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Abstract
In drug development, late stage toxicity issues of a compound are the main cause of failure in clinical trials. In silico meth-
ods are therefore of high importance to guide the early design process to reduce time, costs and animal testing. Technical 
advances and the ever growing amount of available toxicity data enabled machine learning, especially neural networks, to 
impact the field of predictive toxicology. In this study, cytotoxicity prediction, one of the earliest handles in drug discovery, 
is investigated using a deep learning approach trained on a highly consistent in-house data set of over 34,000 compounds 
with a share of less than 5% of cytotoxic molecules. The model reached a balanced accuracy of over 70%, similar to previ-
ously reported studies using Random Forest. Albeit yielding good results, neural networks are often described as a black 
box lacking deeper mechanistic understanding of the underlying model. To overcome this absence of interpretability, a Deep 
Taylor Decomposition method is investigated to identify substructures that may be responsible for the cytotoxic effects, the 
so-called toxicophores. Furthermore, this study introduces cytotoxicity maps which provide a visual structural interpretation 
of the relevance of these substructures. Using this approach could be helpful in drug development to predict the potential 
toxicity of a compound as well as to generate new insights into the toxic mechanism. Moreover, it could also help to de-risk 
and optimize compounds.
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Introduction

Over the past two decades, an increasing number of new 
chemicals have been synthesized every year [1] and fast 
prior analysis of their potentially toxic effects on humans 
and animals has become crucial [2]. In drug develop-
ment, late stage safety and toxicity issues are still the main 
causes of failure in clinical trials [3, 4]. Moreover many 
animals (ca. 2.8 Mio, BMEL [5]) are deployed for testing 
in research and development. Therefore, in silico meth-
ods are highly valuable during early drug development to 
reduce costs, human discomfort and animal testing [6] and 
might contribute to the early identification of harmful sub-
stances according to the REACH regulation [7]. Machine 
learning (ML) algorithms, more specifically deep learning 
methods, have proven to perform well in different fields, 
such as speech recognition [8] or image classification [9], 
and are now also broadly used in drug design [10–14]. A 
recent review of deep learning in chemistry can be found 
in [15]. ML-based endpoint prediction in computational 
chemistry follows the principle that compounds with 
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similar substructures or features may cause similar effects. 
Given a labeled data set with known outcome, the ML 
algorithm learns to identify the often highly non-linear 
combination of physico-chemical and structural features 
in the compound, commonly encoded by circular finger-
prints (e.g. Morgan/ECFP), that may be responsible for 
their (toxic) effect [16–19]. Such models can be built for 
target-specific endpoints (binding assays) as well as for 
more complex biological endpoints (cell-based assays), 
such as cytotoxicity. While more data might be available 
for the former group, the models might be less relevant for 
in vivo situations [20].

Cellular cytotoxicity is a high-level property of molecules 
as it can be caused by different mechanisms. It refers to cell-
death by cell membrane damage and necrotic lysis or cell 
processes such as apoptosis, autophagy or regulated necrosis 
[21]. Cytotoxicity is experimentally assessed by counting 
survival rates after treating a cell line with a given substance 
[22]. In pharmaceutical drug discovery, cytotoxicity is one 
of the earliest handles for assessing toxicity of a drug. Dis-
carding compounds with undesired features early in the 
development stage is of high practical value, following the 
“fail early - fail cheap” de-risking principle.

Some computational cytotoxicity models have already 
been published, most of them applying random forest algo-
rithms [21, 23, 24], others using Bayesian methods with 
physico-chemical properties and/or circular fingerprints as 
descriptors [25]. Additionally, a naive Bayes approach in 
combination with activity spectra has been introduced for 
cytotoxicity prediction [26]. Furthermore, previous studies 
have shown the success of Feedforward Neural Networks 
(FNN) [27, Ch.6] especially in predicting different toxic end-
points [28, 29]. The ability of such networks to model and 
learn non-linear, complex relationships have gained more 
and more attention in the context of chemistry [30]. While 
showing promising results, two major challenges remain for 
such methods in drug design.

The first challenge is the availability of sufficient and 
reliable data [31]. Many models are trained on scattered 
publicly available - and thus, heterogeneous data - due to 
assay diversity, as well as highly variable conditions and 
setups used throughout different laboratories. Therefore, 
thorough data curation is crucial [32]. Second, ML algo-
rithms and especially Deep Neural Networks (DNN) may 
act as a black box and one is often unable to understand the 
intricacies in the hidden layers. The deeper the network the 
more complicated the interpretation becomes. Over the last 
years, several techniques to interpret such models have been 
introduced in the broader context of drug discovery [33–38], 
including but not limited to atom-level coloration [34], inte-
grated gradients [35], attention-vector based relevant latent 
features exploration [36], masking and gradient techniques 

applied to 3D convolutional neural networks [37] and partial 
derivative-based methods [38].

To overcome these hurdles, a DNN model is trained in 
this study using a highly consistent data set from the Leibniz 
Associations Research Institute for Molecular Pharmacology 
(FMP: Leibniz-Forschungsinstitut für Molekulare Pharma-
kologie), with approximately 34,000 compounds (remaining 
standardized compounds after data preprocessing) measured 
for their cytotoxic potential. The effect on cell viability, 
including sublethal effects on cell proliferation, was meas-
ured using a high-content screening assay. This assay ena-
bles to visualize and quantify phenotypic changes due to 
compound treatment. Furthermore, a new technique is used 
here to unleash the black box effect by identifying relevant 
features for toxicity prediction. One recent approach, known 
as the layer-wise relevance propagation (LRP), decomposes 
the output scores layer by layer back to the original inputs 
of the network, yielding information on which features are 
important for the prediction. One special case of the LRP 
method, called Deep Taylor Decomposition (DTD) devel-
oped by Montavon et al.[39], uses the Taylor decomposition 
to redistribute the output score. This study is the first, to the 
best of our knowledge, that uses the DTD in the molecular 
context. In order to obtain a visual representation of the atom 
environments potentially relevant for cytotoxicity deter-
mined by the DTD method, a technique developed by Rini-
ker and Landrum [40], called similarity maps, is employed 
to depict the 2D plots of the molecules where the relevances 
of the potentially cytotoxic substructures are highlighted. 
The application of similarity maps in the context of cyto-
toxicity prediction will further be referred to as cytotoxicity 
maps. With this approach, potential cytotoxic compounds 
could be identified and prioritized for experimental testing 
and verification.

Data and methods

This section describes the data set and the preprocessing 
steps, as well as the machine learning models that are used 
for this study. Furthermore, the Deep Taylor Decomposition 
to identify potential toxicophores and the visualization using 
cytotoxicity maps are introduced.

Data

Data collection and cytotoxicity definition

The compound library available at the FMP comprises a 
collection of 74,000 chemically distinct substances that 
were assembled at the FMP [41]. Among them, more than 
34,000 compounds were purchased from commercial ven-
dors. These commercial compounds were selected after 
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an analysis of the World Drug Index (database of 70,000 
approved drugs and natural products annotated for bioac-
tivity) for privileged substructures frequently occurring in 
different drugs. According to the approximately 561 identi-
fied main chemotypes, which represent a major part of the 
currently known chemical space of drug-like molecules, 
compounds presenting these privileged motifs in different 
combinations and variations were selected. Prior incorpo-
ration into the library, a filtering against known reactive 
groups (similar to filtering against pan-assay interference 
compounds [42]) was performed as described in Lisurek 
et al. [41].

The initial data set from the FMP available for this study 
contained 34,848 compounds that were tested for their cyto-
toxic effects on two cell lines, HepG2 and HEK293, as well 
as another 1408 compounds that were tested only on the 
HepG2 cell line. Cells were seeded onto 384-well plates, 
compounds added to a concentration of 10 μM, and cells 
incubated for additional 72 hours. Resulting cell numbers 
were then determined by staining of the nuclei using Hoe-
chst 33342 technique1 [43] and counting the nuclei with 
fluorescence microscopy. In order to increase reliability, 

three technical replicates (replicating the steps of cell seed-
ing, compound addition and cell counting) were generated. 
The high concentration justifies two assumptions: first, the 
permeability of molecules does not need to be taken into 
account as the high concentration likely leads to cell mem-
brane penetration and relevant intracellular concentrations. 
Second, the high concentration should also reliably reveal 
existing toxicity of the compounds.

Cytotoxicity of a molecule is defined using the relative 
growth inhibition measurement comparing two samples of 
a cell line, untreated and treated, respectively. A molecule is 
labeled cytotoxic if it inhibits growth by at least 50% com-
pared to the untreated samples and the cell count should be 
three standard deviations lower than the median of the cell 
lines on a specific plate. This effect had to be observed in at 
least two of the three technical replicates.

In case a compound is toxic at the same concentration 
range as applied for the measurements (10�M) , small dif-
ferences in sensitivity between the different cell lines may 
lead to a compound being determined toxic in one cell line 
but not in the other. Thus for this study, a compound is con-
sidered cytotoxic if it is measured cytotoxic on at least one 
of the two cell lines (HEK293 or HepG2).

Compound data preprocessing

All molecules are processed with RDKit [44], of which 
157 are discarded due to sanitization issues. After sanitiza-
tion, the remaining molecules are preprocessed by apply-
ing certain structure standardization rules, e.g. removing 
salts, normalizing charges and handling tautomers, using 
the tool developed in the scope of IMI eTox [45]. Subse-
quently, duplicates produced by the standardization process 
are removed. This results in 34,366 compounds that are con-
sidered in this study. Only 4.65% of the molecules in the 
preprocessed data set are labeled cytotoxic, leading to highly 
imbalanced data (see Fig. 1).

Compound encoding

All molecules in the preprocessed data set are transformed 
into Morgan fingerprints using RDKit [44]. Atom environ-
ments are only considered at an exact radius of two bonds 
and the length of the fingerprint is set to 2048. Environments 
are only included if they appear at least five times in the data 
set, yielding 14,245 unique hash keys. This selection omits 
40,507 substructures as they were present less than five 
times in the data set. This feature selection is equivalent to 
the first step of Gütlein and Kramer [46, Table 6]. Note that 
due to the hashing of the features to a 2048 bit fingerprint, 
different atom environments may be mapped to the same bit, 
known as bit collision.

Fig. 1  The logarithmic scale plot shows the number of toxic and non-
toxic molecules for the two cell lines HEK293 and HepG2. There are 
approximately 20 times more molecules that are labeled non-toxic 
than toxic, making the data set highly imbalanced

1 Hoechst 33342 is a cell-permeable minor groove-binding DNA 
stain, which starts to fluoresce bright-blue upon DNA binding. 
Stained nuclei are then easily distinguishable from background using 
fluorescence excitation in the UV range.
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Machine learning model generation

FNN model setup

In this study, a feedforward fully-connected neural network 
(FNN) is used to predict cytotoxicity of compounds, a model 
similar to Gütlein and Kramer [33] in the TOX21 challenge. 
The inputs are given by the 2048 long fingerprints and the 
outputs are binary variables indicating if a molecule is cyto-
toxic or not. The architecture of the model considers three 
dense hidden layers with respectively 512, 192 and 128 
units. The activation function used in the hidden layers of 
the network is the ReLU function, defined as 
ReLU(x) = max{x, 0} [27, p.170]. For the final classification, 
a sigmoid function, defined as �(x) = 1

1+e−x
 , is applied to 

obtain prediction values that range between 0 and 1. These 
values correspond to the probability of belonging to either 
the cytotoxic or the non-cytotoxic class. To avoid overfitting, 
the output layer is regularized using dropout [47], where 
40% of hidden units in the last hidden layer are set to zero at 
random during each mini-batch gradient updating step. 
Additionally, toxic molecules are weighted five times more 
in the loss function than non-toxic ones in order to statisti-
cally increase their prevalence. The Adam method [48] is 
chosen as the network optimizer with an initial learning rate 
of 0.0001. The model has been established by running a 
random hyperparameter search (data not shown).

RF baseline model setup

To compare the results of the deep learning model, a base-
line is computed using a Random Forest (RF) model. This 
tree-based method has shown to perform particularly well 
in cheminformatics [49]. The default settings in Scikit-learn 
[50] are used; more specifically 50 trees are fitted, each of 
them selecting randomly 45 out of the 2048 bits of the fin-
gerprint as features. The same strategy as for FNN is used 
to account for the imbalanced data.

Model validation

As a model setup, a 10-fold nested cross-validation with 
validation and test set is used. The preprocessed data is 
randomly split into 10 parts. First, one of these parts is 

randomly selected as test set (10% of the data set), another 
as validation set (10% of the data) and the remaining as 
training set (80% of the data). Finally, all possible combina-
tion of these three sets are considered leading to 90 model 
evaluations (see Table 1). For each combination, also called 
run, the FNN and the RF models as previously described 
are trained on the training set, using the validation set for 
hyperparameter tuning, and evaluated on the test set. Note 
that for the FNN production run and the toxicophore evalu-
ation, a separate model with a random split into the same 
proportions has been setup.

For model evaluation, the balanced accuracy (AccB) [51], 
the true positive rate (TPR) and the true negative rate (TNR) 
[52, Table1] are used as comparison metrics. The formulas 
for these three metrics are shown in Eqs. 1, 2 and 3, where 
TP represents the true positive counts, TN the true negative 
counts, FP the false positive counts and FN the false nega-
tive counts. Note that AUC values are not included since 
this metric may be misleading when evaluating model per-
formance on imbalanced data sets, as suggested by Saito and 
Rehmsmeier [52].

 

Deep Taylor Decomposition

When training a model, besides model performance, the rel-
evance of certain features that lead to the predictions may be 
of high interest. For this purpose, Bach et al. [53] proposed 
a method to decompose layer-wise a given model score and 
redistribute the decomposed scores to the inputs. For a spe-
cific input x , node i and layer l = 0,… , L , we note Rl

i
(x) the 

associated relevance score. The layer-wise relevance propa-
gation has the desired property to redistribute the overall 
relevance between two layers, meaning that the sum over 
the relevances assigned to the inputs equals the probability 

(1)AccB =
1

2

(

TPR + TNR
)

,

(2)TPR =
TP

TP + FN
,

(3)TNR =
TN

TN + FP
.

Table 1  Number of toxic 
and non-toxic compounds in 
each of the split sets: training, 
validation and test

Training (80%) Validation (10%) Test (10%) Total (100%)

Non-toxic compounds 26,212 3277 3277 32,766
Toxic compounds 1280 160 160 1600
Total compounds 27,492 3437 3437 34,366
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of the model score. The initial relevance, RL(x) , is given by 
the model score.

The relevance is back-propagated to previous layers fol-
lowing only positive weights. This is known as the z+ rule. 
Let wij = w

l,l+1

ij
 be the weight that connects non-zero hidden 

node xi in layer l with hidden node xj in layer l + 1 . Only 
positive weights are considered, namely w+

ij
= max(0,wij) . 

Then the z+ rule is defined as follows

The name z+ rule is derived from the definition z+
ij
= xl

i
w+

ij
 . 

Redistributing positive scores to the input using this rule 
allows to assign a positive relevance to each bit, which in 
this study encodes an atom environment (see Fig. 2).

Note that this method is not applied directly to the sig-
moid model score, but to its logarithm of odds, log

(

�(x)

1−�(x)

)

 , 
the so-called logit. Model scores with positive logits, i.e. 
probabilities greater than 0.5, are further referred to as 
decomposable. Moreover, the method is restricting biases in 
ReLU activations to be negative in order to ensure the appli-
cability of the Taylor decomposition. For further details, 
please refer to the paper by Montavon et al. [39].

Identification of toxicopohores and visualization 
as cytotoxicity maps

To reveal the features having a high impact on the cytotox-
icity classification of a molecule, the Deep Taylor Decom-
position (DTD) method, as described in the previous sec-
tion, is applied. Furthermore, for better interpretability, the 
features are mapped back to the molecular structure and are 

(4)Rl
i
=
�

j

xl
i
w+

ij
∑

k x
l
k
w+

kj

Rl+1
j

=
�

j

z+
ij

∑

k z
+

kj

Rl+1
j

.

visualized using similarity maps, introducing the concept of 
cytotoxicity maps.

Detection of potential toxicophores

Toxicophores, in this study, are substructures in a molecule 
that highly contribute to the toxicity prediction. In order to 
identify the toxicophores in the data set, the bit-wise rel-
evance scores, encoded by the fingerprint bits, are inves-
tigated and averaged over the complete set of molecules 
with decomposable scores. Such molecules will further be 
referred to as decomposable molecules.

For each decomposable molecule m ∈ {1,… ,M} and for 
each fingerprint bit j ∈ {1,… ,N} , a relevance score Rm,j is 
retrieved using the DTD method, see Fig. 2. The relevance 
scores for each bit are aggregated by taking the mean over all 
atom environments setting a bit in decomposable molecules, 
denoted as Nj . Therefore, each atom environment j will be 
assigned a score Rj which was averaged on the selected data 
defined as the global mean relevance score

With this approach, the k ∈ ℕ most likely cytotoxic substruc-
tures, or toxicophores, can be identified by selecting the k 
highest global mean relevance scores R(1),… ,R(k) , noting 
R(i) ≥ R(j), ∀i ≥ j the ordered relevance scores. The associ-
ated workflow is illustrated in Fig. 3. For each decompos-
able molecule, the subset of the identified k-most relevant 
toxicophores is indicated on the structure by highlighting in 
red all atoms that are part of the identified relevant substruc-
ture using pre-implemented plotting functions in RDKit. If a 
molecule contains more than one of the most likely substruc-
tures, where these cases can include disconnected, nested or 
overlapping substructures, the union of these substructures is 

(5)Rj =
1

Nj

∑

m

Rm,j.

Fig. 2  The Deep Taylor Decomposition method applied to a three 
hidden layer feedforward neural network. The inputs to the network 
are 2048 fingerprint bits. The left diagram represents the network 

with ReLU activation function and the right diagram the assigned 
relevances using the z+ rule. xl

i
,Rl

i
 represent the ith node, relevance at 

layer l, respectively
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displayed (i.e. each atom that is part of at least one of these 
environments is highlighted once).

Cytotoxicity maps

To visualize the contribution of all atom environments 
contained in a molecule to the cytotoxicity prediction, 
similarity maps developed by Riniker and Landrum [40] 
are used. This technique allows to identify and visual-
ize atom contribution from a prediction computed by a 
ML algorithm. In the original study, this is done as fol-
lows: Given a fingerprint of a molecule, a pre-trained ML 
model and a prediction value for the fingerprint, a set of 
weights for each atom in the molecule have to be calcu-
lated. These weights, which will define the atom contribu-
tion of the prediction, are computed in the following way: 
Recursively each atom is removed from the molecule and 
a new fingerprint is generated. The prediction of the new 
fingerprint is evaluated with the pre-trained ML model. 
Finally, the weight associated to that atom is the difference 
between the prediction of the fingerprint generated with 
and without the presence of that same atom. For visualiza-
tion, bivariate Gaussian distributions centered at the atom 

position using these weights are generated and the plots 
show the superimposition of the atom positions and the 
contour lines of the distributions.

In this study, the weights are computed slightly differ-
ently. Indeed the weights considered are the relevance scores 
which are directly generated from the DTD method. Note 
that in contrast to the original work, the weights here can 
only be positive. However, as discussed in the “Deep Tay-
lor Decomposition” section, theses scores are associated to 
each bit in a decomposable molecule and not to each atom. 
Therefore, the global mean relevance score is attributed to 
each atom in the atom environment. Consequently each atom 
in the decomposable molecule is mapped to a weight and the 
similarity map and plots can be generated in this context. 
Some of the substructures might overlap and have atoms in 
common. In this case, the weight of an atom part of several 
substructures will be given the maximum value of the global 
relevance scores associated to the atom environments. In the 
cytotoxicity maps, substructures with high relevance scores 
will stand out and could hint to toxicophores.
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Fig. 3  Workflow for identifying potential toxicophores. The first 
arrow describes the transformation from the molecules in the train-
ing and validation sets into 2048 long binary vector describing the 
Morgan fingerprints of radius 2, using RDKit. Each bit represents one 
(or more) atom environment(s). The black box indicates if the cor-
responding atom environment is present in the molecule. The second 
arrow shows that relevance scores can be obtained for each com-

pound using the Deep Taylor Decomposition method described in the 
“Deep Taylor Decomposition” section and illustrated in Fig. 2. Once 
all relevance scores are computed for each decomposable molecule, 
they are averaged using Eq. 5. The bits corresponding to the k-highest 
global mean relevance scores are stored and used for further analysis 
as potential toxicophores
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Used software and libraries

RDKit [44] is used for molecular encoding, fingerprint 
generation and plotting of molecules. Scikit-learn [50] is 
employed for the Random Forest model. The deep learn-
ing model is implemented using Keras with Tensorflow 
backend [54]. For the score decomposition, DTD imple-
mentations as provided by iNNvestigate [55] are used. 
The similarity maps visualization is used as in the original 
paper [40].

Results and discussion

In the following, the results of the deep learning model as 
well as the baseline model are discussed and then compared 
to other studies on in silico cytotoxicity predictions. Addi-
tionally the toxicophores identified using the DTD method 
and the cytoxicity maps are presented.

Model evaluation and comparison

In this study, an FNN model for cytotoxicity prediction has 
been established based on the final set of 34,366 preproc-
essed compounds provided by the FMP, which were tested 
for their cytotoxic effect on two cell lines. Out of these com-
pounds, 32,353 are commercial compounds selected using 
the strategy described by Lisurek et al. [41], another 2013 
are commercial compounds with known biological activ-
ity (‘LOPAC®1280’ library from Sigma-Aldrich [56]) 
and FDA-approved drugs (‘FDA Approved Drug Library 
L1300’ from Selleckchem [57]). The data can be considered 
as highly consistent and curated, since it has been produced 
in the same laboratory using the same cell line and experi-
mental setup with several reference compounds as control 
for each assay campaign. Note that the data set is highly 
imbalanced with a share of only 4.65% of toxic molecules.

FNN vs. RF cross‑validation results

First, the results of the nested cross-validation (CV) of the 
FNN model are compared to the baseline RF model. Overall 
both the FNN and the RF models perform similarly well 
regarding balanced accuracy on the given data set. On the 
training set, RF seems to highly overfit the data (see Train 
row in Table 2), meaning that the model would tend to 
memorize patterns instead of learning them. On the test set, 
the FNN and RF models yield similar results with a mean 
balanced accuracy of approximately 68%, with a slightly 
higher mean and narrower standard deviation for the FNN 
setup (see Table 2). This is a fair increase in performance 
when comparing these results to the 50% AccB of a naive 
classifier, which would always predict all compounds to the 
majority class (non-toxic in this study). Furthermore, the 
FNN tends to produce more balanced TPR and TNR results 
compared to RF: a mean of 61.57% TPR and 76.22% TNR 
for the FNN opposed to 51.48% TPR and 85.02% TNR for 
RF. This observation is especially important when the task 
requires identifying potentially cytotoxic molecules in a 
highly imbalanced data set. Note that AccB, TPR and TNR 
are based on an automatically set cutoff yielding the maxi-
mum balanced accuracy on the respective validation split 
(mean of 0.17 for FNN and 0.07 for RF). The cutoff adap-
tion is necessary because of the highly imbalanced nature 
of the underlying data set. This strategy is preferred over 
under-sampling in order to use as many data points as pos-
sible (see [58]).

Comparison to other studies

Next, the CV results of the FNN and RF models trained on 
the FMP data are discussed in the context of three other 
recently presented models for cytotoxicity prediction [21, 
23, 24], mainly using random forest models on freely avail-
able data (see Table 3). Note that results are only partly com-
parable between different studies since both data sets and 
methods may vary. Even in the case of same data, different 

Table 2  10-fold nested cross-
validation results (mean and 
standard deviation (std)) for 
the FNN and RF baseline 
models. Reported performance 
measures in percent (%) are 
balanced accuracy (AccB), 
true positive rate (TPR) and 
true negative rate (TNR). The 
best results on the test set are 
displayed in bold

FNN Random forest

AccB TPR TNR AccB TPR TNR

Train Mean 84.28 90.66 77.90 97.85 100.00 95.69
Std 2.22 4.03 6.64 1.26 0.00 2.52

Val Mean 70.13 63.94 76.32 68.72 52.35 85.09
Std 1.30 6.92 6.82 1.71 6.96 5.70

Test Mean 68.89 61.57 76.22 68.25 51.48 85.02
Std 1.46 7.39 6.62 1.96 1.82 5.94
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splits can make comparison of methods difficult, as men-
tioned by Wu et al. [30].

Mervin et al. [21] trained a random forest model on pub-
licly available NCBI BioAssay data, standardized using an 
in-house script. Molecules are considered cytotoxic if they 
have a  pIC50 above 5.0 in the tested assay. Undersampling 
from millions of non-toxic molecules, the final public train-
ing data set contains a total of 14,880 molecules of which 
3720 are labeled cytotoxic. With 25%, the share of toxic 
molecules is higher than in this study, but a similar weight-
ing approach is used to balance the training data statisti-
cally. The external test data set consists of 988 molecules 
with an even higher share of 45% cytotoxic molecules 
[21, Table 8] and the model exhibits a balanced accuracy 
of 76.69%. Svensson et al. [24] trained a random forest 
model on extracted and standardized [45] molecules from 
PubChem, which were tested on a variety of cell lines and 
the cytotoxicity definition varied from one data set to the 
other. Their external data set consisted of 3295 molecules 
of which only 48 were labeled cytotoxic. Having a share of 
less than 1.5% is below the share of this study. Furthermore, 
they use conformal prediction models (CP) based on RF 
classifiers. The conformal prediction balanced accuracy of 
their model is 69.15%. However conformal prediction met-
rics do not necessarily translate to performance measured 
by metrics on pure model predictions. Banerjee et al. [23] 
report the highest balanced accuracy of 83.60% on their test 
data split. They extracted data from ChEMBL [59] and used 
cytotoxicity based on  IC50 values at a concentration cutoff 
of 10�M . The random forest classifier is trained on 5487 
samples and evaluated on a test set of 610 samples, each 
containing one third of cytotoxic molecules [23, Table S1]. 
In the presented study, approximately seven times less toxic 
molecules were in the data set.

To conclude, Table 3 seems to suggest that models with 
more balanced data sets lead to better performance, as is 
illustrated with a 83.60% balanced accuracy from Banerjee 
et al. [23] and 76.69% from Mervin et al. [21]. However, as 

stated above, first, comparisons between the models should 
be made with care. Second, while having more balanced data 
sets may facilitate the modeling task, the question remains 
which resembles better the real live scenario. The results 
of the models trained on highly imbalanced data sets lie in 
the same range as shown with the FMP data and FNN as 
well as RF with a balanced accuracy of approximately 69% 
from this study and the RF-based CP model from Svensson 
et al. [24]. While Mervin et al. [21] obtain a TNP of 96.50%, 
the TPR is only 56.90%. In the FNN model used in this 
study, the TPR and TNR are more balanced, with a TNR 
of 76.22% and a TPR as high as 61.57%. This result may 
be more valuable in this context, since the main goal is to 
identify cytotoxic molecules. From an application point of 
view, correctly predicting cytotoxicity for novel molecules 
that would indeed later show toxic behavior (in in vitro or 
in vivo studies) may be more crucial, because these com-
pounds could be excluded from further development.

FNN Production Run Results

After successful CV evaluation of the FNN model and com-
parison to a baseline RF as well as other published studies, 
a FNN was built for production run, showing a balanced 
accuracy of 70.73% on the test set. This model is used for 
the DTD in order to identify and highlight toxicophores in 
molecular structures.

The cutoff value which yields the maximum balanced 
accuracy (69.46%) on the validation data is 0.17 (see Table 4 
and Fig. 4a for the distribution of model scores correspond-
ing to that specific cutoff). The TPR and TNR associated 
to that cutoff on the validation set are 62.50% and 76.41% 
respectively. Note that since the TPR and the TNR are 
directly related to a chosen cutoff, varying this cutoff value 
would immediately result in the change of these rates. Aim-
ing towards a higher TPR or a higher TNR may depend on 
the research question at hand and the cutoff should be chosen 
accordingly. A cutoff of 0.20 would for example yield on the 

Table 3  Comparison of FNN 
and RF performance of this 
study with other existing models 
for cytotoxicity prediction 
(reported are mean CV results, 
noting that CV setup differ 
between methods). Balanced 
accuracy (AccB.), true positive 
rate (TPR) and true negative 
rate (TNR) are presented in 
percent (%). The last column 
describes the size of the test 
data, as well as the number 
and share of cytotoxic 
compounds. The best results are 
displayed in bold

Test Set Size

Toxic

Models AccB TPR TNR Total Count Percent

FNN (this work) 68.89 61.57 76.22 3437 160 4.6
RF (this work) 68.25 51.48 85.02
RF, Mervin [21, Table 8, public] 76.69 56.90 96.50 988 445 45.0
CP/RF, Svensson [24, Table 5] (69.15) (73.80) (64.50) 3295 48 1.5
RF, Banerjee [23, Table 2] 83.60 93.00 74.00 610 205 33.6



739Journal of Computer-Aided Molecular Design (2020) 34:731–746 

1 3

validation set a lower TPR of 53.75% but a higher TNR of 
80.62% (see Table 4), and the same trend can be observed 
on the test set. Since the aim of this study is to reveal poten-
tial cytotoxic compounds which could then undergo further 
(experimental) testing, reaching a higher TPR is of more 
importance.

Potential toxicophores

The current study aims to provide a visual structural inter-
pretation of the model outcomes with the aim of identify-
ing novel toxicophores. From the 30,929 molecules that are 
present in the training and validation set, a total of 1210 
molecules are decomposable ( ∼4%), which is in line with 
the share of cytotoxic molecules in the complete data set. As 
discussed in the “Identification of toxicopohores and visu-
alization as cytotoxicity maps” section, relevance scores are 
obtained for each of the 2048 atom environments from these 
decomposable molecules. The workflow in Fig. 3 describes 
the process of going from decomposable molecules to global 
mean relevance scores per bit. Atom environments refer-
ring to high scoring bits generally contribute greatly to the 
predicted toxic value of the compound and thus represent 
potential toxicophores.

Identification of Potential Toxicophores Based on Most 
Important Bits

Note that for the analysis of the most important bits, global 
mean relevance scores were calculated per bit. These scores 
range from 0.0 to 0.2, and the distribution shows a dras-
tic drop in values indicating that only few bits have a high 
impact (see Fig. 4b). In the following, the k = 5 bits with 
the highest scores are selected for further analysis. Note that 
with increasing values of k, more often several of these bits 
appear together in one molecule and overlap. Thus, the por-
tion of the molecule that is covered by these bits, which 
likely contribute to cytotoxicity, becomes larger and closer 
to a full scaffold. In this case study, selecting the five high-
est relevance scores seems appropriate to reveal meaningful 
substructures. Table 5 displays these bits in decreasing order 
with respect to the global mean relevances as well as the 
predictions (TP and TN counts) given by the FNN model. 
On the training and validation set, the molecules that contain 
at least one of these bits are correctly predicted cytototoxic 
by the model 85% of the time. If the counts from bit 85 are 
removed, this number increases to over 90%. Similar find-
ings can be assessed on the test set: the model yields 69% 
and 75% correctly predicted values, including and excluding 

Table 4  Model metrics in 
% at 0.17 cutoff yielding 
maximum balanced accuracy 
on the validation set (in bold) 
as well as another cutoff at 0.20 
yielding higher TNR rates on 
the validation set (in bold)

Cutoff = 0.17 Cutoff = 0.20

AccB TPR TNR AccB TPR TNR

Train 85.76 92.50 79.02 86.43 89.53 83.32
Val 69.46 62.50 76.41 67.19 53.75 80.62
Test 70.73 63.12 78.33 69.53 56.88 82.18

Fig. 4  a Distribution of predicted scores for molecules from the vali-
dation set, which was used to calibrate the cutoff of 0.17 (indicated 
by the vertical line) of the model to classify compounds as cytotoxic. 

b Distribution of global mean relevances of set bits in decomposa-
ble compounds in the training and validation set, which were used to 
determine the five most important bits (indicated by the vertical line)
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bit 85, respectively. This observation indicates two facts: 
First, the results of the DTD method are meaningful and 
useful in assessing the cytotoxicity of compounds. Novel 
molecules containing these bits should be treated with spe-
cial attention in future laboratory experiments. Second, bit 
85 seems to be an outlier which will be discussed later in 
greater details.

In the test set, 17 molecules contain at least one of these 
top five atom environments (see Fig. S1 in the Supplemen-
tary Material, bits highlighted in red). For example, test 
molecule 1, an indenophtalazinone derivative, was cor-
rectly labeled cytotoxic by the FNN model and contains bit 
713 (see Fig. 5). To verify this prediction, the eMolTox tool 
developed by Ji et al. [60], an in silico drug safety analysis 
system, was queried. The authors constructed Mondrian con-
formal prediction models for 174 toxicology-related in vitro 
and in vivo experimental data sets. eMolTox predicts the 

compound with high confidence as potentially being geno-
toxic, interacting with the CNS, and/or with the liver. Most 
interesting are two similar compounds that exist in the 
underlying database which were tested active in the context 
of genotoxicity (i.e. the drug flurazepam, ChEMBL968 in 
the ChEMBL data base [59]) and liver damage (amonafide, 
Phase III, ChEMBL428676). While the annelated scaffold 
systems of these active molecules, such as the benzodiaz-
epine scaffold from flurazepam differ from the compound in 
this study, they also contain the tertiary substituted ethylen-
diamine corresponding to bit 713 in molecule 1. Moreover, 
eMolTox offers the detection and highlighting of toxic sub-
structures in each query molecule, based on a list of struc-
tural alerts collected from literature (see Table S2 in Ji et al. 
[60]). For the query molecule, several structural alerts are 
identified. Among them, the tertiary amine is highlighted 
being potentially involved in covalent DNA binding. The 

Table 5  Bits with the five 
highest global mean relevance 
scores (rel. score) are shown 
in decreasing order, as well 
as the predictions (TP and 
FP counts) given by the FNN 
model on both the training and 
validation sets (train+val) and 
on the test set for molecules 
that contain these bits. The last 
column shows the 2D image of 
atom environments associated 
to the Morgan fingerprint bit 
in the test set (two images to 
exemplify bit collisions), where 
the blue, yellow and gray circles 
represent central, aromatic 
and aliphatic ring atoms, 
respectively

Bit Mean TP – FP TP – FP Atom environment(s)
rel. score train + val test associated to bit

904 0.20 50 – 2 4 – 1

812 0.16 54 – 7 4 – 2

1316 0.15 57 – 6 5 – 2

85 0.12 39 – 24 5 – 4

713 0.11 52 – 5 5 – 1



741Journal of Computer-Aided Molecular Design (2020) 34:731–746 

1 3

toxicophore identified here seems to contain but extend the 
known structural alert to a larger moiety that is potentially 
involved in cytotoxicity. Figure 5 illustrates the cytotoxicity 
map for the considered molecule. The atom environment 
associated to bit 713 stands out compared to the other sub-
structures in the molecule and therefore may be designated 
as a toxicophore. Furthermore, the right part of the fused 
ring system also shows some intensity (relevance) and actu-
ally describes a part of the molecule that was also high-
lighted by eMolTox’s structural alerts and annotated as 
potentially kidney toxic or hepatoxic.

Additionally, in five molecules of the test set (2A-2E 
in Fig. 6, see also Fig. S1 in the Supplementary Material) 
four of the five most relevant bits (namely bits 713, 812, 
904, 1316) appear together and form a potential toxico-
phore which covers a larger 6,7-dihydrobenzo[a]heptalen-
9(5H)-one core structure including methoxy and amino 
substituents. This combined substructure is present in 
five compounds from the test set of which four are indeed 

experimentally labeled cytotoxic (molecules 2A to 2E in 
Fig. 6, left) and the FNN predicts them as toxic with a high 
mean probability of 0.89 (see Table S2 in Supplementary 
Material). This assumption is supported by the cytotoxicity 
map exemplified for test molecule 2B (see Fig. 5c).

Using the eMolTox tool, a toxicity prediction for the 
visually determined maximum common substructure of 
these five compounds was performed (see Fig. 6). The 
most similar active compound in the eMolTox data set to 
the queried common core is the known drug demecolcine 
(ChEMBL312862), a colchicine derivative, which is used in 
chemotherapy and shows cytotoxic activity. In accordance 
with being predicted cytotoxic in this study, the queried com-
mon substructure is predicted by eMolTox to further cause 
DNA damage, genotoxicity, as well as interacting with the 
liver and endocrine system (see Fig. 6, right). Furthermore, 
eMolTox identified the following toxic alerts: covalent bind-
ing to proteins or DNA (because of potential electrophilic 
reactivity), as well as skin sensitization and/or hepatoxicity 

Fig. 5  The figure shows three compounds from the test set, namely 
molecule 1, molecule 2B and molecule 3A, that were correctly 
labeled cytotoxic by the FNN model. a highlights bit 713 in red in 
molecule 1. b–d illustrate the cytotoxicity maps for these molecules. 

The atomic weights are computed using the approach discussed in the 
“Identification of toxicopohores and visualization as cytotoxicity 
maps” section. The higher the value of the respective global mean 
relevance, the darker the green coloring
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(the latter two caused by catechol or catecholdimethyl ethers 
or p-alkoxy aromatic ethers). The identified 4-bit substruc-
ture in this study extends the alerts and suggests a larger 
substructural entity, namely the 6,7-dihydrobenzo[a]hep-
talen-9(5H)-one core structure bearing methoxy and amino 
substituents, being involved in cytotoxicity (see Fig. 6).

As described above, bit 85 was identified as one of the 
five bits with the highest global mean relevance for cyto-
toxicity and thus, a potential toxicophore. Surprisingly, in 
the training and validation set, only 39 out of the 63 decom-
posable molecules containing this bit were experimentally 
tested as cytotoxic (61.9%). In contrast, high precision (TP/
(TP+FP)) ranging between 88.5% and 96.2% were achieved 
for the decomposable molecules containing one of the other 
four bits (see Table 5). Also, 4 out of 9 decomposable mol-
ecules in the test set containing bit 85 are falsely predicted as 
toxic. Therefore, bit 85 was further analysed uncovering two 
interesting aspects: First, five different atom environments 
are mapped to bit 85, of which the two most common ones 
(72% and 10%, named bit 85_t1 and 85_t2 in the following) 
are depicted in Table 5 and are present in molecules 3A to 
3G and in molecule 4 of the test set, respectively (Fig. S1 in 
the Supplementary Material). This behavior is known as bit 
collision when working with folded molecular fingerprints, 
as mentioned in the “Data” section. Folding is a compro-
mise between accuracy and performance since unfolded 
fingerprints can become enormously long. In this study, the 
unfolded fingerprints could already be reduced to a size of 

14,245 bits by introducing a filtering step, but are afterwards 
folded to 2048 bits, as described in the “Data” section. Con-
sidering the 63 decomposable molecules containing an atom 
environment that is mapped to bit 85, 52 cases represent 
type 85_t1, the remaining 11 type 85_t2 (see Table 5). All 
molecules from the latter group were indeed experimentally 
tested toxic (similar to molecule 4). In contrast, almost half 
of the 52 molecules of the former group (similar to mole-
cules 3A to 3G) were experimentally tested non-toxic (FPs). 
This indicates that the model could be improved by reducing 
such bit overlap. Note that these collisions seem to be less 
problematic in the case of bit 713. Most of the decompos-
able molecules in the training set which contain bit 713, 
with different associated atom environments (as shown in 
Table 5), do indeed belong to the toxic class. Second, the 
low precision for compounds containing bit 85 points to the 
fact that this class of molecules might be challenging for 
the algorithm. While having a common 1,5,6,7-tetrahydro-
4H-indol-4-one core, the toxicity of the compounds seems to 
depend on the peripheral substitution and the functionaliza-
tion. This points to the concept of activity cliffs, which are 
a challenge for many predictive modelling approaches [61]. 
While the FNN generates many FPs for the decomposable 
molecules of this compound class, the algorithm neverthe-
less predicts the TPs (3A in Fig. 5d, 3C, 3D and 3G) with 
higher mean probability than the FPs (3B, 3E, 3F and 3H), 
0.77 vs. 0.64, respectively (see Table S2 in Supplementary 
Material).

Fig. 6  Schematic description of analysis: On the left, molecules 
2A-2E from the test set are shown together with the relevant bits 
highlighted in red. The common core of these five molecules is used 

as query for the eMolTox server and the results of eMolTox are sum-
marized on the right, with predicted toxic endpoints in blue
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Note that molecule 5 (which contains bit 1316) and mol-
ecule 6 (which contains bit 812) are wrongly predicted as 
cytotoxic by the FNN. The most relevant bits they contain 
refer to bit collision and are different from the major bit 
types shown in Table 5. Furthermore, the predicted scores 
are slightly lower than for the TPs mentioned above, i.e. 
0.59 for molecule 5 and 0.69 for molecule 6 (see Table S2 
in Supplementary Material).

These observations highlight the value of the DTD 
method during model setup and evaluation. Using the fea-
tures learned by the algorithm and mapping the scores back 
to the structure, shortcoming of the model can be pinpointed 
and actions could be taken such as enlarging the fingerprint 
length to minimize bit collision, or to investigate in more 
detail specific difficult compound classes in the data set.

Cytotoxicity maps and comparison to other methods

Besides the identification of such novel toxicophores, the 
DTD relevance scores of all atom environments in a mol-
ecule can be depicted to produce a cytotoxicity map of the 
molecule (adapted from the similarity maps [40] as also 
used by Preuer et al. [35, Fig. 4]). Thus, the decomposi-
tion of a single molecule is presented entirely which allows 
easy interpretation of the results, as shown in Fig. 5b–d. 
In this study, the DTD approach is used to select relevant 
bits to be able to interpret what the model learned. Further-
more, this provides a data-driven approach to identify novel 
toxicophores.

Other approaches exist that try to unleash the black box 
in ML, for example, Mayr et al. [33] compare the neurons in 
the network to predefined toxicophores. Sheridan [34] uses 
a leave-one-feature-out approach on many different mod-
eling settings in order to identify feature importance. Rel-
evances are assigned based on the difference between model 
scores with a particular feature being present and absent. 
Recently, Manica et al. [36] published an attention-based 
neural network architecture to predict  IC50 values for known 
drugs using RNA and SMILES data. The attention vector 
is calculated from the latent representations and is used to 
identify the most relevant latent features [62] in the SMILES 
encoding. Closest to the study presented here is the work by 
Preuer et al. [35]. In spite of technical details such as model 
architecture, data set, and input featurization, both studies 
try to understand the toxic mechanism using deep learning. 
However, not only are the endpoints that are considered dif-
ferent, but the problem is tackled from different angles. The 
study by Preuer et al. [35] investigates, among other, the 
role of units in hidden layers as pharmacophore detectors 
and the issue of bit collision is not addressed. Moreover 
the method used to investigate the interpretability of neural 
networks, the so-called Integrated Gradients Method, is dif-
ferent from the Deep Taylor Decomposition as presented in 

this study. The Integrated Gradients Method, as the name 
suggests, integrates all the gradients that lie on the path 
between an input x and a predefined baseline x′ to obtain 
a score for each dimension of the input. The integration is 
numerically approximated by a sum, where the number of 
steps is predetermined. Obtaining an accurate approximation 
of this integral requires many time steps (1000 in the study 
by Preuer et al. [35]). When comparing the DTD method to 
Integrated Gradients, DTD is computationally more efficient 
as only one backpropagation is needed to assign relevances 
in comparison to 1000 time steps for a single decomposition 
in [35]. Both Integrated Gradients and leave-one-feature-out 
are model agnostic and straightforward to apply, but in con-
trast the DTD is very intuitive and consistent.

Conclusion

In this study, a deep learning approach to predict the cyto-
toxicity of compounds is presented using a highly consistent 
data set of over 34,000 compounds provided by the FMP. 
Note that the data was composed as screening data set, thus 
not focusing on cytotoxicity, which led to a low share of 
cytotoxic molecules. Most importantly, a procedure is intro-
duced to make deep learning models more interpretable. In 
this way, the Deep Taylor Decomposition is used to identify 
toxicophores in a molecule from a fully-connected feedfor-
ward neural network by mapping relevance scores back to 
atom environments.

The results of the experiments show that the model is 
competitive with the current literature given data sets with 
similar share of toxic and non-toxic molecules. The best bal-
anced accuracy on the test set which the FNN model reached 
is as high as 70.73% which is significantly better than naive 
classification at 50% and the FNN model yielded more bal-
anced results than the baseline RF model. Moreover, using 
the DTD method, atom environments could be identified 
which are likely to be involved in cytotoxic behavior of the 
compounds. As example, the five atom environments with 
the highest global mean relevance scores were identified and 
discussed in this study. Molecules in the test set containing 
these bits were mostly correctly predicted cytotoxic by the 
FNN model. These findings are coherent with the current 
literature and especially some of the identified substructures 
extend the known list of structural alerts. Furthermore, cyto-
toxicity maps are generated that highlight the contribution of 
each individual bit, which allow chemists to identify, from 
these plots, their own relevant toxicophores in newly syn-
thesized compounds.

One aspect that should be considered carefully when 
applying the approach developed in this study to new mol-
ecules is to verify that the compounds are in the scope of 
the model. For more details on the concept of defining the 
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applicability domain, please refer to Hanser et al. [63]. 
Generalization to the entire chemical space may be difficult 
when training any ML model on a static data set. Further-
more, regarding the input features of the model, a notice-
able limitation of fingerprints is bit collision which may be 
ambiguous when trying to identify substructures likely to 
produce toxic compounds. Using longer fingerprint vectors 
may help prevent bit collision. An alternative would be to 
choose a different molecular encoding, such as the SMILES 
representation as in [64], or a learned representation as 
developed by Winter et al. [65].

Concluding, the study presents a novel way of interpret-
ing the outcome of the FNN model to help understand what 
the model learned in the context of molecular toxicity. While 
most toxicophores are selected by humans, the relevance 
scores together with the cytotoxicity maps are a technique 
that identifies these substructures in a data-driven fashion. 
Spotting such substructures at an early stage of drug design 
can be highly beneficial for pharmaceutical research to 
reduce costly and timely laboratory experiments.
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