in a block-copolymer model. To assess that,
we measured the overlaps50 of the model binding domains with each other and
compared them against the overlaps found in a control random model, obtained by
bootstrapping the colored binding sites positions, and in the control block-
copolymer model. We found an average overlap between different colors around
50%, significantly smaller (p value= 1e−3, Mann-Whitney test) than the average

overlap found in the random control (around 70%), and significantly higher (p
value= 1e-3, Mann-Whitney test) than the average overlap in the block-copolymer
model, which is equal to zero by construction.

As expected by construction, we found that the boundary probability of the
control block-copolymer model has peaks where the SBS model and real data have
peaks (Supplementary Fig. 8c), however experimental data are less well reproduced
by the control (correlation r= 0.47) than by our model (r= 0.79). In particular, the
control model peaks are four times higher than those from experiments and from
our model, showing that the separation of the globules is much stronger in the
control than in our SBS model.

Finally, we computed the pair correlation, r′, between the control block-
copolymer model and experimental distance matrices and found that the
distribution of r′ compares to the experimental one worse than our SBS model
(Supplementary Fig. 8d). In particular, the average value of r′ in the block-
copolymer model is 33% higher than in the experiment, showing that in the former
there is a lower conformational variability.

Steady-state dynamics and time correlations. We studied the steady-state time
dynamics of single-molecule conformations. In Fig. 4a, b we plotted at different
times the distance matrices and the corresponding 3D structures of a single-
molecule respectively in the coil state of the case study HCT116+ Auxin model and
in the globule phase separated state of the case study HCT116 model. Similar
findings are obtained for the IMR90 model. To get an estimate of the conformation
average decay time we measured, in the abovementioned pure states of the models,
the r′ correlations between single-molecule distance matrices at different lag times.
The time behavior of such correlation is shown in Supplementary Fig. 12, where we
superimpose a stretched exponential fit. The decay time is defined as the lag time
where the average r′ time correlation has spanned 95% of its total variation range.
By using the estimate of the nuclear viscosity discussed above (see “Molecular
dynamics” section), the decay time is 9, 60, and 90 s, respectively in the coil state of
the HCT116+ Auxin model and in the phase separated states of the HCT116 and
IMR90 models. Consistent with the ensemble correlation analysis (see “Variability
of single-molecule 3D structures” above), the long-time r′ self-correlation
approaches zero in the coil state of the HCT116+ Auxin model, while it has a non-
zero value in the phase separated states of HCT116 and IMR90 (respectively 0.39
and 0.30). In the mentioned cases, we also measured the single-molecule relative
distances of specific site pairs (orange, green, and brown in Fig. 4) corresponding to
the following genomic coordinates in HCT116 cells: orange: 34.69–35.80 Mb;
green: 35.59–36.25 Mb; brown: 36.43–36.91 Mb. In Fig. 4c–f and Supplementary
Fig. 13a, b we computed the mixture model ensemble distance distributions of
those pairs and compared them with the corresponding experimental ensemble
distributions37. We also performed the same calculation in the HCT116+ Auxin
simulated polymers using only the coil pure state, as shown in Supplementary
Fig. 14a–c. In our analysis, to correct for outliers, we did not consider distances
above 2000 nm. Average values and standard deviations of the measured distance
distributions are computed for computational reasons on a random sample of all
model conformations and summarized in Supplementary Table I.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting summary linked to this paper.

Data availability
The data supporting the findings of this study are available from the corresponding
author upon request.

Code availability
We used the publicly available LAMMPS software for the Molecular Dynamics
simulations of the SBS polymer modeling. Analyses involving the computation of spatial
distances were performed using built-in functions within the Python SciPy software
(version 1.3.1). The structural comparison of experimental and model conformations by
RMSD was performed using the free available MDAnalysis Python library. We employed
the POV-Ray software (version 3.7) to produce the 3D snapshots. Custom codes used to
generate results reported in the manuscript can be made available from the
corresponding upon request. All details of the algorithms are illustrated in the Methods
section and in previous publications cited therein.
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