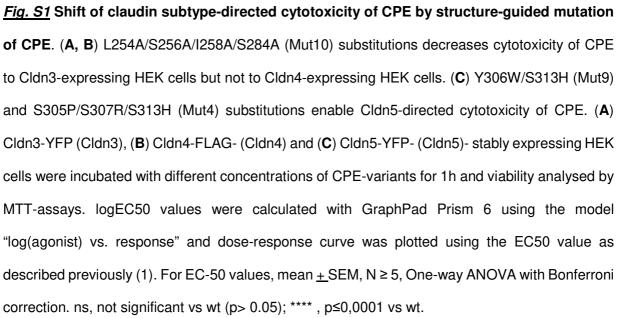
Supplemental Material

Targeting claudin-overexpressing thyroid and lung cancer by modified *Clostridium perfringens* enterotoxin

Molecular Oncology

Anna Piontek, Miriam Eichner, Denise Zwanziger, Laura-Sophie Beier, Jonas Protze, Wolfgang Walther, Sarah Theurer, Kurt Werner Schmid, Dagmar Führer-Sakel, Jörg Piontek[#], Gerd Krause[#]


Corresponding authors: Gerd Krause, Robert-Rössle-Str. 10, 13125 Berlin, Germany; Tel +4930 94793 228, <u>GKrause@fmp-berlin.de</u>; Jörg Piontek, Hindenburgdamm 30, 12167 Berlin, Germany; Tel +4930 450-514535; <u>joerg.piontek@charite.de</u>

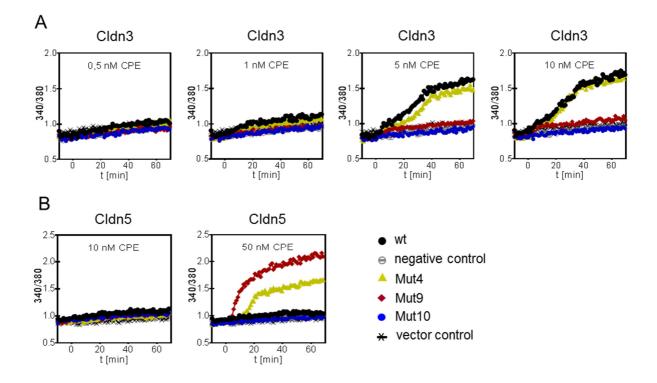
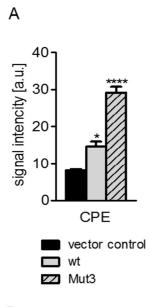
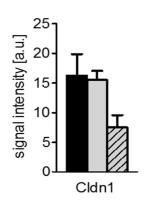

Mutations in cCPE or CPE	Abbreviation	Claudin sensitivity*	Published as
	in this study		cCPE-variant
No mutations	wt	Cldn3,-4,-7,-8,-9	(1-4)
Y306A/L315A	Negative control	Not sensitive	(4)
S313H	Mut1	Cldn1,-3,-4,-5,-6,-7,-9	(4)
S231R	Mut2		
S231R/S313H	Mut3	Cldn1,-5	
S305P/S307R/S313H	Mut4	Cldn1-6	(4)
S231R/Y306W/S313H	Mut5		
N218Q/Y306W/S313H	Mut6	Cldn5	(2)
N218Q/S231R/S313H	Mut7		
N218Q/S231R/Y306W/S313H	Mut8		
Y306W/S313H	Mut9	Cldn3,-4, -5	(2,4)
L254A/S256A/I258A/D284A	Mut10	Cldn4	(3)

Table S1. cCPE- or CPE-variants and claudin-binding characteristics


Mutations introduced in full length CPE or its C-terminal domain (cCPE) result in different CPE/cCPE-variants with modified claudin-sensitivity. In the table the strongest binding partners (claudin subtypes, *) of these variants are shown.



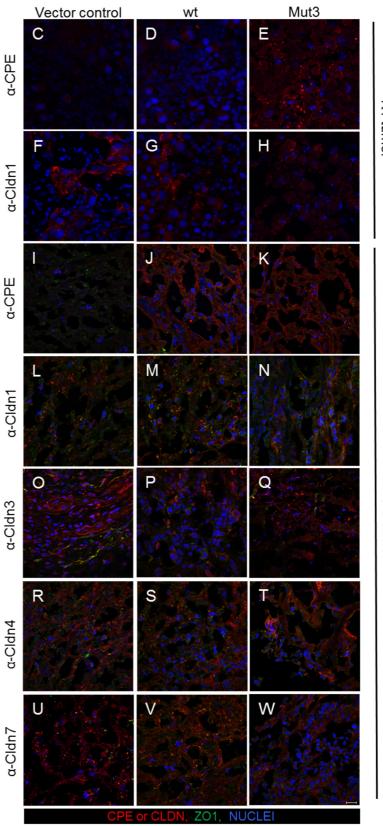


Fig. S2 Claudin-subtype-directed cytotoxicity of CPE-variants is mediated by induction of Ca²⁺ influx. (A) CPEwt and CPE-Mut4 but not CPE-Mut10, CPE-Mut9, CPE-negative control or vector control mediate concentration-dependent Ca²⁺-influx in Cldn3-YFP-expressing HEK cells. (B) CPE-Mut9 and CPE-Mut4 but not CPEwt, CPE-Mut10 or vector control mediate concentration-dependent Ca²⁺-influx in Cldn5-YFP-expressing HEK cells. Stable lines were at time point 0 incubated with different concentrations of CPE-variants and Ca²⁺-influx was measured over time with Fura-2 as described earlier (1).The ratio of emission at 510 nm after 340 nm and 380 nm excitation (340/380) reflects the intracellular Ca²⁺-level.

В

K1 tumor

PC-9 tumor

Fig. S3 Visualization of CPE and claudins in thyroid and lung xenograft models after recombinant CPE treatment. In K1 xenograft model strongest CPE-signal was detected in CPE-Mut3 treated samples (**A**), on the contrary these samples revealed weakest Cldn1- signal (**B**). This might point to the stronger internalization and degradation of Cldn1 after binding of CPE-Mut3. Analysis revealed no junctional claudin or ZO-1 staining in K1 (**F-H**) or PC-9 tumors (**I-W**), pointing to absence of intact TJ in the thyroid and lung tumor xenograft models. CPEwt and -Mut3 treatment led to a slight decrease of Cldn3,-4 and -7- signal through potential internalization and degradation of those claudins after interaction with CPE. 18 μm sick slices of shock frozen tumor samples were stained for analysis of potential claudin-disarrangement after CPE-treatment. Lung tumor samples were stained with mouse anti-ZO1 and goat anti-mouse Alexa 488 antibodies for visualization of ZO1 as junctional marker (green). DAPI staining for nuclei (blue) was performed for all samples, as well. CPE (**C-E**, **I-K**), Cldn1 (**F-H**, **L-N**), Cldn3 (**O-Q**), Cldn4 (**R-T**) or Cldn7 (**U-W**) were visualized (red) by incubation with rabbit anti-CPE or rabbit anti-claudin (either Cldn1, - 3, -4 or -7) antibody, followed by incubation with goat anti-rabbit Alexa 555 antibodies. Scale bar of 20 μm.

References

- Eichner, M., Augustin, C., Fromm, A., Piontek, A., Walther, W., Bucker, R., Fromm, M., Krause, G., Schulzke, J. D., Gunzel, D., and Piontek, J. (2017) In Colon Epithelia, Clostridium perfringens Enterotoxin Causes Focal Leaks by Targeting Claudins Which are Apically Accessible Due to Tight Junction Derangement. *The Journal of infectious diseases* 217, 147-157
- Neuhaus, W., Piontek, A., Protze, J., Eichner, M., Mahringer, A., Subileau, E. A., Lee, I. M., Schulzke, J. D., Krause, G., and Piontek, J. (2018) Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin's claudinbinding domain. *Biomaterials* 161, 129-143
- 3. Veshnyakova, A., Piontek, J., Protze, J., Waziri, N., Heise, I., and Krause, G. (2012) Mechanism of Clostridium perfringens enterotoxin interaction with claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins. *J Biol Chem* **287**, 1698-1708
- 4. Protze, J., Eichner, M., Piontek, A., Dinter, S., Rossa, J., Blecharz, K. G., Vajkoczy, P., Piontek, J., and Krause, G. (2015) Directed structural modification of Clostridium perfringens enterotoxin to enhance binding to claudin-5. *Cell Mol Life Sci* **72**, 1417-1432