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Abstract
Growing evidence suggests that galectins, an evolutionarily conserved family of glycan-binding proteins, fulfill key roles in
pregnancy including blastocyst implantation, maternal-fetal immune tolerance, placental development, and maternal vascular
expansion, thereby establishing a healthy environment for the growing fetus. In this review, we comprehensively present the
function of galectins in shaping cellular circuits that characterize a healthy pregnancy. We describe the current understanding of
galectins in term and preterm labor and discuss how the galectin-glycan circuits contribute to key immunological pathways
sustaining maternal tolerance and preventing microbial infections. A deeper understanding of the glycoimmune pathways
regulating early events in preterm birth could offer the broader translational potential for the treatment of this devastating
syndrome.
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Introduction

Galectins play a paramount role in pregnancy biology, mod-
ulating a wide range of processes from embryo implantation to
parturition. Different galectins coexist at the feto-maternal in-
terface where besides coordinating placentation and maternal
immune adaptation to the semi-allogenic fetus, they also play
a role in maternal vascular expansion [1]. Though most of
their biological functions during gestation are exerted through

binding endogenous glycan structures, galectins can also rec-
ognize exogenous specific glycans on the surface of bacteria,
viruses, parasites and therefore function as pattern recognition
receptors [2]. As a result, galectins appear to be critical in the
microbial glycan-host interactions that promote the engage-
ment of specific immune cell subsets and shape host immuni-
ty. Thus, given their unique ability to modulate maternal im-
munity galectins emerge as important players in preterm birth
(PTB) syndrome, which most often is associated with
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microbial infections that disrupt fetomaternal tolerance due to
the drastic link between underlying pathogens and their ability
to promote inflammatory responses [3, 4].

Host-pathogen interactions fundamentally shape a broad
range of biological processes. While products of microbial
metabolism can impact a wide variety of host activities, from
neurological function to overall metabolism and immune ho-
meostasis (1–3), direct interactions between host and mi-
crobes can fundamentally shape microbial flora, impact im-
mune function and often ultimately dictate the likelihood of
infectious disease (4). Although host factors can interact with
a variety of distinct microbial molecular determinants, cell
surface glycans represent the most unique, diverse, and rich
molecular features that decorate microbes (5, 6). As microbial
carbohydrate determinants often completely envelope mi-
crobes, these structures often represent the first and most sig-
nificant molecular signature encountered by a host. As a re-
sult, hosts appear to have evolved a variety of immune factors
that possess the ability to recognize the distinct carbohydrate
signature of a broad range of microrganisms (6–9). Indeed,
many immune populations are defined by the distinct reper-
toire of glycan-binding proteins (GBPs) they express (6–8),
strongly suggesting that microbial glycan-host interactions
may result in the engagement of specific immune cells and
thus shape host immunity in fundamental ways.

Galectins and the control of pregnancy-associated
processes

Galectins are small, soluble glycan-binding proteins charac-
terized by their affinity to β-galactosides and the presence of
an evolutionarily conserved sequence, the carbohydrate rec-
ognition domain (CRD), which mediates binding to their spe-
cific N-acetyllactosamine [Galβ(1–4)-GlcNAc]-enriched li-
gands [5]. In mammals, 15 members of the galectin family
have been identified so far, of which 13 are expressed in
humans [6]. Based on their molecular structure, they are clas-
sified into three main types: prototype, chimera, and tandem-
repeat galectins (Fig. 1).While some of these galectins contain
one CRD and are biologically active as monomers (i.e., gal-1,
gal-13) or as oligomers that aggregate though their non-lectin
domain (gal-3); others contain two CRDs connected by a short
linker peptide (e.g., gal-9). Galectins are synthesized in the
cytoplasm, where they exert intracellular functions modulat-
ing various processes including cell growth, differentiation,
survival, and migration [7]. In addition, some galectins can
translocate to the nucleus and participate in transcriptional
regulation and mRNA splicing [7, 8]. However, galectins
can also be present on the cell surface or secreted to the extra-
cellular compartment [9], where they engage in protein-glycan
interactions with cell surface or ECM molecules and regulate
a diverse combination of biological functions such as cell
adhesion, apoptosis, lattice formation, and invasion [10–13].

With their various functions, galectins link innate and adap-
tive immune responses acting as key regulators of acute and
chronic inflammation, host-pathogen interactions, and im-
mune tolerance, which all are implicated in a healthy pregnan-
cy [14–18].

Embryo implantation

It is now firmly established that the role played by galectins
during the establishment and maintenance of gestation is at-
tributable to the several pathways these endogenous lectins
coordinate. Figure 1 illustrates the galectin-associated mecha-
nisms during a healthy gestation. Evidence from in vitro and
expression studies suggest galectins are important mediators
in the implantation process. Indeed, during embryo implanta-
tion the increased expression of gal-1, -3, and -9 in endome-
trial epithelial cells suggest their role in uterine receptivity
[19–22]. In support of this, the ability of galectins to bind
laminin and fibronectin [23] may serve as a link between
endometrial epithelial cells and the blastocyst. Human embry-
os express gal-1 at early stages of development (day 3–day 5)
in their trophectoderm and secrete gal-1 into the medium in
which they are cultured [24], suggesting that this lectin may
influence uterine blastocyst attachment during the window of
implantation. In this regard, Jeschke’s group has shown that
gal-1 binds mucin-1 (MUC1) via the Thomsen-Friedenreich
(TF) epitope on glandular epithelial cells and endometrial ep-
ithelial apical surface tissue [25], implying that embryonic-
derived gal-1 may bind to endometrial MUC1 via the TF
epitope during implantation. Interestingly, integrins (e.g.,
αβ3) have been proposed to have important roles during im-
plantation [26] and the integrin β3, which is highly expressed
in the luminal and glandular epithelium, could also serve as a
ligand of gal-1 and gal-3 to promote trophectoderm-uterine
epithelium interactions [27]. Thus, galectins (especially gal-
1, gal-3, and gal-9) participate not only in the uterine epithelial
preparation for receptivity but also in blastocyst activation
influencing the embryo-derived signals for implantation.

Maternal Tolerance

The establishment and maintenance of pregnancy represent a
major immunological challenge requiring a delicate balance
of inflammation and immune tolerance at the fetal-maternal
interface. During early stages, proper implantation and uterine
vascular adaptation are characterized by an inflammatory mi-
lieu, which later must be switched to a down-modulation of
the immune response allowing tolerance of the semi-allogenic
fetus. Later on, a new switch to inflammation is required in the
last stage to ensure the activation of labor. This key immune
switching mechanism at the fetal–maternal interface relies on
a highly orchestrated crosstalk involving the placental tropho-
blasts and different maternal immune cell subsets, such as
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regulatory macrophages, natural killer (NK) cells, and T cells
(recently reviewed in [28]). Thus, maternal immune adapta-
tion to pregnancy is a highly regulated process involving sev-
eral galectins [6, 15, 29–31]. In this regard, pioneering studies
by Than NG et al. have shown that placenta-specific galectins
(e.g., gal-13, -14 and -16), predominantly expressed by the
syncytiotrophoblast cells, induce maternal T lymphocyte ap-
optosis [32]. In a more recent work, Than’s group showed that
gal-13 and gal-14 have a basic pro-apoptotic activity on T
cells regardless of their activation status [33]. However, cyto-
toxic T lymphocytes were more susceptible to gal-13/gal-14
induced apoptosis than T helper cells, probably due to the
differential glycosylation pattern on these two T cell popula-
tions [34]. In addition, gal-1 is highly expressed in the
hemochorial placenta, where it has been shown to modulate
human leukocyte antigen G (HLA-G) expression on
extravillous trophoblast (EVT) cells, thereby promoting one
of the chief mechanisms of immune tolerance operating at the
human maternal–fetal interface [24]. The immune regulatory
effects of HLA-G include impacts on NK cell killing activity,
suppression of cytotoxic T lymphocyte killing activity and
viability, inhibition of proliferation and induction of a sup-
pressive phenotype in T helper cells, and alteration of dendrit-
ic cell maturation and stimulatory capacity (reviewed in [35]).
The expression of gal-9 by human trophoblast has been shown
to promote the development of uNK cells with a tolerogenic

phenotype via Tim-3 engagement [36], which is supported by
data indicating that the Tim-3/gal-9 pathway downregulates
Th1 immunity [37]. Additionally, galectins are also expressed
by maternal immune cells, which infiltrate the decidua. For
example, gal-1, secreted by uterine natural killer (uNK) cells,
induces the apoptosis of activated decidual T cells with a
glycophenotype compatible with this lectin [38]. uNK cells
also selectively express type 2 β-1,6-N-acetylglucosaminyl
transferase (C2GNT), the glycosylation enzyme required to
initiate the formation of gal-1 specific ligands, implying an
autocrine role of this lectin in down-modulating the cytotoxic
potential of uNK cells [38]. Gal-9 has an immunosuppressive
activity similar to gal-1 at the maternal side [39]. The effect of
Lgals9 D5 (the predominant gal-9 splice variant) was tested
on uNK cells in mice and it was found to downregulate IFN-
gamma production through carbohydrate dependent interac-
tion [39]. Thus, gal-9 could participate in the limitation of Th1
and shift to a protective Th2milieu, which is further supported
by the impaired decidual expression of gal-9 in mice and
human pregnancy complicated with spontaneous abortion in-
duced by T helper cytokine imbalances [39]. The ability of
gal-1 to maintain the balance between pro-inflammatory Th1/
Th17 and Th2 cytokines needed for healthy gestation is crit-
ical. We have shown that gal-1 promotes the expansion of IL-
10 producing regulatory T cells [15]. In line with these find-
ings, LGALS1 null mice display exacerbated Th1/Th17

Fig. 1 Biological function of galectins at the feto-maternal interface. The
galectin family members are divided into three types: the prototype with
one carbohydrate recognition domain (CRD), the chimeric type with one
CRD and a non-lectin N-terminal domain and the tandem –repeat type
with two CRDs connected by a non-conserved linker. Some galectins can
self-associate into dimers or oligomers. Under normal conditions,
individual galectins promote healthy gestation regulating placentation,

maternal immune and vascular adaptation to pregnancy. Progesterone
induces the expression of galectin-1 (gal-1) and gal-3 during embryo
uterine receptivity. Factors implicated in the development of preterm
birth are likely to contribute locally to galectin dysregulation and as a
consequence breakdown of maternal immune tolerance and vascular
disorders may trigger spontaneous preterm labor
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responses and a higher frequency of immunogenic DC [34,
40] and show increased fetal loss rates in allogeneic pregnan-
cies with susceptibility to stress-induced abortions [15, 41]. In
summary, these evidences support a role for galectins in
dampening inflammatory responses and promoting
tolerogenic cell phenotypes specifically at the fetal–maternal
interface. During pregnancy, this serves as a mechanism of
promoting maternal tolerance to the fetus through preventing
deleterious anti-fetal T cell responses.

Maternal vascular adaptations for placental
development

A proper placental development requires a deep maternal vas-
cular adaptation in early gestation. In this regard, different
steps of the angiogenic cascades and endothelial cell biology
are influenced by galectins (e.g., gal-1, gal-3, gal-8, gal-9)
[42]. For instance, several lines of evidence demonstrate
proangiogenic functions for gal-1, which result from direct
effects on endothelial cell activation via H-Ras signaling
[43] as well as from the modulation of endothelial cell adhe-
sion, migration and proliferation by interacting with the
neuropilin (NRP)-1/VEGFR2 signaling pathway [44].
Murine studies have demonstrated a critical role of VEGFR2
signaling during the physiological adaptation of the maternal
vascular bed to embryo implantation [45], which together with
the high local expression of NRP-1 during peri-implantation
stages [46] points out to a paramount role played by this lectin
in the control of pregnancy angiogenic responses. Indeed,
treatment with anginex (an artificial β-peptide targeting gal-
1 proangiogenic functions) resulted in decreased adhesion and
capillary tube formation in SGHPL-4 EVT-like cells in vitro
and impaired spiral artery remodeling and placental function
in an in vivo mouse model, causing preeclampsia-like symp-
toms during late gestation and fetal growth restriction [47].

Another galectin likely to be involved in maternal vascular
adaptation is gal-13 (placental protein 13, PP13), though evi-
dence in support of its role per se in the modulation of angio-
genic pathways is still elusive. In decidual tissue, gal-13 is
found selectively associated with T-cell-, neutrophil-, and
macrophage-rich foci of necrosis [48], suggesting that it might
act to attract, activate and kill maternal immune cells facilitat-
ing trophoblast invasion and spiral artery remodeling. More
recently, in vivo studies demonstrated hypotensive effects in
pregnant rats infused with gal-13 [49], associated with in-
creased heart rate and decreased peripheral resistance due to
general vasodilation. It was later demonstrated that gal-13
infusion both during pregnancy and in the non-pregnant state
was associated with vasodilation of veins and resistance arter-
ies beyond the uterine vascular tree [50, 51], suggesting that
placenta-derived gal-13 may be involved in generating a sys-
temic endothelial effect in the mother mediated by endothelial
nitric oxide synthase (eNOS) and prostaglandin signaling.

Galectins in parturition

Parturition is a coordinated process referred to as the “com-
mon pathway” that involves increased myometrial contract-
ibility, cervical ripening, activation of the decidua, and fetal
membranes with local pro-inflammatory changes. These pro-
cesses involve different uterine compartments including the
decidua, myometrium, fetal membranes, and placenta imply-
ing that activation of biological pathways may be different
across the various gestational tissues. As galectins are widely
expressed, we intend to discuss the galectin signature of ges-
tational tissues at term taking into consideration the origin of
the expression. However, due to the intimal interaction be-
tween decidua, chorion, and amnion, it may be difficult to
infer the galectin expression pattern of these tissues separately.
Although data is relatively scarce, evidence suggests that at
term, gal-1 is the galectin with the highest expression in the
human decidua. In healthy laboring women, gal-1 and gal-3
expression levels within the decidua decreased when com-
pared to non-laboring women [52]. Consistent with this, ma-
ternal gal-9 circulating levels are elevated early in healthy
pregnancy and remain increased until parturition, returning
to non-pregnant levels in the post-partum period [53]. In preg-
nant mice, gal-3 is mainly expressed in the endometrial cells
of the primary decidua basalis, metrial gland, and placenta;
and after parturition this lectin expression decreased as the
implantations sites resorbed [54], implying that the parturition
process at least in humans and mice occurs with a dysregula-
tion of the glycan-binding proteins.

PTB, a complex syndrome associated with multiple
causes

PTB is defined as birth before 37 + 0 gestation weeks (GW).
However, the simplicity of the definitions is in sharp contrast to
the complexity of the disease, whose etiology is far from being
understood. PTB is the leading cause of neonatal morbidity and
mortality and the single major cause of death in children up to 5
years of age in the developed world [55]. About 15 million
preterm neonates are born each year where genetic variation in
human birth timing imposed a high risk for prematurity in the
African American population [56]. In the European Union, the
PTB rate has risen constantly over the last 10 years, a trendwhich
corresponds to global figures [57, 58]. The prevalence varies
from country to country with a median of 7.1% of all births. In
Germany, 9%of all childrenwere born before the end ofGW37.
In parallel, the rate of extremely preterm deliveries (< 28 GW)
has risen by 64%. Neonates that are born preterm are at an
increased risk of short-term and long-term complications, with
the former being attributed to the immaturity of multiple organ
systems and the later ranging from disabilities originating from
these early complications to subtle neurodevelopmental impair-
ment [59] (Fig. 2).

472 Semin Immunopathol (2020) 42:469–486



Although preterm labor has a complex, multifactorial eti-
ology [60] microarray data from uterine tissue revealed similar
gene regulation patterns between term and preterm women
suggesting that acceleration of the gestational clock appears
to be involved in the PTB cases. In particular, spontaneous
preterm labor is perceived as pathological activation of the
above mentioned “common pathway” of parturition. Other
key factors for labor, cervical ripening, and decidual/
membrane activation, involve specific changes in inflamma-
tory and extracellular matrix proteins. These include increased
expression of inflammatory cytokines e.g. tumor necrosis
factor-α (TNF-α) and IL-1 and chemokines, increased activ-
ity of proteases matrix metalloprotease 8 (MMP-8) andMMP-
9, degradation of extracellular matrix components such as
fibronectin and an increase in glycosaminoglycans and
hyaluronan [61]. In addition, pro-inflammatory pathways in-
cluding chemokines (interleukin-8 (IL-8)), cytokines (IL-1
and -6), and contraction-associated proteins (oxytocin recep-
tor, connexin 43, prostaglandin receptors) eventually contrib-
ute also to myometrial activation [62].

While many studies examined the roles of galectin interac-
tions during gestation, the potential outcome of these interac-
tions in the context of PTB remains elusive. Shankar and co-
workers [63] have identified differences in choriodecidual gal-
1 expression between spontaneous preterm labor and
gestational-matched non-laboring patients, suggesting that de-
creased levels of gal-1 are associated with the underlying pa-
thology. Early studies demonstrated that galectins are
expressed in cervical and vaginal epithelial cells [64], which
could uniquely poise to engage microbes and initiate innate
immunity. Indeed, the observation that gal-1 is able to down-
regulate the pro-inflammatory environment stimulated by
LPS (e.g., IL-6 production, an important cytokine related to
PTB) in decidual cells derived from elective cesarean patients
at term suggests that this lectin may be important in the

regulation of local inflammation during the course of
chorioamnionitis [65]. Similarly, it has been shown that gal-
3 is increased in fetal membranes and in the amniotic epithe-
lium in patients with chorioamniotic infection [66], thereby
regulating the inflammatory response and/ or direct interaction
with the pathogens. In the following sections, we discuss sev-
eral of the multiple pathological processes associated with
preterm labor and the relevance of galectin-induced im-
mune-regulatory pathways:

Decline in progesterone and anti-inflammatory
mediators

Progesterone is a key player in maintaining uterine quies-
cence, and a withdrawal of this hormone is observed at partu-
rition onset. An understanding of this phenomenon has led to
the successful application of progesterone in threatened pre-
term labor [67]. Moreover, a recent study has shown that
progesterone treatment could serve as an anti-inflammatory
strategy to prevent PTB and adverse neonatal outcomes in-
duced by T cell activation [68]. While current data suggest
that progesterone regulates endometrial galectin expression
including gal-1 and gal-3 [69] and alterations of the proges-
terone receptor function during gestation associate with re-
duced levels of gal-1 expression [15, 70], future studies will
likely determine whether alterations in galectin expression
directly contribute to PTB pathophysiology.

Microbial infection

Microorganism-induced PTB is mediated by an inflammatory
process and the most studied mechanism is the activation of
toll-like receptors (TLRs). TLRs are membrane-bound pro-
teins that recognize pathogen-associated molecular patterns
(PAMPs) and activate the innate immune system to generate

Fig. 2 Microbial-induced inflammation and galectin-glycan circuits.
Schematic diagram to illustrate galectin functions as pattern-recognition
receptor for microbes associated with preterm labor. Galectin-1 (gal-1)
and gal-3 specifically bind the N-glycans displayed in the
Lipophosphoglycan (LPG). Gal-1 is able to bind at least six chlamydia

trichomonas glycoproteins (gp28, gp37, gp40, gp42, gp55, and gp105).
Galectins may facilitate the ascendant infection during pregnancy by
cross-linking host and microbial glycans. Abbreviations: Ceramide
phosphoinositol glycan core (CPI-GC); gp glycoprotein
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downstream signals through the release of cytokines (IL-1β,
TNF-α), chemokines (IL-8, CCL-2), prostaglandins and pro-
teases [71]. The activation of the innate immune response
through TLRs has the aim to control microorganisms that
may injure the embryo, however, excessive inflammation
could eventually trigger the common pathway of parturition
with cervical ripening, rupture of fetal membranes and placen-
tal detachment [61, 72]. TLRs can be expressed in the cell
surface (TLR-1, -2, -4, and -5) or in intracellular vesicles
(TLR-3, -7, -8, and -9). Cell-surface TLRs recognize accessi-
ble PAMPs such as bacterial lipoproteins and lipoteichoic acid
(TLR-2 as heterodimers with TLR-1 or TLR-6), lipopolysac-
charide (LPS) of Gram-negative bacteria (TLR-4) or bacterial
flagellin (TLR-5). Cytoplasmic TLRs recognize double-
stranded RNA (dsRNA) (TLR-3), single-stranded RNA
(ssRNA) (TLR-7 and TLR-8) or CpG enriched double-
stranded DNA (TLR-9) [71].

In human pregnancies, TLR-1 to TLR-10 have been found
and are mainly expressed by trophoblast cells, but also in the
cervix and uterus [73, 74]. However, differential expression of
TLRs has been observed according to the gestational age.
Particularly, in the third-trimester placenta, the expression of
TLR-2 was observed in endothelial cells, macrophages, and
syncytiotrophoblast and TLR-4 was prominently expressed in
syncytiotrophoblast and endothelial cells [75]. Functional
analysis also demonstrated that the term placenta can respond
to TLR-3, TLR-5, and TLR-7/8 agonists [76]. In a mouse
model, it has been demonstrated that activation of TLR-3 with
poly(I:C), an analog of dsRNA, promotes NF-kappa B signal-
ing with the induction of pro-inflammatory cytokines and
chemokines (e.g., IL-6, IL-1β, TNF-α, IFN-γ, IL-8, MCP-
1), leading to preterm delivery [77].Moreover, in women with
chorioamnionitis TLR-2 and TLR-4 are upregulated in fetal
membranes [78]. Administration of peptidoglycan, which is
part of the bacterial cell wall, induced TLR-1 and TLR-2-
mediated trophoblast cell death in vivo and in vitro.
However, apoptosis could be inhibited by the presence of
TLR-6, which also activates NF-kappa B signaling in tropho-
blasts with the secretion of IL-6 and IL-8 promoting an in-
flammatory response [79]. Both the pro-inflammatory re-
sponse and trophoblast apoptosis are processes strongly im-
plicated in PTB. As TLR-4 recognizes LPS it is not surprising
that TLR4-deficient mice are not susceptible to LPS- or
Escherichia coli–induced PTB [80, 81] and neutralizing anti-
body against TLR-4 can reduce inflammation-induced PTB
and fetal death in mice [82]. In rhesus monkeys, pretreatment
with a TLR-4 antagonist inhibited LPS-induced uterine con-
tractility and reduced IL-8, TNF-α, and prostaglandins [83].
Treatment with IL-10 prevented LPS-induced PTB with a
reduction of TNF-α, IL-6, and IL-1β in mice and rats [84, 85].

From the clinical point of view, associations between mi-
crobial induced inflammation and preterm labor have been
reported in several studies [86–88], but it is not clear why

some women experience PTB and some not, even with the
same exposure to pathogens. A striking example is a discrep-
ancy between the rate of lower genital tract and ascending
intra-amniotic infections, implicating that the role of the ma-
ternal immune system is key to identify those at risk.
Nevertheless, in 25% of all PTBs intra-amniotic infection is
involved [89]. Ascending infections are the likely cause, as
pathogens detected in the amniotic fluid and in the lower gen-
ital tract are the same [90]. Recently, the PREMEVA trial
investigated the effect of screening and therapy for bacterial
vaginosis (imbalance of naturally occurring bacterial flora
with an increase of the anaerobic type) in pregnant women
with a low or high risk of preterm labor (according to previous
PTB history) treated or not with clindamycin, which is one of
the two most often-used antibiotics to treat bacterial vaginosis
during pregnancy. The authors concluded that bacterial vagi-
nosis treatment in women with low-risk pregnancies did not
show a reduction of spontaneous PTB suggesting that the use
of antibiotics to prevent preterm delivery should be
reconsidered [91]. This finding is in line with other previous
randomized controlled trials and meta-analyses that have
shown no effect of antibiotics for pregnancy prolongation in
asymptomatic pregnant women with bacterial vaginosis
[92–94]. In addition, recent studies report that positive diag-
nosis with Chlamydia trachomatis (the most common aerobic
intracellular bacterium responsible for sexually transmitted
infections) shows no significant association with spontaneous
preterm labor [95]. However, other trials have shown that
women with chlamydia infections are 2.28 more likely to
deliver pre-term in comparison with those who were not in-
fected [96]. Group B Streptococcus (GBS, a gram-positive
bacterium) colonization is recognized as a risk factor for
PTB as being the most frequent cause of severe early-onset
infection in newborn babies. A recent review showed a con-
sistent increase in the risk of PTB in women with maternal
GBS colonization, which is stronger in case-control studies
compared to cohort or cross-sectional studies [97]. For
Trichomonas vaginalis, a vaginotropic extracellular protozo-
an parasite, similar results have been retrieved. Women with
asymptomatic trichomoniasis were randomly treated with
metronidazole or placebo. Preterm delivery occurred in 19%
of the metronidazole vs 10.7% in the placebo group. While
metronidazole eliminated the organism, it was reported as
ineffective in preventing preterm delivery and potentially even
increasing it, which has led to early termination of the trial
[98].

In the context of microbe recognition, galectins can directly
engage microbes by binding specific glycans on their surface
and thereby dictate the consequence of microbial exposure
[99]. Thus, galectins can function as both pattern recognition
receptors (PRRs) and innate immune effectors during micro-
bial infections [100], promoting pathogen clearance through
different mechanisms (i.e., phagocytosis, encapsulation,
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autophagy) or inhibiting adhesion and/or entry into the host
cell. This recognition and effector role can however be
‘subverted’ by certain pathogens, which can take advantage
of the host galectin repertoire for successful attachment, inva-
sion, and immune evasion [100, 101]. An example of this
strategy relevant for PTB is the Trichomonas vaginalis
lipophosphoglycan (LPG) and its immunocompetent cer-
amide phosphoinositol glycan core (CPI-GC) domain-
containing β-galactosides and abundant poly-N-acetyl-
lactosamine repeats [102], which provide targets for gal-1
and gal-3 recognition [64]. Recent studies in this area of re-
search have demonstrated that gal-1 mediates the adherence of
the parasite to cervical epithelial cells in an LPG-dependent
manner [103]. Moreover, CPI-GC collected from multiple
clinical isolates showed similar affinity to gal-1, but the affin-
ity to gal-3 differed between isolates from different patients,
suggesting that galectin-binding diversity may responsible for
the Trichomonas symptom disparity [64]. Another valid ex-
ample of preterm labor infection is Chlamydia trachomatis,
with gal-1 being able to bind to at least six chlamydial glyco-
proteins (gp28, gp37, gp40, gp42, gp55, and gp105). Thus,
gal-1 facilitates C. trachomatis infection by bridging bacterial
and host glycosylated receptors (such as PDGFRβ and β1/
αVβ3 integrins) [104]. As intrauterine ascension of pathogens
through the vaginal tract is one of the routes of pathogenic
entry that triggers preterm labor, all aspects regarding recog-
nition properties of the female tract (vagina, cervix, and pla-
centa) galectin repertoire and the dynamic of their subcellular
compartmentalization/secretion and interactions withmicrobi-
al carbohydrates warrant further investigations.

Evidence indicates a possible association between galectins
and TLRs. A well-studied example in the context of infection-
induced PTB is group B streptococci, bacteria that produce
membrane vesicles with extracellular matrix-degrading prote-
ases and pore-forming toxins leading to collagen degradation
in the chorio-decidual membranes [105]. Interestingly, in vitro
stimulation of cord blood samples with an invasive strain of
Streptococcus agalactiae (a group B Streptococcus) induces
gal-3 expression. Since fetal gal-3 serum levels increase with
gestational age, the authors speculated that impaired gal-3
expression may contribute in part to the high susceptibility
of preterm infants to infection as opposed to term infants or
adults [106]. In addition, RNA interference against TLR-3
was shown to prevent gal-9 expression in human umbilical
vein endothelial cells (HUVECs) stimulated with poly(I:C)
[107]. In line with this finding, activation of TLR-3 (by
poly(I:C)) and TLR-4 (by LPS) on fibroblasts derived from
rheumatoid arthritis patients lead to apoptosis protection
through induction of gal-9 expression [108]. Moreover, gal-
9 was increased upon stimulation with poly(I:C) in hepatitis C
virus-infected monocytes [109]. With these evidences, we
could hypothesize that activation of TLR-3 (principally by
dsRNA produced by the virus) could increase gal-9 exerting

a pro-inflammatory effect. It has also been described that gal-3
knockdown human synovial fibroblasts stimulated with an
agonist to TLR-2 (Pam3CSK4), TLR-3 (poly(I:C)-), or
TLR-4 (LPS) display a reduced response to TLR-mediated
IL-6 secretion, suggesting gal-3 functions as a positive regu-
lator of TLR activation [110].

Some evidence indicates a possible association between
periodontal infection caused by oral pathogenic bacteria
(e.g., Campylobacter rectus (C. rectus) or Porphyromonas
gingivalis (P. gingivalis)) and PTB [111]. Enhanced placental
TLR-4 expression was observed after oral infection with
C. rectus and P. gingivalis [112]. In a mouse model with
P. gingivalis infection, TLR-2-induced inflammation in the
fetal membrane (activation of NF-kappaB and p38 MAPK
pathways) leads to the upregulation of uterine contractility
causing preterm delivery [113]. Similarly, P. gingivalis LPS
induced IL-6 and IL-8 production via TLR-2 in human
chorion-derived cells [114]. Interestingly, increased gal-3
was found in the placenta, amniotic fluid, and serum in a
PTB model of P. gingivalis–infected mice. In vitro culture
of HTR-8/SVneo trophoblast cells with P. gingivalis LPS,
demonstrated increased levels of TNF-α and gal-3, and gal-
3 inhibition significantly downregulated P. gingivalis LPS-
i nduced TNF-α p roduc t i on [115 ] . Du r i ng the
neuroinflammatory response, it was demonstrated that gal-3
associates with TLR-4 through its CRD [116]. Moreover,
P. gingivalis LPS increased gal-9 expression in the human
periodontal ligament (connective tissue fibers) [117] suggest-
ing a role for gal-9 during infection-induced PTB.

We have demonstrated that stress challenge during early
pregnancy can enhance permeability of mucosal membranes
to the entry of bacterial products (e.g., LPS) and promote
transmucosal migration of commensal bacteria inducing fetal
loss in mice [41]. Stress-triggered fetal loss was prevented by
blocking of TLR-4 (anti-TLR-4 antibody) or neutralization of
LPS (using the bactericidal/permeability-increasing protein
(BPI), a protein that specifically binds and neutralizes LPS).
In addition, gal-1 deficient female mice were highly prone to
stress-triggered complete implantation failure, but treatment
with BPI markedly reduced the detrimental effect of stress in
pregnancy outcomes. However, there are not data available
regarding the susceptibility to ascending infections and PTB
in gal-1 deficient mice. The anticipated role of gal-1 as a key
factor against pathogen mediated PTB suggests that insuffi-
cient gal-1 could be a critical factor that predisposes some
women to infection-mediated PTB.

Clinical management

Screening for PTB consists in determining risk factors by taking
a detailed history of the pregnant woman. Ideally, potential risk
factors such as status post (s/p) previous PTB, short inter-
pregnancy interval et al are determined before pregnancy
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allowing for preventive strategies. General primary prevention
includes cessation of smoking and treatment of bacterial vagino-
sis in pregnancy [118]. However, in women with a history of
PTB, the prophylactic treatment with vaginal progesterone or
even a prophylactic cerclage may be considered [119]. General
screening for PTB such as routine measurement of the uterine
cervix by transvaginal sonography is not recommended.
However, sonographic assessment of the cervical length should
be included in the diagnostic work-up in symptomatic pregnant
women (regular spontaneous preterm contractions) and/or in
women with risk factors for spontaneous PTB [120]. In addition
to transvaginal sonography, biomarkers such as PAMG-1, fetal
fibronectin, and phIGFBP-1 obtained from cervico-vaginal se-
cretions may be used to specify the risk of a PTB within the next
seven days [121]. In women with a sonographic short cervix,
secondary prevention consists of treatment with vaginal proges-
terone [122]. Treatment with a cervical pessary has not demon-
strated to decrease the rate of spontaneous early preterm delivery
[123]. Before 24 weeks, cervical cerclage may be the treatment
of choice [124]. It should be noted that these measures have only
proven to be effective in singletons and not in multifetal
gestations.

The main aim of tertiary prevention in the context of threat-
ened PTB before 34 weeks of gestation is to prolong pregnan-
cy for at least 48 h in order to allow for the antenatal corticoid
application. There is broad international consensus that
placenta-crossing steroids (betamethasone, dexamethasone)
must be given to women at imminent risk for PTB before
34 weeks in order to accelerate organ maturation of the fetus
[125]. In order to achieve that, tocolysis, emergency cerclage,
progesterone, and vaginal pessary can be used, adapted to the
clinical situation and after counseling, ideally involving a mul-
tidisciplinary team including a neonatologist. Accurate assess-
ment of the remaining pregnancy duration is paramount in
order to find the best timing of steroid application as the ideal
window is seven days before birth. Preterm premature rupture
of membranes (PPROM) requires balancing the risks between
prolongation of pregnancy for maturation and timely delivery
in order to prevent the potentially devastating complications
of ascending intrauterine infections.

In our view, management of threatened PTB is largely
symptom-driven and preventative and the therapeutic strate-
gies are guided not by causative approaches, but rather by
preventative measures. Research in the field of PTB must be
intensified in order to clarify the underlying etiologies
allowing for targeted strategies in the future. Insights into
the galectin-glycan circuits of tissues such as myometrial
smooth muscle cells, decidua, placenta, amnion as well as
fetal and maternal blood are sparse [62]. Identifying specific
glycoimmune phenotypes, as well as factors capable of mod-
ulating maternal immune responses, can help to better predict
which women might be at risk for preterm labor, permitting
better surveillance and prophylaxis.

Galectin-glycan circuits as modulators of
inflammation and infection: insights from pregnancy

Glycans are essential functional groups that facilitate and in-
fluence the reproduction process. For instance, the embryo
implantation process is driven by glyco-specific interactions
between the uterine epithelium and the outer trophoblast cell
layer of the blastocyst, such that perturbations of the system
generally result in implantation failure or poor pregnancy out-
comes. Glycosylation relies on a delicate balance in the activ-
ity of specific modification enzymes (glycosyltransferases and
glycosidases), and the glycocode expressed in a particular
tissue is highly dependent on the cell type and its develop-
mental, nutritional and pathological state. The specific
glycome expressed at the maternal–fetal interface can play
multiple roles during pregnancy. For example, N-linked gly-
cans (attached to the nitrogen of an asparagine side-chain)
have been shown to modulate trophoblast invasion [126,
127] and maternal–fetal tolerance [128, 129] during placenta-
tion. O-Linked glycans (attached to the hydroxyl oxygen of
serine, threonine, tyrosine, hydroxylysine, or hydroxyproline
side-chains) can influence recognition events during fertiliza-
tion (e.g., sperm-egg interactions) [130].

Extracellular functions of galectins depend on the cross-
linking of surface N- and O-glycans expressed by maternal
immune cells, trophoblasts, and endothelial cells at the fetal-
maternal interface (Fig. 3). As glycosylation is directly related
to the physiological cellular status, changes in glycan compo-
sition are highly regulated during pregnancy and can have a
fundamental impact on galectin activity [131–133]. For in-
stance, placental expression of N-acetylglucosaminyl transfer-
ase V (GnTV), which generates the β1-6-N-acetylglucosamine
branches in complex N-glycans recognized by gal-1, is en-
hanced in the first trimester compared with term pregnancies
[126]. Since gal-1 promotes EVT differentiation and invasion
during early pregnancy [134], it is possible that increased activ-
ity of GnTV may lead to enhanced signaling by this lectin
[127]; particularly by promoting its interaction with cell surface
β1 integrin [127, 135–141] Furthermore, villous tissues from
early spontaneous miscarriages show a reduced abundance of
such (β-6) branches together with decreased GnTV expression
in comparison with healthy pregnancy villous tissues [142].
Thus, differences in the glycan composition of trophoblast
related-proteins at the same gestational age could be important
disease biomarkers that await further investigation. Indeed, the
placental expression of GnTV was reported to be elevated in
preeclampsia compared to normal pregnancies [143]. Thus, in-
creased gal-1 expression as we have demonstrated in late-onset
preeclampsia could represent a protective mechanism of the
trophoblast to overcome the severe inflammatory milieu that
characterizes the syndrome [47]. This is an interesting example
of how the metabolic status of trophoblast cells is reflected by
their glycan signature, which is shaped by the intracellular
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levels of GnTV expression affecting the quality and branching
of complex N-glycans and therefore modulating galectin
binding.

Glycosylation in pregnancy, term, and preterm labor

Protein glycosylation is of fundamental importance at all
stages of human pregnancy from conception and implantation
to delivery. Especially important are antennae sequences of N-
and O-glycans which are potential ligands for lectins. Figure 3
displays the repertoire of glycan epitopes which are known to
be expressed in the human male and female reproductive
tracts. Both human gametes express functionally important
glycoproteins. Glycoproteins of the extracellular matrix zona
pellucida of the oocyte, present the sialyl-LexisX sequence
[NeuAcα2-3Galβ1-4(Fucα1-3)GlcNAc] as their major termi-
nal structures on both N- and O-linked glycans. This terminal
sialyl-LexisX sequence was shown to be the ligand that me-
diated sperm-egg binding [144].

Characterization of human sperm N-glycans identified
high mannose, biantennary complex glycans with bisecting
GlcNAc and multi-antennary complex N-glycans with
LewisX and LewisY [Fucα1-2Galβ1-4(Fucα1-3)GlcNAc]
sequences. Such N-glycan structural features have been asso-
ciated with inhibition of both the adaptive and innate immune
systems [145]. High levels of LewisX and LewisY sequences
were also observed on human seminal plasma N-glycans (and
O-glycans), but levels of biantennary complex glycans with
bisecting GlcNAc were reduced. This altered glycosylation
profile would be more implicated with inhibition of the adap-
tive immune system and less so with inhibition of the innate

immune response [146]. The presence of immunosuppressive
glycans on sperm and in seminal plasma might function in
improving fertilization outcomes [147].

Some of the most studied pregnancy-associated cell types
are trophoblast cells, which are required for the formation and
maintenance of the placenta and therefore functionally mediate
the exchange of gases, transport of nutrients, and hormone pro-
duction. There are different sub-types of trophoblast cells, EVT,
which invade decidua and spiral arteries and are important in
maintaining maternal blood supply into the placenta,
syncytiotrophoblasts (STB), which are located on the villous
surface and therefore are the primary cellular interface between
the maternal blood supply and placental villi, and
cytotrophoblasts (CTB), which are located just below the
STBs. Glycomic characterization of theN-glycans of these cells
revealed both common and differential glycan structural fea-
tures. All three cell types expressed abundant high mannose
glycans and dominance of α2-3 linked sialylated glycans over
α2-6 linked. All cell types also expressed complex biantennary
glycans with bisecting GlcNAc, but levels in EVT were lower
than in CTB and STB. In contrast, EVT expressed higher levels
of multiantennary and polylactosamine extended complex N-
glycans compared to CTB and STB. Theα2-3 linked sialylated
termini and the polylactosamine antennae are both potential
ligands for galectins.

A genome-wide association study (GWAS) has found that
slit guidance ligand 2–roundabout guidance receptor 1
(SLIT2-ROBO1) signaling in trophoblasts is associated with
PTB and that higher mRNA levels of SLIT2 and ROBO1 are
detected in the basal plate of placentas from PTB samples
[148]. Interestingly, knockdown of ROBO1 in trophoblast-

Fig. 3 Glycan terminal structures found in the reproductive system. The
LacNac structures can be potential ligands for galectins expressed in the
reproductive system, and the binding epitopes are shown within
rectangles. Modifications of LacNac structures by sialic acid and fucose

could either block or enhance galectin binding. Abbreviations used in the
figure: gal galactose; GlcNAc N- acetylglucosamine; NeuAc Neuraminic
Acid; Fuc Fucose
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derived cells upregulated 6 of 10 pregnancy-specific glyco-
proteins (PSGs). PSGs are members of the immunoglobulin
superfamily and are produced by trophoblast cells and pass
into the maternal blood supply during pregnancy. All 10 PSGs
have been implicated in immunomodulatory functions [149]
and are important for the maintenance of normal pregnancy
[150]. PSGs contain multiple potential N-glycosylation se-
quences and also potential sites for O-glycosylation and evi-
dence of glycosylation have been indicated by lectin binding
studies [151]. Recently, we have characterized PSG1 n detail
in terms of its glycosylation [152]. We showed that PSG1
contains multi-antennary complex N-glycans with high levels
of α2-3 sialic acid capping. Low levels of N-glycans with
bisecting GlcNAc were also observed. In addition, we dem-
onstrated that PSG1 specifically interacts with gal-1-1 with an
estimated KD of 0.13uM. Of potential functional importance,
the binding of PSG1 by gal-1 protected it from oxidative
inactivation.

The best-characterized pregnancy-associated glycopro-
tein in amniotic fluid is glycodelin A (GdA), which is a
member of the lipocalin family of proteins. Lipocalins are a
large family of small proteins that share tertiary structures
and, except for glycodelin, typically transport or store
small biological compounds such as vitamins and steroid
hormones. Schiefner et al. [153] have determined the crys-
tal structure of GdA and showed that it forms a dimer that
presents its N-glycans in an array format conducive to
high-affinity lectin binding. Interestingly the glycodelin
gene has only been found in humans and higher primates
and Schiefner et al. have pointed out that the occurrence of
glycodelin coincides with the evolution of menstruation in
higher primates. The detailed structural characterization of
GdA N-glycosylation showed that two of the three poten-
tial N-glycosylation sites are occupied and that there is
site-specific glycosylation. Asn-28 carries high mannose,
hybrid, and complex-type structures whereas Asn-63 ex-
clusively carries complex glycans [154]. Subsequent anal-
yses using more sensitive mass spectrometry methodolo-
gies revealed the presence of a more complex glycome
including tri- and tetra- antennary complex structures car-
rying the Sda epi tope (NeuAcα2–3(GalNAcβ1–
4)Gal)[155]. Interestingly, it has also been demonstrated
that GdA from women with gestational diabetes mellitus
(GDM) have altered N-glycan structures with reduced
levels of α2-6 sialylation and high mannose glycans and
an increase in levels of Sda epitopes. These glycosylation
changes correlated with reduced immunosuppressive activ-
ity in in vitro assays [156]. It has recently been reported
that the odds of PTB are 30% higher in women with GDM
[157].

T cells are a well-defined target of GdA. GdA has been
discovered to inhibit T cell proliferation in response to
allogeneic antigens [158] and induce apoptosis of activated

T cells [159]. Chronic chorioamnionitis (CCA) is the pro-
cess of amniotropic infiltration of maternal T cells, which
can break maternal/fetal tolerance and lead to maternal
anti-fetal allograft rejection [160]. CCA is one of the major
placental lesions of spontaneous preterm birth and is con-
sidered as the most common pathology of late preterm
birth [161]. Proteomic analysis of amniotic fluid samples
has found that GdA is significantly lower in CCA, com-
pared to the samples from acute chorioamnionitis and ges-
tational age-matched controls [162]. These results suggest
a pathophysiological link between preterm birth and GdA.
The glycans on GdA may be associated with maternal tol-
erance to fetal antigens and PTB.

Human chorionic gonadotropin (hCG) is another essential
pregnancy-associated glycoprotein. Recent glycomic studies
have shown that hCG from pregnant women corresponded to
mono-, bi-, tri-, and tetra-antennary N-glycans. There was also
a substantial amount of bisected N- glycan structures with
abundant LewisX capping. Interestingly hCG from women
later diagnosed with pre-eclampsia also showed a high abun-
dance of sialylated bi-antennary N-glycans [163].

Dynamic changes in cervical glycosaminoglycans
(GAGs) have been found during pregnancy [164]. Six
types of GAGs have been identified: hyaluronan (HA),
dermatan sulfate (DS), keratan sulfate (KS), chondroitin
sulfate (CS), heparin, and heparan sulfate (HS). However,
HA exclusively increases from 19% in early pregnancy to
71% at term. In addition, the size of HA decreases in labor,
due to higher activity of HA digesting enzyme hyaluroni-
dase. The changes of HA during pregnancy are hypothe-
sized to contribute to cervical ripening for term and PTB.

A potential cause of PTB are infections ascending from
the vagina to the intrauterine cavity through the cervical
tube [4]. The change of permeability of the cervical tube is
related to preterm birth [165]. Mucin glycoproteins are a
major constituent of mucus along the cervical tube, which
functions as a physical barrier against ascending bacteria.
These proteins are extensively O-glycosylated and the O-
glycans are heavily clustered in Ser/Thr rich domains,
which are separated by short non-glycosylated regions.
These O-glycan chains can be terminated by ABO blood
groups, Lewis antigens, and sialic acid. As glycans can be
used as receptors by many bacterial adhesins during infec-
tion, the change of cervical mucus glycans could alter the
microbiome in the intrauterine cavity.

Concluding remarks and future perspectives

Current evidences have established that galectins have
multiple roles in healthy gestation and regulate the immune
response during infections. However, our understating of
the role of galectins in parturition is scarce and key

478 Semin Immunopathol (2020) 42:469–486



priorities to further reveal their contribution include (1)
defining the galectin signature during healthy parturition
and preterm labor, (2) delineation of the mechanism (e.g.,
glycan structures) by which galectins regulate ascending
infections and orchestrate the immune response against
microbes, and (3) identifying galectins as possible regula-
tors of cervical remodeling and uterine senescence that
may predispose to cervical dysfunction and preterm labor
in women. Focused studies in animal models and human
tissue are likely to reveal the galectin-glycans circuits over
the onset of labor and post-partum tissue repair.
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