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SUMMARY
Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness,
allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore
organ function is not fully understood. Here, we show that a substantial fraction ofmuscle stem cells (MuSCs)
undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is
required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances sup-
pression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of
healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic
effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles.
Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regen-
eration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve
optimal tissue regeneration.
INTRODUCTION

Skeletal muscle regeneration provides a paradigmatic example

for thedecisive roleof tissue-resident stemcells and thenecessity

of cellular interactions to achieve organ restoration. Muscle stem

cells (MuSCs; also known as satellite cells) are indispensable for

muscle regeneration but require assistance and instructions

from fibroblasts, endothelial cells, fibroadipogenic progenitor

cells (FAPs), and immune cells, among others (Chargé and Rud-

nicki, 2004; Tidball, 2011; Relaix and Zammit, 2012). Such cells

not only provide critical support forMuSCs, enabling their expan-

sion, but might also promote secondary cell death (Saclier et al.,

2013; Latroche et al., 2015; Tidball and Villalta, 2010; Joe et al.,

2010; Forbes and Rosenthal, 2014). Secondary cell death is not

necessarily harmful but might elicit beneficial effects. For

example, programmed cell death in FAPs, induced by TNF-

releasing inflammatory macrophages, limits fibrosis in acutely
This is an open access article under the CC BY-N
damaged skeletal muscles (Lemos et al., 2015). Moreover,

MuSCs might engage in a battle of the ‘‘survival of the fittest’’ to

ensure that damaged or less fit stemcells are eliminated (Bowling

et al., 2019). It has been proposed that tissue stem cells are

routinely lost and replaced in a process called neutral cell compe-

tition, but many questions related to such a machinery, including

the mechanisms by which unfit cells are removed, have yet to be

answered (Klein and Simons, 2011). At present, it is not known

whether and to what extent MuSCs succumb to programmed

cell death in acutely damaged and continuously regenerating

dystrophic muscles. Moreover, very little attention has been

paid to the specificmechanismsused for theelimination of paren-

chymal stemcells, althoughcontrol of stemcell quantityandqual-

ity by programmed cell death during a phase of massive expan-

sion might be as important to achieve proper tissue

homeostasis and regeneration as the regulation of self-renewal

and differentiation (Koren et al., 2018; Weinlich et al., 2017).
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The pathology of Duchenne muscular dystrophy (DMD) is

characterized by sustained activation of MuSCs and contin-

uous inflammation, leading to pronounced cell death within

the regenerating muscle tissue (Rosenberg et al., 2015). The ef-

ficiency of MuSC-dependent skeletal muscle regeneration de-

pends strongly on the specific state and composition of inflam-

matory cells in the regenerating tissue, the release of

inflammatory and anti-inflammatory cytokines, and the duration

of inflammatory responses (Forbes and Rosenthal, 2014). In-

flammatory conditions can induce various modes of pro-

grammed cell death, including apoptosis and different forms

of regulated necrosis (Ashkenazi and Salvesen, 2014; Newton

and Manning, 2016). TNF-a and IFN-g, which are present in

dystrophic muscles, trigger the recently identified prototypic

form of regulated necrosis called necroptosis because of for-

mation of the necrosome complex following association and

auto- and transphosphorylation of the receptor-interacting

serine/threonine-protein kinases RIPK1 and RIPK3. Phosphory-

lation of RIPK3 is essential to recruit and phosphorylate MLKL

(mixed lineage kinase domain-like protein), which results in a

late wave of JNK activation and production of reactive oxygen

species (ROS), eventually causing oncotic cell death (Vanden

Berghe et al., 2014; Grootjans et al., 2017). RIPK3-dependent

necroptosis plays part in pathological processes such as heart

muscle infarction (Zhang et al., 2016), inflammatory diseases

(Welz et al., 2011), and tumor metastasis (Strilic et al., 2016),

but a role in tissue regeneration or in the control of stem cells,

including MuSCs, has not been investigated. Likewise, very lit-

tle is known about a potential epigenetic regulation of necrop-

tosis, when defining epigenetics as a stably heritable pheno-

type resulting from changes in a chromosome without

alterations in the DNA sequence (Berger et al., 2009). So far,

it has only been reported that inhibition of the epigenetic regu-

lator UHRF1 (ubiquitin-like, containing PHD and RING finger

domains 1) in Ripk3-null cancer cells reduces Ripk3 promoter

methylation (Yang et al., 2017).

Here, we delineated the mode and role of MuSC death during

skeletal muscle regeneration under acute and chronic disease

conditions. We discovered that a subset of MuSCs undergoes

either necroptotic or apoptotic cell death in dystrophic muscles,

while acutely damaged or healthy muscles are devoid of necrop-

totic MuSCs. Unexpectedly, separate or combined inhibition of

apoptosis and necroptosis in MuSCs impaired skeletal muscle

regeneration and function in mdx mice. Co-culture experiments

revealed that MuSCs from dystrophic muscles restricted expan-

sion of healthy MuSCs, an effect that was strongly enhanced

when necroptosis was blocked by Ripk3 inactivation in dystro-

phic MuSCs. To decipher the molecular basis for increased pre-

disposition of dystrophic MuSCs for necroptosis, we conducted

a short hairpin RNA (shRNA)-based screen. We found that

CHD4, an essential component of the NuRD chromatin remodel-

ing complex, completely suppresses expression of the necrop-

tosis effectorRipk3 in healthyMuSCs. In contrast, CHD4-depen-

dent repression of Ripk3 is partially alleviated in mdx MuSCs,

allowing elimination of a subset of MuSCs by programmed cell

death. Our data indicate that epigenetic regulation of necropto-

sis is critical for maintaining a healthy stem cell compartment in

dystrophic muscles.
2 Cell Reports 31, 107652, May 19, 2020
RESULTS

Skeletal Muscle Dystrophy but Not Acute Muscle Injury
Leads to Increased Necroptosis of MuSCs
To determine the mode and the extent of programmed cell death

in MuSCs during acute muscle regeneration and in chronically

regenerating dystrophicmuscles, we performed immunofluores-

cence analysis of tibialis anterior (TA) muscles from wild-type

(WT) mice injected with cardiotoxin (CTX) and from mdx mice.

Apoptotic cells were detected by staining for cleaved CASP3.

Necroptotic cells are unequivocally identified by staining for

pMLKL (phosphorylated MLKL), a specific marker for necrop-

totic cell death (Hildebrand et al., 2014). However, because anti-

bodies against pMLKL did not yield reliable results in our hands

when using sections of dystrophic mouse tissues, we used anti-

bodies against RIPK3 to identify cells that might potentially un-

dergo programmed necrosis (Vanden Berghe et al., 2013). In-

duction of acute muscle injury by CTX injection into WT mice

resulted in a major increase in apoptotic PAX7+ MuSCs, as ex-

pected (Tidball, 2011; Tidball and Villalta, 2010), whereas

RIPK3+ MuSCs were essentially absent in both undamaged

and acutely damaged muscles (Figures 1A–1C). Notably, how-

ever, and in stark contrast to WT muscles, mdx muscles

harbored approximately equal numbers of both apoptotic and

RIPK3+/PAX7+ MuSCs (Figures 1A–1C). Injection of CTX into

TA muscles of mdx mice further enhanced the number of both

apoptotic PAX7+/cleaved CASP3+ and PAX7+/RIPK3+ MuSCs

(Figures S1A–S1C). Because RIPK3 expression alone is not an

unequivocal marker for necroptosis, we performed electron mi-

croscopy (EM) analyses, allowing unbiased determination of

cell death types in MuSCs via morphological criteria such as for-

mation of pyknotic nuclei, fragmentation of nuclei, and intact or

disrupted plasma membranes (G€unther et al., 2013; Kostin

et al., 2003; Shi and Garry, 2006; Boonsanay et al., 2016).

Consistent with immunofluorescence staining, EM analysis

confirmed thatmdxmuscles contain both apoptotic and necrop-

totic MuSCs, whereas undamaged WT muscles are devoid of

dying MuSCs (Figures 1D and 1E).

To understand whether the occurrence of necroptotic MuSCs

in dystrophic muscles is conserved between species, we

analyzed human subjects with Becker muscular dystrophy

(BMD) caused by in-frame deletions within the dystrophin gene

(Emery, 2002). BMD patients exhibit a milder pathology in com-

parison with DMD patients, enabling better quantification of

MuSCs, as muscle biopsies from human DMD patients often

lack large areas of intact muscle tissue containing MuSCs (Den-

nett et al., 1988). Similar to mdx muscles in mice, we found

increased numbers of PAX7+ MuSCs in human BMD muscles

undergoing regeneration, as indicated by elevated serum mus-

cle creatine kinase concentrations (Figures 1F–1H). More impor-

tantly, we detected several necroptotic PAX7+ MuSCs by co-

staining with antibodies against pMLKL, a specific marker for

necroptotic cell death (Hildebrand et al., 2014), in BMD muscle

biopsies, whereas pMLKL+/PAX7+ MuSCs were never found in

muscle biopsies of healthy individuals (Figures 1F and 1G).

In contrast to a previous study (Morgan et al., 2018), immuno-

fluorescence analysis did not reveal the presence of any necrop-

totic myofibers in skeletal muscles ofmdxmice and human BMD



Figure 1. A Subpopulation of MuSCs Undergo Necroptotic or Apoptotic Cell Death in Chronic Muscle Disease

(A–C) Immunofluorescence staining of TAmuscle cross-sections from control andmdxmice 2 weeks after CTX injury using antibodies against PAX7 and cleaved

CASP3 to detect apoptosis (A) and PAX7 and RIPK3 to detect necroptosis (B) in MuSCs (n = 3 for each group). Scale bar, 25 mm.

(C) Quantification of cells identified in (A) and (B).

(D and E) EM images (MF, myofiber; # denotes chromatin condensation [apoptosis]; + denotes intact chromatin/nucleus [necrosis]; asterisk denotes MuSC

disrupted membrane) (D) and quantification (E) of MuSCs from control (WT) andmdxmice undergoing apoptosis and necrosis (n = 3 for each group). Scale bar,

1 mm.

(F andG) Immunofluorescence staining for PAX7 and pMLKL to visualize (F) and quantify (G)MuSCs undergoing necroptosis in healthy (control) (n = 4) andBecker

muscular dystrophy (BMD) patients (n = 4). Scale bar, 50 mm.

(H) Serum creatine kinase activity in control and BMD patients (n = 3 or 4 each).

Statistical analysis: *p < 0.05 and **p < 0.01, two-way ANOVA followed by Bonferroni post-test with alpha = 5%. All analyses indicated across the experiments

were biological replicates unless otherwise stated.
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patients (Figures 1B and 1F). Consistent with this observation,

RIPK3 protein was detected by western blot analysis only in iso-

lated mdx MuSCs but neither in purified myofibers of WT and

mdx mice nor in MuSCs from WT mice (Figures S1D and S1E).

Taken together, the data demonstrate that a subset of MuSCs

undergo apoptosis during acute injury-induced regeneration,

whereas necroptotic cell death of MuSCs is an exclusive feature

of dystrophic muscles, characterized by chronic inflammation

and regeneration.

Inhibition of Necroptosis in MuSCs of mdx Mice
Compromises Skeletal Muscle Regeneration and
Muscle Function
The observation that a subset of MuSCs specifically undergoes

necroptosis in dystrophic mdx muscles raised the question

whether removal of MuSCs by programmed cell death

is an unwanted byproduct of inflammatory processes in chroni-

cally regenerating muscles or serves a specific purpose. To

answer this question, we generated Pax7CreERT2/Ripk3loxP/loxP

and Pax7CreERT2/Ripk3loxP/loxP/mdx mice (hereafter Ripk3mKO

and Ripk3mKO/mdx, respectively), which permit MuSC-specific

deletion of Ripk3 in WT and mdx mice after administration of

tamoxifen (TAM) (Figure 2A). Ripk3 is an essential component

of the necroptosis pathway, and its deletion essentially abro-

gates necroptosis (Vanden Berghe et al., 2014; Grootjans

et al., 2017). In agreement with previous studies that did not un-

cover a requirement of Ripk3 for normal development and tissue

homeostasis (Zhao et al., 2017), we did not detect any discern-

able effects of Ripk3 inactivation on MuSC numbers, muscle

morphology, and regeneration in mice with an intact dystrophin

gene (Figures S1F–S1H).

We found that MuSC-specific inactivation of Ripk3 in mdx

mice strongly increased the number of apoptotic MuSCs, indi-

cating that inhibition of necroptosis facilitates enhanced activa-

tion of apoptosis in MuSCs of mdx mice (Figures 2B and 2C).

Furthermore, the increased rate of apoptosis was associated

with a reduction of PAX7+ MuSCs in Ripk3mKO/mdx compared

with mdx mice (Figure 2D), indicating that prevention of necrop-

tosis in mdx MuSCs blunts the increase of MuSC numbers.

Notably, the number of CD45+ and CD68+ cells did not change

inmdxmuscles after inactivation of Ripk3, indicating that the in-

flammatory response is not altered after suppression of necrop-

tosis in mdx MuSCs, which makes sense, as the major driver of

inflammation in mdx muscles are damaged muscle fibers (Fig-

ures S1I–S1M). Consistently, CD45 and CD68 staining revealed
Figure 2. Necroptosis and Apoptosis of MuSCs Ameliorate Muscle Fu
(A) Schematic representation of the tamoxifen regimen.

(B) Immunofluorescence staining of TA muscle cross-sections from mdx and md

PAX7 and cleaved CASP3 (n = 3 for each group). Scale bar. 25 mm.

(C) Quantification of apoptotic CASP3+/PAX7+MuSCs in TA muscle cross-sectio

(D) Quantification of total PAX7+ MuSCs in TA muscle cross-sections.

(E) Schematic representation of the tamoxifen regimen, z-VAD inhibitor treatmen

(F–I) Immunofluorescence staining of TA muscle cross-sections frommdx andmd

tamoxifen treatment and DMSO or z-VAD inhibitor treatment (n = 3 or 4 for each

(J) H&E staining of TA muscles sections from mdx and mdx/Ripk3mKO mice treat

(K) Quantification of muscle grip strength of mdx and mdx/Ripk3mKO mice treate

Statistical analysis: *p < 0.05, **p < 0.01, and ***p < 0.005, two-way ANOVA follow

experiments were biological replicates unless otherwise stated.
that increased RIPK3 expression in dystrophic muscles is not

limited to MuSCs but occurs in CD45+ and CD68+ cells as well

(Figures S1I, S1K, and S1M).

To obtain additional insights into the physiological relevance

of programmed cell death and to analyze whether inhibition of

increased apoptosis prevents adverse effects of MuSC-specific

Ripk3 inactivation on muscle morphology and function in mdx

mice, we pharmacologically suppressed apoptosis in mdx

mice by systemic administration of the cell-permeable, pan-cas-

pase inhibitor z-VAD (Figure 2E). Inhibition of apoptosis with

z-VAD significantly reduced the number of apoptotic PAX7+/

cleaved CASP3+ MuSCs and moderately increased the number

of PAX7+/RIPK3+ MuSCs in mdx muscles (Figures 2F–2I). In

contrast, inactivation of Ripk3 essentially eliminated necroptotic

MuSCs and increased the number of apoptotic PAX7+/cleaved

CASP3+ in mdx muscles (Figures 2F–2I), indicating that removal

of MuSCs in dystrophic muscles is secured by a reciprocal

crosstalk between different programmed cell death pathways.

Interestingly, suppression of apoptosis did not improve mus-

cle regeneration in Ripk3mKO/mdx compound mutants (Fig-

ure 2J), indicating that the impaired muscle morphology in

Ripk3mKO/mdx is not caused by increased apoptosis but rather

by the failure of MuSCs to restore damaged muscle fibers in

continuously regenerating muscles. In contrast to the inhibition

of necroptosis, suppression of apoptosis did not change the

number of MuSCs in mdx mice, although we observed a further

decline of MuSC numbers in compound Ripk3mKO/mdxmice af-

ter z-VAD treatment (Figure S1N). The data suggest that com-

bined inhibition of necroptosis and apoptosis compromises the

quality of the MuSC pool and thereby restricts its expansion.

To determine whether the worsened muscle morphology in

Ripk3mKO/mdx mice with and without z-VAD treatment has a

functional impact on muscle strength, we performed grip

strength tests. Consistent with the aggravatedmuscle pathology

and attenuation of MuSC expansion, we found that inhibition of

necroptosis by inactivation of Ripk3, suppression of apoptosis

by z-VAD treatment, or a combination of both substantially

reduced grip strength compared with untreated mdx mice (Fig-

ure 2K). The failure to improve muscle function by combined in-

hibition of cell death pathways corresponds to the further decline

of MuSC numbers in compound Ripk3mKO/mdx mice treated

with z-VAD. To further validate these results, we generated

Casp8mKO/Ripk3mKO/mdx mice. TAM treatment of these mice

led to genetic inactivation of both apoptosis and necroptosis

specifically in MuSCs. Importantly, muscle grip strength tests
nction in Chronic Muscle Disease

x/Ripk3mKO mice 2 weeks after tamoxifen treatment using antibodies against

ns.

t, muscle grip strength measurement, and time points of TA muscle collection.

x/Ripk3mKOmice for PAX7 and cleaved CASP3 (F) and RIPK3 (H) 2 weeks after

group) and quantified in (G) and (I), respectively. Scale bar, 25 mm.

ed with DMSO or z-VAD inhibitor (n = 3 for each group). Scale bar, 100 mm.

d with DMSO or z-VAD inhibitor (n = 3 or 4 for each group).

ed by Bonferroni post-test with alpha = 5%. All analyses indicated across the
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of TAM-treated triple-mutant mice fully recapitulated the results

obtained by treatment of Ripk3mKO/mdx mice with z-VAD (Fig-

ure S1O). Moreover, adult mdx/mlklKO mice lacking the necrop-

totic effector mlkl showed impaired tissue morphology and

reduced muscle strength, confirming the importance of necrop-

tosis for efficient regeneration in dystrophic muscles (Figures

S1P and S1Q). Taken together, these data clearly demonstrate

that failure to remove a potentially deleterious subpopulation of

MuSCs through necroptosis and apoptosis reduces the fitness

of the MuSC population, thereby compromising proper muscle

regeneration and function.

Chronic Muscle Injury Predisposes Murine and Human
MuSCs to Undergo Necroptosis
To gain further understanding into the cell autonomous role of

cell death pathways, we next analyzed freshly isolated mouse

and human MuSCs in culture. In comparison to healthy control

cells, MuSCs from mdx mice and BMD patients showed a pro-

nounced increase in the rate of necroptosis, as indicated by

steady accumulation of EthD-III incorporating MuSCs (Krysko

et al., 2008; Strilic et al., 2016) (Figures 3A and 3B; Videos S1

and S2). Treatment with the RIPK1 kinase inhibitor necrostatin-

1 (Nec-1) (Degterev et al., 2005, 2008) substantially reduced nec-

roptotic cell death (Figures S2A and S2B; Videos S1 and S2),

while inhibition of apoptosis with z-VAD increased necroptosis

in MuSCs from human BMD patients, further confirming the

crosstalk between necroptosis and apoptosis (Figure S2B;

Videos S1 and S2). The dramatic increase in necroptotic mdx

MuSCs in vitro demonstrates that necroptosis is not a rare event,

although the rather small number of necroptotic (and apoptotic)

cells detected in mdx muscles seems to indicate otherwise. We

reason that phagocytic cells continuously remove dying cells

in vivo, generating the false impression that necroptotic (and

apoptotic) cell death is rare. The absence of phagocytes in cul-

tures of MuSCs avoids this complication and allows accurate

quantification of the full extent of necroptosis.

The tightly regulated generation of necroptotic MuSCs inmdx

muscles, together with the adverse effects of necroptosis inhibi-

tion on muscle regeneration, suggested that some MuSCs,

which arise in the dystrophic environment, need to be removed
Figure 3. Predisposition ofMuSCs fromDystrophicMuscles for Necrop

Is Associated with Chromatin Reorganization

(A) EthD-III incorporation rates of MuSCs isolated from control and mdx mice in

(B) EthD-III incorporation rates of MuSCs isolated from healthy individuals and B

(C) Schematic of co-culture setup with YFP+ WT MuSCs in direct monolayer co-

(D) Representative images of co-cultured MuSCs (insets are magnifications of in

(E) Quantification of YFP+ WT MuSCs incorporating EthD-III at endpoints as in (D

(F) Schematic of transwell-assay setup. WT,mdx, andmdx/Ripk3mKO MuSCs are

Matrigel at clonal density.

(G and H) Representative images of MuSC colony sizes after 4-day culture in Ma

(I) Volcano plot of ATAC-seq data showing increase of chromatin accessibility in

group.

(J) Volcano plot of RNA-seq data showing increase of transcriptional upregulation

group.

(K) Correlation scores between chromatin accessibility from (I) and actively trans

(L) Heatmap representation of genes coding for chromatin remodelers with more

mdx mice (n = 2 for each group).

Statistical analysis: **p < 0.01 and ***p < 0.005, two-way ANOVA followed by Bonf

were biological replicates unless otherwise stated.
to prevent undesirable effects on the remaining MuSC popula-

tion. To test this hypothesis, we examined the effects of MuSCs

isolated frommdxmice on YFP-labeled ‘‘healthy’’ MuSCs in co-

culture experiments (Figures 3C–3E). Intriguingly, co-culture with

mdxMuSCs induced pronounced EthD-III incorporation in YFP+

MuSCs, clearly indicating that dystrophic MuSCs are able to

elicit deleterious non-autonomous effects on the MuSC popula-

tion (Figures 3C–3E). We also found that direct physical contact

is not required for dystrophic MuSCs to inhibit growth of MuSCs,

as expansion of WT MuSC colonies in Matrigel was suppressed

by mdx MuSCs, even when both cell types were separated by a

membrane in transwell assays (Figures 3F–3H). Importantly,

suppression of necroptosis in mdx MuSCs due to inactivation

of Ripk3 exacerbated the deleterious non-cell-autonomous af-

fects of mdx MuSCs and further reduced expansion of the

MuSC population (Figures 3F–3H). RNA sequencing (RNA-seq)

analysis of WT MuSCs co-cultured in transwell assays together

with control,mdx, ormdx/Ripk3mKO MuSCs corroborated differ-

ential effects of mdx and mdx/Ripk3mKO MuSCs on the MuSC

population (Figure S2D; Table S1). For example, we observed

that signals derived from mdx/Ripk3mKO MuSCs reduced in WT

MuSCs transcription of Egr3 and Malat1, which are involved in

the proliferation and differentiation of muscle cells, respectively

(Chen et al., 2017; Kurosaka et al., 2017).

In addition, we noted that the increased propensity of MuSCs

from dystrophic muscles to undergo necroptosis was preserved

for several days in vitro despite the absence of inflammatory or

other signals (Figures 3A and 3B; Videos S1 and S2). This indi-

cated an epigenetic control mechanism that forces MuSCs to

‘‘remember’’ previous pro-necroptotic conditions. To follow up

this lead, we compared the chromatin state between WT and

mdx MuSCs. Global assessment of chromatin organization by

EM disclosed a massive relaxation of chromatin in MuSCs of

mdxmuscles, whereasWTmuscles nearly exclusively contained

MuSCs with highly condensed chromatin (Figures S2C and

S2D). Furthermore, assay for transposase-accessible chromatin

with high-throughput sequencing (ATAC-seq) revealed a dra-

matic increase of accessible open chromatin in mdx MuSCs

compared with WT MuSCs, which went along with increased

expression of corresponding genes (Figures 3I–3K; Table S1).
tosis Reduces Adverse Crosstalk amongmdxMuscle StemCells and

vitro.

MD patients in vitro (n = 3 for each group in both A and B).

culture with either YFP� WT or YFP� mdx MuSCs.

dicated boxes). Scale bar, 100 mm.

) (n = 3 for each group).

grown in the upper transwell; in the lower well, single WT MuSCs are grown in

trigel (G), quantified in (H). n = 3 for each group. Scale bar in (G): 100 mm.

mdx MuSCs (red) compared with control MuSCs (green). n = 2 or 3 for each

inmdxMuSCs (red) compared with control MuSCs (green). n = 2 or 3 for each

cribed genes from (J).

(red) and less (blue) accessible chromatin in MuSCs derived from control and

erroni post-test with alpha = 5%. All analyses indicated across the experiments
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Notably, numerous differentially accessible regions between

mdx and WT MuSCs coded for chromatin remodelers and

various cell death associated factors (Figure 3L; Table S2). We

concluded that the continuous exposure to the regenerative, in-

flammatory microenvironment in mdx muscles results in stable

opening of chromatin regions in MuSCs favoring necroptosis.

Chd4 Is Required for Muscle Regeneration and
Suppresses Necroptosis of MuSCs
To pinpoint putative epigenetic factors that are responsible for

the acquisition of a pro-necroptotic memory, we performed a

lentiviral-based RNAi screen against a comprehensive array of

known and putative chromatin modifiers targeting 634 genes in

WT MuSCs (Fazzio et al., 2008) (Figure S3A; Table S3). As a

readout, we used the self-renewal index (SI) of MuSCs, which

already aided us in a previous screen (Zhang et al., 2015),

assuming that any change in cellular survival due to programmed

cell death will also impinge on the SI. We identified 58 genes that

upon knockdown significantly changed the SI, 12 of which had

previously been reported to regulate MuSC homeostasis,

including Suv420h1 (Boonsanay et al., 2016), Ezh2 (Marchesi

et al., 2012), Sirt1 (Ryall et al., 2015), Myocd (Long et al., 2007),

and Sox15 (Lee et al., 2004) (Figure S3B). qRT-PCR and immu-

nofluorescence staining confirmed the expression of potential

candidate genes in MuSCs during myogenic differentiation (Fig-

ures S3C and S3D).

We became particularly attracted to Chd4, a core component

of the NuRD deacetylation complex (Lai and Wade, 2011), as

knockdown of Chd4 strongly reduced the number of MuSCs

in vitro (Figure S3E). In addition, (1) knockdown of other compo-

nents of the NuRD complex, including Hdac2,Mta1, and Rbbp4,

yielded similar effects, and (2) expression of Chd4 was dramati-

cally upregulated in activated, proliferating MuSCs (Figures S3B

and S3C). To assess the effects of Chd4 inactivation in MuSCs

in vivo, we generated Pax7CreERT/Chd4loxP/loxP mice (hereafter

Chd4mKO) and verified loss ofChd4 expression after TAM admin-

istration (Figures S4A–S4C). Inactivation of the Chd4 gene in

MuSCs under baseline conditions did not alter skeletal muscle

morphology (Figures 4A and 4B; Figure S4D). However, we

found that Chd4mKO skeletal muscles contained substantially

smaller numbers of PAX7+ MuSCs in comparison with control lit-

termates, which coincided with the emergence of necroptotic

pMLKL+/PAX7+ MuSCs (Figures 4D–4F). Importantly, CTX-

induced skeletal muscle regeneration was severely compro-

mised in Chd4mKO mice (Figures 4A and 4C; Figure S4E), which

was linked to a massive reduction of MuSCs and a reciprocal in-

crease of necroptotic pMLKL+/PAX7+ MuSCs (Figures 4D–4F).

We observed a striking 40% increase of pMLKL+/PAX7+ MuSCs

in TAmuscles ofChd4mKOmutantmice after CTX-induced injury,

which is in contrast to the small numbers of necroptotic MuSCs

in chronically regenerating mdx muscles (Figure 4G). This indi-

cates that the massive surge of necroptotic cells in Chd4mKO-

mutant mice overcomes the ability to efficiently clear dying nec-

roptotic cells, whereas in dystrophic mdx muscles, gradually

emerging necroptotic cells are swiftly removed, making their

detection difficult.

Interestingly, the number of apoptotic cleaved CASP3+/PAX7+

MuSCs was much smaller in acutely damaged Chd4mKO mus-
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cles compared with damaged WT control muscles, clearly indi-

cating that inactivation of Chd4 shifts the mode of programmed

cell death toward necroptosis (Figures 4H–4J). Consistent with

the arrested proliferation after shRNA-mediated knockdown of

Chd4 in MuSCs (Figure S3E), proliferation of MuSCs isolated

from Chd4mKO mice was severely impaired (Figures S4G and

S4H). Time-lapse imaging confirmed that MuSC-specific inacti-

vation of Chd4 elicits necroptosis, as visualized by dramatically

increased rates of EthD-III incorporation over time (Figures

S4H and S4I; Video S3). In addition, EM analysis of TA sections

confirmed the reduction of the total number of MuSCs and the

increase of necroptotic MuSCs in Chd4mKO skeletal muscles

(Figures S4K and S4L). We concluded that MuSC-specific loss

of Chd4 triggers necroptosis of MuSCs and severely impairs

muscle regeneration.

CHD4/NuRD Directly Represses Expression of Ripk3 in
MuSCs but Not in Embryonic Stem Cells
To gain a mechanistic understanding of how CHD4 regulates

necroptosis of MuSCs, we characterized both the transcriptome

and the proteome of cultured Chd4loxP/loxP MuSCs after adeno-

virus-mediated expression of GFP or Cre recombinase (Figures

5A and 5B; Figures S5A and S5B). Our analysis uncovered 178

and 325 differentially expressed genes (DEGs) after Chd4 inacti-

vation on the basis of changes at the RNA and protein levels,

respectively. The majority of genes was upregulated indicating

that CHD4 acts primarily as a transcriptional repressor in MuSCs

(Figures 5A and 5B; Table S4). Intriguingly, Ripk3was among the

top upregulated DEGs at both the transcript and protein levels

(Figure S5B; Table S4), suggesting that CHD4 might regulate

necroptosis via direct epigenetic repression of Ripk3. To test

this hypothesis, we performed chromatin immunoprecipitation

(ChIP) assays on different regions of the Ripk3 gene locus (Fig-

ure 5C). CHD4 binding was highly enriched at the promoter

(prRipk3) but not at intragenic regions of the Ripk3 gene in

MuSCs, which correlated with the absence of RNA polymerase

II binding to the (repressed) Ripk3 promoter (Figures 5D and

5E). In contrast, ChIP assays revealed that CHD4 is not recruited

to the Ripk3 promoter in mouse embryonic stem cells, despite

the absence of polymerase II binding (Figures 5F and 5G).

Furthermore, Ripk3 expression remained unchanged after inac-

tivation of Chd4 in embryonic stem cells, indicating that repres-

sion of Ripk3 in embryonic stem cells andMuSCs is mediated by

different mechanisms (Figure S5C).

Next, we investigated whether CHD4 regulates Ripk3 expres-

sion in MuSCs of dystrophic skeletal muscles. We detected

dramatically elevated expression levels of Ripk3mRNA and pro-

tein in muscles and MuSCs ofmdxmice (Figures 5H and 5I; Fig-

ures S5D and S5E), which was matched by a massively

decreased presence of CHD4 and HDAC1 at the Ripk3 promoter

(Figures 5J and 5K). Interestingly, however, the expression of

Chd4 and other components of the NuRD complex, including

Hdac1, was not changed in mdx compared with WT muscles

(Figure 5L; Figure S5F), indicating that diminished recruitment

but not reduced expression of the CHD4/NuRD complex pro-

motes Ripk3 expression and thereby elicits necroptosis of

MuSCs in dystrophic muscles. Consistently, forced expression

of Ripk3 in isolated WT MuSCs enhanced the number of



Figure 4. Chd4 Is Required for Muscle Regeneration and Suppresses Necroptosis of MuSCs
(A) Macroscopic images of uninjured and CTX-injured TA muscles from control and Chd4mKO mice.

(B and C) H&E staining of sections of uninjured muscle (B) and injured muscle (C) derived from muscles shown in (A). Scale bar (A–C), 100 mm.

(D) Quantification of PAX7+ cells from control and Chd4mKO muscles using PAX7 antibodies (n = 3 for each group).

(E–J) Immunofluorescence staining of TA muscle sections 2 weeks after CTX injury from control and mdx mice (n = 3 for each group) using antibodies against

PAX7 and pMLKL to detect necroptosis (E–G) and PAX7 and cleaved CASP3 (H–J) to detect apoptosis (n = 5 for each group). Scale bar, 25 mm. (F, G, I, and J)

Absolute and relative quantification of data represented in (E) and (H) (n = 3–5 for each group).

Statistical analysis: *p < 0.05, **p < 0.01, and ****p < 0.001, two-way ANOVA followed by Bonferroni post-test with alpha = 5%. All analyses indicated across the

experiments were biological replicates unless otherwise stated.
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MLKL+ necroptotic MuSCs even in the absence of any exoge-

nous necroptosis-stimulating factors, demonstrating that

elevated RIPK3 levels alone are sufficient to induce necroptosis

of MuSCs (Figures S5G and S5H). Similar to the results obtained

in murine MuSCs, knockdown of Chd4 in human myoblasts

caused a dramatic upregulation ofRipk3 expression (Figure S5I).

Moreover, CHD4 binding to the Ripk3 promoter was strongly

reduced in human myoblasts derived from BMD patients

compared with control human myoblasts, and we observed a

corresponding upregulation of Ripk3 expression, exactly reca-

pitulating the situation in mdx MuSCs (Figures S5J and S5K).

Taken together, the data demonstrate that the CHD4/NuRD

complex mediates direct epigenetic suppression of Ripk3 in mu-

rine and human MuSCs, which is alleviated in conditions of

chronic muscle disease.

Inactivation of Ripk3 Restores the Impaired
Regenerative Capacity of Chd4-Deficient MuSCs
To corroborate our finding that CHD4 controls necroptosis via

regulation of Ripk3 expression, we generated Chd4mKO/

Ripk3mKO mice allowing simultaneous and MuSC-specific inac-

tivation of Chd4 and Ripk3. Strikingly, MuSC-specific inactiva-

tion of Ripk3 in Chd4mKO/Ripk3mKO compound mutants

completely abrogated the occurrence of necroptotic PAX7+/

pMLKL+ MuSCs observed in Chd4mKO mutants (Figures 6A

and 6B; Figure S6A) and restored the total number of PAX7+

MuSCs under baseline conditions (Figure 6C). We then intro-

duced a conditional Rosa26YFP allele into Chd4mKO and

Chd4mKO/Ripk3mKOmutants andWTmice to trace the fate of re-

combined MuSCs after TAM treatment. Formation of expanding

YFP+ MuSC colonies on ex vivo cultured single myofibers

confirmed that loss of Ripk3 reestablishes cell proliferation and

prevents cell death of Chd4mKO MuSCs. In contrast, MuSCs

from Chd4mKO mutants with an intact Ripk3 allele uniformly

incorporated EthD-III and underwent cell death via necroptosis

(Figure S6B). Intriguingly, genetic inactivation of Ripk3 in

Chd4mKO/Ripk3mKO double mutants markedly restored muscle

regeneration, as indicated by formation of YFP+ myofibers after

CTX injection, while virtually no YFP+myofibers were detected in

Chd4mKO single mutants (Figures 6D and 6E). Furthermore,

Chd4mKO/Ripk3mKO compound mutants exhibited a substantial

reduction of fibrosis after acute injury in comparison with

Chd4mKO single mutants (Figure S6C). Although Chd4mKO/

Ripk3mKO double mutants showed significantly improved regen-
Figure 5. CHD4 Directly Suppresses Activation of Ripk3

(A and B) Volcano plots of RNA-seq (A) and proteomics data (B) visualizing signifi

proteins after adeno-Cre-mediated inactivation of Chd4 in MuSCs from Chd4loxP

(C) Schematic representation of the locations of primers used for ChIP-qPCR to

(D and E) qRT-PCR ChIP analyses of CHD4 binding (D) and POL II binding (E) in

(F and G) qRT-PCR ChIP analyses of CHD4 binding (F) and POL II binding (G) in em

technical replicates for each group).

(H and I) qRT-PCR (H) and western blot (I) analyses of Ripk3 expression in contr

(J and K) ChIP-qPCR analysis of CHD4 binding (J) and HDAC1 binding (K) to th

control and mdx mice (n = 3 independent technical replicates for each group).

(L) Heatmap representing gene expression of members of the NuRD complex (lo

mice on the basis of RNA-seq data.

Statiscal analysis: *p < 0.05, **p < 0.01, and ***p < 0.005, two-way ANOVA follow

experiments were biological replicates unless otherwise stated.
eration, newly formed fibers were heterogeneously sized, and

tissue morphology was not completely normal, indicating that

CHD4 not only regulates Ripk3 but also plays an additional role

at later stages of myogenic differentiation and muscle regenera-

tion in vivo (Figure S6C). Treatment of Chd4mKO knockout mice

with Nec-1s, a stable variant of Nec-1 (Takahashi et al., 2012),

fully recapitulated the rescue of muscle regeneration in

Chd4mKO/Ripk3mKO double mutants and increased the number

of Pax7+ MuSCs in comparison with non-treated Chd4mKO con-

trols (Figures 6D–6F). Consistently, Nec-1 but not the apoptosis

inhibitor z-VAD prevented cell death in isolatedChd4mKOMuSCs

almost completely and restored proliferation, adding further ev-

idence that the primary reason for the failure of Chd4mKOMuSCs

to proliferate is massively enhanced necroptotic cell death (Fig-

ures 6G and 6H; Video S3).

Taken together, these data demonstrate that the CHD4/NuRD

complex is required for inhibition of necroptosis via active epige-

netic suppression of Ripk3 in MuSCs under homeostatic condi-

tions and during acute skeletal muscle regeneration. In contrast,

CHD4/NuRD-mediated suppression of Ripk3 in MuSCs be-

comes attenuated in dystrophic muscles, which lowers the

threshold for necroptosis and prevents exacerbation of dystro-

phic tissue remodeling.

DISCUSSION

Here, we discovered that a subpopulation of MuSCs undergoes

necroptotic cell death in chronically regenerating, dystrophic

muscles in both mice and humans but not after acute muscle

injury of healthymuscles. As inactivation of necroptosis compro-

mised muscle regeneration in mdx mice, we postulate that

controlled and limited removal of a subset ofmdxMuSCs by pro-

grammed cell death serves an important role to assure the

fitness of the MuSC compartment as a whole. In support of

this, we demonstrated that mdx MuSCs exert adverse effects

on the expansion of healthy MuSCs by a non-cell-autonomous

mechanism, which is aggravated by inhibition of necroptosis in

mdx MuSCs. Furthermore, we identified the molecular mecha-

nism that prevents necroptosis of MuSCs in healthy and acutely

damaged muscle but allows their partial elimination in chroni-

cally regenerating dystrophic muscles.

Programmed cell death plays a vital role in various develop-

mental processes, for example, in the immune and the nervous

systems, which are characterized by overproduction of cells.
cantly downregulated (red points) or upregulated (green points) transcripts and
/loxP mice (n = 4).

detect binding of Chd4 to the Ripk3 gene.

activated MuSCs (ASC).

bryonic stem cells (ESCs). IgG served as a negative control (n = 3 independent

ol and mdx muscle tissues (n = 3).

e promoter and intragenic regions of the Ripk3 gene in skeletal muscles from

g2 expression) in quiescent MuSCs (QSC) from control (n = 2) and mdx (n = 3)

ed by Bonferroni post-test with alpha = 5%). All analyses indicated across the
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Figure 6. Necrostatin Restores Proliferation of Chd4mKO MuSCs and Improves Skeletal Muscle Regeneration in Chd4mKO Mice

(A) Immunofluorescence staining for PAX7/pMLKL on TA muscle sections from Chd4mKO and Chd4mKO/Ripk3mKO mice. Scale bar, 25 mm.

(B andC) Quantification of PAX7+/pMLKL+MuSCs (B) undergoing necroptosis and PAX7+MuSCs (C) in control,Chd4mKO, andChd4mKO/Ripk3mKOmuscles (n = 3

for each group).

(D) Fluorescence images of uninjured (left) and injured (right) TAmuscles fromChd4mKO/ROSA26YFP,Chd4mKO/Ripk3mKO/ROSA26YFP, andChd4mKO/ROSA26YFP

mice treated with Nec-1s 2 weeks after CTX-induced muscle injury (n = 3–5 for each group). Scale bar, 100 mm.

(E) Cross sections of injured TA muscles as in (D) indicating increased formation of YFP+ myofibers after Ripk3 inactivation. Scale bar, 25 mm.

(F) Quantification of MuSCs in Chd4mKO/ROSA26YFP TA muscles with and without Nec-1s treatment after CTX-induced muscle injury (n = 3–6 for each group.

(G) EthD-III incorporating Chd4mKO MuSCs after treatment with z-VAD, necrostatin-1, or DMSO (n = 3 for each group); scale bar, 100 mm.

(H) Quantification of EthD-III incorporating Chd4mKO MuSCs after 100 h of in vitro culture in a field of 1 mm2 following treatment with z-VAD, necrostatin-1, or

DMSO (n = 3–6 for each group. Statisical analysis: *p < 0.05, **p < 0.01, and ***p < 0.005, two-way ANOVA followed by Bonferroni post-test with alpha = 5%).

All analyses indicated across the experiments were biological replicates unless otherwise stated.
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For example, superfluous cells that fail to acquire tolerated anti-

gen specificities or synaptic connections need to be removed for

proper organ function (Opferman et al., 2003; Nijhawan et al.,

2000). Failure to remove dysfunctional or abnormal cells results

in numerous diseases, including cancer and various immune dis-

orders (Letai, 2017; Nagata and Tanaka, 2017). In addition, pro-

grammed cell is essential for fitness selection, allowing elimina-

tion of cells that are viable but ‘‘less fit’’ than surrounding cells.

Most often, removal of so-called loser cells occurs by activation

of apoptosis in the less fit cells (Hashimoto and Sasaki, 2019), by

induction of a senescence-like program (Bondar and Medzhitov,

2010), or through engulfment by surrounding winner cells (Clave-

rı́a et al., 2013). Our results seem to suggest that necroptosis is

another mechanism by which ‘‘loser’’ cells are eliminated in an

inflammatory environment.

Very little is known about a potential role and/or function of nec-

roptosis during tissue regeneration, although increasing evidence

suggests that removal of unwanted cells via necroptosis becomes

particularly important under conditions of prolonged or extreme

stress in which activation of apoptosis alone is not sufficiently

effective to eliminate deleterious cells (Galluzzi et al., 2016). Only

very recently it was shown that necroptotic death of proinflamma-

torymicroglia followedby repopulation to a pro-regenerative state

is required to regenerate central nervous systemmyelin following

injury (Lloyd et al., 2019). Our own study discloses a critical role of

programmed cell death for the quality control of stem cells, which

allows removal of functionally compromised stem cells, restrain-

ing expansion of other MuSCs during skeletal muscle repair by a

non-cell-autonomous mechanism. The finding that inactivation

ofRipk3 inMuSCscompromises regenerationand impairsmuscle

function inmdxmice was unexpected. Onemight assume that in-

hibitionofprogrammedcell death increases thenumberofMuSCs

in dystrophic muscles and improves morphology and function.

However, we observed exactly the opposite effects, indicating

that full expansion of MuSCs cannot take place before removal

of potentially defective MuSCs. Pharmacological inhibition of

apoptosis by z-VAD treatment or a combined suppression

of necroptosis and apoptosis yielded similar results, further sup-

porting our conclusion. However, inhibition of apoptosis by sys-

temic z-VAD treatment not only affects MuSCs but will also

enhance survival of other cell types, such as FAPs and inflamma-

tory cells, which might also aggravate muscle pathology (Lemos

et al., 2015).

Activation of either necroptosis or apoptosis might represent

different sides of the same coin and serve the same purpose,

as necroptosis is regarded as a ‘‘fail-safe’’ mechanism for cells

unable to undergo apoptosis when required (Lu et al., 2014).

However, in some cell types or conditions, necroptosis might

be the primary mode of programmed cells death, as for example

demonstrated for inflammatory microglia, which seem to lack

any signs of apoptotic cell death (Lloyd et al., 2019). Further-

more, we disclosed the mechanism, which enables necroptotic

cell death of MuSCs in dystrophic muscles. We found that

MuSCs in mdx muscles express much higher levels of Ripk3

because of attenuated recruitment of the repressive CHD4/

NuRD complex to the Ripk3 promoter. CHD4 and other compo-

nents of the NuRD complex were initially identified in a screen to

recognize factors regulating necroptosis in MuSCs. Complete
genetic inactivation of Chd4 in MuSCs massively induced nec-

roptosis, thus preventing expansion of MuSCs. Our experiments

revealed that the mechanism to prevent untimely or dispropor-

tionate Ripk3 expression differs among cell types. Embryonic

stem cells suppress Ripk3 expression, similar to MuSCs in

healthy muscles, but without binding of CHD4 to the Ripk3 pro-

moter, indicating that embryonic stem cells have evolved a

different strategy to control Ripk3 expression, most likely due

to different chromatin organization and a lowered requirement

to initiate programmed cell death. In contrast, it has been

described very recently that endothelial cells also rely on the

NuRD complex to prevent excessive Ripk3 and subsequent

vascular rupture under hypoxic conditions (Colijn et al., 2020).

In more general terms, it seems likely that cells that readily

initiate apoptosis benefit from lasting epigenetic suppression

of Ripk3, whereas cells that are relatively resistant to apoptosis

need a mechanism allowing rapid upregulation of Ripk3 expres-

sion, in case apoptosis fails. Treatment of Chd4-mutant MuSCs

with necrostatin or inactivation of Ripk3 inhibited necroptosis

and restored proliferation in vitro and partially in vivo, demon-

strating that CHD4 is crucial to suppress aberrant upregulation

of Ripk3 and necroptosis. Likewise, inactivation of Ripk3 signifi-

cantly improved skeletal muscle regeneration defects in MuSC-

specific Chd4 mutants, adding further evidence that Chd4 pre-

vents aberrant induction of necroptosis in MuSCs. Notably, the

Chd4mKO phenotype was not completely normalized by inactiva-

tion of Ripk3, which suggests additional functions of CHD4 dur-

ing later stages of MuSC-dependent regeneration.

Tight control of Ripk3 expression is vital to restrict excessive

initiation of necroptosis, as enhanced expression of Ripk3 alone

is sufficient to induce necroptosis of MuSCs. In addition, our

finding that reduction of MuSC numbers in uninjured Chd4

mutant muscles is completely reverted in Chd4mKO/Ripk3mKO

mice confirms the decisive role of CHD4/NuRD in regulating

RIPK3 levels for induction of necroptosis. We reason that upre-

gulation ofRipk3 expression lowers the threshold for necroptosis

induced by TNF superfamily members or other signals that are

abundantly present in dystrophic muscles (Ashkenazi and Salve-

sen, 2014; De Paepe and De Bleecker, 2013). According to this

model (Figure 7), high RIPK3 levels act as a permissive rather

than an instructive signal for initiating necroptosis.

In contrast to a recent study (Morgan et al., 2018), we did not

obtain any evidence for necroptotic myofibers in mdx mice.

Likewise, we did not observe beneficial but rather adverse ef-

fects of Ripk3 inactivation in MuSCs for muscle regeneration

and function. Consistent with this observation, germline inacti-

vation of Mlkl in mdx mice did not ameliorate but worsened the

dystrophic phenotype. Hence, inactivation of programmed cell

death pathways, including necroptosis, does not appear to be

a viable option to treat dystrophic muscle disorders. Moreover,

systemic inhibition of necroptosis by pharmacological interven-

tion or in germline Ripk3- or Mlkl-mutant mice will inhibit nec-

roptotic cell death of FAPs. This is important, as elimination

of FAPs by programmed cells has been claimed to limit fibrosis

in damaged skeletal muscles (Lemos et al., 2015). However, it

remains to be seen whether necroptosis plays a similarly

important role as apoptosis for elimination of FAPs in profi-

brotic conditions.
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Figure 7. Model

Attenuated epigenetic suppression of muscle stem cell necroptosis is required for efficient regeneration of dystrophic muscles. CHD4/NuRD suppresses Ripk3

expression and thereby necroptosis in MuSCs of healthy muscles (bottom). Chronic dystrophy continuously evocates a demand for regeneration and persistent

activation of MuSCs. Necroptosis secures removal of defective MuSCs that otherwise inhibit MuSC expansion in a non-cell-autonomous manner if not elimi-

nated. Necroptosis inMuSCs ismediated by attenuated recruitment of CHD4/NuRD to theRipk3 promoter in dystrophicmuscles and leads to a lasting increase in

necroptosis even in the absence of pro-necroptotic signals (‘‘memory’’ effect) (top).
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Interestingly, not the expression of Chd4 but its recruitment to

the Ripk3 promoter was attenuated in both murine and human

MuSCs from dystrophic muscles, indicating that either modifica-

tions of the CHD4/NuRD complex and/or absence of accessory

proteins are responsible for relieved suppression of Ripk3 during

chronic disease conditions. Compared with WT, cultured MuSCs

frombothmurine and human dystrophicmuscles showed amuch

higher rate of necroptosis even after several passages in vitro and

despite the absence of cell death-inducing factors. This ‘‘mem-
14 Cell Reports 31, 107652, May 19, 2020
ory’’ effect in MuSCs is particularly fascinating. Our data strongly

indicate that the enhanced susceptibility of MuSCs from mdx

muscle for necroptosis is based on reduced epigenetic repres-

sion ofRipk3 and not on the absence of dystrophin, as (1) we pre-

vented necroptosis and restored proliferation ofMuSCs by block-

ing the CHD4 targetRipk3; (2) expression of dystrophin is very low

in MuSCs, although a function of dystrophin has been described

for asymmetric division of MuSCs (Dumont et al., 2015); and (3)

we observed the same increase in necroptosis in human BMD
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MuSCs, which do carry a partially functional in-frame mutation of

the dystrophin gene (Emery, 2002).

Maintenance of the stem cell pool is particularly demanding in

continuously regenerating dystrophic muscles. Our study un-

covers that the MuSC population in dystrophic muscles needs

to be purged by balanced and interconnected programmed

cell death pathways to allow full stem cell expansion (Figure 7).

Accordingly, we view necroptosis as a crucial process that facil-

itates optimized muscle repair by contributing to fitness selec-

tion but not as a mechanism that per se promotes tissue

regeneration. Although we do not completely understand the ne-

cessity for enhanced MuSC quality control by programmed cell

death in dystrophic muscles, potential explanations might

include accumulation of malfunctioning MuSCs, which interferes

with the expansion of a ‘‘healthy’’ stem cell pool or the ability to

differentiate. Alternatively, some MuSCs might fail to respond to

microenvironmental signals, are unable to re-enter the stem cell

niche, or are on a potential path to malignant transformation. In

support of this concept, mdx mice display strongly elevated

rates of tumorigenic transformation in absence of p53, which

not only safeguards genome stability but is also a strong cell

death-inducing factor (Camboni et al., 2012; Preussner et al.,

2018). Therefore, any attempt to increase the pool of stem cells

for regenerative purposes needs to rule out that their physiolog-

ical responsiveness and quality is jeopardized.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PAX7 mouse monoclonal antibody DSHB #MAB1675; RRID:AB_528428

RIPK3 rabbit polyclonal antibody Abcam #ab56164; RRID:AB_2178667

Cleaved Caspase-3 (Asp175) rabbit polyclonal antibody Cell Signaling Technology #966; RRID:AB_23411881

Phospho-MLKL (Ser345) rabbit monoclonal antibody Cell Signaling Technology #62233; RRID:AB_2734703

PAX7 mouse monoclonal antibody (Human) Santa Cruz #sc-81648; RRID:AB_2159836

Phospho-MLKL(Ser358) rabbit monoclonal antibody (Human) Cell Signaling Technology #91689; RRID:AB_2732034

SUMO1 rabbit monoclonal antibody Abcam #ab32058; RRID:AB_778173

SENP5 rabbit polyclonal antibody Sigma Aldrich #SAB1300165; RRID:AB_10608890

CHD4 (Mi-2 beta) rabbit polyclonal antibody Active Motif #39289; RRID:AB_261493

CHD4 (D8B12) rabbit monoclonal antibody Cell Signaling Technology #11912; RRID:AB_2751014

RIPK3 (G4G2A) rabbit monoclonal antibody Cell Signaling Technology #95702; RRID:AB_2721823

GAPDH (14C10) rabbit monoclonal antibody Cell Signaling Technology #2118; RRID:AB_561053

HDAC1 (10E2) Mouse monoclonal antibody Cell Signaling Technology #5356; RRID:AB_10612242

Pol I/II/III RPB8 (B8-1) Mouse monoclonal antibody Santa Cruz #sc-21752; RRID:AB_675858

Anti-Rabbit IgG Diagenode # C15410206; RRID:AB_2722554

Anti-Mouse IgG Diagenode # C15400001-100; RRID: AB_2722553

Plasmids

pMD2.G plasmid pMD2.G plasmid was deposited

by Didier Trono’s lab.

RRID:Addgene_12259

psPAX2 plasmid psPAX2 plasmid was deposited

by Didier Trono’s lab.

RRID:Addgene # 12260

Scrambled shrna: CCTAAGGTTAAGTCGCCCTCG

CTCGAGCGAGGGCGACTTAACCTTAGG

Sigma Aldrich N/A

Chromatin modifier library shRNAs (Table S2) Sigma Aldrich N/A

Ripk3V5 plasmid Sigma Aldrich N/A

Chemicals, Peptides, and Recombinant Proteins

Tamoxifen Sigma Aldrich Cat# T5648

Dispase BD Cat# 354235

Collagenase, Type 2 Worthington Biochemicals Cat# CLS-2

Percoll Sigma Aldrich Cat# P1644

Matrigel Matrix BD Cat# 356234

Trizol reagent Invitrogen Cat# 15596026

Critical Commercial Assays

Click-iT EdU Kit Invitrogen Cat# C10337

SuperScript II Reverse Transcriptase Kit Invitrogen Cat# 18091050

DNeasy Blood & Tissue Kit QIAGEN Cat# 69504

Nextera DNA Sample Preparation Kit Illumina Cat#FC-121-1030

NextSeq500 platform using V2 chemistry Illumina Cat#FC-404-2004

Deposited Data

RNaseq data (Figure S2; Table S1) This paper GEO: GSE134131

ATACseq and RNaseq data (Figure 3; Table S2) This paper GEO: GSE117092; GEO: GSE134132

RNaseq data (Figure 4; Table S4) This paper GEO: GSE117008

Proteomics data (Figure 4; Table S4) This paper PRIDE: PXD010370

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

HEK293FT ATCC Cat# PTA5077

Experimental Models: Organisms/Strains

Chd4loxP/loxP mice Dr. Pablo Gómez-del Arco Stock No: 008462

Ripk3loxP/loxP mice Dr. Boris Strillic N/A

MLKL knockout Dr. Boris Strillic N/A

Casp8loxP/loxP mice Dr. Stephen Hedrick N/A

Rosa26eYFP mice Jackson Laboratory Stock No: 006148

mdx mice Jackson Laboratory Stock No: 001801

Pax7::ZsGreen mice Dr. Michael Kyba Stock No: 029549

Pax7CE mice Dr. Chenming Fan Stock No: 012476

Software and Algorithms

R language (v3.4.1) NA www.r-project.org

GraphPad Prism 7 GraphPad Software N/A

STAR(v2.5.2b) N/A https://bioconda.github.io/

Picard (v1.119) N/A https://bioconda.github.io/

Gencode (version vM11) N/A https://www.gencodegenes.org/

Oligonucleotides

Oligonucleotides used for genotyping and mRNA

expression analysis are provided in Table S5

N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and reasonable requests for reagents may be directed to and will be fulfilled by Lead Contact, Thomas Braun

(thomas.braun@mpi-bn.mpg.de).

Materials Availability
This study did not generate new unique reagents or new foundermice strains. All reagents are commercially available and listed in the

key resource table.

Data availability
The accession number for the RNA-seq data related to Figure S2 and Table S1 reported in this paper is GEO:GSE134131. The acces-

sion number for the ATAC-seq data related to Figure 3 and Table S2 reported in this paper is GEO: GSE117092. The accession num-

ber for the RNA-seq data related to Figure 3 and Table S2 reported in this paper is GEO: GSE134132. The accession number for the

RNA-seq data related to Figure 4 and Table S4 reported in this paper is GEO: GSE117008. The accession number for the Proteomics

data related to Figure 4 and Table S4 reported in this paper is PRIDE: PXD010370.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animal experiments were performed in accordance with German animal protection laws and EU (Directive 2010/63/EU) ethical

guidelines and were approved by the local governmental animal protection authority Regierungspräsidium Darmstadt.Animal exper-

iments were performed in accordance with German animal protection laws and EU (Directive 2010/63/EU) ethical guidelines and

were approved by the local governmental animal protection authority Regierungspräsidium Darmstadt. All mice used in this study

were maintained on a C57BL/6 background, were drug and test naive, healthy prior to the studies, not used in previous procedures

and kept in a barrier facility. Both female and male animals were analyzed in this study. None of the determined parameters in this

study correlated with animal sex. Genotypes of all mice used in this study were determined using verified protocols with DNA isolated

from tail or ear punch biopsies collected upon weaning. All mice were separated by sex and maintained in groups of 3-4 mice per

cage in low-noise, temperature and humidity-controlled, individually ventilated cages. Generation of Chd4fl/fl (Gómez-Del Arco

et al., 2016; Williams et al., 2004), Ripk3loxP/loxP, Mlkl�/� (Strilic et al., 2016) and Caspase8loxP/loxP mice (Beisner et al., 2005) have
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been described before. In addition, the followingmouse lines were used:Pax7-CreERT2, R26RYFP, Pax7ZsGreen, Dmdmdx (mdx) (Lepper

et al., 2009; Bosnakovski et al., 2008; Sicinski et al., 1989; Srinivas et al., 2001). Age-matched (8-12week old) littermate controls were

used to perform experiments unless otherwise stated. Treatment with tamoxifen was performed as indicated and previously reported

(G€unther et al., 2013). Controls throughout the study, unless stated otherwise, were tamoxifen treated littermates carrying the respec-

tive floxed alleles. Muscle injury was induced via cardiotoxin injection (50 mL of 0.06mg/ml solution in saline) to the tibialis anterior

(T.A.) muscle. Contralateral uninjured T.A. muscles served as controls.

Necrostatin-1 treatment in mice
Nec-1s or 7-Cl�O-Nec-1 [5-((7-chloro-1H-indol-3-yl)methyl)-3-methylimidazolidine-2,4-dione], a stable variant of Necrostatin-1 was

used to inhibit necroptosis in vivo (Takahashi et al., 2012). Intraperitoneal injections of Nec-1 s were performed at a concentration of

1.65 mg/kg of body weight (Strilic et al., 2016; Wang et al., 2017; Takahashi et al., 2012) 30 minutes prior to cardiotoxin (CTX) injury.

Mice were sacrificed 14 days after muscle injury.

zVAD treatment in mice
Z-VAD(OMe)-FMK (zVAD), a pan-caspase inhibitor was used to specifically inhibit apoptosis in vivo (Iwata et al., 2003; Davis et al.,

2013; Cohen, 1997). Intraperitoneal injections of zVAD were performed at a concentration of 2mg/kg of mice body weight along with

tamoxifen treatment for 5 consecutive days prior to cardiotoxin (CTX) injury. In addition, mice were treated with zVAD inhibitor after

CTX injury every second day until the mice were sacrificed as indicated.

Grip strength assays
Muscle grip strength was assessed based on the fore-limb hanging test as previously described (Aartsma-Rus and van Putten, 2014;

Peled-Kamar et al., 1997). Essentially, performance is calculated as a ratio of [t/bw] where t = hanging time and bw = grams of body

weight.

MuSC and myofiber culture
MuSCwere isolated via FACS using the Pax7ZsGreen reporter allele as previously described (Kim and Braun, 2014; Bosnakovski et al.,

2008) and cultured in DMEM GlutaMAX (GIBCO) containing 20% FCS 1%, Penicillin/Streptomycin, and 5ng/ml bFGF. HEK293FT

cells (ATCC: # PTA5077) were used to produce lentiviral particles and were cultured in DMEM GlutaMAX (GIBCO) containing

10% FCS and 1% Penicillin/Streptomycin. Myofibers were isolated by enzymatic digestion of isolated FBDmuscle with collagenase

P (0.02%, Roche). Single myofibers were either fixed with 4% paraformaldehyde (PFA) immediately after digestion or after 3-day

culturing in DMEMmedium with 20% fetal calf serum (FCS) and basic fibroblast growth factor (bFGF) (5ng/ml). All cell lines, primary

MuSCs, andmyofibers were regularly analyzed for mycoplasma infections and grown in standard normoxic conditions (37�C and 5%

CO2).

Co-culture experiments
MuSCs were purified from WT and mdx mutant mice by FACS purification as previously described (Kim and Braun, 2014). Co-cul-

tures were performed onmatrigel-coated 96-Greiner microclear plates in DMEMGlutaMAX (GIBCO)media containing 20%FCS 1%,

Penicillin/Streptomycin, and 5ng/ml bFGF. To distinguish between WT andmdxMuSCs within the same well, WT cells were isolated

from Tamoxifen-treated Pax7-CreERT2;R26RYFP. Cell death was measured by calculating the percentage of dying, EthD-III incorpo-

rating YFP+MuSCs counter-stained with Hoechst dye to determine total number of cells. Each experiment was performed with three

independent biological replicates.

Transwell assays
Transwell assays were performed on 96-transwell plates with polyester membranes of 8 mmpore size (Corning) wherein thematrigel-

coated transwell insert was seeded with either either WT,mdx or Ripk3mKO/mdxMuSCS. In this setup, no transmigration of MuSCs

from the upper transwell to the bottom well was observed. In the bottom well WT MuSCs were seeded at clonal density in undiluted

matrigel. Culture was performed in DMEM GlutaMAX (GIBCO) containing 20% FCS 1%, Penicillin/Streptomycin, and 5ng/ml bFGF

media. The number of MuSC colonies and cells per colony was counted after Pax7/DAPI staining. Each experiment was performed

with three independent biological replicates.

METHOD DETAILS

High-throughput screen and hit validation
Lentiviral-based RNAi screening was performed using a customized array of targeting shRNAs isolated from a genome-wide shRNA

library (Sigma-Aldrich) as previously described (Sreenivasan et al., 2017; Zhang et al., 2015). All targeted genes are provided in (Table

S3). Candidate genes were selected from a previously published RNAi screen for chromatin remodelers (Fazzio et al., 2008) and the

gene list was further refined based on gene ontological analysis resulting in a total of 634 targeted genes. GenElute HP 96-Well Mini-

prep Kits (Sigma-Aldrich) was used to purify plasmids as described by the vendor.
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RNA SEQUENCING AND MASS SPECTROMETRY

RNaseq and mass spectrometry measurements were performed as previously described (Zhang et al., 2015). Briefly, FACS purified

MuSC fromChd4loxP/loxPmice were expanded in vitro and subjected to adenoviral-mediated CRE recombination. Adenovirus encod-

ing GFP served as a control. Samples were generated in biological triplicate and used for RNaseq andmass spectrometric measure-

ments. Total RNA was isolated using commercial kits and according to the manufacturer’s protocol (RNAeasy Mini kit, QIAGEN).

RNaseq libraries were constructed using Ion Total RNA-Seq Kit v2 (Life Technologies) and sequencing reactions were performed

by Ion Torrent Proton platform with V3 chemistry (Ion PI Template OT2 200 Kit v3, Life Technologies) and PIV2 Chips (Ion PI Chip

Kit v2, Life Technologies). For mass spectrometry measurements, whole cell lysates from MuSC obtained from Chd4loxP/loxP mice

were subjected to adenoviral treatment (AdenoCRE/AdenoGFP), the samples were run on SDS-PAGE gels and stained with colloidal

protein staining solution (Invitrogen). The gels were evenly sliced and subjected to in-gel digestion with trypsin. Released peptides

weremeasured using a TQ-Orbitrap XL or a LTQ-Orbitrap Velosmass spectrometer (Thermo Fisher Scientific) equipped with a nano-

electrospray source (Proxeon). Raw data was analyzed using the MaxQuant software package (Cox et al., 2014).

ATACseq analysis
ATACseq analysis was performed as previously described (Buenrostro et al., 2013, 2015). Briefly, 5000-25,000 FACS purified MuSC

were subjected to ATAC Library preparation using Tn5 Transposase from Nextera DNA Sample Preparation Kit (Illumina). Cell pellet

was resuspended in 50ml PBS andmixed with 25ml TD-Buffer, 2.5ml Tn5, 0.5ml 10%NP-40 and 22ml water. Cell/Tn5mixture was incu-

bated at 37�C for 30minwith occasional snapmixing. Transposase treatment was followed by 30min incubation at 50�C together with

500mM EDTA pH8.0 for optimal recovery of digested DNA fragments. For neutralization of EDTA 100ml of 50mM MgCl2 was added

followed by purification of the DNA fragments by MinElute PCR Purification Kit (QIAGEN). Amplification of Library together with In-

dexing was performed as previously described (Buenrostro et al., 2013). Libraries were mixed in equimolar ratios and sequenced on

NextSeq500 platform using V2 chemistry. The resulting raw reads were assessed for quality, adaptor content and duplication rates

with FastQC (Andrews, 2010). Trimmomatic version 0.36 was employed to trim reads after a quality drop below a mean of Q15 in a

window of 5 nucleotides (Bolger et al., 2014). Only reads longer than 15 nucleotides were cleared for further analyses. Trimmed and

filtered reads were aligned versus the Gencode mouse genome version mm10 (GRCm38, vM15) using STAR 2.5.3a with custom de-

signed parameters (Dobin et al., 2013) and retaining only unique alignments to exclude reads with uncertain arrangement. Reads

were further de-duplicated using Picard 2.9.0 (Picard: A set of tools for working with next generation sequencing data in the BAM

format) to mitigate PCR artifacts leading to multiple copies of the same original fragment.

The Macs2 peak caller version 2.1.0 was employed to accommodate for the range of peak widths typically expected for ATACSeq

(Zhang et al., 2008) . The minimum q-value was set to �4 and FDR was changed to 0.0001. In order to determine thresholds for sig-

nificant peaks, the data was manually inspected in IGV 2.3.52 browser (Robinson et al., 2011). Peaks overlapping ENCODE black-

listed regions (known mis-assemblies, satellite repeats) were excluded. In order to be able to compare peaks in different samples to

assess reproducibility, the resulting lists of significant peaks were overlapped and unified to represent identical regions. Peak counts

were recalculated using bigWigAverageOverBed (UCSC Tools) and normalized with DESeq2 (Anders and Huber, 2010). Peaks were

annotated with the promoter (TSS +- 5000 nt) of the genemost closely located to the center of the peak based on reference data from

GENCODE vM15.

ChIP and RT–qPCR
Chromatin Immunoprecipitation (ChIP) experiments were performed as described previously (Gómez-Del Arco et al., 2016). Formus-

cle tissue, truChIP Tissue Chromatin Shearing Kit with SDS (Covaris) was used for chromatin sheraing. Cultured MuSC were fixed

with 1% formaldehyde for 10 minutes and the reaction was quenched using 0.125M glycine for 5 minutes at room temperature. Cells

were lysed and the enriched chromatin was sheared to 300-500bp using Bioruptor (Diagenode) and subjected to immunoprecipita-

tion with indicated antibodies. Primers used for ChIP-qPCR are listed (Table S5). mRNA expression was verified via quantitative real-

time PCR. RNA from MuSC and muscle tissue was extracted using Trizol reagent (Invitrogen) according to the manufacturer’s pro-

tocol. Purified RNAwas subjected to reverse transcriptase reaction in the presence of 25 ng/ml random primers and 2.5mMdA/C/G/

TTP with 10 U/ml SuperScript II Reverse Transcriptase (Invitrogen). Primers used for RT–qPCR are listed in (Table S5).

Immunofluorescence and morphological analysis
Immunofluorescence staining was performed in cultured MuSC and myofibers fixed in 4% PFA. Sections from snap frozen muscle

were fixed in 4% PFA. Primary antibodies used for immunohistochemical staining are listed in the key resources table. Hematoxylin

and Eosin staining were used to visualize muscle fibers. Masson’s trichrome staining was carried out using the ACCUSTAIN tri-

chrome staining kit (Sigma-Aldrich) according to the manufacturer’s instructions. For EdU incorporation assays cultured MuSC

were subjected to 10mM EdU for three hours prior to fixation. Click-iT EdU Imaging Kit (Invitrogen) was used to quantify EdU labeled

cells according to the manufacturer’s protocol.
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Cell death assay
Cell death assays were performedwithMuSC isolated from control andmdxmice. z-VAD-fmk (20 mM,Cayman) and/or Necrostatin-1

(Nec-1; 70 mM, Enzo) were used to block apoptosis or Ripk1 activation and necroptosis, respectively. Stains of dying cells were visu-

alized with EthD-III (1.6 mM, Biotium). For end-point experiments, Hoechst 33342 (2 mM, Thermo Scientific)-positive cells were used

to count the total number of cells. Criteria for discriminating apoptotic and necrotic cells have been described previously (Strilic et al.,

2016).

Western blot
Protein lysates fromMuSC were obtained using protein lysis buffer I [66mM Tris-HCl and 2% SDS] supplemented with protease and

phosphatase inhibitors (0.5 mg/ml benzamidine, 2 mg/ml aprotinin, 2 mg/ml leupetin, 2mM PMFS, 1mM Na3Vo4, 20mM NaF). Whole

muscle cell lysates were generated by finely mincing isolated muscle tissue and resuspended in protein lysis buffer II (100 mM Tris-

HCl, 10% SDS and 12.7 mM EDTA) supplemented with protease and phosphatase inhibitors as described above. Protein lysates

were sonicated and clarified by centrifugation at 14000 rpm for 15 min. Protein concentrations were determined with DC Protein

assay kit (Bio-Rad). Equal amounts of proteins were prepared in protein lysis buffer containing a final concentration of 15% glycerol,

50mM DTT and bromophenol blue. The samples were boiled at 95�C for 5 min and resolved by western blotting. Membranes were

probed with the following antibodies: anti-Ripk3 (Cell signaling #95702), anti-CHD4 (Cell signaling #12011) and anti-GAPDH (Cell

Signaling #2118). Quantification was performed by densitometric analysis using Image Lab 5.0 software (Bio-Rad).

Statistical Analysis
Animal studies were performed without blinding and no animals were excluded from the analysis. All experiments were performed in

biological triplicates unless stated otherwise. Sample size for studies was chosen based on observed effect sizes and standard er-

rors. Statistical analysis performed throughout the experiments either made use of one factorial ANOVA when multiple groups were

compared or unpaired t test when two groups were compared. P values < 0.05 were considered statistically significant (*p < 0.05,

**p < 0.01, ***p < 0.005, ****p < 0.0001). Mean values are depicted as ± s.e.m. and indicated in the figure legends. GraphPad Prism

v5.03 or higher was used for data analysis.
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