
 

 

1 

 

Supplementary Information 
 
Tracing tumorigenesis in a solid tumor model at single-
cell resolution 
 
Praktiknjo et al. 



Corr:
0.951

Corr:
0.796

Corr:
0.784

Corr:
0.745

Corr:
0.762

Corr:
0.929

bulkCTL bulkDM scCTL scDM

−2 0 2 4 6 −2 0 2 4 6 −2 0 2 4 −2.5 0.0 2.5 5.0

0.0
0.1
0.2
0.3
0.4
0.5

−2
0
2
4
6

−2
0
2
4

−2.5

0.0

2.5

5.0

log10 TPM

lo
g1

0 
TP

M

bulkC
TL

bulkD
M

scC
TL

scD
M

0

300

600

900

1200

B1
1T

40
R

1M
B1

1T
40

R
2F

B1
1T

40
R

3M
B1

1T
90

R
5F

B1
2T

40
R

4F
B1

2T
90

R
6M

B1
2W

40
R

1F
B1

2W
40

R
2M

B1
3T

40
R

5M
B1

3T
40

R
6F

B1
3T

90
R

7F
B1

3W
40

R
3M

B1
4T

40
R

7F
B1

4W
40

R
4F

B1
4W

40
R

5M
B1

4W
40

R
6F

B6
T9

0R
1M

B7
W

90
R

1F
B7

W
90

R
2F

B8
T9

0R
2M

B8
T9

0R
3F

B8
W

90
R

3M
B8

W
90

R
4M

B9
T9

0R
4F

B9
W

90
R

5M
B9

W
90

R
6F

nu
m

be
r o

f c
el

ls

100

1000

10000

B1
1T

40
R

1M
B1

1T
40

R
2F

B1
1T

40
R

3M
B1

1T
90

R
5F

B1
2T

40
R

4F
B1

2T
90

R
6M

B1
2W

40
R

1F
B1

2W
40

R
2M

B1
3T

40
R

5M
B1

3T
40

R
6F

B1
3T

90
R

7F
B1

3W
40

R
3M

B1
4T

40
R

7F
B1

4W
40

R
4F

B1
4W

40
R

5M
B1

4W
40

R
6F

B6
T9

0R
1M

B7
W

90
R

1F
B7

W
90

R
2F

B8
T9

0R
2M

B8
T9

0R
3F

B8
W

90
R

3M
B8

W
90

R
4M

B9
T9

0R
4F

B9
W

90
R

5M
B9

W
90

R
6F

# 
U

M
Is

100

300

1000

3000

B1
1T

40
R

1M
B1

1T
40

R
2F

B1
1T

40
R

3M
B1

1T
90

R
5F

B1
2T

40
R

4F
B1

2T
90

R
6M

B1
2W

40
R

1F
B1

2W
40

R
2M

B1
3T

40
R

5M
B1

3T
40

R
6F

B1
3T

90
R

7F
B1

3W
40

R
3M

B1
4T

40
R

7F
B1

4W
40

R
4F

B1
4W

40
R

5M
B1

4W
40

R
6F

B6
T9

0R
1M

B7
W

90
R

1F
B7

W
90

R
2F

B8
T9

0R
2M

B8
T9

0R
3F

B8
W

90
R

3M
B8

W
90

R
4M

B9
T9

0R
4F

B9
W

90
R

5M
B9

W
90

R
6F

# 
ge

ne
s

samples

sa
m

pl
es

B8
W

90
R

4M
B8

W
90

R
3M

B1
4W

40
R

5M
B9

W
90

R
5M

B1
1T

90
R

5F
B1

3T
40

R
5M

B1
2T

90
R

6M
B1

1T
40

R
2F

B9
T9

0R
4F

B8
T9

0R
2M

B6
T9

0R
1M

B1
3T

90
R

7F
B9

W
90

R
6F

B7
W

90
R

1F
B7

W
90

R
2F

B1
2W

40
R

1F
B1

1T
40

R
1M

B1
3W

40
R

3M
B1

1T
40

R
3M

B1
2W

40
R

2M
B8

T9
0R

3F
B1

4W
40

R
4F

B1
4W

40
R

6F
B1

2T
40

R
4F

B1
3T

40
R

6F
B1

4T
40

R
7F

sex
genotype

stage
batch

R

0.6
0.7
0.8
0.9
1

sex
F
M

genotype
DM
CTL

stage
P40
P90

batch
B11
B12
B13
B14
B6
B7
B8
B9

FSC-A, SSC-A subset
35,0

0 50K 100K 150K 200K 250K

FSC-A

0

50K

100K

150K

200K

250K

SS
C

-A

a

cb

d

fe

Supplementary Fig. 1

2



 

 

3 

Supplementary Fig 1. Single-cell sample preparation and run statistics. a Flow cytometric 
approach to obtain live, single cells, from dissociated submandibular salivary glands. Cells 

were first sorted by size to remove cellular debris and doublets, and the subset of DAPI-negative 
cells further selected to exclude dead cells. b Pairwise gene expression correlations between 
samples pooled from single-cell control (scCTL) or single-cell double-mutant (scDM) datasets 
and bulk RNA-seq data from freshly dissected whole control (bulkCTL) or double-mutant 
(bulkDM) submandibular glands. Lower left part: correlation scatter plots where axes 
correspond to either single-cell expression counts (UMIs) converted to log10-transformed 
average transcripts per million (ATPM) or RNA-seq bulk expression levels in transcripts per 

million (TPM). Upper right part: Pearson correlation coefficients for the respective 
comparison. Diagonal: expression density distribution plots of samples. c Correlation heatmap 
of normalized expression values (as described above) for the 26 individual single-cell libraries. 
Pearson coefficients were generally high as indicated by a color scale ranging from blue 
(R=0.6) to red (R=1). Samples did not cluster in an obvious way according to the sex (F=female 
vs. M=male), genotype (control vs. double-mutant), stage (P40 vs. P90) of the animal or the 

experimental batch in which they were processed. d Mean number of cells obtained per sample 
after single-cell experimental and computational processing. e Box plots showing the 
distribution of genes per cell for each sample. f Box plots showing the distribution of the 
number of UMIs per cell for each sample. e, f Boxes span the 25th to the 75th percentile, whiskers 
1.5 times the interquartile range. Cell number per sample as indicated in d. 
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Supplementary Fig 2. Entropy-based quantification of batch effects. We used relative 
entropy (Kullback-Leibler divergence) to quantify how well a cell's local neighborhood reflects 

the global distribution of cells across samples or other biological groups, such as genotype, 
stage, sex or the combination of all three. 22525 cells in 26 samples used in total. a Distribution 
of relative entropy values for cells grouped by sample (orig.ident), genotype, sex, stage or the 
combined effect of genotype+sex+stage, compared to randomizing these labels across cells. b 
Relative entropy per cell type is highest in cell types that exhibit the strongest differences 
related to a specific biological factor (e.g., CSCs for genotype, ductal Egf+ for sex or luminal 
Dcpp1+ for stage). a, b Boxes span the 25th to the 75th percentile, whiskers 1.5 times the 

interquartile range. 
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Supplementary Fig 3. Validation of sex- and stage-specific cell clusters. a Expression of 
Egf (top), Smgc (middle) and Wfdc18 (bottom) in the tSNE representation as indicated by a 

color scale ranging from grey (no expression) to dark blue (high expression). b Fraction of cells 
from male and female (top and middle) or P40 and P90 (bottom) animals contributing to the 
ductal Egf+, ductal Smgc+, and luminal Dcpp1+ clusters. Boxes span the 25th to the 75th 
percentile, whiskers 1.5 times the interquartile range. P-values from mixed-effects binomial 
model using 10398 cells in 12 samples. c Immunofluorescence analysis of submandibular gland 
tissue sections from female and male (top and middle) and P40 and P90 (bottom) animals for 
Egf, Smgc and Wfdc18 proteins. Representative images of at least two independent 

experiments. Scale bars: 50 µm. d tSNE plots showing either sex- (top) or stage-specific 
(bottom) relative local densities of cells as determined by the log2-transformed ratio of male to 
female (green to dark yellow) or P90 to P40 (blue to turquoise) contributions in neighbouring 
cells, respectively. e Anatomical sketch of the male submandibular gland based on single-cell 
transcriptome data, available literature (see text for references) and validations in tissue sections 
by immunofluorescence. 
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Supplementary Fig 4. Cell type-specific marker expression in control salivary glands. a 
Projection of several differentially expressed genes in clusters onto the tSNE showing some of 
the markers which were used for the cell type annotation. Expression levels are indicated by a 
color scale ranging from grey (no expression) to dark blue (high expression). b Validation of 
cell type-specific epithelial markers by immunofluorescence analysis in salivary gland tissue 
sections from control animals. From left to right, (co)localizations of: K14 (basal), SMA 
(myoepithelial), Prol1 (acinar) / Klk1 (striated), Pglyrp1 (excretory), Smgc (intercalated ductal 
in females) / Hepacam2 (ductal progenitor), K8 (ductal), Aqp5 (acinar) positive cells in 
submandibular glands; and Muc19-positive cells in the sublingual gland. White, yellow and 
orange arrowheads mark K14-high, SMA-high and combined K14/SMA-high cells, 
respectively. Dashed line the boundary between submandibular (left) and sublingual (right) 
tissue. Except for Muc19, representative images of at least two independent experiments. Scale 
bars: 50 µm. 
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Supplementary Fig. 5. Proportions of enriched cell populations in double-mutant tissues. CSCs, 
basal, luminal Clu+, immune, immune2, Ig-producing and stromal (fibroblasts and endothelial) cell 
clusters were significantly more abundant in tumor-bearing tissues (a), while other prominent epithelial 
cell populations were accordingly more abundant in the control (b). P-values from mixed-effects model 
using 22525 cells in 26 samples. Boxes span the 25th to the 75th percentile, whiskers 1.5 times the inter-
quartile range.
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Supplementary Fig. 6
Supplementary Fig. 6. Relative contributions of samples to cell clusters. Control samples are shown 
in shades of purple and blue; double-mutant tumor-bearing samples in shades of red and orange.
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Supplementary Fig. 7. Immunofluorescence analysis of tumor-specific markers in double-mutant 
and control tissues. a Validation of tumor-specific cells (cancer stem, tumor-specfic basal and luminal 
Clu+ cells) by immunofluorescence in tumor regions of double-mutant salivary gland tissue sections using 
markers identified from our single-cell data (see Fig. 2c). White arrowheads indicate co-staining of Axin2, 
Ptn and Wif1 with nuclear β-catenin. Yellow arrowheads indicate co-staining of Ptn with K8 or point out 
Wif1-positive cells. Clu and Wfdc18 stainings strongly correlated with K8-positive cells in tumor lesions. 
b Co-stainings of β-catenin/K14/K8 and Clu/Aqp5/K8 in tissue sections from control salivary glands 
show absence of nuclear β-catenin and Clu-positive cells. a, b Representative images of at least two inde-
pendent experiments. Scale bars: 50 μm. 
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Supplementary Fig. 8: Cell surface markers and expressed genes in the tumor microenvironment. 
a Epitope and mRNA signals in cells from CITE-seq experiments for epithelial (Epcam) and stromal-spe-

cific markers (Cd38, Ly6c) in the tSNE of the combined clustering as shown in Fig. 3b. b Gene expres-

sion of several markers in the subclustered tSNE representation of immune cells as shown in Fig. 3d.

a b

Supplementary Fig. 8
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Supplementary Fig. 9: Characterization of CSC-like and basal subpopulations.  a, b Top 
marker genes for CSC (a) and basal (b) subpopulations, respectively. c Projection of the 

subclustered tumor-specific region back onto a subregion of the tSNE shown in Fig. 4a. d 
Expression of several genes in the subclustered tumor-specific tSNE representation as indicated 
by a color scale ranging from grey (no expression) to dark blue (high expression). 



Supplementary Fig. 10

Suppementary. Fig. 10: EMT occurs in basal cells at early stages of tumorigenesis. Immunofluorescence of 
control (top) and double-mutant (bottom) salivary glands at P40 with antibodies against SPARC, an emerging 
EMT marker that is associated with tumor progression and increased invasiveness in several cancers (see supple-
mental references1-5). SPARC was particularly prevalent in the tumor region of double-mutant tissues. Compared 
to control tissue, SPARC was upregulated in K14-positive cells within the tumor as well as in the tumor-associat-
ed stroma. Arrows indicate co-staining of K14 and SPARC. Dashed lines indicate the tumor region in the 
double-mutant tissue section. Representative images of two independent experiments. Scale bar: 20 μm. 
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Supplementary Fig. 11: Diffusion map control analyses. a Diffusion map of tumor-specific 
epithelial cell populations shown in the first and third components together with inferred 

trajectory obtained by smoothing diffusion coordinates over pseudotime. b Diffusion analysis 
for individual double-mutant tumor samples with >10 cells in the relevant clusters showing 
sample-specific pseudotime plotted against global pseudotime. With the exception of 
B6T90R1M (dominated by luminal Clu+ cells) and B12T40R4F (only 15 cells) correlations 
(Pearson’s R) were generally high. c Diffusion map shown in the first and second (left) and 
first and third (right) components of tumor-specific epithelial cell populations after removing 
CSCs from the analysis. Respective density plot of basal tumor and luminal Clu+ cells along 

pseudotime is shown (bottom). 



Supplementary Fig. 12

Supplementary Fig. 12: Relative contributions of double-mutant samples to tumor-specific 
epithelial cell types. Samples from the P40 and P90 stage are shown in shades of turquoise and 
dark blue, respectively.
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Supplementary Fig. 13: Gene expression for selected differential genes as function of 
pseudotime rank. SAVER-imputed gene expression with grey lines from LOESS smoothing 
(shading indicates 95% confidence interval).
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Supplementary Fig. 14. Metabolic pathway scores in tumor-specific epithelial cells. 
Violin plots with boxplots showing the distribution of HALLMARK_GLYCOLYSIS and 

HALLMARK_OXIDATIVE_PHOSPHORYLATION gene set scores from SAVER-imputed 

expression data in tumor-specific epithelial cells as defined in Fig. 4 compared to the ‘basal 

normal’ subpopulation (shown on the left in yellow).

Supplementary Fig. 14
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Supplementary Table 1: List of oligonucleotide-coupled antibodies used for CITE-seq experiments. All uncoupled antibodies were obtained from BioLegends 
except for those indicated by an asterisk which were obtained from R&D Systems. 

Antibody Clone CITE-seq barcode Antibody Clone CITE-seq barcode Antibody Clone CITE-seq barcode 

CD62L MEL-14 AATCGCTCCGGA CD54 YN1/1.7.4 GGACATTACCAC control_mIgG2b 27-35 GATCGTAATACC 

A2B5 105 AGCGAAGACGAT CD74 In1/CD74 TATACGGACGTG Nectin2*  AACCATGGTCGC 

control_AH_IgG HTK888 CATGATTGGCTC CD69 H1.2F3 ACGGCTAATCAC NK1.1 PK136 AGCAAGCCTCAT 

CCR9_CD199 L053E8 ACCGATCTCAGC CD71 RI7217 TAGGCTGCTTAA Notch1 HMN1-12 GCTCAGATTAGT 

CD103 Clone 2E7 CCGCGTTACACA CD8 5H10 CCGATCGTATGC Notch2 HMN2-35 CATACGCGAAGG 

CD104 346-11A CTTAACTCATGG CD95 SA367H8 ATCTATGCCTCC Notch3 HMN3-133 TGCTGAGGTCTT 

CD11b M1/70 TCAATTGCGTGC CD97 18d3 AACGTAACTGAG Notch4 MHN4-2  GCGTCCGAGAAT 

CD11c N418 CGTAAGAACCGT cKit 2B8 CCTCGGATACTA PDCA1_CD137 17B5 TTCGTACAGTTC 

CD127 A7R34 CGTACAAGCCAC CLEC12A_CD371 5D3/CLEC12A GAACTTCTGGCG SiglecF S17007L CGAAGAGGCCTT 

CD133 315-2C11 CCAATACGAGCA CLEC9A_DNGR1_CD370 7H11 TGAGCCTCACTT SiglecH 551 CGTGATTGAAGG 

CD152 9H10 CTGACGACTCAG CSF1R_CD115 AFS98 TTGATCGACCGT SIRPa_CD172a P84 GAGTAGCACATA 

CD16_32 93 CAGTTGCTCTGA CX3CR1 SA011F11 GTTGTTGGTCCG TCRg_d GL3 GCGACAATGACG 

CD169 3D6.112 CTAGCTGACGCA Delta_Like_4 HMD4-1 AGGCTAAGGCAA TNFRH3_TNFRSF26*  TCTCTCAAGTCC 

CD19 1D3 CATGTCTACATC EpCAM G8.8 GAGGACGATCAT Trop2*  GAACTCATAGGC 

CD205 NLDC-145 TCTGGAGGACAA ESCAM*  ATAGGTCATGCG XCR1 ZET GTCCAACAGCCA 

CD209a MMD3 CAATAGCAGCTC IAIE_MHC M5/114.15.2 TGGCTGGCTAGA Jagged2 HMJ2-1 GTGGATCATGTT 

CD24 M1/69 TAGTGCTAGGCG IL7Ra_CD127 A7R34 CGGAGTAGTAAT CD29 HM_1-1 TTCACTGGCTAA 

CD25 3C7 AACTGCTCCACA Lamp1 1D4B GAACTCCACCTC    

CD317 REA818 GTCTGTAGGCAT Ly6A/E D7 ATGCCAGCAGAG    

CD34 HM34 GTTGAAGACTGG Ly6C HK1.4 AAGAGCTCGCAG    

CD38 90 GGCCGAGTCTAA Ly6G 1A8 TCGATAACCGCT    

CD4 RM4-5 TGACGTAACACT control_mIgG1 MG1-45 TGTCCGGCAATA    

CD45R RA3-6B2 ACGAGGAGATGG control_mIgG2a MG2a-53 GAGGCGATTGAT    
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