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Scanning probe microscopy (SPM) has revolutionized the fields of materials, nano-science,
chemistry, and biology, by enabling mapping of surface properties and surface manipulation
with atomic precision. However, these achievements require constant human supervision;
fully automated SPM has not been accomplished yet. Here we demonstrate an artificial
intelligence framework based on machine learning for autonomous SPM operation
(DeepSPM). DeepSPM includes an algorithmic search of good sample regions, a convolu-
tional neural network to assess the quality of acquired images, and a deep reinforcement
learning agent to reliably condition the state of the probe. DeepSPM is able to acquire and
classify data continuously in multi-day scanning tunneling microscopy experiments, mana-
ging the probe quality in response to varying experimental conditions. Our approach paves
the way for advanced methods hardly feasible by human operation (e.g., large dataset
acquisition and SPM-based nanolithography). DeepSPM can be generalized to most SPM
techniques, with the source code publicly available.
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atomically sharp probe in close proximity (typically =1 nm)

above a surface, while measuring a physical quantity [e.g.,
quantum tunneling current in scanning tunneling microscopy
(STM)? and force in atomic force microscopy (AFM)3] as a
function of probe position. This allows for the construction of an
image of the scanned surface. This method can be employed in a
variety of environments, from ambient conditions to ultra-high
vacuum at cryogenic temperatures, allowing for measurements on
a wide range of samples?#. Its unique capability to probe real-
space physical properties (structural, electronic® and chemical®)
with atomic resolution and to manipulate adsorbates on a surface
with atomic-scale precision” makes it highly relevant for chem-
istry> and biology?, and perhaps the most powerful character-
ization tool for materials, surface, and nano-sciencel»>8,

The yield of SPM data acquisition—the fraction of good data
usable for scientific analysis—is rarely reported and are generally
low. There are two main factors limiting this yield: (i) the atomic-
scale morphology of the probe can result in imaging artefacts and
(ii) the state of the sample imaging regions (e.g., scanning
excessively rough or contaminated regions rarely produces usable
data and can result in damaging the probe). Both factors vary
during the course of an experiment and need to be addressed.

In state-of-the-art SPM, a human operator selects sample
regions to scan and assesses the acquired images (good or bad
quality). This assessment is based on the operator’s experience. If
she deems the image bad due to the state of the sample region or
the probe, she changes the region or attempts to condition the
probe. The de-facto procedure for the latter relies on trial-and-
error. Conditioning actions (e.g., dipping the probe into the
sample and applying a voltage pulse between probe and sample®)
are performed until the probe morphology and image quality are
restored. The probe atomic-scale structure dramatically influ-
ences image quality and outcomes of conditioning actions are
uncertain; success depends on the microscopist’s experience and
the time invested.

Previous studies have aimed to improve imaging efficiency, e.g.,
by linking probe morphology and image quality, via analytical
simulations!?, inverse imaging of the probe through sample fea-
tures!!-13, or probe characterization/manipulation (field ion
microscopy!4). These approaches can suppress the need for
heuristic probe conditioning. However, they are difficult to
implement for general use, in particular for large dataset
acquisition.

Another avenue for minimizing the need of human operation
is SPM automation!®. Examples include scripted SPM opera-
tion!® to automatic imaging region selection!”. A recent pub-
lication!® presents an AFM system capable of autonomous
sample region selection and measurement. However, these
methods are limited to specific applications in stable measure-
ment conditions and do not manage probe quality under general
operation.

The latter can be addressed via machine learning (ML), which
allows for predictions, assessments, and decision-making in sys-
tems that are not fully understood, or too complex to be char-
acterized analytically. Rather than following a well-established set
of rules, ML methods derive decision strategies from training
data. In image processing (e.g., object recognition'® and image
segmentation2?), ML approaches routinely outperform humans.
These accomplishments are often based on convolutional neural
networks (CNNs)!921, Such CNNs use image or image-like data
as input to perform classification and regression tasks (e.g., object
recognition and image quality optimization). A CNN is con-
trolled by millions of parameters that can be tuned via supervised
learning. In this process, the network is trained using large sets of
input data (e.g., images) to which a label is associated. This label

S canning probe microscopy (SPM)! consists of scanning an

corresponds to the desired output of the CNN (e.g., for object
recognition and the name of the object in the image). Once the
CNN is trained, it can label new unseen data.

Supervised learning has been applied to SPM in a recent
study?2 where ML assists a human operator in detecting and
repairing a specific type of probe defect in the particular case of
hydrogen-terminated silicon. In this work, a trained CNN
assessed the quality of acquired SPM images; if necessary, a well-
established probe-conditioning protocol was executed?3. In
another recent study?*, ML was successfully used to determine
imaging quality directly from a small number of acquired scan
lines, without requiring complete images. However, fully auton-
omous operation for more general cases, where probe defects are
varied and conditioning protocols are not well-defined, has not
been demonstrated yet.

In ML applications where pre-labeled training data are not
available, a CNN can still learn through trial-and-error, by
receiving positive and negative feedback (rewards). This approach
is known as (deep) reinforcement learning (RL)2. Such RL agents
can learn to navigate complex environments2® (e.g., they excel in
sophisticated games?7:8).

Here we present DeepSPM, an autonomous system capable of
continuous SPM data acquisition. It consists of the following: (i)
algorithmic solutions to select good imaging sample regions and
perform measurements; (ii) a classifier CNN trained through
supervised learning that assesses the state of the probe; and (iii) a
deep RL agent that repairs the probe by choosing adequate
conditioning actions. DeepSPM also addresses other typically
arising issues (lost contact, crashed probe, and moving probe
larger (macroscopic) distances to new approach areas).

Results

To train and evaluate DeepSPM, we used a low-temperature STM
with a metallic probe (Pt/Ir) to image a model sample: magne-
sium phthalocyanine (MgPc) molecules adsorbed on a silver
surface (Fig. 1 and Methods). Such molecular systems are sci-
entifically and technologically relevant, owing to their electronic,
optical, and chemical properties?®-30. SPM provides an ideal tool
for their characterization but also presents challenges (e.g., image-
altering probe-molecule interactions). Although spatial resolu-
tion may be poorer in comparison with a semiconducting or
functionalized probe?3, a metallic probe is required for many
SPM techniques [e.g., scanning tunneling spectroscopy (STS)’
and Kelvin probe force microscopy (KPFM)3!].

DeepSPM overview. DeepSPM works as a control loop (Fig. 1a).
The artificial intelligence system drives the SPM by selecting an
appropriate scanning region (Supplementary Fig. 1), acquires an
image, and assesses the acquired image data (Fig. 1b). If the image
is deemed “good”, it is processed and stored (Fig. 1c), and
DeepSPM proceeds with the next loop iteration. If the image is
labeled “bad”, DeepSPM addresses the issues, maintaining con-
tinuous and stable operation (see Methods).

In Fig. 2, we give a graphical description of DeepSPM. The
system is able to assess and identify causes of a defective
acquisition (e.g., lost sample-probe contact, probe crash, bad
sample region, bad probe). If sample-probe contact is lost or the
probe crashes, DeepSPM re-establishes contact in a new scanning
region (Methods). Images of bad sample regions (e.g., excessive
roughness and contamination) can be identified algorithmically
by the fact that measured heights span over a larger range
compared with clean regions (see Methods). If a region is
identified as a “bad sample”, DeepSPM selects a new one and
performs a new measurement.
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Fig. 1 DeepSPM (our method), an autonomous artificial intelligence (Al)-
driven scanning probe microscope. a Schematic of DeepSPM, a machine
learning (ML)-based Al system for autonomous scanning probe
microscopy operation [here, a low-temperature scanning tunneling
microscope (STM)]. DeepSPM determines the control signals
(measurement parameters) and acquires an STM image. After acquisition,
DeepSPM assesses the image quality. If the image is deemed “good”,
DeepSPM processes it and stores it, and performs the next measurement. If
“bad”, DeepSPM detects and addresses possible issues. b STM images of
MgPc molecules on Ag(100), acquired and assessed (green tick: good; red
cross: bad) by DeepSPM. Examples of variable imaging conditions are
shown: good probe and sample; sample area with excessive roughness;
noisy image due to lost probe-sample contact; dull probe leading to blurry
images; multiple-feature probe producing replicated images; contaminated
probe resulting in artefacts; contaminated multiple-feature probe; unstable
probe; € Good STM images processed and stored. The inset in € shows the
chemical structure of MgPc. Scale bar: 2 nm. Color scale indicates the
measured height, with bright colors indicating a higher surface.

Intelligent probe quality assessment. If DeepSPM concludes that
the sample imaging region is “good”, it assesses the state of the
probe: the classifier CNN (Supplementary Table 1) inspects the
recorded image and predicts the probability of it being recorded
with a bad probe (Fig. 3a). To train the classifier, we used a
dataset of 7589 images of the MgPc/Ag(100) sample, labeled as
acquired either with a “good” or “bad probe”. In addition, we
used data augmentation to increase the amount of training data
(see Methods). It is noteworthy that the category “bad probe”
includes various kinds of probe defects (Fig. 1b). We tested its
performance on an unseen test dataset, achieving an accuracy of
~94% (Supplementary Table 1), a positive predictive value ~87%
and a negative predictive value ~96%. As point of reference,
classification accuracy of a human in a benchmark visual object
recognition challenge3? (ImageNet) ranges from 88% to 95%, on
par with our CNN classifier. It is noteworthy that classification
performance is intrinsic to the type of data and the specific
datasets considered. We are, in concurrence with other work33,
among the first to present a dataset of this kind and there are
currently no available baselines for comparison. However, the
performance achieved by DeepSPM enables autonomous data
acquisition and long-term operation of DeepSPM.

Intelligent probe conditioning. If the classifier CNN concludes
that the probe is bad, DeepSPM uses a deep RL agent to condition
it (Fig. 3b). This RL agent is controlled by a second CNN (action
CNN), which is trained by interacting with the SPM setup: the RL
agent inspects the last recorded image and performs a probe-
conditioning action, selected from a list of 12 actions. We
determined this list by considering actions commonly used for
probe conditioning by expert human operators (Methods, Sup-
plementary Note 1, and Supplementary Table 2); they consist of
either a voltage pulse applied between probe and sample, or a dip
of the probe into the sample®. After each conditioning step,
DeepSPM evaluates the outcome of the conditioning process by
acquiring the next image, which is then assessed by the classifier
CNN. If the new image is classified as “bad probe”, the agent
receives a negative reward (r = —1) and proceeds with another
action. If the image is classified as “good probe”, the conditioning
episode (sequence of conditioning steps; Fig. 3c) is terminated
and the agent receives a positive reward (r = 10; Methods).

The RL agent learns an approximately optimal conditioning
procedure by attempting to maximize the cumulative reward
received for each conditioning episode, thus minimizing the
number of required conditioning steps (Supplementary Note 2).
To achieve this, we relied on Q-learning®* (see Methods): the
action CNN processes each recorded image and predicts the
expected future reward (Q-value) resulting from each possible
conditioning action. The RL agent then selects the action with the
highest Q-value (e-greedy policy; Methods and Supplementary
Fig. 2).

To test the RL agent’s performance, we compared it with a
baseline case where conditioning actions are selected randomly
from the list of common actions (Fig. 3b). During testing, we
actively damaged the probe after each conditioning episode (see
Methods). The trained RL agent is able to condition the probe
efficiently (Fig. 3d and Supplementary Figs. 3 and 4) and does
so in an average number of conditioning steps ~28% smaller
than in the random case. Intelligent selection of conditioning
actions by the RL agent significantly outperforms random
selection.

Autonomous SPM operation. We next demonstrate long-term
autonomous operation of the entire DeepSPM system. For a
period of 86 h, we let DeepSPM control the microscope. Figure 4a
shows DeepSPM’s behavior in an approach area, highlighting
occurrences of bad probe detection and conditioning, and
avoiding “bad sample” regions. In Fig. 4b, we show the area
scanned by the system as a function of time. In total, DeepSPM
scanned a sample area of 1.2 um?2 (Fig. 4), recorded >16,000
images, handled 2 lost contacts, identified and avoided 1075
regions of excessive roughness, and repaired the probe 117 times
(Supplementary Table 3).

To evaluate the overall performance of DeepSPM, we manually
inspected the recorded images (Supplementary Note 3). Out of all
images labeled “good” by DeepSPM, ~87% were found to be
without defects or imaging artifacts. Out of all conditioning
episodes initiated by DeepSPM, ~86% were found to be really
necessary (Supplementary Fig. 5, Methods, and Supplementary
Fig. 6). It is noteworthy that these performance metrics are not
related to static classification (as for the classifier CNN testing), as
the state of the STM/sample system and the recorded images
depend dynamically on the decisions made by DeepSPM.

During autonomous operation, the RL agent achieved an
average conditioning episode length of 4.93, ~34% shorter than
during testing (Fig. 3d). We attribute this to the fact that, during
testing, the probe was actively damaged after each conditioning
episode. This was not the case during autonomous operation,
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Fig. 2 Workflow of autonomous scanning probe microscopy (SPM) image data acquisition, assessment, and issue resolution by DeepSPM (our
method). a DeepSPM approaches the SPM probe (e.g., metallic tip and oscillating cantilever) towards the sample until a measurement signal (e.g.,
tunneling current in a scanning tunneling microscope or frequency shift in an atomic force microscope) is detected, b selects a scanning region to image,
and ¢ performs an SPM image acquisition by scanning the probe and recording the measurement signal. d After an image is acquired, DeepSPM addresses
(algorithmically) whether the sample region is overly rough, the probe-sample contact is lost, or the probe has crashed into the sample. If DeepSPM
establishes that none of these events have occurred, the classifier convolutional neural network (CNN) then assesses the quality of the probe; if it is
deemed good, the image is stored, and the measurement loop continues. e If the probe quality is deemed bad, the deep reinforcement learning agent
attempts to repair the probe by selecting and applying a probe-conditioning action. f If DeepSPM does not find a region suitable for scanning, it re-positions

the probe (macroscopically) to a new approach area.

where arguably the state of the probe remains closer to a good
one (Supplementary Note 3).

Discussion

The available conditioning actions do not allow the RL agent to
control the atomic-scale structure of the probe, which determines
imaging quality. Their outcome is probabilistic and conditioning
episode lengths vary (Fig. 3d). Nonetheless, our RL agent’s better-
than-random performance shows that: (i) at each step of the
conditioning process, it is in principle possible to intelligently
choose an action that is likely to improve the probe, and (ii) that
an ML system can learn to make this choice (Supplementary
Note 4).

In our specific case here, the single images that DeepSPM
records and that determine the RL agent’s conditioning action
selection do not enable the retrieval of the atomistic morphology
of the probe. Therefore, the conditioning process behaves effec-
tively as if it had memory; the probe state depends on the specific
sequence of previous actions and images. Continuous training of
the RL agent during operation allows it to follow the evolution of
the probe state and is hence essential to achieve better-than-
random performance during operation (Supplementary Fig. 4).

Here we used RL to optimize a data acquisition protocol. The
benefit of RL for such a task is that the rules for optimization
(optimal choices for probe conditioning) do not need to be
known in advance; an agent with sufficient training can establish
them by interacting with the experimental setup, without human
guidance.

Automation of complex experimental procedures such as SPM
frees valuable researcher time. DeepSPM brings state-of-the-art

SPM closer to a turnkey application, enabling non-expert users to
achieve optimal performance.

DeepSPM can be applied directly to any sample, probe mate-
rial, or STM/AFM setup, as long as specific training datasets are
available (see Methods). It can further be expanded to other SPM
spectroscopy techniques (e.g., STS and KPFM), where probe
quality conditions would need to include additional spectroscopic
requirements>3! (Supplementary Note 5). Fully autonomous
SPM also opens the door to high-throughput and scalable
atomically precise nano-fabrication®, hardly feasible via manual
operation.

Future work can further extend our method by combining it
with semi-automatic ML approaches used for, e.g., the identifi-
cation of adverse imaging conditions**33 or imaging regions of
interest!8,

Methods

Sample preparation. The samples were prepared in-situ by sublimation of MgPc
molecules (Sigma-Aldrich) at 650 K (deposition rate = 0.014 molecules nm~2 min—1;
sub-monolayer coverages) onto a clean Ag(100) surface (Mateck GmbH) held at
room temperature. The Ag surface was prepared in ultra-high vacuum (UHV) by
repeated cycles of Art sputtering and annealing at 720 K. The base pressure was
below 1 x 10~ mbar during molecular deposition.

STM measurements. The STM measurements were performed using a com-
mercial scanning probe microscope (Createc) capable of both STM and non-
contact AFM at low temperature (down to 4.6 K) and in UHV. This setup includes
two probe-positioning systems: a coarse one for macroscopic approaching and
lateral positioning of the probe above the sample; a fine one consisting of a piezo
scanner that allows for high-resolution imaging. The lateral range of the fine piezo
scanner at 4.6 K is £425 nm, i.e., each approach of the probe to the sample with the
coarse system defines a scanning region area of 850 x 850 nm?2). Nanonis
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Fig. 3 Intelligent assessment and probe repair. a After image pre-
processing, DeepSPM (our method) detects lost contact, probe crashes,
and bad sample regions (excessive roughness) by measuring apparent
height distributions. If none of these problems are detected, the classifier
convolutional neural network (CNN) assesses the probe quality. b If the
probe is deemed bad, the reinforcement learning agent selects and
executes a conditioning action from a predefined list, with the aim of
achieving the shortest possible conditioning sequence. This selection is
achieved via a second (action) CNN, which predicts the cumulative future
reward (Q-value) for each conditioning action. DeepSPM executes it at the
center of the largest empty area found within the scanned region.

¢ Example of probe-conditioning episode. DeepSPM repairs a dull STM
probe in three conditioning steps. The conditioning actions selected by
DeepSPM are displayed below each image and were executed at the white
crosses. d Distribution of the mean episode length (bootstrapping, 100,000
draws#3) required to restore a good probe, for random testing (random
selection of one of the 12 possible conditioning actions; 184 conditioning
episodes), RL agent testing (189 conditioning episodes), and RL agent
autonomous operation (117 episodes). During testing, the probe was
actively damaged after each conditioning episode. The RL agent continued
to train during data acquisition, for both testing and autonomous operation.

electronics and SPM software (SPECS) were used to operate the setup. All mea-
surements were performed at 4.6 K with a Pt/Ir tip. All topographic images were
acquired in constant-current mode (Vy;,s =1V, I, =25 pA) at a scan speed of 80
-1
nms~L
After moving the probe macroscopically to a new sample area, DeepSPM
extends the z piezo scanner to ~80% of its maximum extension, to maximize the
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Fig. 4 Autonomous operation of DeepSPM. a Example of DeepSPM’s
behavior within one approach area (850 x 850 nm?2) during an autonomous
data acquisition run. DeepSPM approached the probe and initialized data
acquisition at the center of the area (1). At (2), DeepSPM stopped the data
acquisition and moved to the next approach area. The black curve indicates
the probe trajectory. The plot shows valid measurement regions scanned
with a good probe (green), regions deemed bad due to excessive roughness
(magenta), locations where a bad probe was detected (orange) and a
probe-conditioning action was performed accordingly (blue), and regions
deemed bad due to proximity of excessively rough or probe-conditioning
areas (gray). To account for sample variability, DeepSPM triggered probe
conditioning only when it detected ten consecutive images recorded with a
bad probe (see Methods). b Total sample area imaged by DeepSPM during
the 86 h autonomous data acquisition run [only scanned sample areas are
included; areas inferred bad (gray) were omitted]. Vertical blue lines
indicate probe-conditioning events. Shaded time window corresponds to
the approach area in a. (Vs = —1V, l;=25 pA, scan speed of 80 nm s~ 7,
6.4 px nm~7).

range of tunneling current feedback controlling the z position of the scanner
without crashing or losing contact. If tunneling contact is lost, DeepSPM re-
approaches the probe. DeepSPM also handles probe crashes (see section below
“Detection and fixing of lost contact/probe crash”).

After approaching the probe to the sample, DeepSPM waits ~120 s before
starting a new scan, to let thermal drift and (mainly) creep of the z piezo settle.
New measurements start at the neutral position of the xy scan piezo (that is,

x =y =0), where no voltages are applied to the xy piezo scanner, to minimize the
piezo creep in the xy scanning plane. DeepSPM selects the next imaging region by
minimizing the distance that the probe travels between regions (see Fig. 4, section
“Finding the next imaging region” and Supplementary Fig. 1), further reducing xy
piezo creep. After moving the probe to a new imaging region, DeepSPM first
records a partial image that is usually severely affected by distortions due to xy
piezo creep. This image is discarded and a second image, not or only minimally
affected, is recorded at the same position.
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During autonomous operation, the RL agent of DeepSPM continues to learn
about probe conditioning (see main text and below). To avoid damaging a good
probe by unnecessary conditioning during autonomous operation, DeepSPM
initiates a probe-conditioning episode only after ten consecutive images have been
classified as “bad probe” by the classifier CNN (Supplementary Fig. 6). The episode
is terminated as soon as the first image is classified as “good probe” by the classifier
CNN. Images that are not part of a conditioning episode (including the ten
consecutive images that triggered it), or that have been disregarded due to “bad
sample”, lost probe-sample contact or crashed probe, are labeled as “good image”.

Finding the next imaging region. For each new approach area, DeepSPM starts
acquiring data at the center of the scanning range (Fig. 4a). DeepSPM uses a binary
map to block the imaging regions that have already been scanned (Supplementary
Fig. 1). If a region is identified as “bad sample” (e.g., excessive roughness is

detected), DeepSPM defines a larger circular area around it (as further roughness is
expected in the vicinity), and avoids scanning this area. The radius rgbidden Of this
region is increased as consecutive imaging regions are identified as “bad sample”:

Tforbidden — \/Z x 25nm, (1)

where t is the number of consecutive times an area with excessive roughness was
detected.

As probe-conditioning actions can cause debris and roughness on the sample,
DeepSPM blocks a similar circular area to avoid around the location of each
performed conditioning action. The size of this area depends on the executed
action (Supplementary Table 2). DeepSPM chooses the next imaging region
centered at position v, = x,X + y,¥ (x5 y; are coordinates with respect to the center
of the approach area) that minimizes

d= v, = vl +allvel, (2)

provided that this is a valid imaging region according to the established binary
map. Here, v,_; denotes the position of the center of the last imaging region, ||...||;
is the Manhattan norm, and ||...|, is the standard Euclidian norm. The parameter
« controls the relative weight of the two distances, i.e., to the center of the last
scanned region (to minimize travel distance), and to the center of the approach
area (to efficiently use the entire available area). We found a =1 works well. This
algorithm minimizes the distance the probe travels between consecutive imaging
regions, reducing the impact of xy piezo creep. Once the area defined by the fine
piezo scanner range has been filled, or the distance to the center of the next
available scanning region is larger than 500 nm, DeepSPM moves the probe
(macroscopically, with the coarse positioning system) to a new approach area.

DeepSPM architecture. The DeepSPM framework consists of two components: (i)
the controller, written in Python and TensorFlow, and (ii) a TCP server, written in
Labview. The controller contains the image processing, classifier CNN, and RL
agent. The TCP server creates an interface between the controller and the Nanonis
SPM software. The controller sends commands via TCP, e.g., for acquiring and
recording an image, executing a conditioning action at a certain location. The
server receives these commands and executes them on the Nanonis/SPM. It returns
the resulting imaging data via TCP to the controller, where it is processed to
determine the next command. Based on this design, the agent can operate on
hardware decoupled from the Nanonis SPM software.

Training and test dataset for classifier CNN. We compiled a dataset of 7589
images (constant-current STM topography, 64 x 64 pixels) of MgPc molecules on
Ag(100), acquired via human operation. We assigned to each image a ground truth
label of the categories “good probe” (25%) or “bad probe” (75%). We randomly
split the data into a training (76%) and test set (24%). We used the latter to test the
performance of the classifier CNN on unseen data (i.e., not used for training). The
dataset is available online at https://alex-krull.github.io/stm-data.html.

It is important to note that the classifier CNN was trained to distinguish a “good
probe” from a “bad probe”. The classifier CNN was not trained to identify a specific
type of probe defect in the case of a “bad probe”. Figure 1b shows examples of
possible imaging defects, including different types of probe defects (recognized as
“bad probe” by the classifier CNN) and other image acquisition issues (e.g., lost
contact and excessive sample roughness) that are detected algorithmically.

CNN architecture. We used the same sequential architecture for both the classifier
CNN and the action CNN of the RL agent, differing only in their output layer and
specific hyper-parameters (see below). The basic structure is adapted from the
VGG network?!. We used a total of 12 convolutional layers: four sets of three 3 x 3
layers (with 64, 128, 256, and 512 feature maps, respectively) and 2 x 2 max-
pooling after the first two sets. The convolutional layers are followed by two fully
connected layers, each consisting of 4096 neurons. Each layer, except the output
layer, uses a ReLU activation function and batch normalization3. The input in all
networks consisted of 64 x 64 pixel constant-current STM topography images. We
used Dropout?” with a probability of 0.5 after each fully connected layer to reduce
overfitting. The network weights were initialized using Xavier initialization.

Classifier CNN. The classifier CNN uses the architecture above. It has a single
neuron output layer with a sigmoid activation function. This output (ranging from
0 to 1) gives the classifier CNN’s estimate of the probability that the input image
was recorded with a “good probe”. The decision threshold was set to 0.9. It is
noteworthy that DeepSPM requires ten consecutive images classified as “bad
probe” to start a conditioning episode (Supplementary Fig. 6). We trained the
classifier CNN using the ADAM?® optimizer with a cross-entropy loss and L2
weight decay with a value of 5x 10~ and a learning rate of 10~3. To account for
the imbalance of our training set (“good probe” 25% and “bad probe” 75%), we
weighed STM images labeled as “good probe” by a factor of 8 when computing the
loss*. In addition, we increased the available amount of training data via data
augmentation, randomly flipping the input SPM images horizontally or vertically.
It is noteworthy that all training data consisted of experimental data previously
acquired and labeled manually.

Reinforcement learning agent and action CNN. Our RL agent responsible for the
selection of probe-conditioning actions is based on double DQN?34, which is an
extension of DQN?28, We modified the double DQN algorithm to suit the
requirements of DeepSPM as follows. The action CNN controlling the RL agent
uses the architecture above, with a single constant-current STM image as input. It
is noteworthy that the original DQN uses a stack of four subsequent images. Our
action CNN has an output layer consisting of 12 nodes, one for each conditioning
action. The output of each node is interpreted as the Q-value of the corresponding
action, i.e., the expected future reward to be received after executing it. We initi-
alized the weights of the action CNN (excluding the output layer) with those of the
previously trained classifier CNN, based on the assumption that the features
learned by the latter are useful for the action CNN*!. The output layer, which has a
different size in both networks, is initialized with the Xavier initialization. To
train the action CNN, we let it operate the SPM, acquiring images, and selecting
and executing probe-conditioning actions repeatedly when deemed necessary
(Figs. 1 and 2). Once sufficient probe quality was reached (i.e., the probability
predicted by the classifier CNN exceeded 0.9), the conditioning episode was ter-
minated—a conditioning episode consists of the sequence of probe-conditioning
actions required to obtain a good probe. Random conditioning actions (up to five)
were then applied to reset (i.e., re-damage the probe), until the predicted prob-
ability drops below 0.1. The RL agent received a constant reward of —1 for every
executed probe-conditioning action. It received a reward of +10 for each termi-
nated training episode, i.e., each time the probe was deemed good again. We chose
these reward values heuristically by testing them in a simulated environment. In
these simulations, the RL agent executed conditioning actions and the reward
protocol was applied based on images resulting from the convolution of a good,
clean synthetic image with a model kernel representing the probe morphology.
Following a conditioning action, this kernel was updated stochastically. In this
reward scheme, the RL agent receives a positive cumulative reward for and favors
short conditioning episodes, whereas it receives a negative cumulative reward and
is punished for longer episodes.

The RL agent uses e-greedy exploration to gather experience?’. For each
conditioning step, the agent chooses a conditioning action probabilistically based
on parameter ¢ (0 < &< 1): it chooses randomly with a probability ¢, and it chooses
the action with the largest predicted future reward (Q-value) with probability
(1 —¢). For example, if e =1, action selection is strictly random; if ¢ = 0, action
selection is based strictly on predicted Q-value. We start training (Supplementary
Fig. 2) with 500 random steps (¢ = 1) that are used to pre-fill an experience replay
buffer?8. This buffer contains all experiences the agent has gathered so far, each
consisting of an input image, the chosen action and its outcome (the next image
assessed by the classifier CNN, as well as the reward received). We used data
augmentation, adding four experiences to the buffer for each step. These additional
experiences consisted of images flipped horizontally and vertically. After 500 steps
(i.e., 2000 experiences in the buffer), we started training the action CNN with the
buffer data. We used the ADAM optimizer® with a batch size of 64 images
processed simultaneously and with a constant learning rate of 5 x 10~%. We limited
the buffer size to 15,000, with new experiences replacing the old ones (first-in, first
out). To allow parallel execution and increase the overall performance of the
training, we decoupled the gathering of experience and the learning into separate
threads. During training, we decreased ¢ linearly over 500 steps, from 1.0 to
0.05. After reaching ¢ = 0.05, we continued training with additional 4360 steps,
during which we kept ¢ = 0.05 constant>*. We used a constant discount factor of
y=0.95%,

Testing of the RL agent. After training the RL agent, we tested its performance in
operating the STM by comparing it with the probe-conditioning performance
achieved via random conditioning action selection. During this evaluation, we
allowed the action CNN to continue learning from continuous data acquisition
with a constant & = 0.05. Except for this value of ¢, the testing process matches that
of the RL agent training above. To achieve a meaningful comparison, we accounted
for the fact that the state of the sample and the probe changes after each executed
conditioning action (Supplementary Figs. 3 and 4), by adopting an interleaved
evaluation scheme. That is, RL agent action selection and random selection
alternate in conditioning the probe, switching after each completed probe-
conditioning episode.
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STM image pre-processing. The scanning plane of the probe is never perfectly
parallel to the local surface of the sample. This results in a background gradient in
the SPM images that depends on the macroscopic position and, to a lesser extent,
on the nanoscopic shape of the probe. This gradient was removed in each image by
fitting and subtracting a plane using RANSAC*? (Python scikit-learn imple-
mentation; polynomial of degree 1, residual threshold of 5 x 10712, max trials

of 1000). The acquired STM data were further normalized and offset to the range
[—1; 1], i.e., such that pixels corresponding to the flat Ag(100) had values of —1
and those corresponding to the maximum apparent height of MgPc (~2 A) had
values of 1. In addition, we limited the range of values to [—1.5, 1.5], shifting any
values outside this range to the closest one inside the interval.

Finding an appropriate action location. For a given acquired STM image,
DeepSPM executes a probe-conditioning action at the center of the largest clean Ag
(100) square area (Fig. 3). This center is found by calculating a binary map from
the pre-processed image (see above), where pixels close (<0.1 A) to the surface
fitted plane are considered empty, i.e., belong to a clean Ag(100) patch, and all
others as occupied. The center of the largest clean Ag(100) square area within this
binary map was chosen as the conditioning location. We defined an area
requirement for each conditioning action (Supplementary Table 1). A conditioning
action is allowed and can be selected by the agent only if the available square area is
within this specified requirement.

Detection and fixing of lost contact/probe crash. DeepSPM is able to detect and
fix any potential loss of probe-sample contact during scanning. It does so by
monitoring the extension (z-range) of the fine piezo scanner; if the fine piezo
scanner extends in the z-direction beyond a specified threshold (towards the
sample surface), DeepSPM prevents the potential loss of probe-sample contact by
re-approaching the probe towards the sample with the coarse probe-positioning
system (until the probe is within an acceptable distance range from the sample).
Data acquisition can then continue at the same position. Similarly, DeepSPM can
prevent probe-sample crashes, i.e., by increasing the probe-sample distance

with the coarse probe-positioning system if the fine piezo scanner retracts in the
z-direction beyond a specified threshold (away from the sample surface).

Data availability

Relevant data are made available by the authors. Our classification dataset is available
online at https://alex-krull.github.io/stm-data.html. A visual representation of the probe-
shaping episodes of the autonomous operation is available as Supplementary Data 1.

Code availability
The source code will be made available at https://github.com/abred/DeepSPM.
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